Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
multi-class-classification
Languages:
English
Size:
10K - 100K
ArXiv:
License:
File size: 10,450 Bytes
05a98c8 15ce972 05a98c8 15ce972 8baaa82 05a98c8 c0e245f 6b392e3 ea33f70 932ad9c 516fd57 932ad9c 516fd57 932ad9c 05a98c8 c0e245f 05a98c8 c0e245f 05a98c8 c0e245f 05a98c8 4ae2197 05a98c8 4ae2197 ea33f70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
---
annotations_creators:
- expert-generated
language_creators:
- crowdsourced
language:
- en
license:
- cc-by-4.0
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- multi-class-classification
paperswithcode_id: circa
pretty_name: CIRCA
tags:
- question-answer-pair-classification
dataset_info:
features:
- name: context
dtype: string
- name: question-X
dtype: string
- name: canquestion-X
dtype: string
- name: answer-Y
dtype: string
- name: judgements
dtype: string
- name: goldstandard1
dtype:
class_label:
names:
'0': 'Yes'
'1': 'No'
'2': In the middle, neither yes nor no
'3': Probably yes / sometimes yes
'4': Probably no
'5': Yes, subject to some conditions
'6': Other
'7': I am not sure how X will interpret Y’s answer
- name: goldstandard2
dtype:
class_label:
names:
'0': 'Yes'
'1': 'No'
'2': In the middle, neither yes nor no
'3': Yes, subject to some conditions
'4': Other
splits:
- name: train
num_bytes: 8149489
num_examples: 34268
download_size: 7766077
dataset_size: 8149489
---
# Dataset Card for CIRCA
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [CIRCA homepage](https://github.com/google-research-datasets/circa)
- **Repository:** [CIRCA repository](https://github.com/google-research-datasets/circa)
- **Paper:** ["I’d rather just go to bed”: Understanding Indirect Answers](https://arxiv.org/abs/2010.03450)
- **Point of Contact:** [Circa team, Google](circa@google.com)
### Dataset Summary
The Circa (meaning ‘approximately’) dataset aims to help machine learning systems to solve the problem of interpreting indirect answers to polar questions.
The dataset contains pairs of yes/no questions and indirect answers, together with annotations for the interpretation of the answer. The data is collected in 10 different social conversational situations (eg. food preferences of a friend).
The following are the situational contexts for the dialogs in the data.
```
1. X wants to know about Y’s food preferences
2. X wants to know what activities Y likes to do during weekends.
3. X wants to know what sorts of books Y likes to read.
4. Y has just moved into a neighbourhood and meets his/her new neighbour X.
5. X and Y are colleagues who are leaving work on a Friday at the same time.
6. X wants to know about Y's music preferences.
7. Y has just travelled from a different city to meet X.
8. X and Y are childhood neighbours who unexpectedly run into each other at a cafe.
9. Y has just told X that he/she is thinking of buying a flat in New York.
10. Y has just told X that he/she is considering switching his/her job.
```
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
The text in the dataset is in English.
## Dataset Structure
### Data Instances
The columns indicate:
```
1. id : unique id for the question-answer pair
2. context : the social situation for the dialogue. One of 10 situations (see next section). Each
situation is a dialogue between a person who poses the question (X) and the person who
answers (Y).
3. question-X : the question posed by X
4. canquestion-X : a (automatically) rewritten version of question into declarative form
Eg. Do you like Italian? --> I like Italian. See the paper for details.
5. answer-Y : the answer given by Y to X
6. judgements : the interpretations for the QA pair from 5 annotators. The value is a list of 5 strings,
separated by the token ‘#’
7. goldstandard1 : a gold standard majority judgement from the annotators. The value is the most common
interpretation and picked by at least 3 (out of 5 annotators). When a majority
judgement was not reached by the above criteria, the value is ‘NA’
8. goldstandard2 : Here the labels ‘Probably yes / sometimes yes’, ‘Probably no', and 'I am not sure how
X will interpret Y’s answer' are mapped respectively to ‘Yes’, ‘No’, and 'In the
middle, neither yes nor no’ before computing the majority. Still the label must be given
at least 3 times to become the majority choice. This method represents a less strict way
of analyzing the interpretations.
