Upload cord.py
Browse files
cord.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
Reference: https://huggingface.co/datasets/pierresi/cord/blob/main/cord.py
|
3 |
+
'''
|
4 |
+
|
5 |
+
import json
|
6 |
+
import os
|
7 |
+
from pathlib import Path
|
8 |
+
|
9 |
+
import datasets
|
10 |
+
from PIL import Image
|
11 |
+
|
12 |
+
logger = datasets.logging.get_logger(__name__)
|
13 |
+
|
14 |
+
_CITATION = """\
|
15 |
+
@article{park2019cord,
|
16 |
+
title={CORD: A Consolidated Receipt Dataset for Post-OCR Parsing},
|
17 |
+
author={Park, Seunghyun and Shin, Seung and Lee, Bado and Lee, Junyeop and Surh, Jaeheung and Seo, Minjoon and Lee, Hwalsuk}
|
18 |
+
booktitle={Document Intelligence Workshop at Neural Information Processing Systems}
|
19 |
+
year={2019}
|
20 |
+
}
|
21 |
+
"""
|
22 |
+
|
23 |
+
_DESCRIPTION = "https://github.com/clovaai/cord/"
|
24 |
+
|
25 |
+
_URLS = [
|
26 |
+
"https://hcsun.net/assets/files/CORD-1k-001.zip",
|
27 |
+
"https://hcsun.net/assets/files/CORD-1k-002.zip"
|
28 |
+
]
|
29 |
+
|
30 |
+
class Cord(datasets.GeneratorBasedBuilder):
|
31 |
+
BUILDER_CONFIGS = [
|
32 |
+
datasets.BuilderConfig(
|
33 |
+
name="cord",
|
34 |
+
version=datasets.Version("1.0.0"),
|
35 |
+
description="CORD dataset"
|
36 |
+
),
|
37 |
+
]
|
38 |
+
|
39 |
+
def _info(self):
|
40 |
+
return datasets.DatasetInfo(
|
41 |
+
description=_DESCRIPTION,
|
42 |
+
features=datasets.Features(
|
43 |
+
{
|
44 |
+
"id": datasets.Value("string"),
|
45 |
+
"words": datasets.Sequence(datasets.Value("string")),
|
46 |
+
"bboxes": datasets.Sequence(datasets.Sequence(datasets.Value("int64"))),
|
47 |
+
"ner_tags": datasets.Sequence(
|
48 |
+
datasets.features.ClassLabel(
|
49 |
+
names=["O","B-MENU.NM","B-MENU.NUM","B-MENU.UNITPRICE","B-MENU.CNT","B-MENU.DISCOUNTPRICE","B-MENU.PRICE","B-MENU.ITEMSUBTOTAL","B-MENU.VATYN","B-MENU.ETC","B-MENU.SUB_NM","B-MENU.SUB_UNITPRICE","B-MENU.SUB_CNT","B-MENU.SUB_PRICE","B-MENU.SUB_ETC","B-VOID_MENU.NM","B-VOID_MENU.PRICE","B-SUB_TOTAL.SUBTOTAL_PRICE","B-SUB_TOTAL.DISCOUNT_PRICE","B-SUB_TOTAL.SERVICE_PRICE","B-SUB_TOTAL.OTHERSVC_PRICE","B-SUB_TOTAL.TAX_PRICE","B-SUB_TOTAL.ETC","B-TOTAL.TOTAL_PRICE","B-TOTAL.TOTAL_ETC","B-TOTAL.CASHPRICE","B-TOTAL.CHANGEPRICE","B-TOTAL.CREDITCARDPRICE","B-TOTAL.EMONEYPRICE","B-TOTAL.MENUTYPE_CNT","B-TOTAL.MENUQTY_CNT","I-MENU.NM","I-MENU.NUM","I-MENU.UNITPRICE","I-MENU.CNT","I-MENU.DISCOUNTPRICE","I-MENU.PRICE","I-MENU.ITEMSUBTOTAL","I-MENU.VATYN","I-MENU.ETC","I-MENU.SUB_NM","I-MENU.SUB_UNITPRICE","I-MENU.SUB_CNT","I-MENU.SUB_PRICE","I-MENU.SUB_ETC","I-VOID_MENU.NM","I-VOID_MENU.PRICE","I-SUB_TOTAL.SUBTOTAL_PRICE","I-SUB_TOTAL.DISCOUNT_PRICE","I-SUB_TOTAL.SERVICE_PRICE","I-SUB_TOTAL.OTHERSVC_PRICE","I-SUB_TOTAL.TAX_PRICE","I-SUB_TOTAL.ETC","I-TOTAL.TOTAL_PRICE","I-TOTAL.TOTAL_ETC","I-TOTAL.CASHPRICE","I-TOTAL.CHANGEPRICE","I-TOTAL.CREDITCARDPRICE","I-TOTAL.EMONEYPRICE","I-TOTAL.MENUTYPE_CNT","I-TOTAL.MENUQTY_CNT"]
