Datasets:
Tasks:
Text Retrieval
Modalities:
Text
Formats:
parquet
Sub-tasks:
document-retrieval
Languages:
code
Size:
10K - 100K
License:
Commit
•
66946af
0
Parent(s):
Update files from the datasets library (from 1.8.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.8.0
- .gitattributes +27 -0
- README.md +165 -0
- code_x_glue_cc_clone_detection_poj104.py +87 -0
- common.py +75 -0
- dataset_infos.json +1 -0
- dummy/default/0.0.0/dummy_data.zip +3 -0
- generated_definitions.py +12 -0
.gitattributes
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
annotations_creators:
|
3 |
+
- found
|
4 |
+
language_creators:
|
5 |
+
- found
|
6 |
+
languages:
|
7 |
+
- code
|
8 |
+
licenses:
|
9 |
+
- other-C-UDA
|
10 |
+
multilinguality:
|
11 |
+
- monolingual
|
12 |
+
size_categories:
|
13 |
+
- 10K<n<100K
|
14 |
+
source_datasets:
|
15 |
+
- original
|
16 |
+
task_categories:
|
17 |
+
- text-retrieval
|
18 |
+
task_ids:
|
19 |
+
- document-retrieval
|
20 |
+
---
|
21 |
+
# Dataset Card for "code_x_glue_cc_clone_detection_poj_104"
|
22 |
+
|
23 |
+
## Table of Contents
|
24 |
+
- [Dataset Description](#dataset-description)
|
25 |
+
- [Dataset Summary](#dataset-summary)
|
26 |
+
- [Supported Tasks and Leaderboards](#supported-tasks)
|
27 |
+
- [Languages](#languages)
|
28 |
+
- [Dataset Structure](#dataset-structure)
|
29 |
+
- [Data Instances](#data-instances)
|
30 |
+
- [Data Fields](#data-fields)
|
31 |
+
- [Data Splits](#data-splits-sample-size)
|
32 |
+
- [Dataset Creation](#dataset-creation)
|
33 |
+
- [Curation Rationale](#curation-rationale)
|
34 |
+
- [Source Data](#source-data)
|
35 |
+
- [Annotations](#annotations)
|
36 |
+
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
37 |
+
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
38 |
+
- [Social Impact of Dataset](#social-impact-of-dataset)
|
39 |
+
- [Discussion of Biases](#discussion-of-biases)
|
40 |
+
- [Other Known Limitations](#other-known-limitations)
|
41 |
+
- [Additional Information](#additional-information)
|
42 |
+
- [Dataset Curators](#dataset-curators)
|
43 |
+
- [Licensing Information](#licensing-information)
|
44 |
+
- [Citation Information](#citation-information)
|
45 |
+
- [Contributions](#contributions)
|
46 |
+
|
47 |
+
## Dataset Description
|
48 |
+
|
49 |
+
- **Homepage:** https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/Clone-detection-POJ-104
|
50 |
+
|
51 |
+
### Dataset Summary
|
52 |
+
|
53 |
+
CodeXGLUE Clone-detection-POJ-104 dataset, available at https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/Clone-detection-POJ-104
|
54 |
+
|
55 |
+
Given a code and a collection of candidates as the input, the task is to return Top K codes with the same semantic. Models are evaluated by MAP score.
|
56 |
+
We use POJ-104 dataset on this task.
|
57 |
+
|
58 |
+
### Supported Tasks and Leaderboards
|
59 |
+
|
60 |
+
- `document-retrieval`: The dataset can be used to train a model for retrieving top-k codes with the same semantics.
|
61 |
+
|
62 |
+
### Languages
|
63 |
+
|
64 |
+
- C++ **programming** language
|
65 |
+
|
66 |
+
## Dataset Structure
|
67 |
+
|
68 |
+
### Data Instances
|
69 |
+
|
70 |
+
An example of 'train' looks as follows.
|
71 |
+
```
|
72 |
+
{
|
73 |
+
"code": "\nint f(int shu,int min)\n{ \n int k=1;\n if(shu < min)\n { \n k= 0; \n return k;\n } \n else\n {\n for(int i = min;i<shu;i++)\n { \n if(shu%i == 0)\n { \n k=k+ f(shu/i,i); \n } \n \n \n } \n return k; \n}\n} \n\nmain()\n{\n int n,i,a;\n scanf(\"%d\",&n);\n \n for(i=0;i<n;i++)\n {\n scanf(\"%d\",&a);\n \n if(i!=n-1) \n printf(\"%d\\n\",f(a,2));\n else\n printf(\"%d\",f(a,2)); \n \n \n \n } \n \n \n }",
|
74 |
+
"id": 0,
|
75 |
+
"label": "home"
|
76 |
+
}
|
77 |
+
```
|
78 |
+
|
79 |
+
### Data Fields
|
80 |
+
|
81 |
+
In the following each data field in go is explained for each config. The data fields are the same among all splits.