```
### Data Fields
```
id : 1
context : X wants to know about Y's food preferences.
question-X : Are you vegan?
canquestion-X : I am vegan.
answer-Y : I love burgers too much.
judgements : no#no#no#no#no
goldstandard1 : no (label(s) used for the classification task)
goldstandard2 : no (label(s) used for the classification task)
```
### Data Splits
There are no explicit train/val/test splits in this dataset.
## Dataset Creation
### Curation Rationale
They revisited a pragmatic inference problem in dialog: Understanding indirect responses to questions. Humans can interpret ‘I’m starving.’ in response to ‘Hungry?’, even without direct cue words such as ‘yes’ and ‘no’. In dialog systems, allowing natural responses rather than closed vocabularies would be similarly beneficial. However, today’s systems are only as sensitive to these pragmatic moves as their language model allows. They create and release the first large-scale English language corpus ‘Circa’ with 34,268 (polar question, indirect answer) pairs to enable progress on this task.
### Source Data
#### Initial Data Collection and Normalization
The QA pairs and judgements were collected using crowd annotations in three phases. They recruited English native speakers. The full descriptions of the data collection and quality control are present in [EMNLP 2020 paper](https://arxiv.org/pdf/2010.03450.pdf). Below is a brief overview only.
Phase 1: In the first phase, they collected questions only. They designed 10 imaginary social situations which give the annotator a context for the conversation. Examples are:
```
‘asking a friend for food preferences’
‘meeting your childhood neighbour’
‘your friend wants to buy a flat in New York’
```
Annotators were asked to suggest questions which could be asked in each situation, such that each question only requires a ‘yes’ or ‘no’ answer. 100 annotators produced 5 questions each for the 10 situations, resulting in 5000 questions.
Phase 2: Here they focused on eliciting answers to the questions. They sampled 3500 questions from our previous set. For each question, They collected possible answers from 10 different annotators. The annotators were instructed to provide a natural phrase or a sentence as the answer and to avoid the use of explicit ‘yes’ and ‘no’ words.
Phase 3: Finally the QA pairs (34,268) were given to a third set of annotators who were asked how the question seeker would likely interpret a particular answer. These annotators had the following options to choose from:
```
* 'Yes'
* 'Probably yes' / 'sometimes yes'
* 'Yes, subject to some conditions'
* 'No'
* 'Probably no'
* 'In the middle, neither yes nor no'
* 'I am not sure how X will interpret Y's answer'
```
#### Who are the source language producers?
The rest of the data apart from 10 initial questions was collected using crowd workers. They ran pilots for each step of data collection, and perused their results manually to ensure clarity in guidelines, and quality of the data. They also recruited native English speakers, mostly from the USA, and a few from the UK and Canada. They did not collect any further information about the crowd workers.
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
The rest of the data apart from 10 initial questions was collected using crowd workers. They ran pilots for each step of data collection, and perused their results manually to ensure clarity in guidelines, and quality of the data. They also recruited native English speakers, mostly from the USA, and a few from the UK and Canada. They did not collect any further information about the crowd workers.
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
This dataset is the work of Annie Louis, Dan Roth, and Filip Radlinski from Google LLC.
### Licensing Information
This dataset was made available under the Creative Commons Attribution 4.0 License. A full copy of the license can be found at https://creativecommons.org/licenses/by-sa/4.0/e and link to the license webpage if available.
### Citation Information
```
@InProceedings{louis_emnlp2020,
author = "Annie Louis and Dan Roth and Filip Radlinski",
title = ""{I}'d rather just go to bed": {U}nderstanding {I}ndirect {A}nswers",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
year = "2020",
}
```
### Contributions
Thanks to [@bhavitvyamalik](https://github.com/bhavitvyamalik) for adding this dataset. |