Commit
·
b0b2cff
0
Parent(s):
Update files from the datasets library (from 1.2.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.2.0
- .gitattributes +27 -0
- README.md +159 -0
- dataset_infos.json +1 -0
- dummy/eth_py150_open/1.1.0/dummy_data.zip +3 -0
- eth_py150_open.py +135 -0
.gitattributes
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
annotations_creators:
|
3 |
+
- no-annotations
|
4 |
+
language_creators:
|
5 |
+
- machine-generated
|
6 |
+
languages:
|
7 |
+
- en
|
8 |
+
licenses:
|
9 |
+
- apache-2-0
|
10 |
+
multilinguality:
|
11 |
+
- monolingual
|
12 |
+
size_categories:
|
13 |
+
- 100K<n<1M
|
14 |
+
source_datasets:
|
15 |
+
- original
|
16 |
+
task_categories:
|
17 |
+
- other
|
18 |
+
task_ids:
|
19 |
+
- other-other-contextual-embeddings
|
20 |
+
---
|
21 |
+
|
22 |
+
# Dataset Card for ethpy150open
|
23 |
+
|
24 |
+
## Table of Contents
|
25 |
+
- [Dataset Description](#dataset-description)
|
26 |
+
- [Dataset Summary](#dataset-summary)
|
27 |
+
- [Supported Tasks](#supported-tasks-and-leaderboards)
|
28 |
+
- [Languages](#languages)
|
29 |
+
- [Dataset Structure](#dataset-structure)
|
30 |
+
- [Data Instances](#data-instances)
|
31 |
+
- [Data Fields](#data-instances)
|
32 |
+
- [Data Splits](#data-instances)
|
33 |
+
- [Dataset Creation](#dataset-creation)
|
34 |
+
- [Curation Rationale](#curation-rationale)
|
35 |
+
- [Source Data](#source-data)
|
36 |
+
- [Annotations](#annotations)
|
37 |
+
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
38 |
+
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
39 |
+
- [Social Impact of Dataset](#social-impact-of-dataset)
|
40 |
+
- [Discussion of Biases](#discussion-of-biases)
|
41 |
+
- [Other Known Limitations](#other-known-limitations)
|
42 |
+
- [Additional Information](#additional-information)
|
43 |
+
- [Dataset Curators](#dataset-curators)
|
44 |
+
- [Licensing Information](#licensing-information)
|
45 |
+
- [Citation Information](#citation-information)
|
46 |
+
|
47 |
+
## Dataset Description
|
48 |
+
|
49 |
+
- **Homepage:** https://www.sri.inf.ethz.ch/py150
|
50 |
+
- **Repository:** https://github.com/google-research-datasets/eth_py150_open
|
51 |
+
- **Paper:** https://proceedings.icml.cc/static/paper_files/icml/2020/5401-Paper.pdf
|
52 |
+
- **Leaderboard:** None
|
53 |
+
- **Point of Contact:** Aditya Kanade <kanade@iisc.ac.in>, Petros Maniatis <maniatis@google.com>
|
54 |
+
|
55 |
+
### Dataset Summary
|
56 |
+
|
57 |
+
A redistributable subset of the [ETH Py150 corpus](https://www.sri.inf.ethz.ch/py150), introduced in the ICML 2020 paper ['Learning and Evaluating Contextual Embedding of Source Code'](https://proceedings.icml.cc/static/paper_files/icml/2020/5401-Paper.pdf)
|
58 |
+
|
59 |
+
### Supported Tasks and Leaderboards
|
60 |
+
|
61 |
+
[More Information Needed]
|
62 |
+
|
63 |
+
### Languages
|
64 |
+
|
65 |
+
English
|
66 |
+
|
67 |
+
## Dataset Structure
|
68 |
+
List of dicts of
|
69 |
+
{
|
70 |
+
"filepath": The relative URL containing the path to the file on GitHub
|
71 |
+
"license": The license used for that specific file or repository
|
72 |
+
}
|
73 |
+
|
74 |
+
### Data Instances
|
75 |
+
|
76 |
+
{
|
77 |
+
"filepath": "0rpc/zerorpc-python/setup.py",
|
78 |
+
