Datasets:
Tasks:
Text Classification
Sub-tasks:
text-scoring
Languages:
English
Size:
1M<n<10M
Tags:
toxicity-prediction
License:
# coding=utf-8 | |
# Copyright 2021 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Jigsaw Unintended Bias in Toxicity Classification dataset""" | |
import os | |
import pandas as pd | |
import datasets | |
_DESCRIPTION = """\ | |
A collection of comments from the defunct Civil Comments platform that have been annotated for their toxicity. | |
""" | |
_HOMEPAGE = "https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification/" | |
_LICENSE = "CC0 (both the dataset and underlying text)" | |
class JigsawUnintendedBias(datasets.GeneratorBasedBuilder): | |
"""A collection of comments from the defunct Civil Comments platform that have been annotated for their toxicity.""" | |
VERSION = datasets.Version("1.1.0") | |
def manual_download_instructions(self): | |
return """\ | |
To use jigsaw_unintended_bias you have to download it manually from Kaggle: https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification/data | |
You can manually download the data from it's homepage or use the Kaggle CLI tool (follow the instructions here: https://www.kaggle.com/docs/api) | |
Please extract all files in one folder and then load the dataset with: | |
`datasets.load_dataset('jigsaw_unintended_bias', data_dir='/path/to/extracted/data/')`""" | |
def _info(self): | |
return datasets.DatasetInfo( | |
# This is the description that will appear on the datasets page. | |
description=_DESCRIPTION, | |
# This defines the different columns of the dataset and their types | |
features=datasets.Features( | |
{ | |
"target": datasets.Value("float32"), | |
"comment_text": datasets.Value("string"), | |
"severe_toxicity": datasets.Value("float32"), | |
"obscene": datasets.Value("float32"), | |
"identity_attack": datasets.Value("float32"), | |
"insult": datasets.Value("float32"), | |
"threat": datasets.Value("float32"), | |
"asian": datasets.Value("float32"), | |
"atheist": datasets.Value("float32"), | |
"bisexual": datasets.Value("float32"), | |
"black": datasets.Value("float32"), | |
"buddhist": datasets.Value("float32"), | |
"christian": datasets.Value("float32"), | |
"female": datasets.Value("float32"), | |
"heterosexual": datasets.Value("float32"), | |
"hindu": datasets.Value("float32"), | |
"homosexual_gay_or_lesbian": datasets.Value("float32"), | |
"intellectual_or_learning_disability": datasets.Value("float32"), | |
"jewish": datasets.Value("float32"), | |
"latino": datasets.Value("float32"), | |
"male": datasets.Value("float32"), | |
"muslim": datasets.Value("float32"), | |
"other_disability": datasets.Value("float32"), | |
"other_gender": datasets.Value("float32"), | |
"other_race_or_ethnicity": datasets.Value("float32"), | |
"other_religion": datasets.Value("float32"), | |
"other_sexual_orientation": datasets.Value("float32"), | |
"physical_disability": datasets.Value("float32"), | |
"psychiatric_or_mental_illness": datasets.Value("float32"), | |
"transgender": datasets.Value("float32"), | |
"white": datasets.Value("float32"), | |
"created_date": datasets.Value("string"), | |
"publication_id": datasets.Value("int32"), | |
"parent_id": datasets.Value("float"), | |
"article_id": datasets.Value("int32"), | |
"rating": datasets.ClassLabel(names=["rejected", "approved"]), | |
"funny": datasets.Value("int32"), | |
"wow": datasets.Value("int32"), | |
"sad": datasets.Value("int32"), | |
"likes": datasets.Value("int32"), | |
"disagree": datasets.Value("int32"), | |
"sexual_explicit": datasets.Value("float"), | |
"identity_annotator_count": datasets.Value("int32"), | |
"toxicity_annotator_count": datasets.Value("int32"), | |
} | |
), | |
# If there's a common (input, target) tuple from the features, | |
# specify them here. They'll be used if as_supervised=True in | |
# builder.as_dataset. | |
supervised_keys=None, | |
# Homepage of the dataset for documentation | |
homepage=_HOMEPAGE, | |
# License for the dataset if available | |
license=_LICENSE, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
# This method is tasked with downloading/extracting the data and defining the splits depending on the configuration | |
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name | |
data_dir = os.path.abspath(os.path.expanduser(dl_manager.manual_dir)) | |
if not os.path.exists(data_dir): | |
raise FileNotFoundError( | |
"{} does not exist. Make sure you insert a manual dir via `datasets.load_dataset('jigsaw_unintended_bias', data_dir=...)`. Manual download instructions: {}".format( | |
data_dir, self.manual_download_instructions | |
) | |
) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={"path": os.path.join(data_dir, "train.csv"), "split": "train"}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split("test_private_leaderboard"), | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={"path": os.path.join(data_dir, "test_private_expanded.csv"), "split": "test"}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split("test_public_leaderboard"), | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={"path": os.path.join(data_dir, "test_public_expanded.csv"), "split": "test"}, | |
), | |
] | |
def _generate_examples(self, split: str = "train", path: str = None): | |
"""Yields examples.""" | |
# This method will receive as arguments the `gen_kwargs` defined in the previous `_split_generators` method. | |
# It is in charge of opening the given file and yielding (key, example) tuples from the dataset | |
# The key is not important, it's more here for legacy reason (legacy from tfds) | |
# Avoid loading everything into memory at once | |
all_data = pd.read_csv(path, chunksize=50000) | |
for data in all_data: | |
if split != "train": | |
data = data.rename(columns={"toxicity": "target"}) | |
for _, row in data.iterrows(): | |
example = row.to_dict() | |
ex_id = example.pop("id") | |
yield (ex_id, example) | |