|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""GoEmotions dataset""" |
|
|
|
|
|
import csv |
|
import os |
|
|
|
import datasets |
|
|
|
|
|
_DESCRIPTION = """\ |
|
The GoEmotions dataset contains 58k carefully curated Reddit comments labeled for 27 emotion categories or Neutral. |
|
The emotion categories are admiration, amusement, anger, annoyance, approval, caring, confusion, curiosity, desire, |
|
disappointment, disapproval, disgust, embarrassment, excitement, fear, gratitude, grief, joy, love, nervousness, |
|
optimism, pride, realization, relief, remorse, sadness, surprise. |
|
""" |
|
|
|
_CITATION = """\ |
|
@inproceedings{demszky2020goemotions, |
|
author = {Demszky, Dorottya and Movshovitz-Attias, Dana and Ko, Jeongwoo and Cowen, Alan and Nemade, Gaurav and Ravi, Sujith}, |
|
booktitle = {58th Annual Meeting of the Association for Computational Linguistics (ACL)}, |
|
title = {{GoEmotions: A Dataset of Fine-Grained Emotions}}, |
|
year = {2020} |
|
} |
|
""" |
|
|
|
_CLASS_NAMES = [ |
|
"admiration", |
|
"amusement", |
|
"anger", |
|
"annoyance", |
|
"approval", |
|
"caring", |
|
"confusion", |
|
"curiosity", |
|
"desire", |
|
"disappointment", |
|
"disapproval", |
|
"disgust", |
|
"embarrassment", |
|
"excitement", |
|
"fear", |
|
"gratitude", |
|
"grief", |
|
"joy", |
|
"love", |
|
"nervousness", |
|
"optimism", |
|
"pride", |
|
"realization", |
|
"relief", |
|
"remorse", |
|
"sadness", |
|
"surprise", |
|
"neutral", |
|
] |
|
|
|
_BASE_DOWNLOAD_URL = "https://github.com/google-research/google-research/raw/master/goemotions/data/" |
|
_RAW_DOWNLOAD_URLS = [ |
|
"https://storage.googleapis.com/gresearch/goemotions/data/full_dataset/goemotions_1.csv", |
|
"https://storage.googleapis.com/gresearch/goemotions/data/full_dataset/goemotions_2.csv", |
|
"https://storage.googleapis.com/gresearch/goemotions/data/full_dataset/goemotions_3.csv", |
|
] |
|
_HOMEPAGE = "https://github.com/google-research/google-research/tree/master/goemotions" |
|
|
|
|
|
class GoEmotionsConfig(datasets.BuilderConfig): |
|
@property |
|
def features(self): |
|
if self.name == "simplified": |
|
return { |
|
"text": datasets.Value("string"), |
|
"labels": datasets.Sequence(datasets.ClassLabel(names=_CLASS_NAMES)), |
|
"id": datasets.Value("string"), |
|
} |
|
elif self.name == "raw": |
|
d = { |
|
"text": datasets.Value("string"), |
|
"id": datasets.Value("string"), |
|
"author": datasets.Value("string"), |
|
"subreddit": datasets.Value("string"), |
|
"link_id": datasets.Value("string"), |
|
"parent_id": datasets.Value("string"), |
|
"created_utc": datasets.Value("float"), |
|
"rater_id": datasets.Value("int32"), |
|
"example_very_unclear": datasets.Value("bool"), |
|
} |
|
d.update({label: datasets.Value("int32") for label in _CLASS_NAMES}) |
|
return d |
|
|
|
|
|
class GoEmotions(datasets.GeneratorBasedBuilder): |
|
"""GoEmotions dataset""" |
|
|
|
BUILDER_CONFIGS = [ |
|
GoEmotionsConfig( |
|
name="raw", |
|
), |
|
GoEmotionsConfig( |
|
name="simplified", |
|
), |
|
] |
|
BUILDER_CONFIG_CLASS = GoEmotionsConfig |
|
DEFAULT_CONFIG_NAME = "simplified" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features(self.config.features), |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
if self.config.name == "raw": |
|
paths = dl_manager.download_and_extract(_RAW_DOWNLOAD_URLS) |
|
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": paths, "raw": True})] |
|
if self.config.name == "simplified": |
|
train_path = dl_manager.download_and_extract(os.path.join(_BASE_DOWNLOAD_URL, "train.tsv")) |
|
dev_path = dl_manager.download_and_extract(os.path.join(_BASE_DOWNLOAD_URL, "dev.tsv")) |
|
test_path = dl_manager.download_and_extract(os.path.join(_BASE_DOWNLOAD_URL, "test.tsv")) |
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": [train_path]}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepaths": [dev_path]}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepaths": [test_path]}), |
|
] |
|
|
|
def _generate_examples(self, filepaths, raw=False): |
|
"""Generate AG News examples.""" |
|
for file_idx, filepath in enumerate(filepaths): |
|
with open(filepath, "r", encoding="utf-8") as f: |
|
if raw: |
|
reader = csv.DictReader(f) |
|
else: |
|
reader = csv.DictReader(f, delimiter="\t", fieldnames=list(self.config.features.keys())) |
|
|
|
for row_idx, row in enumerate(reader): |
|
if raw: |
|
row["example_very_unclear"] = row["example_very_unclear"] == "TRUE" |
|
else: |
|
row["labels"] = [int(ind) for ind in row["labels"].split(",")] |
|
|
|
yield f"{file_idx}_{row_idx}", row |
|
|