|
82 |
+
|
83 |
+
#### default
|
84 |
+
|
85 |
+
|field name| type | description |
|
86 |
+
|----------|------|----------------------------------------------|
|
87 |
+
|id |int32 | Index of the sample |
|
88 |
+
|code |string| The full text of the function |
|
89 |
+
|label |string| The id of problem that the source code solves|
|
90 |
+
|
91 |
+
### Data Splits
|
92 |
+
|
93 |
+
| name |train|validation|test |
|
94 |
+
|-------|----:|---------:|----:|
|
95 |
+
|default|32000| 8000|12000|
|
96 |
+
|
97 |
+
## Dataset Creation
|
98 |
+
|
99 |
+
### Curation Rationale
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
### Source Data
|
104 |
+
|
105 |
+
#### Initial Data Collection and Normalization
|
106 |
+
|
107 |
+
[More Information Needed]
|
108 |
+
|
109 |
+
#### Who are the source language producers?
|
110 |
+
|
111 |
+
[More Information Needed]
|
112 |
+
|
113 |
+
### Annotations
|
114 |
+
|
115 |
+
#### Annotation process
|
116 |
+
|
117 |
+
[More Information Needed]
|
118 |
+
|
119 |
+
#### Who are the annotators?
|
120 |
+
|
121 |
+
[More Information Needed]
|
122 |
+
|
123 |
+
### Personal and Sensitive Information
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
## Considerations for Using the Data
|
128 |
+
|
129 |
+
### Social Impact of Dataset
|
130 |
+
|
131 |
+
[More Information Needed]
|
132 |
+
|
133 |
+
### Discussion of Biases
|
134 |
+
|
135 |
+
[More Information Needed]
|
136 |
+
|
137 |
+
### Other Known Limitations
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Additional Information
|
142 |
+
|
143 |
+
### Dataset Curators
|
144 |
+
|
145 |
+
https://github.com/microsoft, https://github.com/madlag
|
146 |
+
|
147 |
+
### Licensing Information
|
148 |
+
|
149 |
+
Computational Use of Data Agreement (C-UDA) License.
|
150 |
+
|
151 |
+
### Citation Information
|
152 |
+
|
153 |
+
```
|
154 |
+
@inproceedings{mou2016convolutional,
|
155 |
+
title={Convolutional neural networks over tree structures for programming language processing},
|
156 |
+
author={Mou, Lili and Li, Ge and Zhang, Lu and Wang, Tao and Jin, Zhi},
|
157 |
+
booktitle={Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence},
|
158 |
+
pages={1287--1293},
|
159 |
+
year={2016}
|
160 |
+
}
|
161 |
+
```
|
162 |
+
|
163 |
+
### Contributions
|
164 |
+
|
165 |
+
Thanks to @madlag (and partly also @ncoop57) for adding this dataset.
|
code_x_glue_cc_clone_detection_poj104.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import os.path
|
3 |
+
from typing import List
|
4 |
+
|
5 |
+
import datasets
|
6 |
+
|
7 |
+
from .common import TrainValidTestChild
|
8 |
+
from .generated_definitions import DEFINITIONS
|
9 |
+
|
10 |
+
|
11 |
+
_DESCRIPTION = """Given a code and a collection of candidates as the input, the task is to return Top K codes with the same semantic. Models are evaluated by MAP score.
|
12 |
+
We use POJ-104 dataset on this task."""
