Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
Libraries:
Datasets
Dask
License:
File size: 9,967 Bytes
d4cca19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a696b9f
d4cca19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efe2c92
d4635b4
d4cca19
 
 
 
d4635b4
 
 
 
 
d4cca19
 
 
 
 
 
 
 
 
 
 
 
efe2c92
 
 
 
 
 
d4cca19
 
 
 
 
 
efe2c92
 
 
 
 
 
 
 
 
d4cca19
 
 
 
 
 
 
 
efe2c92
d4cca19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4635b4
 
 
 
d4cca19
 
 
 
d4635b4
 
 
 
 
d4cca19
 
 
 
86f88c0
 
 
 
 
 
d4cca19
 
 
 
 
 
 
d4635b4
d4cca19
 
 
 
 
a696b9f
d4cca19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efe2c92
d4cca19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efe2c92
 
 
 
 
 
 
d4cca19
 
 
efe2c92
d4cca19
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""Natural Questions: A Benchmark for Question Answering Research."""


import html
import json
import re

import datasets


_CITATION = """
@article{47761,
title	= {Natural Questions: a Benchmark for Question Answering Research},
author	= {Tom Kwiatkowski and Jennimaria Palomaki and Olivia Redfield and Michael Collins and Ankur Parikh and Chris Alberti and Danielle Epstein and Illia Polosukhin and Matthew Kelcey and Jacob Devlin and Kenton Lee and Kristina N. Toutanova and Llion Jones and Ming-Wei Chang and Andrew Dai and Jakob Uszkoreit and Quoc Le and Slav Petrov},
year	= {2019},
journal	= {Transactions of the Association of Computational Linguistics}
}
"""

_DESCRIPTION = """
The NQ corpus contains questions from real users, and it requires QA systems to
read and comprehend an entire Wikipedia article that may or may not contain the
answer to the question. The inclusion of real user questions, and the
requirement that solutions should read an entire page to find the answer, cause
NQ to be a more realistic and challenging task than prior QA datasets.
"""

_URL = "https://ai.google.com/research/NaturalQuestions/dataset"

_BASE_DOWNLOAD_URL = "https://storage.googleapis.com/natural_questions/v1.0"
_DOWNLOAD_URLS = {
    "train": ["%s/train/nq-train-%02d.jsonl.gz" % (_BASE_DOWNLOAD_URL, i) for i in range(50)],
    "validation": ["%s/dev/nq-dev-%02d.jsonl.gz" % (_BASE_DOWNLOAD_URL, i) for i in range(5)],
}

_VERSION = datasets.Version("0.0.4")


class NaturalQuestions(datasets.BeamBasedBuilder):
    """Natural Questions: A Benchmark for Question Answering Research."""

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name="default", version=_VERSION),
        datasets.BuilderConfig(name="dev", version=_VERSION, description="Only dev split"),
    ]
    DEFAULT_CONFIG_NAME = "default"

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "document": {
                        "title": datasets.Value("string"),
                        "url": datasets.Value("string"),
                        "html": datasets.Value("string"),
                        "tokens": datasets.features.Sequence(
                            {
                                "token": datasets.Value("string"),
                                "is_html": datasets.Value("bool"),
                                "start_byte": datasets.Value("int64"),
                                "end_byte": datasets.Value("int64"),
                            }
                        ),
                    },
                    "question": {
                        "text": datasets.Value("string"),
                        "tokens": datasets.features.Sequence(datasets.Value("string")),
                    },
                    "long_answer_candidates": datasets.features.Sequence(
                        {
                            "start_token": datasets.Value("int64"),
                            "end_token": datasets.Value("int64"),
                            "start_byte": datasets.Value("int64"),
                            "end_byte": datasets.Value("int64"),
                            "top_level": datasets.Value("bool"),
                        }
                    ),
                    "annotations": datasets.features.Sequence(
                        {
                            "id": datasets.Value("string"),
                            "long_answer": {
                                "start_token": datasets.Value("int64"),
                                "end_token": datasets.Value("int64"),
                                "start_byte": datasets.Value("int64"),
                                "end_byte": datasets.Value("int64"),
                                "candidate_index": datasets.Value("int64"),
                            },
                            "short_answers": datasets.features.Sequence(
                                {
                                    "start_token": datasets.Value("int64"),
                                    "end_token": datasets.Value("int64"),
                                    "start_byte": datasets.Value("int64"),
                                    "end_byte": datasets.Value("int64"),
                                    "text": datasets.Value("string"),
                                }
                            ),
                            "yes_no_answer": datasets.features.ClassLabel(
                                names=["NO", "YES"]
                            ),  # Can also be -1 for NONE.
                        }
                    ),
                }
            ),
            supervised_keys=None,
            homepage=_URL,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager, pipeline):
        """Returns SplitGenerators."""
        urls = _DOWNLOAD_URLS
        if self.config.name == "dev":
            urls = {"validation": urls["validation"]}
        files = dl_manager.download(urls)
        if not pipeline.is_local():
            files = dl_manager.ship_files_with_pipeline(files, pipeline)
        return [
            datasets.SplitGenerator(
                name=split,
                gen_kwargs={"filepaths": files[split]},
            )
            for split in [datasets.Split.TRAIN, datasets.Split.VALIDATION]
            if split in files
        ]

