system HF staff commited on
Commit
c61b0f1
0 Parent(s):

Update files from the datasets library (from 1.2.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.2.0

.gitattributes ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.onnx filter=lfs diff=lfs merge=lfs -text
14
+ *.ot filter=lfs diff=lfs merge=lfs -text
15
+ *.parquet filter=lfs diff=lfs merge=lfs -text
16
+ *.pb filter=lfs diff=lfs merge=lfs -text
17
+ *.pt filter=lfs diff=lfs merge=lfs -text
18
+ *.pth filter=lfs diff=lfs merge=lfs -text
19
+ *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
22
+ *.tflite filter=lfs diff=lfs merge=lfs -text
23
+ *.tgz filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,174 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - crowdsourced
4
+ - expert-generated
5
+ language_creators:
6
+ - crowdsourced
7
+ - expert-generated
8
+ languages:
9
+ - en
10
+ licenses:
11
+ - unknown
12
+ multilinguality:
13
+ - monolingual
14
+ size_categories:
15
+ - 1K<n<10K
16
+ source_datasets:
17
+ - extended|natural_questions
18
+ - extended|other-Common-Crawl
19
+ - original
20
+ task_categories:
21
+ - other
22
+ - question-answering
23
+ task_ids:
24
+ - abstractive-qa
25
+ - extractive-qa
26
+ - other-other-query-based-multi-document-summarization
27
+ ---
28
+
29
+ # Dataset Card for AQuaMuSe
30
+ ## Table of Contents
31
+ - [Dataset Description](#dataset-description)
32
+ - [Dataset Summary](#dataset-summary)
33
+ - [Supported Tasks](#supported-tasks-and-leaderboards)
34
+ - [Languages](#languages)
35
+ - [Dataset Structure](#dataset-structure)
36
+ - [Data Instances](#data-instances)
37
+ - [Data Fields](#data-fields)
38
+ - [Data Splits](#data-splits)
39
+ - [Dataset Creation](#dataset-creation)
40
+ - [Curation Rationale](#curation-rationale)
41
+ - [Source Data](#source-data)
42
+ - [Annotations](#annotations)
43
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
44
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
45
+ - [Social Impact of Dataset](#social-impact-of-dataset)
46
+ - [Discussion of Biases](#discussion-of-biases)
47
+ - [Other Known Limitations](#other-known-limitations)
48
+ - [Additional Information](#additional-information)
49
+ - [Dataset Curators](#dataset-curators)
50
+ - [Licensing Information](#licensing-information)
51
+ - [Citation Information](#citation-information)
52
+
53
+ ## Dataset Description
54
+
55
+ - **Homepage:** https://github.com/google-research-datasets/aquamuse
56
+ - **Repository:** https://github.com/google-research-datasets/aquamuse
57
+ - **Paper:** https://arxiv.org/pdf/2010.12694.pdf
58
+ - **Leaderboard:**
59
+ - **Point of Contact:**
60
+
61
+ ### Dataset Summary
62
+
63
+ AQuaMuSe is a novel scalable approach to automatically mine dual query based multi-document summarization datasets for extractive and abstractive summaries using question answering dataset (Google Natural Questions) and large document corpora (Common Crawl)
64
+
65
+ This dataset contains versions of automatically generated datasets for abstractive and extractive query-based multi-document summarization as described in [AQuaMuSe paper](https://arxiv.org/pdf/2010.12694.pdf).
66
+ ### Supported Tasks and Leaderboards
67
+
68
+ - **Abstractive** and **Extractive** query-based multi-document summarization
69
+ - Question Answering
70
+
71
+ ### Languages
72
+
73
+ en : English
74
+
75
+ ## Dataset Structure
76
+
77
+ ### Data Instances
78
+
79
+ - `input_urls`: a `list` of `string` features.
80
+ - `query`: a `string` feature.
81
+ - `target`: a `string` feature
82
+
83
+
84
+ Example:
85
+
86
+ ```
87
+ {
88
+ 'input_urls': ['https://boxofficebuz.com/person/19653-charles-michael-davis'],
89
+ 'query': 'who is the actor that plays marcel on the originals',
90
+ 'target': "In February 2013, it was announced that Davis was cast in a lead role on The CW's new show The
91
+ Originals, a spinoff of The Vampire Diaries, centered on the Original Family as they move to New Orleans, where
92
+ Davis' character (a vampire named Marcel) currently rules."