|
13 |
+
|
14 |
+
_CITATION = """@inproceedings{mou2016convolutional,
|
15 |
+
title={Convolutional neural networks over tree structures for programming language processing},
|
16 |
+
author={Mou, Lili and Li, Ge and Zhang, Lu and Wang, Tao and Jin, Zhi},
|
17 |
+
booktitle={Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence},
|
18 |
+
pages={1287--1293},
|
19 |
+
year={2016}
|
20 |
+
}"""
|
21 |
+
|
22 |
+
|
23 |
+
class CodeXGlueCcCloneDetectionPoj104Impl(TrainValidTestChild):
|
24 |
+
_DESCRIPTION = _DESCRIPTION
|
25 |
+
_CITATION = _CITATION
|
26 |
+
|
27 |
+
_FEATURES = {
|
28 |
+
"id": datasets.Value("int32"), # Index of the sample
|
29 |
+
"code": datasets.Value("string"), # The full text of the function
|
30 |
+
"label": datasets.Value("string"), # The id of problem that the source code solves
|
31 |
+
}
|
32 |
+
|
33 |
+
_SUPERVISED_KEYS = ["label"]
|
34 |
+
|
35 |
+
SPLIT_RANGES = {"train": (1, 65), "valid": (65, 81), "test": (81, 195)}
|
36 |
+
|
37 |
+
def generate_urls(self, split_name):
|
38 |
+
yield "data", "programs.tar.gz"
|
39 |
+
|
40 |
+
def _generate_examples(self, split_name, file_paths):
|
41 |
+
def files(path):
|
42 |
+
g = os.walk(path)
|
43 |
+
file = []
|
44 |
+
for path, dir_list, file_list in g:
|
45 |
+
for file_name in file_list:
|
46 |
+
file.append(os.path.join(path, file_name))
|
47 |
+
return file
|
48 |
+
|
49 |
+
root_path = file_paths["data"]
|
50 |
+
cont = 0
|
51 |
+
for i in range(*self.SPLIT_RANGES[split_name]):
|
52 |
+
items = files(os.path.join(root_path, "ProgramData/{}".format(i)))
|
53 |
+
for item in items:
|
54 |
+
js = {}
|
55 |
+
js["label"] = item.split("/")[1]
|
56 |
+
js["id"] = cont
|
57 |
+
js["code"] = open(item, encoding="latin-1").read()
|
58 |
+
yield cont, js
|
59 |
+
cont += 1
|
60 |
+
|
61 |
+
|
62 |
+
CLASS_MAPPING = {
|
63 |
+
"CodeXGlueCcCloneDetectionPoj104": CodeXGlueCcCloneDetectionPoj104Impl,
|
64 |
+
}
|
65 |
+
|
66 |
+
|
67 |
+
class CodeXGlueCcCloneDetectionPoj104(datasets.GeneratorBasedBuilder):
|
68 |
+
BUILDER_CONFIG_CLASS = datasets.BuilderConfig
|
69 |
+
BUILDER_CONFIGS = [
|
70 |
+
datasets.BuilderConfig(name=name, description=info["description"]) for name, info in DEFINITIONS.items()
|
71 |
+
]
|
72 |
+
|
73 |
+
def _info(self):
|
74 |
+
name = self.config.name
|
75 |
+
info = DEFINITIONS[name]
|
76 |
+
if info["class_name"] in CLASS_MAPPING:
|
77 |
+
self.child = CLASS_MAPPING[info["class_name"]](info)
|
78 |
+
else:
|
79 |
+
raise RuntimeError(f"Unknown python class for dataset configuration {name}")
|
80 |
+
ret = self.child._info()
|
81 |
+
return ret
|
82 |
+
|
83 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
84 |
+
return self.child._split_generators(dl_manager=dl_manager)
|
85 |
+
|
86 |
+
def _generate_examples(self, split_name, file_paths):
|
87 |
+
return self.child._generate_examples(split_name, file_paths)
|
common.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
|
3 |
+
import datasets
|
4 |
+
|
5 |
+
|
6 |
+
# Citation, taken from https://github.com/microsoft/CodeXGLUE
|
7 |
+
_DEFAULT_CITATION = """@article{CodeXGLUE,
|
8 |
+
title={CodeXGLUE: A Benchmark Dataset and Open Challenge for Code Intelligence},
|
9 |
+
year={2020},}"""
|
10 |
+
|
11 |
+
|
12 |
+
class Child:
|
13 |
+
_DESCRIPTION = None
|
14 |
+
_FEATURES = None
|
15 |
+
_CITATION = None
|
16 |
+
SPLITS = {"train": datasets.Split.TRAIN}
|
17 |
+
_SUPERVISED_KEYS = None
|
18 |
+
|
19 |
+
def __init__(self, info):
|
20 |
+
self.info = info
|
21 |
+
|
22 |
+
def homepage(self):
|
23 |
+
return self.info["project_url"]
|
24 |
+
|
25 |
+
def _info(self):
