File size: 9,399 Bytes
7713d85
 
 
 
 
7ddd347
7713d85
7ddd347
d2cd9a7
7713d85
 
 
d2cd9a7
 
7713d85
 
 
 
 
 
 
4325ab8
86f714a
f984864
 
 
1eed302
 
3e84f9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80ade01
3e84f9d
80ade01
 
3e84f9d
 
 
 
 
 
 
 
f5ae16b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e84f9d
 
 
 
f984864
3e84f9d
 
f984864
3e84f9d
86859be
f984864
86859be
f984864
 
 
80ade01
 
 
 
f984864
 
 
 
 
 
 
 
 
7713d85
 
 
 
 
 
 
4325ab8
7713d85
 
 
4325ab8
 
7713d85
 
 
 
 
 
 
 
 
 
 
 
 
30c639d
7713d85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30c639d
 
 
1eed302
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
---
annotations_creators:
- crowdsourced
language_creators:
- found
language:
- en
license:
- apache-2.0
multilinguality:
- monolingual
size_categories:
- 100K<n<1M
- 10K<n<100K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- multi-class-classification
- multi-label-classification
paperswithcode_id: goemotions
pretty_name: GoEmotions
config_names:
- raw
- simplified
tags:
- emotion
dataset_info:
- config_name: raw
  features:
  - name: text
    dtype: string
  - name: id
    dtype: string
  - name: author
    dtype: string
  - name: subreddit
    dtype: string
  - name: link_id
    dtype: string
  - name: parent_id
    dtype: string
  - name: created_utc
    dtype: float32
  - name: rater_id
    dtype: int32
  - name: example_very_unclear
    dtype: bool
  - name: admiration
    dtype: int32
  - name: amusement
    dtype: int32
  - name: anger
    dtype: int32
  - name: annoyance
    dtype: int32
  - name: approval
    dtype: int32
  - name: caring
    dtype: int32
  - name: confusion
    dtype: int32
  - name: curiosity
    dtype: int32
  - name: desire
    dtype: int32
  - name: disappointment
    dtype: int32
  - name: disapproval
    dtype: int32
  - name: disgust
    dtype: int32
  - name: embarrassment
    dtype: int32
  - name: excitement
    dtype: int32
  - name: fear
    dtype: int32
  - name: gratitude
    dtype: int32
  - name: grief
    dtype: int32
  - name: joy
    dtype: int32
  - name: love
    dtype: int32
  - name: nervousness
    dtype: int32
  - name: optimism
    dtype: int32
  - name: pride
    dtype: int32
  - name: realization
    dtype: int32
  - name: relief
    dtype: int32
  - name: remorse
    dtype: int32
  - name: sadness
    dtype: int32
  - name: surprise
    dtype: int32
  - name: neutral
    dtype: int32
  splits:
  - name: train
    num_bytes: 55343102
    num_examples: 211225
  download_size: 24828322
  dataset_size: 55343102
- config_name: simplified
  features:
  - name: text
    dtype: string
  - name: labels
    sequence:
      class_label:
        names:
          '0': admiration
          '1': amusement
          '2': anger
          '3': annoyance
          '4': approval
          '5': caring
          '6': confusion
          '7': curiosity
          '8': desire
          '9': disappointment
          '10': disapproval
          '11': disgust
          '12': embarrassment
          '13': excitement
          '14': fear
          '15': gratitude
          '16': grief
          '17': joy
          '18': love
          '19': nervousness
          '20': optimism
          '21': pride
          '22': realization
          '23': relief
          '24': remorse
          '25': sadness
          '26': surprise
          '27': neutral
  - name: id
    dtype: string
  splits:
  - name: train
    num_bytes: 4224138
    num_examples: 43410
  - name: validation
    num_bytes: 527119
    num_examples: 5426
  - name: test
    num_bytes: 524443
    num_examples: 5427
  download_size: 3464371
  dataset_size: 5275700
configs:
- config_name: raw
  data_files:
  - split: train
    path: raw/train-*
- config_name: simplified
  data_files:
  - split: train
    path: simplified/train-*
  - split: validation
    path: simplified/validation-*
  - split: test
    path: simplified/test-*
  default: true
---

# Dataset Card for GoEmotions

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** https://github.com/google-research/google-research/tree/master/goemotions
- **Repository:** https://github.com/google-research/google-research/tree/master/goemotions
- **Paper:** https://arxiv.org/abs/2005.00547
- **Leaderboard:**
- **Point of Contact:** [Dora Demszky](https://nlp.stanford.edu/~ddemszky/index.html)

### Dataset Summary

The GoEmotions dataset contains 58k carefully curated Reddit comments labeled for 27 emotion categories or Neutral.
The raw data is included as well as the smaller, simplified version of the dataset with predefined train/val/test
splits.

