Datasets:
Tasks:
Question Answering
Sub-tasks:
extractive-qa
Languages:
English
Size:
1K<n<10K
ArXiv:
License:
Commit
·
66143d3
0
Parent(s):
Update files from the datasets library (from 1.2.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.2.0
- .gitattributes +27 -0
- README.md +141 -0
- dataset_infos.json +1 -0
- dummy/qed/1.0.0/dummy_data.zip +3 -0
- qed.py +140 -0
.gitattributes
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
annotations_creators:
|
3 |
+
- expert-generated
|
4 |
+
language_creators:
|
5 |
+
- found
|
6 |
+
languages:
|
7 |
+
- en
|
8 |
+
licenses:
|
9 |
+
- unknown
|
10 |
+
multilinguality:
|
11 |
+
- monolingual
|
12 |
+
size_categories:
|
13 |
+
- 1K<n<10K
|
14 |
+
source_datasets:
|
15 |
+
- extended|natural_questions
|
16 |
+
task_categories:
|
17 |
+
- question-answering
|
18 |
+
task_ids:
|
19 |
+
- extractive-qa
|
20 |
+
- question-answering-other-explanations-in-question-answering
|
21 |
+
---
|
22 |
+
|
23 |
+
# Dataset Card Creation Guide
|
24 |
+
|
25 |
+
## Table of Contents
|
26 |
+
- [Dataset Description](#dataset-description)
|
27 |
+
- [Dataset Summary](#dataset-summary)
|
28 |
+
- [Supported Tasks](#supported-tasks-and-leaderboards)
|
29 |
+
- [Languages](#languages)
|
30 |
+
- [Dataset Structure](#dataset-structure)
|
31 |
+
- [Data Instances](#data-instances)
|
32 |
+
- [Data Fields](#data-instances)
|
33 |
+
- [Data Splits](#data-instances)
|
34 |
+
- [Dataset Creation](#dataset-creation)
|
35 |
+
- [Curation Rationale](#curation-rationale)
|
36 |
+
- [Source Data](#source-data)
|
37 |
+
- [Annotations](#annotations)
|
38 |
+
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
39 |
+
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
40 |
+
- [Social Impact of Dataset](#social-impact-of-dataset)
|
41 |
+
- [Discussion of Biases](#discussion-of-biases)
|
42 |
+
- [Other Known Limitations](#other-known-limitations)
|
43 |
+
- [Additional Information](#additional-information)
|
44 |
+
- [Dataset Curators](#dataset-curators)
|
45 |
+
- [Licensing Information](#licensing-information)
|
46 |
+
- [Citation Information](#citation-information)
|
47 |
+
|
48 |
+
## Dataset Description
|
49 |
+
|
50 |
+
- **Homepage:** N/A
|
51 |
+
- **Repository:** [GitHub](https://github.com/google-research-datasets/QED)
|
52 |
+
- **Paper:** [QED: A Framework and Dataset for Explanations in Question Answering](https://arxiv.org/abs/2009.06354)
|
53 |
+
- **Leaderboard:** N/A
|
54 |
+
- **Point of Contact:** -
|
55 |
+
|
56 |
+
### Dataset Summary
|
57 |
+
|
58 |
+
[More Information Needed]
|
59 |
+
|
60 |
+
### Supported Tasks and Leaderboards
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Languages
|
65 |
+
|
66 |
+
[More Information Needed]
|
67 |
+
|
68 |
+
## Dataset Structure
|
69 |
+
|
70 |
+
### Data Instances
|
71 |
+
|
72 |
+
[More Information Needed]
|
73 |
+
|
74 |
+
### Data Fields
|
75 |
+
|
76 |
+
[More Information Needed]
|
77 |
+
|
78 |
+
### Data Splits
|
79 |
+
|
80 |
+
[More Information Needed]
|
81 |
+
## Dataset Creation
|
82 |
+
|
83 |
+
### Curation Rationale
|
84 |
+
|
85 |
+
[More Information Needed]
|
86 |
+
|
87 |
+
### Source Data
|
88 |
+
|
89 |
+
[More Information Needed]
|
90 |
+
|
91 |
+
#### Initial Data Collection and Normalization
|
92 |
+
|
93 |
+
[More Information Needed]
