Datasets:
File size: 5,552 Bytes
89aadda 2d150b7 89aadda 2d150b7 89aadda 2d150b7 b5af247 89aadda b5af247 835c443 b5af247 0833a01 b5af247 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
---
dataset_info:
- config_name: en2de
features:
- name: path
dtype: string
- name: sentence
dtype: float64
- name: split
dtype: string
- name: lang
dtype: string
- name: task
dtype: string
- name: inst
dtype: string
- name: suffix
dtype: string
- name: st_system
dtype: string
- name: metric_score_xcomet-xl
dtype: float64
- name: metric_score_metricx-23-xl
dtype: float64
splits:
- name: test
num_bytes: 1150690
num_examples: 3500
- name: test_seamlv2
num_bytes: 161689
num_examples: 500
- name: test_seamlar
num_bytes: 161599
num_examples: 500
- name: test_seammid
num_bytes: 161887
num_examples: 500
- name: test_tfw2vlg
num_bytes: 162851
num_examples: 500
- name: test_tfmidmc
num_bytes: 173183
num_examples: 500
- name: test_tfsmlmc
num_bytes: 165835
num_examples: 500
- name: test_tfsmlcv
num_bytes: 163646
num_examples: 500
download_size: 569246
dataset_size: 2301380
- config_name: es2en
features:
- name: path
dtype: string
- name: sentence
dtype: float64
- name: split
dtype: string
- name: lang
dtype: string
- name: task
dtype: string
- name: inst
dtype: string
- name: suffix
dtype: string
- name: st_system
dtype: string
- name: metric_score_xcomet-xl
dtype: float64
- name: metric_score_metricx-23-xl
dtype: float64
splits:
- name: test
num_bytes: 1128742
num_examples: 3500
- name: test_whsplv3
num_bytes: 160913
num_examples: 500
- name: test_whsplv2
num_bytes: 159492
num_examples: 500
- name: test_whsplar
num_bytes: 157929
num_examples: 500
- name: test_whspmid
num_bytes: 158335
num_examples: 500
- name: test_whspsml
num_bytes: 158008
num_examples: 500
- name: test_whspbas
num_bytes: 163261
num_examples: 500
- name: test_whsptny
num_bytes: 170804
num_examples: 500
download_size: 547013
dataset_size: 2257484
configs:
- config_name: en2de
data_files:
- split: test
path: en2de/test-*
- split: test_seamlv2
path: en2de/test_seamlv2-*
- split: test_seamlar
path: en2de/test_seamlar-*
- split: test_seammid
path: en2de/test_seammid-*
- split: test_tfw2vlg
path: en2de/test_tfw2vlg-*
- split: test_tfmidmc
path: en2de/test_tfmidmc-*
- split: test_tfsmlmc
path: en2de/test_tfsmlmc-*
- split: test_tfsmlcv
path: en2de/test_tfsmlcv-*
- config_name: es2en
data_files:
- split: test
path: es2en/test-*
- split: test_whsplv3
path: es2en/test_whsplv3-*
- split: test_whsplv2
path: es2en/test_whsplv2-*
- split: test_whsplar
path: es2en/test_whsplar-*
- split: test_whspmid
path: es2en/test_whspmid-*
- split: test_whspsml
path: es2en/test_whspsml-*
- split: test_whspbas
path: es2en/test_whspbas-*
- split: test_whsptny
path: es2en/test_whsptny-*
license: mit
language:
- de
- es
- en
---
# [SpeechQE: Estimating the Quality of Direct Speech Translation](https://aclanthology.org/2024.emnlp-main.1218)
This is a benchmark and training corpus for the task of quality estimation for speech translation (SpeechQE).
We subsample about 80k segments from the training set and 500 from the dev and test of CoVoST2, then run seven different direct ST models to generate the ST hypotheses.
So,`test` split consists of 3500 instances(500*7). We also provide splits for each translation model.
*(We provide `test` split first, and the training corpus will be provided later. However, if you want those quickly, please do not hesitate to ping me (hjhan@umd.edu)!)
## E2E Model Trained with SpeechQE-CoVoST2
|Task | E2E Model | Trained Domain
|---|---|---|
|SpeechQE for English-to-German Speech Translation |[h-j-han/SpeechQE-TowerInstruct-7B-en2de](https://huggingface.co/h-j-han/SpeechQE-TowerInstruct-7B-en2de)| CoVoST2|
|SpeechQE for Spanish-to-English Speech Translation |[h-j-han/SpeechQE-TowerInstruct-7B-es2en](https://huggingface.co/h-j-han/SpeechQE-TowerInstruct-7B-es2en)|CoVoST2|
## Setup
We provide code in Github repo : https://github.com/h-j-han/SpeechQE
```bash
$ git clone https://github.com/h-j-han/SpeechQE.git
$ cd SpeechQE
```
```bash
$ conda create -n speechqe Python=3.11 pytorch=2.0.1 pytorch-cuda=11.7 torchvision torchaudio -c pytorch -c nvidia
$ conda activate speechqe
$ pip install -r requirements.txt
```
## Download Audio Data
Download the audio data from Common Voice. Here, we use mozilla-foundation/common_voice_4_0.
```
import datasets
cv4en = datasets.load_dataset(
"mozilla-foundation/common_voice_4_0", "es", cache_dir='path/to/cv4/download',
)
```
## Evaluation with SpeechQE-CoVoST2
We provide SpeechQE benchmark: [h-j-han/SpeechQE-CoVoST2](https://huggingface.co/datasets/h-j-han/SpeechQE-CoVoST2).
BASE_AUDIO_PATH is the path of downloaded Common Voice dataset.
```bash
$ python speechqe/score_speechqe.py \
--speechqe_model=h-j-han/SpeechQE-TowerInstruct-7B-es2en \
--dataset_name=h-j-han/SpeechQE-CoVoST2 \
--base_audio_path=$BASE_AUDIO_PATH \
--dataset_config_name=es2en \
--test_split_name=test \
```
## Reference
Please find details in [this EMNLP24 paper](https://aclanthology.org/2024.emnlp-main.1218) :
```
@misc{han2024speechqe,
title={SpeechQE: Estimating the Quality of Direct Speech Translation},
author={HyoJung Han and Kevin Duh and Marine Carpuat},
year={2024},
eprint={2410.21485},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|