93
+ }
94
+ ```
95
+
96
+ ### Data Fields
97
+
98
+ - `input_urls`: a `list` of `string` features.
99
+ - List of URLs to input documents pointing to [Common Crawl](https://commoncrawl.org/2017/07/june-2017-crawl-archive-now-available) to be summarized.
100
+ - Dependencies: Documents URLs references the [Common Crawl June 2017 Archive](https://commoncrawl.org/2017/07/june-2017-crawl-archive-now-available).
101
+
102
+ - `query`: a `string` feature.
103
+ - Input query to be used as summarization context. This is derived from [Natural Questions](https://ai.google.com/research/NaturalQuestions/) user queries.
104
+
105
+ - `target`: a `string` feature
106
+ - Summarization target, derived from [Natural Questions](https://ai.google.com/research/NaturalQuestions/) long answers.
107
+ ### Data Splits
108
+ - This dataset has two high-level configurations `abstractive` and `extractive`
109
+ - Each configuration has the data splits of `train`, `dev` and `test`
110
+ - The original format of the data was in [TFrecords](https://www.tensorflow.org/tutorials/load_data/tfrecord), which has been parsed to the format as specified in [Data Instances](#data-instances)
111
+
112
+ ## Dataset Creation
113
+
114
+ ### Curation Rationale
115
+
116
+ The dataset is automatically generated datasets for abstractive and extractive query-based multi-document summarization as described in [AQuaMuSe paper](https://arxiv.org/pdf/2010.12694.pdf).
117
+ ### Source Data
118
+
119
+ #### Initial Data Collection and Normalization
120
+
121
+ [More Information Needed]
122
+
123
+ #### Who are the source language producers?
124
+
125
+ [More Information Needed]
126
+
127
+ ### Annotations
128
+
129
+ #### Annotation process
130
+
131
+ [More Information Needed]
132
+
133
+ #### Who are the annotators?
134
+
135
+ [More Information Needed]
136
+
137
+ ### Personal and Sensitive Information
138
+
139
+ [More Information Needed]
140
+
141
+ ## Considerations for Using the Data
142
+
143
+ ### Social Impact of Dataset
144
+
145
+ [More Information Needed]
146
+
147
+ ### Discussion of Biases
148
+
149
+ [More Information Needed]
150
+
151
+ ### Other Known Limitations
152
+
153
+ [More Information Needed]
154
+
155
+ ## Additional Information
156
+
157
+ ### Dataset Curators
158
+
159
+ The dataset curator is [sayalikulkarni](https://github.com/google-research-datasets/aquamuse/commits?author=sayalikulkarni), who is the contributor for the official GitHub repository for this dataset and also one of the authors of this dataset’s paper. As the account handles of other authors are not available currently who were also part of the curation of this dataset, the authors of the paper are mentioned here as follows, Sayali Kulkarni, Sheide Chammas, Wan Zhu, Fei Sha, and Eugene Ie.
160
+
161
+ ### Licensing Information
162
+
163
+ [More Information Needed]
164
+
165
+ ### Citation Information
166
+
167
+ @misc{kulkarni2020aquamuse,
168
+ title={AQuaMuSe: Automatically Generating Datasets for Query-Based Multi-Document Summarization},
169
+ author={Sayali Kulkarni and Sheide Chammas and Wan Zhu and Fei Sha and Eugene Ie},
170
+ year={2020},
171
+ eprint={2010.12694},
172
+ archivePrefix={arXiv},
173
+ primaryClass={cs.CL}
174
+ }
aquamuse.py ADDED
@@ -0,0 +1,156 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """AQuaMuSe is a novel scalable approach to automatically mine dual query based multi-document summarization datasets for extractive and abstractive summaries using question answering dataset (Google Natural Questions) and large document corpora (Common Crawl)"""
16
+
17
+ from __future__ import absolute_import, division, print_function
18
+
19
+ import os
20
+ from os import listdir
21
+ from os.path import isfile, join
22
+
23
+ import tensorflow as tf
24
+
25
+ import datasets
26
+
27
+
28
+ _CITATION = """\
29
+ @misc{kulkarni2020aquamuse,
30
+ title={AQuaMuSe: Automatically Generating Datasets for Query-Based Multi-Document Summarization},
