mt_geneval / README.md
gsarti's picture
Added dataset card
7a379d5
---
annotations_creators:
- expert-generated
language:
- en
- it
- fr
- ar
- de
- hi
- pt
- ru
- es
language_creators:
- expert-generated
license:
- cc-by-sa-3.0
multilinguality:
- translation
pretty_name: mt_geneval
size_categories:
- 1K<n<10K
source_datasets:
- original
tags:
- gender
- constrained mt
task_categories:
- translation
task_ids: []
---
# Dataset Card for MT-GenEval
## Table of Contents
- [Dataset Card for MT-GenEval](#dataset-card-for-mt-geneval)
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Machine Translation](#machine-translation)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Repository:** [Github](https://github.com/amazon-science/machine-translation-gender-eval)
- **Paper:** [EMNLP 2022](https://arxiv.org/abs/2211.01355)
- **Point of Contact:** [Anna Currey](mailto:ancurrey@amazon.com)
### Dataset Summary
The MT-GenEval benchmark evaluates gender translation accuracy on English -> {Arabic, French, German, Hindi, Italian, Portuguese, Russian, Spanish}. The dataset contains individual sentences with annotations on the gendered target words, and contrastive original-invertend translations with additional preceding context.
**Disclaimer**: *The MT-GenEval benchmark was released in the EMNLP 2022 paper [MT-GenEval: A Counterfactual and Contextual Dataset for Evaluating Gender Accuracy in Machine Translation](https://arxiv.org/abs/2211.01355) by Anna Currey, Maria Nadejde, Raghavendra Pappagari, Mia Mayer, Stanislas Lauly, Xing Niu, Benjamin Hsu, and Georgiana Dinu and is hosted through Github by the [Amazon Science](https://github.com/amazon-science?type=source) organization. The dataset is licensed under a [Creative Commons Attribution-ShareAlike 3.0 Unported License](https://creativecommons.org/licenses/by-sa/3.0/).*
### Supported Tasks and Leaderboards
#### Machine Translation
Refer to the [original paper](https://arxiv.org/abs/2211.01355) for additional details on gender accuracy evaluation with MT-GenEval.
### Languages
The dataset contains source English sentences extracted from Wikipedia translated into the following languages: Arabic (`ar`), French (`fr`), German (`de`), Hindi (`hi`), Italian (`it`), Portuguese (`pt`), Russian (`ru`), and Spanish (`es`).
## Dataset Structure
### Data Instances
The dataset contains two configuration types, `sentences` and `context`, mirroring the original repository structure, with source and target language specified in the configuration name (e.g. `sentences_en_ar`, `context_en_it`) The `sentences` configurations contains masculine and feminine versions of individual sentences with gendered word annotations. Here is an example entry of the `sentences_en_it` split (all `sentences_en_XX` splits have the same structure):
```json
{
{
"orig_id": 0,
"source_feminine": "Pagratidis quickly recanted her confession, claiming she was psychologically pressured and beaten, and until the moment of her execution, she remained firm in her innocence.",
"reference_feminine": "Pagratidis subito ritrattò la sua confessione, affermando che era aveva subito pressioni psicologiche e era stata picchiata, e fino al momento della sua esecuzione, rimase ferma sulla sua innocenza.",
"source_masculine": "Pagratidis quickly recanted his confession, claiming he was psychologically pressured and beaten, and until the moment of his execution, he remained firm in his innocence.",
"reference_masculine": "Pagratidis subito ritrattò la sua confessione, affermando che era aveva subito pressioni psicologiche e era stato picchiato, e fino al momento della sua esecuzione, rimase fermo sulla sua innocenza.",
"source_feminine_annotated": "Pagratidis quickly recanted <F>her</F> confession, claiming <F>she</F> was psychologically pressured and beaten, and until the moment of <F>her</F> execution, <F>she</F> remained firm in <F>her</F> innocence.",