|
94 |
+
|
95 |
+
#### Who are the source language producers?
|
96 |
+
|
97 |
+
[More Information Needed]
|
98 |
+
|
99 |
+
### Annotations
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
#### Annotation process
|
104 |
+
|
105 |
+
[More Information Needed]
|
106 |
+
|
107 |
+
#### Who are the annotators?
|
108 |
+
|
109 |
+
[More Information Needed]
|
110 |
+
|
111 |
+
### Personal and Sensitive Information
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
## Considerations for Using the Data
|
116 |
+
|
117 |
+
### Social Impact of Dataset
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
### Discussion of Biases
|
122 |
+
|
123 |
+
[More Information Needed]
|
124 |
+
|
125 |
+
### Other Known Limitations
|
126 |
+
|
127 |
+
[More Information Needed]
|
128 |
+
|
129 |
+
## Additional Information
|
130 |
+
|
131 |
+
### Dataset Curators
|
132 |
+
|
133 |
+
[More Information Needed]
|
134 |
+
|
135 |
+
### Licensing Information
|
136 |
+
|
137 |
+
[More Information Needed]
|
138 |
+
|
139 |
+
### Citation Information
|
140 |
+
|
141 |
+
[More Information Needed]
|
dataset_infos.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"qed": {"description": "QED, is a linguistically informed, extensible framework for explanations in question answering. A QED explanation specifies the relationship between a question and answer according to formal semantic notions such as referential equality, sentencehood, and entailment. It is an expertannotated dataset of QED explanations built upon a subset of the Google Natural Questions dataset.\n", "citation": "@misc{lamm2020qed,\n title={QED: A Framework and Dataset for Explanations in Question Answering},\n author={Matthew Lamm and Jennimaria Palomaki and Chris Alberti and Daniel Andor and Eunsol Choi and Livio Baldini Soares and Michael Collins},\n year={2020},\n eprint={2009.06354},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://github.com/google-research-datasets/QED", "license": "", "features": {"example_id": {"dtype": "int64", "id": null, "_type": "Value"}, "title_text": {"dtype": "string", "id": null, "_type": "Value"}, "url": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "paragraph_text": {"dtype": "string", "id": null, "_type": "Value"}, "sentence_starts": {"feature": {"dtype": "int32", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "original_nq_answers": [[{"start": {"dtype": "int32", "id": null, "_type": "Value"}, "end": {"dtype": "int32", "id": null, "_type": "Value"}, "string": {"dtype": "string", "id": null, "_type": "Value"}}]], "annotation": {"referential_equalities": [{"question_reference": {"start": {"dtype": "int32", "id": null, "_type": "Value"}, "end": {"dtype": "int32", "id": null, "_type": "Value"}, "string": {"dtype": "string", "id": null, "_type": "Value"}}, "sentence_reference": {"start": {"dtype": "int32", "id": null, "_type": "Value"}, "end": {"dtype": "int32", "id": null, "_type": "Value"}, "bridge": {"dtype": "bool_", "id": null, "_type": "Value"}, "string": {"dtype": "string", "id": null, "_type": "Value"}}}], "answer": [{"sentence_reference": {"start": {"dtype": "int32", "id": null, "_type": "Value"}, "end": {"dtype": "int32", "id": null, "_type": "Value"}, "bridge": {"dtype": "bool_", "id": null, "_type": "Value"}, "string": {"dtype": "string", "id": null, "_type": "Value"}}, "paragraph_reference": {"start": {"dtype": "int32", "id": null, "_type": "Value"}, "end": {"dtype": "int32", "id": null, "_type": "Value"}, "string": {"dtype": "string", "id": null, "_type": "Value"}}}], "explanation_type": {"dtype": "string", "id": null, "_type": "Value"}, "selected_sentence": {"start": {"dtype": "int32", "id": null, "_type": "Value"}, "end": {"dtype": "int32", "id": null, "_type": "Value"}, "string": {"dtype": "string", "id": null, "_type": "Value"}}}}, "post_processed": null, "supervised_keys": null, "builder_name": "qed", "config_name": "qed", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 8560864, "num_examples": 7638, "dataset_name": "qed"}, "validation": {"name": "validation", "num_bytes": 1615171, "num_examples": 1355, "dataset_name": "qed"}}, "download_checksums": {"https://raw.githubusercontent.com/google-research-datasets/QED/master/qed-train.jsonlines": {"num_bytes": 11839736, "checksum": "b5cf65414defef8d42f6778dbd3cf0fa710adcdcb86fc693ab8edec8f0be7faf"}, "https://raw.githubusercontent.com/google-research-datasets/QED/master/qed-dev.jsonlines": {"num_bytes": 2244232, "checksum": "2ea322b71a333023380c3954083b81af2d5670c8ac47ddec58c843233895c429"}}, "download_size": 14083968, "post_processing_size": null, "dataset_size": 10176035, "size_in_bytes": 24260003}}
|
dummy/qed/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:71bc5583a7f20c2180e00fd10beedcf31e986453078b3393c1329465cd1195ec
|
3 |
+
size 2981
|
qed.py
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""QED: A Dataset for Explanations in Question Answering"""
|
16 |
+
|
17 |
+
from __future__ import absolute_import, division, print_function
|
18 |
+
|
19 |
+
import json
|
20 |
+
|
21 |
+
import datasets
|
22 |
+
|
23 |
+
|
24 |
+
_CITATION = """\
|
25 |
+
@misc{lamm2020qed,
|
26 |
+
title={QED: A Framework and Dataset for Explanations in Question Answering},
|
27 |
+
author={Matthew Lamm and Jennimaria Palomaki and Chris Alberti and Daniel Andor and Eunsol Choi and Livio Baldini Soares and Michael Collins},
|
28 |
+
year={2020},
|
29 |
+
eprint={2009.06354},
|
30 |
+
archivePrefix={arXiv},
|
31 |
+
primaryClass={cs.CL}
|
32 |
+
}
|
33 |
+
"""
|
34 |
+
|
35 |
+
_DESCRIPTION = """\
|
36 |
+
QED, is a linguistically informed, extensible framework for explanations in question answering. \
|
37 |
+
A QED explanation specifies the relationship between a question and answer according to formal semantic notions \
|
38 |
+
such as referential equality, sentencehood, and entailment. It is an expertannotated dataset of QED explanations \
|
39 |
+
built upon a subset of the Google Natural Questions dataset.