"license": "mit"
|
79 |
+
},
|
80 |
+
{
|
81 |
+
"filepath": "0rpc/zerorpc-python/zerorpc/heartbeat.py",
|
82 |
+
"license": "mit"
|
83 |
+
},
|
84 |
+
|
85 |
+
### Data Fields
|
86 |
+
|
87 |
+
- `filepath`: The relative URL containing the path to the file on GitHub
|
88 |
+
- `license`: The license used for that specific file or repository
|
89 |
+
|
90 |
+
### Data Splits
|
91 |
+
|
92 |
+
| | Train | Valid | Test |
|
93 |
+
| ----- | ------- | ----- | ----- |
|
94 |
+
| Dataset Split | 74749 | 8302 | 41457 |
|
95 |
+
|
96 |
+
## Dataset Creation
|
97 |
+
The original dataset is at https://www.sri.inf.ethz.ch/py150
|
98 |
+
### Curation Rationale
|
99 |
+
|
100 |
+
To generate a more redistributable version of the dataset
|
101 |
+
|
102 |
+
### Source Data
|
103 |
+
|
104 |
+
#### Initial Data Collection and Normalization
|
105 |
+
|
106 |
+
All the urls are filepaths relative to GitHub and the master branch was used as available at the time
|
107 |
+
|
108 |
+
#### Who are the source language producers?
|
109 |
+
|
110 |
+
[More Information Needed]
|
111 |
+
|
112 |
+
### Annotations
|
113 |
+
|
114 |
+
#### Annotation process
|
115 |
+
|
116 |
+
[More Information Needed]
|
117 |
+
|
118 |
+
#### Who are the annotators?
|
119 |
+
|
120 |
+
[More Information Needed]
|
121 |
+
|
122 |
+
### Personal and Sensitive Information
|
123 |
+
|
124 |
+
[More Information Needed]
|
125 |
+
|
126 |
+
## Considerations for Using the Data
|
127 |
+
|
128 |
+
### Social Impact of Dataset
|
129 |
+
|
130 |
+
[More Information Needed]
|
131 |
+
|
132 |
+
### Discussion of Biases
|
133 |
+
|
134 |
+
[More Information Needed]
|
135 |
+
|
136 |
+
### Other Known Limitations
|
137 |
+
|
138 |
+
[More Information Needed]
|
139 |
+
|
140 |
+
## Additional Information
|
141 |
+
|
142 |
+
### Dataset Curators
|
143 |
+
|
144 |
+
[More Information Needed]
|
145 |
+
|
146 |
+
### Licensing Information
|
147 |
+
|
148 |
+
Apache License 2.0
|
149 |
+
|
150 |
+
### Citation Information
|
151 |
+
|
152 |
+
@inproceedings{kanade2020learning,
|
153 |
+
title={Learning and Evaluating Contextual Embedding of Source Code},
|
154 |
+
author={Kanade, Aditya and Maniatis, Petros and Balakrishnan, Gogul and Shi, Kensen},
|
155 |
+
booktitle={International Conference on Machine Learning},
|
156 |
+
pages={5110--5121},
|
157 |
+
year={2020},
|
158 |
+
organization={PMLR}
|
159 |
+
}
|
dataset_infos.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"eth_py150_open": {"description": "A redistributable subset of the ETH Py150 corpus, introduced in the ICML 2020 paper 'Learning and Evaluating Contextual Embedding of Source Code'\n", "citation": "@inproceedings{kanade2020learning,\n title={Learning and Evaluating Contextual Embedding of Source Code},\n author={Kanade, Aditya and Maniatis, Petros and Balakrishnan, Gogul and Shi, Kensen},\n booktitle={International Conference on Machine Learning},\n pages={5110--5121},\n year={2020},\n organization={PMLR}\n}\n", "homepage": "https://github.com/google-research-datasets/eth_py150_open", "license": "Apache License, Version 