clefourrier HF staff commited on
Commit
adda132
1 Parent(s): 0229102

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +77 -17
README.md CHANGED
@@ -1,20 +1,80 @@
1
  ---
2
- dataset_info:
3
- features:
4
- - name: edge_index
5
- sequence:
6
- sequence: int64
7
- - name: y
8
- sequence: int64
9
- - name: num_nodes
10
- dtype: int64
11
- splits:
12
- - name: full
13
- num_bytes: 20413824
14
- num_examples: 9629
15
- download_size: 1729018
16
- dataset_size: 20413824
17
  ---
18
- # Dataset Card for "deezer_ego_nets_small"
19
 
20
- [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ licence: unknown
3
+ license: gpl-3.0
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
 
5
 
6
+ # Dataset Card for Deezer ego nets
7
+
8
+ ## Table of Contents
9
+ - [Table of Contents](#table-of-contents)
10
+ - [Dataset Description](#dataset-description)
11
+ - [Dataset Summary](#dataset-summary)
12
+ - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
13
+ - [External Use](#external-use)
14
+ - [PyGeometric](#pygeometric)
15
+ - [Dataset Structure](#dataset-structure)
16
+ - [Data Properties](#data-properties)
17
+ - [Data Fields](#data-fields)
18
+ - [Data Splits](#data-splits)
19
+ - [Additional Information](#additional-information)
20
+ - [Licensing Information](#licensing-information)
21
+ - [Citation Information](#citation-information)
22
+ - [Contributions](#contributions)
23
+
24
+ ## Dataset Description
25
+ - **[Homepage](https://snap.stanford.edu/data/deezer_ego_nets.html)**
26
+ - **Paper:**: (see citation)
27
+
28
+
29
+ ### Dataset Summary
30
+ The Deezer ego nets dataset contains ego-nets of Eastern European users collected from the music streaming service Deezer in February 2020. Nodes are users and edges are mutual follower relationships.
31
+
32
+ ### Supported Tasks and Leaderboards
33
+ The related task is the binary classification to predict gender for the ego node in the graph.
34
+
35
+ ## External Use
36
+ ### PyGeometric
37
+ To load in PyGeometric, do the following:
38
+
39
+ ```python
40
+ from datasets import load_dataset
41
+
42
+ from torch_geometric.data import Data
43
+ from torch_geometric.loader import DataLoader
44
+
45
+ dataset_hf = load_dataset("graphs-datasets/<mydataset>")
46
+ # For the train set (replace by valid or test as needed)
47
+ dataset_pg_list = [Data(graph) for graph in dataset_hf["train"]]
48
+ dataset_pg = DataLoader(dataset_pg_list)
49
+ ```
50
+
51
+ ## Dataset Structure
52
+ ### Data Fields
53
+
54
+ Each row of a given file is a graph, with:
55
+ - `edge_index` (list: 2 x #edges): pairs of nodes constituting edges
56
+ - `y` (list: #labels): contains the number of labels available to predict
57
+ - `num_nodes` (int): number of nodes of the graph
58
+
59
+ ### Data Splits
60
+
61
+ This data is not split, and should be used with cross validation. It comes from the PyGeometric version of the dataset.
62
+
63
+ ## Additional Information
64
+
65
+ ### Licensing Information
66
+ The dataset has been released under GPL-3.0 license.
67
+
68
+ ### Citation Information
69
+ See also [github](https://github.com/benedekrozemberczki/karateclub).
70
+
71
+ ```
72
+ @inproceedings{karateclub,
73
+ title = {{Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs}},
74
+ author = {Benedek Rozemberczki and Oliver Kiss and Rik Sarkar},
75
+ year = {2020},
76
+ pages = {3125–3132},
77
+ booktitle = {Proceedings of the 29th ACM International Conference on Information and Knowledge Management (CIKM '20)},
78
+ organization = {ACM},
79
+ }
80
+ ```