### Supported Tasks and Leaderboards

This dataset is intended for multi-class, multi-label emotion classification.

### Languages

The data is in English.

## Dataset Structure

### Data Instances

Each instance is a reddit comment with a corresponding ID and one or more emotion annotations (or neutral).

### Data Fields

The simplified configuration includes:
- `text`: the reddit comment
- `labels`: the emotion annotations
- `comment_id`: unique identifier of the comment (can be used to look up the entry in the raw dataset)

In addition to the above, the raw data includes:
* `author`: The Reddit username of the comment's author.
* `subreddit`: The subreddit that the comment belongs to.
* `link_id`: The link id of the comment.
* `parent_id`: The parent id of the comment.
* `created_utc`: The timestamp of the comment.
* `rater_id`: The unique id of the annotator.
* `example_very_unclear`: Whether the annotator marked the example as being very unclear or difficult to label (in this
case they did not choose any emotion labels).

In the raw data, labels are listed as their own columns with binary 0/1 entries rather than a list of ids as in the
simplified data.

### Data Splits

The simplified data includes a set of train/val/test splits with 43,410, 5426, and 5427 examples respectively.

## Dataset Creation

### Curation Rationale

From the paper abstract:

> Understanding emotion expressed in language has a wide range of applications, from building empathetic chatbots to
detecting harmful online behavior. Advancement in this area can be improved using large-scale datasets with a
fine-grained typology, adaptable to multiple downstream tasks.

### Source Data

#### Initial Data Collection and Normalization

Data was collected from Reddit comments via a variety of automated methods discussed in 3.1 of the paper.

#### Who are the source language producers?

English-speaking Reddit users.

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

Annotations were produced by 3 English-speaking crowdworkers in India.

### Personal and Sensitive Information

This dataset includes the original usernames of the Reddit users who posted each comment. Although Reddit usernames
are typically disasociated from personal real-world identities, this is not always the case. It may therefore be
possible to discover the identities of the individuals who created this content in some cases.

## Considerations for Using the Data

### Social Impact of Dataset

Emotion detection is a worthwhile problem which can potentially lead to improvements such as better human/computer
interaction. However, emotion detection algorithms (particularly in computer vision) have been abused in some cases
to make erroneous inferences in human monitoring and assessment applications such as hiring decisions, insurance
pricing, and student attentiveness (see
[this article](https://www.unite.ai/ai-now-institute-warns-about-misuse-of-emotion-detection-software-and-other-ethical-issues/)).

### Discussion of Biases

From the authors' github page:

> Potential biases in the data include: Inherent biases in Reddit and user base biases, the offensive/vulgar word lists used for data filtering, inherent or unconscious bias in assessment of offensive identity labels, annotators were all native English speakers from India. All these likely affect labelling, precision, and recall for a trained model. Anyone using this dataset should be aware of these limitations of the dataset.

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

Researchers at Amazon Alexa, Google Research, and Stanford. See the [author list](https://arxiv.org/abs/2005.00547).

### Licensing Information

The GitHub repository which houses this dataset has an
[Apache License 2.0](https://github.com/google-research/google-research/blob/master/LICENSE).

### Citation Information

@inproceedings{demszky2020goemotions,
 author = {Demszky, Dorottya and Movshovitz-Attias, Dana and Ko, Jeongwoo and Cowen, Alan and Nemade, Gaurav and Ravi, Sujith},
 booktitle = {58th Annual Meeting of the Association for Computational Linguistics (ACL)},
 title = {{GoEmotions: A Dataset of Fine-Grained Emotions}},
 year = {2020}
}

### Contributions

Thanks to [@joeddav](https://github.com/joeddav) for adding this dataset.