Datasets:
Tasks:
Translation
Modalities:
Text
Formats:
parquet
Languages:
code
Size:
10K - 100K
ArXiv:
Tags:
code-to-code
License:
File size: 6,524 Bytes
1ac0205 a9a96f4 1ac0205 a9a96f4 1ac0205 cfa8034 91209be 80eee47 91209be 15a1403 d5478a4 15a1403 d5478a4 15a1403 432d948 d5478a4 432d948 d5478a4 1ac0205 fdeb807 1ac0205 fdeb807 1ac0205 fdeb807 1ac0205 91209be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
---
annotations_creators:
- expert-generated
language_creators:
- found
language:
- code
license:
- c-uda
multilinguality:
- other-programming-languages
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- translation
task_ids: []
pretty_name: CodeXGlueCcCodeToCodeTrans
tags:
- code-to-code
dataset_info:
features:
- name: id
dtype: int32
- name: java
dtype: string
- name: cs
dtype: string
splits:
- name: train
num_bytes: 4372641
num_examples: 10300
- name: validation
num_bytes: 226407
num_examples: 500
- name: test
num_bytes: 418587
num_examples: 1000
download_size: 2064764
dataset_size: 5017635
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
---
# Dataset Card for "code_x_glue_cc_code_to_code_trans"
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits-sample-size)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/code-to-code-trans
- **Paper:** https://arxiv.org/abs/2102.04664
### Dataset Summary
CodeXGLUE code-to-code-trans dataset, available at https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/code-to-code-trans
The dataset is collected from several public repos, including Lucene(http://lucene.apache.org/), POI(http://poi.apache.org/), JGit(https://github.com/eclipse/jgit/) and Antlr(https://github.com/antlr/).
We collect both the Java and C# versions of the codes and find the parallel functions. After removing duplicates and functions with the empty body, we split the whole dataset into training, validation and test sets.
### Supported Tasks and Leaderboards
- `machine-translation`: The dataset can be used to train a model for translating code in Java to C# and vice versa.
### Languages
- Java **programming** language
- C# **programming** language
## Dataset Structure
### Data Instances
An example of 'validation' looks as follows.
```
{
"cs": "public DVRecord(RecordInputStream in1){_option_flags = in1.ReadInt();_promptTitle = ReadUnicodeString(in1);_errorTitle = ReadUnicodeString(in1);_promptText = ReadUnicodeString(in1);_errorText = ReadUnicodeString(in1);int field_size_first_formula = in1.ReadUShort();_not_used_1 = in1.ReadShort();_formula1 = NPOI.SS.Formula.Formula.Read(field_size_first_formula, in1);int field_size_sec_formula = in1.ReadUShort();_not_used_2 = in1.ReadShort();_formula2 = NPOI.SS.Formula.Formula.Read(field_size_sec_formula, in1);_regions = new CellRangeAddressList(in1);}\n",
"id": 0,
"java": "public DVRecord(RecordInputStream in) {_option_flags = in.readInt();_promptTitle = readUnicodeString(in);_errorTitle = readUnicodeString(in);_promptText = readUnicodeString(in);_errorText = readUnicodeString(in);int field_size_first_formula = in.readUShort();_not_used_1 = in.readShort();_formula1 = Formula.read(field_size_first_formula, in);int field_size_sec_formula = in.readUShort();_not_used_2 = in.readShort();_formula2 = Formula.read(field_size_sec_formula, in);_regions = new CellRangeAddressList(in);}\n"
}
```
### Data Fields
In the following each data field in go is explained for each config. The data fields are the same among all splits.
#### default
|field name| type | description |
|----------|------|-----------------------------|
|id |int32 | Index of the sample |
|java |string| The java version of the code|
|cs |string| The C# version of the code |
### Data Splits
| name |train|validation|test|
|-------|----:|---------:|---:|
|default|10300| 500|1000|
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
https://github.com/microsoft, https://github.com/madlag
### Licensing Information
Computational Use of Data Agreement (C-UDA) License.
### Citation Information
```
@article{DBLP:journals/corr/abs-2102-04664,
author = {Shuai Lu and
Daya Guo and
Shuo Ren and
Junjie Huang and
Alexey Svyatkovskiy and
Ambrosio Blanco and
Colin B. Clement and
Dawn Drain and
Daxin Jiang and
Duyu Tang and
Ge Li and
Lidong Zhou and
Linjun Shou and
Long Zhou and
Michele Tufano and
Ming Gong and
Ming Zhou and
Nan Duan and
Neel Sundaresan and
Shao Kun Deng and
Shengyu Fu and
Shujie Liu},
title = {CodeXGLUE: {A} Machine Learning Benchmark Dataset for Code Understanding
and Generation},
journal = {CoRR},
volume = {abs/2102.04664},
year = {2021}
}
```
### Contributions
Thanks to @madlag (and partly also @ncoop57) for adding this dataset. |