--- dataset_info: - config_name: en2de features: - name: path dtype: string - name: sentence dtype: float64 - name: split dtype: string - name: lang dtype: string - name: task dtype: string - name: inst dtype: string - name: suffix dtype: string - name: st_system dtype: string - name: metric_score_xcomet-xl dtype: float64 - name: metric_score_metricx-23-xl dtype: float64 splits: - name: test num_bytes: 1150690 num_examples: 3500 - name: test_seamlv2 num_bytes: 161689 num_examples: 500 - name: test_seamlar num_bytes: 161599 num_examples: 500 - name: test_seammid num_bytes: 161887 num_examples: 500 - name: test_tfw2vlg num_bytes: 162851 num_examples: 500 - name: test_tfmidmc num_bytes: 173183 num_examples: 500 - name: test_tfsmlmc num_bytes: 165835 num_examples: 500 - name: test_tfsmlcv num_bytes: 163646 num_examples: 500 download_size: 569246 dataset_size: 2301380 - config_name: es2en features: - name: path dtype: string - name: sentence dtype: float64 - name: split dtype: string - name: lang dtype: string - name: task dtype: string - name: inst dtype: string - name: suffix dtype: string - name: st_system dtype: string - name: metric_score_xcomet-xl dtype: float64 - name: metric_score_metricx-23-xl dtype: float64 splits: - name: test num_bytes: 1128742 num_examples: 3500 - name: test_whsplv3 num_bytes: 160913 num_examples: 500 - name: test_whsplv2 num_bytes: 159492 num_examples: 500 - name: test_whsplar num_bytes: 157929 num_examples: 500 - name: test_whspmid num_bytes: 158335 num_examples: 500 - name: test_whspsml num_bytes: 158008 num_examples: 500 - name: test_whspbas num_bytes: 163261 num_examples: 500 - name: test_whsptny num_bytes: 170804 num_examples: 500 download_size: 547013 dataset_size: 2257484 configs: - config_name: en2de data_files: - split: test path: en2de/test-* - split: test_seamlv2 path: en2de/test_seamlv2-* - split: test_seamlar path: en2de/test_seamlar-* - split: test_seammid path: en2de/test_seammid-* - split: test_tfw2vlg path: en2de/test_tfw2vlg-* - split: test_tfmidmc path: en2de/test_tfmidmc-* - split: test_tfsmlmc path: en2de/test_tfsmlmc-* - split: test_tfsmlcv path: en2de/test_tfsmlcv-* - config_name: es2en data_files: - split: test path: es2en/test-* - split: test_whsplv3 path: es2en/test_whsplv3-* - split: test_whsplv2 path: es2en/test_whsplv2-* - split: test_whsplar path: es2en/test_whsplar-* - split: test_whspmid path: es2en/test_whspmid-* - split: test_whspsml path: es2en/test_whspsml-* - split: test_whspbas path: es2en/test_whspbas-* - split: test_whsptny path: es2en/test_whsptny-* license: mit language: - de - es - en --- # [SpeechQE: Estimating the Quality of Direct Speech Translation](https://aclanthology.org/2024.emnlp-main.1218) This is a benchmark and training corpus for the task of quality estimation for speech translation (SpeechQE). We subsample about 80k segments from the training set and 500 from the dev and test of CoVoST2, then run seven different direct ST models to generate the ST hypotheses. So,`test` split consists of 3500 instances(500*7). We also provide splits for each translation model. *(We provide `test` split first, and the training corpus will be provided later. However, if you want those quickly, please do not hesitate to ping me (hjhan@umd.edu)!) ## E2E Model Trained with SpeechQE-CoVoST2 |Task | E2E Model | Trained Domain |---|---|---| |SpeechQE for English-to-German Speech Translation |[h-j-han/SpeechQE-TowerInstruct-7B-en2de](https://huggingface.co/h-j-han/SpeechQE-TowerInstruct-7B-en2de)| CoVoST2| |SpeechQE for Spanish-to-English Speech Translation |[h-j-han/SpeechQE-TowerInstruct-7B-es2en](https://huggingface.co/h-j-han/SpeechQE-TowerInstruct-7B-es2en)|CoVoST2| ## Setup We provide code in Github repo : https://github.com/h-j-han/SpeechQE ```bash $ git clone https://github.com/h-j-han/SpeechQE.git $ cd SpeechQE ``` ```bash $ conda create -n speechqe Python=3.11 pytorch=2.0.1 pytorch-cuda=11.7 torchvision torchaudio -c pytorch -c nvidia $ conda activate speechqe $ pip install -r requirements.txt ``` ## Download Audio Data Download the audio data from Common Voice. Here, we use mozilla-foundation/common_voice_4_0. ``` import datasets cv4en = datasets.load_dataset( "mozilla-foundation/common_voice_4_0", "es", cache_dir='path/to/cv4/download', ) ``` ## Evaluation with SpeechQE-CoVoST2 We provide SpeechQE benchmark: [h-j-han/SpeechQE-CoVoST2](https://huggingface.co/datasets/h-j-han/SpeechQE-CoVoST2). BASE_AUDIO_PATH is the path of downloaded Common Voice dataset. ```bash $ python speechqe/score_speechqe.py \ --speechqe_model=h-j-han/SpeechQE-TowerInstruct-7B-es2en \ --dataset_name=h-j-han/SpeechQE-CoVoST2 \ --base_audio_path=$BASE_AUDIO_PATH \ --dataset_config_name=es2en \ --test_split_name=test \ ``` ## Reference Please find details in [this EMNLP24 paper](https://aclanthology.org/2024.emnlp-main.1218) : ``` @misc{han2024speechqe, title={SpeechQE: Estimating the Quality of Direct Speech Translation}, author={HyoJung Han and Kevin Duh and Marine Carpuat}, year={2024}, eprint={2410.21485}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```