31
+ author={Sayali Kulkarni and Sheide Chammas and Wan Zhu and Fei Sha and Eugene Ie},
32
+ year={2020},
33
+ eprint={2010.12694},
34
+ archivePrefix={arXiv},
35
+ primaryClass={cs.CL}
36
+ }
37
+ """
38
+
39
+ _DESCRIPTION = """AQuaMuSe is a novel scalable approach to automatically mine dual query based multi-document summarization datasets for extractive and abstractive summaries using question answering dataset (Google Natural Questions) and large document corpora (Common Crawl)"""
40
+
41
+ _HOMEPAGE = "https://github.com/google-research-datasets/aquamuse"
42
+
43
+ _LICENSE = ""
44
+
45
+ zipped_data_url = "https://github.com/google-research-datasets/aquamuse/raw/main/v2/aquamuse_v2.zip"
46
+
47
+
48
+ class Aquamuse(datasets.GeneratorBasedBuilder):
49
+ """Dataset for Query-based Multi-Document Summarization"""
50
+
51
+ VERSION = datasets.Version("2.3.0")
52
+
53
+ BUILDER_CONFIGS = [
54
+ datasets.BuilderConfig(
55
+ name="abstractive", version=VERSION, description="Abstractive query-based multi-document summarization"
56
+ ),
57
+ datasets.BuilderConfig(
58
+ name="extractive", version=VERSION, description="Extractive query-based multi-document summarization"
59
+ ),
60
+ ]
61
+
62
+ # DEFAULT_CONFIG_NAME = "abstractive" # It's not mandatory to have a default configuration. Just use one if it make sense.
63
+
64
+ def _info(self):
65
+ features = datasets.Features(
66
+ {
67
+ "query": datasets.Value("string"),
68
+ "input_urls": datasets.Sequence(datasets.Value("string")),
69
+ "target": datasets.Value("string"),
70
+ }
71
+ )
72
+
73
+ return datasets.DatasetInfo(
74
+ description=_DESCRIPTION,
75
+ features=features,
76
+ supervised_keys=None,
77
+ homepage=_HOMEPAGE,
78
+ license=_LICENSE,
79
+ citation=_CITATION,
80
+ )
81
+
82
+ def _split_generators(self, dl_manager):
83
+ """Returns SplitGenerators."""
84
+
85
+ if self.config.name == "abstractive":
86
+ data_dir = dl_manager.download_and_extract(zipped_data_url)
87
+ return [
88
+ datasets.SplitGenerator(
89
+ name=datasets.Split.TRAIN,
90
+ # These kwargs will be passed to _generate_examples
91
+ gen_kwargs={
92
+ "filepath": os.path.join(data_dir, "v2.3/abstractive/train/"),
93
+ "split": "train",
94
+ },
95
+ ),
96
+ datasets.SplitGenerator(
97
+ name=datasets.Split.TEST,
98
+ # These kwargs will be passed to _generate_examples
99
+ gen_kwargs={
100
+ "filepath": os.path.join(data_dir, "v2.3/abstractive/test/"),
101
+ "split": "test",
102
+ },
103
+ ),
104
+ datasets.SplitGenerator(
105
+ name=datasets.Split.VALIDATION,
106
+ # These kwargs will be passed to _generate_examples
107
+ gen_kwargs={
108
+ "filepath": os.path.join(data_dir, "v2.3/abstractive/dev/"),
109
+ "split": "dev",
110
+ },
111
+ ),
112
+ ]
113
+
114
+ else:
115
+ data_dir = dl_manager.download_and_extract(zipped_data_url)
116
+ print(data_dir)
117
+ return [
118
+ datasets.SplitGenerator(
119
+ name=datasets.Split.TRAIN,
120
+ # These kwargs will be passed to _generate_examples
121
+ gen_kwargs={
122
+ "filepath": os.path.join(data_dir, "v2.3/extractive/train/"),
123
+ "split": "train",
124
+ },
125
+ ),
126
+ datasets.SplitGenerator(
127
+ name=datasets.Split.TEST,
128
+ # These kwargs will be passed to _generate_examples
129
+ gen_kwargs={
130
+ "filepath": os.path.join(data_dir, "v2.3/extractive/test/"),
131
+ "split": "test",
132
+ },
133
+ ),
134
+ datasets.SplitGenerator(
135
+ name=datasets.Split.VALIDATION,
136
+ # These kwargs will be passed to _generate_examples
137
+ gen_kwargs={
138
+ "filepath": os.path.join(data_dir, "v2.3/extractive/dev/"),
139
+ "split": "dev",
140
+ },
141
+ ),
142
+ ]
143
+
144
+ def _generate_examples(self, filepath, split):
145
+ """ Yields examples. """
146
+ filepath = [join(filepath, f) for f in listdir(filepath) if isfile(join(filepath, f))]
147
+ filepath = sorted(filepath)
148
+ raw_dataset = tf.data.TFRecordDataset(filepath)
149
+ for id_, raw_record in enumerate(raw_dataset):
150
+ example = tf.train.Example()
151