|
26 |
+
# This is the description that will appear on the datasets page.
|
27 |
+
return datasets.DatasetInfo(
|
28 |
+
description=self.info["description"] + "\n\n" + self._DESCRIPTION,
|
29 |
+
features=datasets.Features(self._FEATURES),
|
30 |
+
homepage=self.homepage(),
|
31 |
+
citation=self._CITATION or _DEFAULT_CITATION,
|
32 |
+
supervised_keys=self._SUPERVISED_KEYS,
|
33 |
+
)
|
34 |
+
|
35 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
36 |
+
SPLITS = self.SPLITS
|
37 |
+
_URL = self.info["raw_url"]
|
38 |
+
urls_to_download = {}
|
39 |
+
for split in SPLITS:
|
40 |
+
if split not in urls_to_download:
|
41 |
+
urls_to_download[split] = {}
|
42 |
+
|
43 |
+
for key, url in self.generate_urls(split):
|
44 |
+
if not url.startswith("http"):
|
45 |
+
url = _URL + "/" + url
|
46 |
+
urls_to_download[split][key] = url
|
47 |
+
|
48 |
+
downloaded_files = {}
|
49 |
+
for k, v in urls_to_download.items():
|
50 |
+
downloaded_files[k] = dl_manager.download_and_extract(v)
|
51 |
+
|
52 |
+
return [
|
53 |
+
datasets.SplitGenerator(
|
54 |
+
name=SPLITS[k],
|
55 |
+
gen_kwargs={"split_name": k, "file_paths": downloaded_files[k]},
|
56 |
+
)
|
57 |
+
for k in SPLITS
|
58 |
+
]
|
59 |
+
|
60 |
+
def check_empty(self, entries):
|
61 |
+
all_empty = all([v == "" for v in entries.values()])
|
62 |
+
all_non_empty = all([v != "" for v in entries.values()])
|
63 |
+
|
64 |
+
if not all_non_empty and not all_empty:
|
65 |
+
raise RuntimeError("Parallel data files should have the same number of lines.")
|
66 |
+
|
67 |
+
return all_empty
|
68 |
+
|
69 |
+
|
70 |
+
class TrainValidTestChild(Child):
|
71 |
+
SPLITS = {
|
72 |
+
"train": datasets.Split.TRAIN,
|
73 |
+
"valid": datasets.Split.VALIDATION,
|
74 |
+
"test": datasets.Split.TEST,
|
75 |
+
}
|
dataset_infos.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"default": {"description": "CodeXGLUE Clone-detection-POJ-104 dataset, available at https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/Clone-detection-POJ-104\n\nGiven a code and a collection of candidates as the input, the task is to return Top K codes with the same semantic. Models are evaluated by MAP score.\nWe use POJ-104 dataset on this task.", "citation": "@inproceedings{mou2016convolutional,\ntitle={Convolutional neural networks over tree structures for programming language processing},\nauthor={Mou, Lili and Li, Ge and Zhang, Lu and Wang, Tao and Jin, Zhi},\nbooktitle={Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence},\npages={1287--1293},\nyear={2016}\n}", "homepage": "https://github.com/madlag/CodeXGLUE/tree/main/Code-Code/Clone-detection-POJ-104", "license": "", "features": {"id": {"dtype": "int32", "id": null, "_type": "Value"}, "code": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "label", "output": ""}, "task_templates": null, "builder_name": "code_x_glue_cc_clone_detection_poj104", "config_name": "default", "version": {"version_str": "0.0.0", "description": null, "major": 0, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 18878686, "num_examples": 32000, "dataset_name": "code_x_glue_cc_clone_detection_poj104"}, "validation": {"name": "validation", "num_bytes": 5765303, "num_examples": 8000, "dataset_name": "code_x_glue_cc_clone_detection_poj104"}, "test": {"name": "test", "num_bytes": 6852864, "num_examples": 12000, "dataset_name": "code_x_glue_cc_clone_detection_poj104"}}, "download_checksums": {"https://raw.githubusercontent.com/madlag/CodeXGLUE/main/Code-Code/Clone-detection-POJ-104/dataset/programs.tar.gz": {"num_bytes": 8658581, "checksum": "c0b8ef3ee9c9159c882dc9337cb46da0e612a28e24852a83f8a1cd68c838f390"}}, "download_size": 8658581, "post_processing_size": null, "dataset_size": 31496853, "size_in_bytes": 40155434}}
|
dummy/default/0.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:829541e228b4c3cc9661425a32df14141be42f3cd2e794757fbaa5eefdcf609d
|
3 |
+
size 2918
|
generated_definitions.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
DEFINITIONS = {
|
2 |
+
"default": {
|
3 |
+
"class_name": "CodeXGlueCcCloneDetectionPoj104",
|
4 |
+
"dataset_type": "Code-Code",
|
5 |
+
"description": "CodeXGLUE Clone-detection-POJ-104 dataset, available at https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/Clone-detection-POJ-104",
|
6 |
+
"dir_name": "Clone-detection-POJ-104",
|
7 |
+
"name": "default",
|
8 |
+
"project_url": "https://github.com/madlag/CodeXGLUE/tree/main/Code-Code/Clone-detection-POJ-104",
|
9 |
+
"raw_url": "https://raw.githubusercontent.com/madlag/CodeXGLUE/main/Code-Code/Clone-detection-POJ-104/dataset",
|
10 |
+
"sizes": {"test": 12000, "train": 32000, "validation": 8000},
|
11 |
+
}
|
12 |
+
}
|