Datasets:
Tasks:
Text2Text Generation
Languages:
English
Size:
100K<n<1M
ArXiv:
Tags:
split-and-rephrase
License:
"""TODO(wiki_split): Add a description here.""" | |
import csv | |
import os | |
import datasets | |
# TODO(wiki_split): BibTeX citation | |
_CITATION = """\ | |
@InProceedings{BothaEtAl2018, | |
title = {{Learning To Split and Rephrase From Wikipedia Edit History}}, | |
author = {Botha, Jan A and Faruqui, Manaal and Alex, John and Baldridge, Jason and Das, Dipanjan}, | |
booktitle = {Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing}, | |
pages = {to appear}, | |
note = {arXiv preprint arXiv:1808.09468}, | |
year = {2018} | |
} | |
""" | |
# TODO(wiki_split): | |
_DESCRIPTION = """\ | |
One million English sentences, each split into two sentences that together preserve the original meaning, extracted from Wikipedia | |
Google's WikiSplit dataset was constructed automatically from the publicly available Wikipedia revision history. Although | |
the dataset contains some inherent noise, it can serve as valuable training data for models that split or merge sentences. | |
""" | |
_URL = "https://github.com/google-research-datasets/wiki-split/raw/master/" | |
_URLS = { | |
"train": _URL + "train.tsv.zip", | |
"test": _URL + "test.tsv", | |
"dev": _URL + "validation.tsv", | |
} | |
class WikiSplit(datasets.GeneratorBasedBuilder): | |
"""TODO(wiki_split): Short description of my dataset.""" | |
# TODO(wiki_split): Set up version. | |
VERSION = datasets.Version("0.1.0") | |
def _info(self): | |
# TODO(wiki_split): Specifies the datasets.DatasetInfo object | |
return datasets.DatasetInfo( | |
# This is the description that will appear on the datasets page. | |
description=_DESCRIPTION, | |
# datasets.features.FeatureConnectors | |
features=datasets.Features( | |
{ | |
"complex_sentence": datasets.Value("string"), | |
"simple_sentence_1": datasets.Value("string"), | |
"simple_sentence_2": datasets.Value("string"), | |
# These are the features of your dataset like images, labels ... | |
} | |
), | |
# If there's a common (input, target) tuple from the features, | |
# specify them here. They'll be used if as_supervised=True in | |
# builder.as_dataset. | |
supervised_keys=None, | |
# Homepage of the dataset for documentation | |
homepage="https://dataset-homepage/", | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
# TODO(wiki_split): Downloads the data and defines the splits | |
# dl_manager is a datasets.download.DownloadManager that can be used to | |
# download and extract URLs | |
urls_to_download = _URLS | |
dl_dir = dl_manager.download_and_extract(urls_to_download) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={"filepath": os.path.join(dl_dir["train"], "train.tsv")}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={"filepath": dl_dir["test"]}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={"filepath": dl_dir["dev"]}, | |
), | |
] | |
def _generate_examples(self, filepath): | |
"""Yields examples.""" | |
# TODO(wiki_split): Yields (key, example) tuples from the dataset | |
with open(filepath, encoding="utf-8") as f: | |
data = csv.reader(f, delimiter="\t") | |
# data = csv.reader(f, delimiter='\t') | |
for id_, row in enumerate(data): | |
yield id_, { | |
"complex_sentence": row[0], | |
"simple_sentence_1": row[1].split("<::::>")[0], | |
"simple_sentence_2": row[1].split("<::::>")[1], | |
} | |