+ example.ParseFromString(raw_record.numpy())
152
+ yield id_, {
153
+ "query": example.features.feature["query"].bytes_list.value[0].decode(),
154
+ "input_urls": example.features.feature["input_urls"].bytes_list.value[0].decode().split("<EOD>"),
155
+ "target": example.features.feature["target"].bytes_list.value[0].decode(),
156
+ }
dataset_infos.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"abstractive": {"description": "AQuaMuSe is a novel scalable approach to automatically mine dual query based multi-document summarization datasets for extractive and abstractive summaries using question answering dataset (Google Natural Questions) and large document corpora (Common Crawl)", "citation": "@misc{kulkarni2020aquamuse,title={AQuaMuSe: Automatically Generating Datasets for Query-Based Multi-Document Summarization}, author={Sayali Kulkarni and Sheide Chammas and Wan Zhu and Fei Sha and Eugene Ie}, year={2020}, eprint={2010.12694}, archivePrefix={arXiv}, primaryClass={cs.CL}}", "homepage": "https://github.com/google-research-datasets/aquamuse", "license": "", "features": {"query": {"dtype": "string", "id": null, "_type": "Value"}, "input_urls": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "target": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "aquamuse", "config_name": "abstractive", "version": {"version_str": "2.3.0", "description": null, "major": 2, "minor": 3, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 6434909, "num_examples": 6253, "dataset_name": "aquamuse"}, "test": {"name": "test", "num_bytes": 843181, "num_examples": 811, "dataset_name": "aquamuse"}, "validation": {"name": "validation", "num_bytes": 689109, "num_examples": 661, "dataset_name": "aquamuse"}}, "download_checksums": {"https://github.com/google-research-datasets/aquamuse/raw/main/v2/aquamuse_v2.zip": {"num_bytes": 7755161, "checksum": "f2b4d9523031a986e545a7c0fdc8180670519696340d09179a39514fc76466d0"}}, "download_size": 7755161, "post_processing_size": null, "dataset_size": 7967199, "size_in_bytes": 15722360}, "extractive": {"description": "AQuaMuSe is a novel scalable approach to automatically mine dual query based multi-document summarization datasets for extractive and abstractive summaries using question answering dataset (Google Natural Questions) and large document corpora (Common Crawl)", "citation": "@misc{kulkarni2020aquamuse,title={AQuaMuSe: Automatically Generating Datasets for Query-Based Multi-Document Summarization}, author={Sayali Kulkarni and Sheide Chammas and Wan Zhu and Fei Sha and Eugene Ie}, year={2020}, eprint={2010.12694}, archivePrefix={arXiv}, primaryClass={cs.CL}}", "homepage": "https://github.com/google-research-datasets/aquamuse", "license": "", "features": {"query": {"dtype": "string", "id": null, "_type": "Value"}, "input_urls": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "target": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "aquamuse", "config_name": "extractive", "version": {"version_str": "2.3.0", "description": null, "major": 2, "minor": 3, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 6434909, "num_examples": 6253, "dataset_name": "aquamuse"}, "test": {"name": "test", "num_bytes": 843181, "num_examples": 811, "dataset_name": "aquamuse"}, "validation": {"name": "validation", "num_bytes": 689109, "num_examples": 661, "dataset_name": "aquamuse"}}, "download_checksums": {"https://github.com/google-research-datasets/aquamuse/raw/main/v2/aquamuse_v2.zip": {"num_bytes": 7755161, "checksum": "f2b4d9523031a986e545a7c0fdc8180670519696340d09179a39514fc76466d0"}}, "download_size": 7755161, "post_processing_size": null, "dataset_size": 7967199, "size_in_bytes": 15722360}}
dummy/abstractive/2.3.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c328bce6e06752d89ca055eb56164de180184454e660da64096d91e05575fe4b
3
+ size 28543
dummy/extractive/2.3.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ecf5ed8085278818db17a3f360012ea421ca08e63305348b409a5d3255d9f387
3
+ size 25562