|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Wiki40B: A clean Wikipedia dataset for 40+ languages.""" |
|
|
|
|
|
import datasets |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_CITATION = """ |
|
""" |
|
|
|
_DESCRIPTION = """ |
|
Clean-up text for 40+ Wikipedia languages editions of pages |
|
correspond to entities. The datasets have train/dev/test splits per language. |
|
The dataset is cleaned up by page filtering to remove disambiguation pages, |
|
redirect pages, deleted pages, and non-entity pages. Each example contains the |
|
wikidata id of the entity, and the full Wikipedia article after page processing |
|
that removes non-content sections and structured objects. |
|
""" |
|
|
|
_LICENSE = """ |
|
This work is licensed under the Creative Commons Attribution-ShareAlike |
|
3.0 Unported License. To view a copy of this license, visit |
|
http://creativecommons.org/licenses/by-sa/3.0/ or send a letter to |
|
Creative Commons, PO Box 1866, Mountain View, CA 94042, USA. |
|
""" |
|
|
|
_URL = "https://research.google/pubs/pub49029/" |
|
|
|
_DATA_DIRECTORY = "gs://tfds-data/downloads/wiki40b/tfrecord_prod" |
|
|
|
WIKIPEDIA_LANGUAGES = [ |
|
"en", |
|
"ar", |
|
"zh-cn", |
|
"zh-tw", |
|
"nl", |
|
"fr", |
|
"de", |
|
"it", |
|
"ja", |
|
"ko", |
|
"pl", |
|
"pt", |
|
"ru", |
|
"es", |
|
"th", |
|
"tr", |
|
"bg", |
|
"ca", |
|
"cs", |
|
"da", |
|
"el", |
|
"et", |
|
"fa", |
|
"fi", |
|
"he", |
|
"hi", |
|
"hr", |
|
"hu", |
|
"id", |
|
"lt", |
|
"lv", |
|
"ms", |
|
"no", |
|
"ro", |
|
"sk", |
|
"sl", |
|
"sr", |
|
"sv", |
|
"tl", |
|
"uk", |
|
"vi", |
|
] |
|
|
|
|
|
class Wiki40bConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for Wiki40B.""" |
|
|
|
def __init__(self, language=None, **kwargs): |
|
"""BuilderConfig for Wiki40B. |
|
|
|
Args: |
|
language: string, the language code for the Wiki40B dataset to use. |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(Wiki40bConfig, self).__init__( |
|
name=str(language), description=f"Wiki40B dataset for {language}.", **kwargs |
|
) |
|
self.language = language |
|
|
|
|
|
_VERSION = datasets.Version("1.1.0") |
|
|
|
|
|
class Wiki40b(datasets.BeamBasedBuilder): |
|
"""Wiki40B: A Clean Wikipedia Dataset for Mutlilingual Language Modeling.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
Wiki40bConfig( |
|
version=_VERSION, |
|
language=lang, |
|
) |
|
for lang in WIKIPEDIA_LANGUAGES |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"wikidata_id": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"version_id": datasets.Value("string"), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage=_URL, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
|
|
lang = self.config.language |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepaths": f"{_DATA_DIRECTORY}/train/{lang}_examples-*"}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"filepaths": f"{_DATA_DIRECTORY}/dev/{lang}_examples-*"}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"filepaths": f"{_DATA_DIRECTORY}/test/{lang}_examples-*"}, |
|
), |
|
] |
|
|
|
def _build_pcollection(self, pipeline, filepaths): |
|
"""Build PCollection of examples.""" |
|
import apache_beam as beam |
|
import tensorflow as tf |
|
|
|
logger.info("generating examples from = %s", filepaths) |
|
|
|
def _extract_content(example): |
|
"""Extracts content from a TFExample.""" |
|
wikidata_id = example.features.feature["wikidata_id"].bytes_list.value[0].decode("utf-8") |
|
text = example.features.feature["text"].bytes_list.value[0].decode("utf-8") |
|
version_id = example.features.feature["version_id"].bytes_list.value[0].decode("utf-8") |
|
|
|
|
|
yield wikidata_id + text, { |
|
"wikidata_id": wikidata_id, |
|
"text": text, |
|
"version_id": version_id, |
|
} |
|
|
|
return ( |
|
pipeline |
|
| beam.io.ReadFromTFRecord(filepaths, coder=beam.coders.ProtoCoder(tf.train.Example)) |
|
| beam.FlatMap(_extract_content) |
|
) |
|
|