|
40 |
+
"""
|
41 |
+
|
42 |
+
_HOMEPAGE = "https://github.com/google-research-datasets/QED"
|
43 |
+
|
44 |
+
_BASE_URL = "https://raw.githubusercontent.com/google-research-datasets/QED/master/"
|
45 |
+
_URLS = {
|
46 |
+
"train": _BASE_URL + "qed-train.jsonlines",
|
47 |
+
"dev": _BASE_URL + "qed-dev.jsonlines",
|
48 |
+
}
|
49 |
+
|
50 |
+
|
51 |
+
class Qed(datasets.GeneratorBasedBuilder):
|
52 |
+
"""QED: A Dataset for Explanations in Question Answering"""
|
53 |
+
|
54 |
+
VERSION = datasets.Version("1.0.0")
|
55 |
+
BUILDER_CONFIGS = [
|
56 |
+
datasets.BuilderConfig(name="qed", version=datasets.Version("1.0.0")),
|
57 |
+
]
|
58 |
+
|
59 |
+
def _info(self):
|
60 |
+
span_features = {
|
61 |
+
"start": datasets.Value("int32"),
|
62 |
+
"end": datasets.Value("int32"),
|
63 |
+
"string": datasets.Value("string"),
|
64 |
+
}
|
65 |
+
reference_features = {
|
66 |
+
"start": datasets.Value("int32"),
|
67 |
+
"end": datasets.Value("int32"),
|
68 |
+
"bridge": datasets.Value("bool_"),
|
69 |
+
"string": datasets.Value("string"),
|
70 |
+
}
|
71 |
+
return datasets.DatasetInfo(
|
72 |
+
description=_DESCRIPTION,
|
73 |
+
features=datasets.Features(
|
74 |
+
{
|
75 |
+
"example_id": datasets.Value("int64"),
|
76 |
+
"title_text": datasets.Value("string"),
|
77 |
+
"url": datasets.Value("string"),
|
78 |
+
"question": datasets.Value("string"),
|
79 |
+
"paragraph_text": datasets.Value("string"),
|
80 |
+
"sentence_starts": datasets.Sequence(datasets.Value("int32")),
|
81 |
+
"original_nq_answers": [span_features],
|
82 |
+
"annotation": {
|
83 |
+
"referential_equalities": [
|
84 |
+
{
|
85 |
+
"question_reference": span_features,
|
86 |
+
"sentence_reference": reference_features,
|
87 |
+
}
|
88 |
+
],
|
89 |
+
"answer": [
|
90 |
+
{
|
91 |
+
"sentence_reference": reference_features,
|
92 |
+
"paragraph_reference": span_features,
|
93 |
+
}
|
94 |
+
],
|
95 |
+
"explanation_type": datasets.Value("string"),
|
96 |
+
"selected_sentence": span_features,
|
97 |
+
},
|
98 |
+
}
|
99 |
+
),
|
100 |
+
supervised_keys=None,
|
101 |
+
homepage=_HOMEPAGE,
|
102 |
+
citation=_CITATION,
|
103 |
+
)
|
104 |
+
|
105 |
+
def _split_generators(self, dl_manager):
|
106 |
+
downloaded_paths = dl_manager.download(_URLS)
|
107 |
+
return [
|
108 |
+
datasets.SplitGenerator(
|
109 |
+
name=datasets.Split.TRAIN,
|
110 |
+
gen_kwargs={"filepath": downloaded_paths["train"]},
|
111 |
+
),
|
112 |
+
datasets.SplitGenerator(
|
113 |
+
name=datasets.Split.VALIDATION,
|
114 |
+
gen_kwargs={"filepath": downloaded_paths["dev"]},
|
115 |
+
),
|
116 |
+
]
|
117 |
+
|
118 |
+
def _generate_examples(self, filepath):
|
119 |
+
with open(filepath, encoding="utf-8") as f:
|
120 |
+
examples = f.readlines()
|
121 |
+
for example in examples:
|
122 |
+
example = json.loads(example.strip())
|
123 |
+
example["question"] = example.pop("question_text")
|
124 |
+
|
125 |
+
# some examples have missing annotation, assign empty values to such examples
|
126 |
+
if "answer" not in example["annotation"]:
|
127 |
+
example["annotation"]["answer"] = []
|
128 |
+
if "selected_sentence" not in example["annotation"]:
|
129 |
+
example["annotation"]["selected_sentence"] = {
|
130 |
+
"start": -1,
|
131 |
+
"end": -1,
|
132 |
+
"string": "",
|
133 |
+
}
|
134 |
+
if "referential_equalities" not in example["annotation"]:
|
135 |
+
example["annotation"]["referential_equalities"] = []
|
136 |
+
|
137 |
+
# remove the nested list
|
138 |
+
example["original_nq_answers"] = example["original_nq_answers"][0]
|
139 |
+
|
140 |
+
yield example["example_id"], example
|