Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
multi-class-classification
Languages:
code
Size:
10K - 100K
License:
Delete loading script
Browse files
code_x_glue_cc_defect_detection.py
DELETED
@@ -1,78 +0,0 @@
|
|
1 |
-
from typing import List
|
2 |
-
|
3 |
-
import datasets
|
4 |
-
|
5 |
-
from .common import TrainValidTestChild
|
6 |
-
from .generated_definitions import DEFINITIONS
|
7 |
-
|
8 |
-
|
9 |
-
_DESCRIPTION = """Given a source code, the task is to identify whether it is an insecure code that may attack software systems, such as resource leaks, use-after-free vulnerabilities and DoS attack. We treat the task as binary classification (0/1), where 1 stands for insecure code and 0 for secure code.
|
10 |
-
The dataset we use comes from the paper Devign: Effective Vulnerability Identification by Learning Comprehensive Program Semantics via Graph Neural Networks. We combine all projects and split 80%/10%/10% for training/dev/test."""
|
11 |
-
_CITATION = """@inproceedings{zhou2019devign,
|
12 |
-
title={Devign: Effective vulnerability identification by learning comprehensive program semantics via graph neural networks},
|
13 |
-
author={Zhou, Yaqin and Liu, Shangqing and Siow, Jingkai and Du, Xiaoning and Liu, Yang},
|
14 |
-
booktitle={Advances in Neural Information Processing Systems},
|
15 |
-
pages={10197--10207}, year={2019}"""
|
16 |
-
|
17 |
-
|
18 |
-
class CodeXGlueCcDefectDetectionImpl(TrainValidTestChild):
|
19 |
-
_DESCRIPTION = _DESCRIPTION
|
20 |
-
_CITATION = _CITATION
|
21 |
-
|
22 |
-
_FEATURES = {
|
23 |
-
"id": datasets.Value("int32"), # Index of the sample
|
24 |
-
"func": datasets.Value("string"), # The source code
|
25 |
-
"target": datasets.Value("bool"), # 0 or 1 (vulnerability or not)
|
26 |
-
"project": datasets.Value("string"), # Original project that contains this code
|
27 |
-
"commit_id": datasets.Value("string"), # Commit identifier in the original project
|
28 |
-
}
|
29 |
-
_SUPERVISED_KEYS = ["target"]
|
30 |
-
|
31 |
-
def generate_urls(self, split_name):
|
32 |
-
yield "index", f"{split_name}.txt"
|
33 |
-
yield "data", "function.json"
|
34 |
-
|
35 |
-
def _generate_examples(self, split_name, file_paths):
|
36 |
-
import json
|
37 |
-
|
38 |
-
js_all = json.load(open(file_paths["data"], encoding="utf-8"))
|
39 |
-
|
40 |
-
index = set()
|
41 |
-
with open(file_paths["index"], encoding="utf-8") as f:
|
42 |
-
for line in f:
|
43 |
-
line = line.strip()
|
44 |
-
index.add(int(line))
|
45 |
-
|
46 |
-
for idx, js in enumerate(js_all):
|
47 |
-
if idx in index:
|
48 |
-
js["id"] = idx
|
49 |
-
js["target"] = int(js["target"]) == 1
|
50 |
-
yield idx, js
|
51 |
-
|
52 |
-
|
53 |
-
CLASS_MAPPING = {
|
54 |
-
"CodeXGlueCcDefectDetection": CodeXGlueCcDefectDetectionImpl,
|
55 |
-
}
|
56 |
-
|
57 |
-
|
58 |
-
class CodeXGlueCcDefectDetection(datasets.GeneratorBasedBuilder):
|
59 |
-
BUILDER_CONFIG_CLASS = datasets.BuilderConfig
|
60 |
-
BUILDER_CONFIGS = [
|
61 |
-
datasets.BuilderConfig(name=name, description=info["description"]) for name, info in DEFINITIONS.items()
|
62 |
-
]
|
63 |
-
|
64 |
-
def _info(self):
|
65 |
-
name = self.config.name
|
66 |
-
info = DEFINITIONS[name]
|
67 |
-
if info["class_name"] in CLASS_MAPPING:
|
68 |
-
self.child = CLASS_MAPPING[info["class_name"]](info)
|
69 |
-
else:
|
70 |
-
raise RuntimeError(f"Unknown python class for dataset configuration {name}")
|
71 |
-
ret = self.child._info()
|
72 |
-
return ret
|
73 |
-
|
74 |
-
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
75 |
-
return self.child._split_generators(dl_manager=dl_manager)
|
76 |
-
|
77 |
-
def _generate_examples(self, split_name, file_paths):
|
78 |
-
return self.child._generate_examples(split_name, file_paths)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|