"reference_feminine_annotated": "Pagratidis subito ritrattò la sua confessione, affermando che era aveva subito pressioni psicologiche e era <F>stata picchiata</F>, e fino al momento della sua esecuzione, rimase <F>ferma</F> sulla sua innocenza.",
"source_masculine_annotated": "Pagratidis quickly recanted <M>his</M> confession, claiming <M>he</M> was psychologically pressured and beaten, and until the moment of <M>his</M> execution, <M>he</M> remained firm in <M>his</M> innocence.",
"reference_masculine_annotated": "Pagratidis subito ritrattò la sua confessione, affermando che era aveva subito pressioni psicologiche e era <M>stato picchiato</M>, e fino al momento della sua esecuzione, rimase <M>fermo</M> sulla sua innocenza.",
"source_feminine_keywords": "her;she;her;she;her",
"reference_feminine_keywords": "stata picchiata;ferma",
"source_masculine_keywords": "his;he;his;he;his",
"reference_masculine_keywords": "stato picchiato;fermo",
}
}
```
The `context` configuration contains instead different English sources related to stereotypical professional roles with additional preceding context and contrastive original-inverted translations. Here is an example entry of the `context_en_it` split (all `context_en_XX` splits have the same structure):
```json
{
"orig_id": 0,
"context": "Pierpont told of entering and holding up the bank and then fleeing to Fort Wayne, where the loot was divided between him and three others.",
"source": "However, Pierpont stated that Skeer was the planner of the robbery.",
"reference_original": "Comunque, Pierpont disse che Skeer era il pianificatore della rapina.",
"reference_flipped": "Comunque, Pierpont disse che Skeer era la pianificatrice della rapina."
}
```
### Data Splits
All `sentences_en_XX` configurations have 1200 examples in the `train` split and 300 in the `test` split. For the `context_en_XX` configurations, the number of example depends on the language pair:
| Configuration | # Train | # Test |
| :-----------: | :--------: | :-----: |
| `context_en_ar` | 792 | 1100 |
| `context_en_fr` | 477 | 1099 |
| `context_en_de` | 598 | 1100 |
| `context_en_hi` | 397 | 1098 |
| `context_en_it` | 465 | 1904 |
| `context_en_pt` | 574 | 1089 |
| `context_en_ru` | 583 | 1100 |
| `context_en_es` | 534 | 1096 |
### Dataset Creation
From the original paper:
>In developing MT-GenEval, our goal was to create a realistic, gender-balanced dataset that naturally incorporates a diverse range of gender phenomena. To this end, we extracted English source sentences from Wikipedia as the basis for our dataset. We automatically pre-selected relevant sentences using EN gender-referring words based on the list provided by [Zhao et al. (2018)](https://doi.org/10.18653/v1/N18-2003).
Please refer to the original article [MT-GenEval: A Counterfactual and Contextual Dataset for Evaluating Gender Accuracy in Machine Translation](https://arxiv.org/abs/2211.01355) for additional information on dataset creation.
## Additional Information
### Dataset Curators
The original authors of MT-GenEval are the curators of the original dataset. For problems or updates on this 🤗 Datasets version, please contact [gabriele.sarti996@gmail.com](mailto:gabriele.sarti996@gmail.com).
### Licensing Information
The dataset is licensed under the [Creative Commons Attribution-ShareAlike 3.0 International License](https://creativecommons.org/licenses/by-sa/3.0/).
### Citation Information
Please cite the authors if you use these corpora in your work.
```bibtex
@inproceedings{currey-etal-2022-mtgeneval,
title = "{MT-GenEval}: {A} Counterfactual and Contextual Dataset for Evaluating Gender Accuracy in Machine Translation",
author = "Currey, Anna and
Nadejde, Maria and
Pappagari, Raghavendra and
Mayer, Mia and
Lauly, Stanislas, and
Niu, Xing and
Hsu, Benjamin and
Dinu, Georgiana",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/2211.01355",
}
```