Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
albertvillanova HF staff commited on
Commit
33ba9ca
1 Parent(s): 4760001

Delete legacy JSON metadata (#2)

Browse files

- Delete legacy JSON metadata (bd269df38a8135a9e8ab431b8134feb37779586d)

Files changed (1) hide show
  1. dataset_infos.json +0 -1
dataset_infos.json DELETED
@@ -1 +0,0 @@
1
- {"default": {"description": "Disfl-QA is a targeted dataset for contextual disfluencies in an information seeking setting,\nnamely question answering over Wikipedia passages. Disfl-QA builds upon the SQuAD-v2 (Rajpurkar et al., 2018)\ndataset, where each question in the dev set is annotated to add a contextual disfluency using the paragraph as\na source of distractors.\n\nThe final dataset consists of ~12k (disfluent question, answer) pairs. Over 90% of the disfluencies are\ncorrections or restarts, making it a much harder test set for disfluency correction. Disfl-QA aims to fill a\nmajor gap between speech and NLP research community. We hope the dataset can serve as a benchmark dataset for\ntesting robustness of models against disfluent inputs.\n\nOur expriments reveal that the state-of-the-art models are brittle when subjected to disfluent inputs from\nDisfl-QA. Detailed experiments and analyses can be found in our paper.\n", "citation": "@inproceedings{gupta-etal-2021-disflqa,\n title = \"{Disfl-QA: A Benchmark Dataset for Understanding Disfluencies in Question Answering}\",\n author = \"Gupta, Aditya and Xu, Jiacheng and Upadhyay, Shyam and Yang, Diyi and Faruqui, Manaal\",\n booktitle = \"Findings of ACL\",\n year = \"2021\"\n}\n\n", "homepage": "https://github.com/google-research-datasets/disfl-qa", "license": "Disfl-QA dataset is licensed under CC BY 4.0", "features": {"squad_v2_id": {"dtype": "string", "id": null, "_type": "Value"}, "original question": {"dtype": "string", "id": null, "_type": "Value"}, "disfluent question": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "context": {"dtype": "string", "id": null, "_type": "Value"}, "answers": {"feature": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "answer_start": {"dtype": "int32", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": [{"task": "question-answering-extractive", "question_column": "disfluent question", "context_column": "context", "answers_column": "answers"}], "builder_name": "disfl_qa", "config_name": "default", "version": {"version_str": "1.1.0", "description": null, "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 7712523, "num_examples": 7182, "dataset_name": "disfl_qa"}, "test": {"name": "test", "num_bytes": 3865097, "num_examples": 3643, "dataset_name": "disfl_qa"}, "validation": {"name": "validation", "num_bytes": 1072731, "num_examples": 1000, "dataset_name": "disfl_qa"}}, "download_checksums": {"https://rajpurkar.github.io/SQuAD-explorer/dataset/train-v2.0.json": {"num_bytes": 42123633, "checksum": "68dcfbb971bd3e96d5b46c7177b16c1a4e7d4bdef19fb204502738552dede002"}, "https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v2.0.json": {"num_bytes": 4370528, "checksum": "80a5225e94905956a6446d296ca1093975c4d3b3260f1d6c8f68bc2ab77182d8"}, "https://raw.githubusercontent.com/google-research-datasets/Disfl-QA/main/train.json": {"num_bytes": 1467771, "checksum": "5407199d0c039de5b50cfc16d1ed4a3299c9127cb549da4e4a650b30f4e000eb"}, "https://raw.githubusercontent.com/google-research-datasets/Disfl-QA/main/test.json": {"num_bytes": 771364, "checksum": "404801de916ebcb2caa82661dfd189c0520e2766db6838f6ff548088650e565e"}, "https://raw.githubusercontent.com/google-research-datasets/Disfl-QA/main/dev.json": {"num_bytes": 201742, "checksum": "b60e075b810b27a5130fd0aa2cfbc85753b71a0b30dcd2585f540f0a6afe6492"}}, "download_size": 48935038, "post_processing_size": null, "dataset_size": 12650351, "size_in_bytes": 61585389}}