2.0", "features": {"filepath": {"dtype": "string", "id": null, "_type": "Value"}, "license": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "filepath", "output": "license"}, "builder_name": "eth_py150_open", "config_name": "eth_py150_open", "version": {"version_str": "1.1.0", "description": null, "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 5414978, "num_examples": 74749, "dataset_name": "eth_py150_open"}, "test": {"name": "test", "num_bytes": 3006199, "num_examples": 41457, "dataset_name": "eth_py150_open"}, "validation": {"name": "validation", "num_bytes": 598524, "num_examples": 8302, "dataset_name": "eth_py150_open"}}, "download_checksums": {"https://raw.githubusercontent.com/google-research-datasets/eth_py150_open/master/train__manifest.json": {"num_bytes": 8330299, "checksum": "faa632baf3a3e3ba234cc917dacd07fb646995990c930c6b86598d4d10484ce9"}, "https://raw.githubusercontent.com/google-research-datasets/eth_py150_open/master/dev__manifest.json": {"num_bytes": 922321, "checksum": "974426ff7448e7afd1fd26375814b264132b3eb62d4a995458c23f36857b4821"}, "https://raw.githubusercontent.com/google-research-datasets/eth_py150_open/master/eval__manifest.json": {"num_bytes": 4623051, "checksum": "b9a3235cb7457dac4bbb0cb7b31bc39186d78c318ec82c376bf1b61e66868554"}}, "download_size": 13875671, "post_processing_size": null, "dataset_size": 9019701, "size_in_bytes": 22895372}}
|
dummy/eth_py150_open/1.1.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5ff1fea58d25d2f7f1f6d375ab344a179805d7b5149998a88138c257d9d42fcb
|
3 |
+
size 955
|
eth_py150_open.py
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""A redistributable subset of the ETH Py150 corpus"""
|
16 |
+
|
17 |
+
from __future__ import absolute_import, division, print_function
|
18 |
+
|
19 |
+
import json
|
20 |
+
import os
|
21 |
+
|
22 |
+
import datasets
|
23 |
+
|
24 |
+
|
25 |
+
_CITATION = """\
|
26 |
+
@inproceedings{kanade2020learning,
|
27 |
+
title={Learning and Evaluating Contextual Embedding of Source Code},
|
28 |
+
author={Kanade, Aditya and Maniatis, Petros and Balakrishnan, Gogul and Shi, Kensen},
|
29 |
+
booktitle={International Conference on Machine Learning},
|
30 |
+
pages={5110--5121},
|
31 |
+
year={2020},
|
32 |
+
organization={PMLR}
|
33 |
+
}
|
34 |
+
"""
|
35 |
+
|
36 |
+
|
37 |
+
_DESCRIPTION = """\
|
38 |
+
A redistributable subset of the ETH Py150 corpus, introduced in the ICML 2020 paper 'Learning and Evaluating Contextual Embedding of Source Code'
|
39 |
+
"""
|
40 |
+
|
41 |
+
# TODO: Add a link to an official homepage for the dataset here
|
42 |
+
_HOMEPAGE = "https://github.com/google-research-datasets/eth_py150_open"
|
43 |
+
|
44 |
+
# TODO: Add the licence for the dataset here if you can find it
|
45 |
+
_LICENSE = "Apache License, Version 2.0"
|
46 |
+
|
47 |
+
# TODO: Add link to the official dataset URLs here
|
48 |
+
# The HuggingFace dataset library don't host the datasets but only point to the original files
|
49 |
+
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
50 |
+
_URL = "https://raw.githubusercontent.com/google-research-datasets/eth_py150_open/master/"
|
51 |
+
|
52 |
+
|
53 |
+
# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
|
54 |
+
class EthPy150Open(datasets.GeneratorBasedBuilder):
|
55 |
+
"""A redistributable subset of the ETH Py150 corpus"""
|
56 |
+
|
57 |
+
VERSION = datasets.Version("1.1.0")