    def _build_pcollection(self, pipeline, filepaths):
        """Build PCollection of examples."""
        try:
            import apache_beam as beam
        except ImportError as err:
            raise ImportError(
                "To be able to load natural_questions, you need to install apache_beam: 'pip install apache_beam'"
            ) from err

        def _parse_example(line):
            """Parse a single json line and emit an example dict."""
            ex_json = json.loads(line)
            html_bytes = ex_json["document_html"].encode("utf-8")

            def _parse_short_answer(short_ans):
                """Extract text of short answer."""
                ans_bytes = html_bytes[short_ans["start_byte"] : short_ans["end_byte"]]
                # Remove non-breaking spaces.
                ans_bytes = ans_bytes.replace(b"\xc2\xa0", b" ")
                text = ans_bytes.decode("utf-8")
                # Remove HTML markup.
                text = re.sub("<([^>]*)>", "", html.unescape(text))
                # Replace \xa0 characters with spaces.
                return {
                    "start_token": short_ans["start_token"],
                    "end_token": short_ans["end_token"],
                    "start_byte": short_ans["start_byte"],
                    "end_byte": short_ans["end_byte"],
                    "text": text,
                }

            def _parse_annotation(an_json):
                return {
                    # Convert to str since some IDs cannot be represented by datasets.Value('int64').
                    "id": str(an_json["annotation_id"]),
                    "long_answer": {
                        "start_token": an_json["long_answer"]["start_token"],
                        "end_token": an_json["long_answer"]["end_token"],
                        "start_byte": an_json["long_answer"]["start_byte"],
                        "end_byte": an_json["long_answer"]["end_byte"],
                        "candidate_index": an_json["long_answer"]["candidate_index"],
                    },
                    "short_answers": [_parse_short_answer(ans) for ans in an_json["short_answers"]],
                    "yes_no_answer": (-1 if an_json["yes_no_answer"] == "NONE" else an_json["yes_no_answer"]),
                }

            beam.metrics.Metrics.counter("nq", "examples").inc()
            # Convert to str since some IDs cannot be represented by datasets.Value('int64').
            id_ = str(ex_json["example_id"])
            return (
                id_,
                {
                    "id": id_,
                    "document": {
                        "title": ex_json["document_title"],
                        "url": ex_json["document_url"],
                        "html": ex_json["document_html"],
                        "tokens": [
                            {
                                "token": t["token"],
                                "is_html": t["html_token"],
                                "start_byte": t["start_byte"],
                                "end_byte": t["end_byte"],
                            }
                            for t in ex_json["document_tokens"]
                        ],
                    },
                    "question": {"text": ex_json["question_text"], "tokens": ex_json["question_tokens"]},
                    "long_answer_candidates": [lac_json for lac_json in ex_json["long_answer_candidates"]],
                    "annotations": [_parse_annotation(an_json) for an_json in ex_json["annotations"]],
                },
            )

        return (
            pipeline
            | beam.Create(filepaths)
            | beam.io.ReadAllFromText(compression_type=beam.io.textio.CompressionTypes.GZIP)
            | beam.Map(_parse_example)
        )