Delete loading script
Browse files- arabic_speech_corpus.py +0 -145
arabic_speech_corpus.py
DELETED
@@ -1,145 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""Arabic Speech Corpus"""
|
18 |
-
|
19 |
-
|
20 |
-
import os
|
21 |
-
|
22 |
-
import datasets
|
23 |
-
from datasets.tasks import AutomaticSpeechRecognition
|
24 |
-
|
25 |
-
|
26 |
-
_CITATION = """\
|
27 |
-
@phdthesis{halabi2016modern,
|
28 |
-
title={Modern standard Arabic phonetics for speech synthesis},
|
29 |
-
author={Halabi, Nawar},
|
30 |
-
year={2016},
|
31 |
-
school={University of Southampton}
|
32 |
-
}
|
33 |
-
"""
|
34 |
-
|
35 |
-
_DESCRIPTION = """\
|
36 |
-
This Speech corpus has been developed as part of PhD work carried out by Nawar Halabi at the University of Southampton.
|
37 |
-
The corpus was recorded in south Levantine Arabic
|
38 |
-
(Damascian accent) using a professional studio. Synthesized speech as an output using this corpus has produced a high quality, natural voice.
|
39 |
-
Note that in order to limit the required storage for preparing this dataset, the audio
|
40 |
-
is stored in the .flac format and is not converted to a float32 array. To convert, the audio
|
41 |
-
file to a float32 array, please make use of the `.map()` function as follows:
|
42 |
-
|
43 |
-
|
44 |
-
```python
|
45 |
-
import soundfile as sf
|
46 |
-
|
47 |
-
def map_to_array(batch):
|
48 |
-
speech_array, _ = sf.read(batch["file"])
|
49 |
-
batch["speech"] = speech_array
|
50 |
-
return batch
|
51 |
-
|
52 |
-
dataset = dataset.map(map_to_array, remove_columns=["file"])
|
53 |
-
```
|
54 |
-
"""
|
55 |
-
|
56 |
-
_URL = "http://en.arabicspeechcorpus.com/arabic-speech-corpus.zip"
|
57 |
-
|
58 |
-
|
59 |
-
class ArabicSpeechCorpusConfig(datasets.BuilderConfig):
|
60 |
-
"""BuilderConfig for ArabicSpeechCorpu."""
|
61 |
-
|
62 |
-
def __init__(self, **kwargs):
|
63 |
-
"""
|
64 |
-
Args:
|
65 |
-
data_dir: `string`, the path to the folder containing the files in the
|
66 |
-
downloaded .tar
|
67 |
-
citation: `string`, citation for the data set
|
68 |
-
url: `string`, url for information about the data set
|
69 |
-
**kwargs: keyword arguments forwarded to super.
|
70 |
-
"""
|
71 |
-
super(ArabicSpeechCorpusConfig, self).__init__(version=datasets.Version("2.1.0", ""), **kwargs)
|
72 |
-
|
73 |
-
|
74 |
-
class ArabicSpeechCorpus(datasets.GeneratorBasedBuilder):
|
75 |
-
"""ArabicSpeechCorpus dataset."""
|
76 |
-
|
77 |
-
BUILDER_CONFIGS = [
|
78 |
-
ArabicSpeechCorpusConfig(name="clean", description="'Clean' speech."),
|
79 |
-
]
|
80 |
-
|
81 |
-
def _info(self):
|
82 |
-
return datasets.DatasetInfo(
|
83 |
-
description=_DESCRIPTION,
|
84 |
-
features=datasets.Features(
|
85 |
-
{
|
86 |
-
"file": datasets.Value("string"),
|
87 |
-
"text": datasets.Value("string"),
|
88 |
-
"audio": datasets.Audio(sampling_rate=48_000),
|
89 |
-
"phonetic": datasets.Value("string"),
|
90 |
-
"orthographic": datasets.Value("string"),
|
91 |
-
}
|
92 |
-
),
|
93 |
-
supervised_keys=("file", "text"),
|
94 |
-
homepage=_URL,
|
95 |
-
citation=_CITATION,
|
96 |
-
task_templates=[AutomaticSpeechRecognition(audio_column="audio", transcription_column="text")],
|
97 |
-
)
|
98 |
-
|
99 |
-
def _split_generators(self, dl_manager):
|
100 |
-
archive_path = dl_manager.download_and_extract(_URL)
|
101 |
-
archive_path = os.path.join(archive_path, "arabic-speech-corpus")
|
102 |
-
return [
|
103 |
-
datasets.SplitGenerator(name="train", gen_kwargs={"archive_path": archive_path}),
|
104 |
-
datasets.SplitGenerator(name="test", gen_kwargs={"archive_path": os.path.join(archive_path, "test set")}),
|
105 |
-
]
|
106 |
-
|
107 |
-
def _generate_examples(self, archive_path):
|
108 |
-
"""Generate examples from a Librispeech archive_path."""
|
109 |
-
lab_dir = os.path.join(archive_path, "lab")
|
110 |
-
wav_dir = os.path.join(archive_path, "wav")
|
111 |
-
if "test set" in archive_path:
|
112 |
-
phonetic_path = os.path.join(archive_path, "phonetic-transcript.txt")
|
113 |
-
else:
|
114 |
-
phonetic_path = os.path.join(archive_path, "phonetic-transcipt.txt")
|
115 |
-
|
116 |
-
orthographic_path = os.path.join(archive_path, "orthographic-transcript.txt")
|
117 |
-
|
118 |
-
phonetics = {}
|
119 |
-
orthographics = {}
|
120 |
-
|
121 |
-
with open(phonetic_path, "r", encoding="utf-8") as f:
|
122 |
-
for line in f:
|
123 |
-
wav_file, phonetic = line.split('"')[1::2]
|
124 |
-
phonetics[wav_file] = phonetic
|
125 |
-
|
126 |
-
with open(orthographic_path, "r", encoding="utf-8") as f:
|
127 |
-
for line in f:
|
128 |
-
wav_file, orthographic = line.split('"')[1::2]
|
129 |
-
orthographics[wav_file] = orthographic
|
130 |
-
|
131 |
-
for _id, lab_name in enumerate(sorted(os.listdir(lab_dir))):
|
132 |
-
lab_path = os.path.join(lab_dir, lab_name)
|
133 |
-
lab_text = open(lab_path, "r", encoding="utf-8").read()
|
134 |
-
|
135 |
-
wav_name = lab_name[:-4] + ".wav"
|
136 |
-
wav_path = os.path.join(wav_dir, wav_name)
|
137 |
-
|
138 |
-
example = {
|
139 |
-
"file": wav_path,
|
140 |
-
"audio": wav_path,
|
141 |
-
"text": lab_text,
|
142 |
-
"phonetic": phonetics[wav_name],
|
143 |
-
"orthographic": orthographics[wav_name],
|
144 |
-
}
|
145 |
-
yield str(_id), example
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|