|
58 |
+
|
59 |
+
# This is an example of a dataset with multiple configurations.
|
60 |
+
# If you don't want/need to define several sub-sets in your dataset,
|
61 |
+
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
|
62 |
+
|
63 |
+
# If you need to make complex sub-parts in the datasets with configurable options
|
64 |
+
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
|
65 |
+
# BUILDER_CONFIG_CLASS = MyBuilderConfig
|
66 |
+
|
67 |
+
# You will be able to load one or the other configurations in the following list with
|
68 |
+
# data = datasets.load_dataset('my_dataset', 'first_domain')
|
69 |
+
# data = datasets.load_dataset('my_dataset', 'second_domain')
|
70 |
+
BUILDER_CONFIGS = [
|
71 |
+
datasets.BuilderConfig(
|
72 |
+
name="eth_py150_open", version=VERSION, description="A subset of the original Py150 corpus"
|
73 |
+
),
|
74 |
+
]
|
75 |
+
|
76 |
+
def _info(self):
|
77 |
+
features = datasets.Features({"filepath": datasets.Value("string"), "license": datasets.Value("string")})
|
78 |
+
return datasets.DatasetInfo(
|
79 |
+
# This is the description that will appear on the datasets page.
|
80 |
+
description=_DESCRIPTION,
|
81 |
+
# This defines the different columns of the dataset and their types
|
82 |
+
features=features, # Here we define them above because they are different between the two configurations
|
83 |
+
# If there's a common (input, target) tuple from the features,
|
84 |
+
# specify them here. They'll be used if as_supervised=True in
|
85 |
+
# builder.as_dataset.
|
86 |
+
supervised_keys=("filepath", "license"),
|
87 |
+
# Homepage of the dataset for documentation
|
88 |
+
homepage=_HOMEPAGE,
|
89 |
+
# License for the dataset if available
|
90 |
+
license=_LICENSE,
|
91 |
+
# Citation for the dataset
|
92 |
+
citation=_CITATION,
|
93 |
+
)
|
94 |
+
|
95 |
+
def _split_generators(self, dl_manager):
|
96 |
+
"""Returns SplitGenerators."""
|
97 |
+
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
|
98 |
+
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
|
99 |
+
|
100 |
+
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
|
101 |
+
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
102 |
+
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
103 |
+
urls = {
|
104 |
+
"train": _URL + "train__manifest.json",
|
105 |
+
"dev": _URL + "dev__manifest.json",
|
106 |
+
"test": _URL + "eval__manifest.json",
|
107 |
+
}
|
108 |
+
data_dir = dl_manager.download_and_extract(urls)
|
109 |
+
return [
|
110 |
+
datasets.SplitGenerator(
|
111 |
+
name=datasets.Split.TRAIN,
|
112 |
+
# These kwargs will be passed to _generate_examples
|
113 |
+
gen_kwargs={"filepath": os.path.join(data_dir["train"]), "split": "train"},
|
114 |
+
),
|
115 |
+
datasets.SplitGenerator(
|
116 |
+
name=datasets.Split.TEST,
|
117 |
+
# These kwargs will be passed to _generate_examples
|
118 |
+
gen_kwargs={"filepath": os.path.join(data_dir["test"]), "split": "test"},
|
119 |
+
),
|
120 |
+
datasets.SplitGenerator(
|
121 |
+
name=datasets.Split.VALIDATION,
|
122 |
+
# These kwargs will be passed to _generate_examples
|
123 |
+
gen_kwargs={"filepath": os.path.join(data_dir["dev"]), "split": "dev"},
|
124 |
+
),
|
125 |
+
]
|
126 |
+
|
127 |
+
def _generate_examples(self, filepath, split):
|
128 |
+
""" Yields examples. """
|
129 |
+
# TODO: This method will receive as arguments the `gen_kwargs` defined in the previous `_split_generators` method.
|
130 |
+
# It is in charge of opening the given file and yielding (key, example) tuples from the dataset
|
131 |
+
# The key is not important, it's more here for legacy reason (legacy from tfds)
|
132 |
+
|
133 |
+
with open(filepath, encoding="utf-8") as f:
|
134 |
+
for id_, row in enumerate(json.load(f)):
|
135 |
+
yield id_, row
|