Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
albertvillanova HF staff commited on
Commit
14dd78b
·
verified ·
1 Parent(s): 83737e5

Delete loading script

Browse files
Files changed (1) hide show
  1. cfq.py +0 -167
cfq.py DELETED
@@ -1,167 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
-
16
- # Lint as: python3
17
- """CFQ (Compositional Freebase Questions) dataset."""
18
-
19
-
20
- import json
21
- import re
22
-
23
- import datasets
24
-
25
-
26
- logger = datasets.logging.get_logger(__name__)
27
-
28
-
29
- _HOMEPAGE = "https://github.com/google-research/google-research/tree/master/cfq"
30
-
31
- _LICENSE = "CC BY 4.0"
32
-
33
- _CITATION = """
34
- @inproceedings{Keysers2020,
35
- title={Measuring Compositional Generalization: A Comprehensive Method on
36
- Realistic Data},
37
- author={Daniel Keysers and Nathanael Sch\"{a}rli and Nathan Scales and
38
- Hylke Buisman and Daniel Furrer and Sergii Kashubin and
39
- Nikola Momchev and Danila Sinopalnikov and Lukasz Stafiniak and
40
- Tibor Tihon and Dmitry Tsarkov and Xiao Wang and Marc van Zee and
41
- Olivier Bousquet},
42
- booktitle={ICLR},
43
- year={2020},
44
- url={https://arxiv.org/abs/1912.09713.pdf},
45
- }
46
- """
47
-
48
- _DESCRIPTION = """
49
- The CFQ dataset (and it's splits) for measuring compositional generalization.
50
-
51
- See https://arxiv.org/abs/1912.09713.pdf for background.
52
-
53
- Example usage:
54
- data = datasets.load_dataset('cfq/mcd1')
55
- """
56
-
57
- _DATA_URL = "https://storage.googleapis.com/cfq_dataset/cfq.tar.gz"
58
-
59
-
60
- class CfqConfig(datasets.BuilderConfig):
61
- """BuilderConfig for CFQ splits."""
62
-
63
- def __init__(self, name, directory="splits", **kwargs):
64
- """BuilderConfig for CFQ.
65
-
66
- Args:
67
- name: Unique name of the split.
68
- directory: Which subdirectory to read the split from.
69
- **kwargs: keyword arguments forwarded to super.
70
- """
71
- # Version history:
72
- super(CfqConfig, self).__init__(
73
- name=name, version=datasets.Version("1.0.1"), description=_DESCRIPTION, **kwargs
74
- )
75
- self.splits_path = f"cfq/{directory}/{name}.json"
76
-
77
-
78
- _QUESTION = "question"
79
- _QUERY = "query"
80
- _QUESTION_FIELD = "questionPatternModEntities"
81
- _QUERY_FIELD = "sparqlPatternModEntities"
82
-
83
-
84
- class Cfq(datasets.GeneratorBasedBuilder):
85
- """CFQ task / splits."""
86
-
87
- BUILDER_CONFIGS = [
88
- CfqConfig(name="mcd1"),
89
- CfqConfig(name="mcd2"),
90
- CfqConfig(name="mcd3"),
91
- CfqConfig(name="question_complexity_split"),
92
- CfqConfig(name="question_pattern_split"),
93
- CfqConfig(name="query_complexity_split"),
94
- CfqConfig(name="query_pattern_split"),
95
- CfqConfig(name="random_split"),
96
- ]
97
-
98
- def _info(self):
99
- return datasets.DatasetInfo(
100
- description=_DESCRIPTION,
101
- features=datasets.Features(
102
- {
103
- _QUESTION: datasets.Value("string"),
104
- _QUERY: datasets.Value("string"),
105
- }
106
- ),
107
- supervised_keys=(_QUESTION, _QUERY),
108
- homepage=_HOMEPAGE,
109
- license=_LICENSE,
110
- citation=_CITATION,
111
- )
112
-
113
- def _split_generators(self, dl_manager):
114
- """Returns SplitGenerators."""
115
- archive_path = dl_manager.download(_DATA_URL)
116
- return [
117
- datasets.SplitGenerator(
118
- name=split,
119
- gen_kwargs={
120
- "data_files": dl_manager.iter_archive(archive_path),
121
- "split_id": f"{split}Idxs",
122
- },
123
- )
124
- for split in [datasets.Split.TRAIN, datasets.Split.TEST]
125
- ]
126
-
127
- def _scrub_json(self, content):
128
- """Reduce JSON by filtering out only the fields of interest."""
129
- # Loading of json data with the standard Python library is very inefficient:
130
- # For the 4GB dataset file it requires more than 40GB of RAM and takes 3min.
131
- # There are more efficient libraries but in order to avoid additional
132
- # dependencies we use a simple (perhaps somewhat brittle) regexp to reduce
133
- # the content to only what is needed.
134
- question_regex = re.compile(r'("%s":\s*"[^"]*")' % _QUESTION_FIELD)
135
- query_regex = re.compile(r'("%s":\s*"[^"]*")' % _QUERY_FIELD)
136
- question_match = None
137
- for line in content:
138
- line = line.decode("utf-8")
139
- if not question_match:
140
- question_match = question_regex.match(line)
141
- else:
142
- query_match = query_regex.match(line)
143
- if query_match:
144
- yield json.loads("{" + question_match.group(1) + "," + query_match.group(1) + "}")
145
- question_match = None
146
-
147
- def _generate_examples(self, data_files, split_id):
148
- """Yields examples."""
149
- samples_path = "cfq/dataset.json"
150
- for path, file in data_files:
151
- if path == self.config.splits_path:
152
- splits = json.load(file)[split_id]
153
- elif path == samples_path:
154
- # The samples_path is the last path inside the archive
155
- generator = enumerate(self._scrub_json(file))
156
- samples = {}
157
- splits_set = set(splits)
158
- for split_idx in splits:
159
- if split_idx in samples:
160
- sample = samples.pop(split_idx)
161
- else:
162
- for sample_idx, sample in generator:
163
- if sample_idx == split_idx:
164
- break
165
- elif sample_idx in splits_set:
166
- samples[sample_idx] = sample
167
- yield split_idx, {_QUESTION: sample[_QUESTION_FIELD], _QUERY: sample[_QUERY_FIELD]}