|
50 |
+
)
|
51 |
+
),
|
52 |
+
"image": datasets.features.Image(),
|
53 |
+
}
|
54 |
+
),
|
55 |
+
supervised_keys=None,
|
56 |
+
citation=_CITATION,
|
57 |
+
homepage="https://github.com/clovaai/cord/",
|
58 |
+
)
|
59 |
+
|
60 |
+
def _split_generators(self, dl_manager):
|
61 |
+
downloaded_file = dl_manager.download_and_extract(_URLS)
|
62 |
+
dest = Path(downloaded_file[0])/"CORD"
|
63 |
+
self._move_files_to_dest(downloaded_file, dest)
|
64 |
+
return [
|
65 |
+
datasets.SplitGenerator(
|
66 |
+
name=datasets.Split.TRAIN, gen_kwargs={"filepath": dest/"train"}
|
67 |
+
),
|
68 |
+
datasets.SplitGenerator(
|
69 |
+
name=datasets.Split.VALIDATION, gen_kwargs={"filepath": dest/"dev"}
|
70 |
+
),
|
71 |
+
datasets.SplitGenerator(
|
72 |
+
name=datasets.Split.TEST, gen_kwargs={"filepath": dest/"test"}
|
73 |
+
),
|
74 |
+
]
|
75 |
+
|
76 |
+
def _move_files_to_dest(self, downloaded_file, dest):
|
77 |
+
for split in ["train", "dev", "test"]:
|
78 |
+
for file_type in ["image", "json"]:
|
79 |
+
if split == "test" and file_type == "json":
|
80 |
+
continue
|
81 |
+
files = (Path(downloaded_file[1])/"CORD"/split/file_type).iterdir()
|
82 |
+
for f in files:
|
83 |
+
os.rename(f, dest/split/file_type/f.name)
|
84 |
+
|
85 |
+
def _generate_examples(self, filepath):
|
86 |
+
logger.info("⏳ Generating examples from = %s", filepath)
|
87 |
+
ann_dir = os.path.join(filepath, "json")
|
88 |
+
img_dir = os.path.join(filepath, "image")
|
89 |
+
for guid, file in enumerate(sorted(os.listdir(ann_dir))):
|
90 |
+
file_path = os.path.join(ann_dir, file)
|
91 |
+
with open(file_path, "r", encoding="utf8") as f:
|
92 |
+
data = json.load(f)
|
93 |
+
image_path = os.path.join(img_dir, file).replace("json", "png")
|
94 |
+
image, size = self._load_image(image_path)
|
95 |
+
words, bboxes, ner_tags = self._process_data(data, size)
|
96 |
+
yield guid, {"id": str(guid), "words": words, "bboxes": bboxes, "ner_tags": ner_tags, "image": image}
|
97 |
+
|
98 |
+
def _load_image(self, image_path):
|
99 |
+
image = Image.open(image_path).convert("RGB")
|
100 |
+
w, h = image.size
|
101 |
+
return image, (w, h)
|
102 |
+
|
103 |
+
def _process_data(self, data, size):
|
104 |
+
words = []
|
105 |
+
bboxes = []
|
106 |
+
ner_tags = []
|
107 |
+
for item in data["valid_line"]:
|
108 |
+
line_words, label = item["words"], item["category"]
|
109 |
+
line_words = [w for w in line_words if w["text"].strip() != ""]
|
110 |
+
if len(line_words) == 0:
|
111 |
+
continue
|
112 |
+
cur_line_bboxes = self._process_line_words(line_words, label, size, words, ner_tags)
|
113 |
+
bboxes.extend(cur_line_bboxes)
|
114 |
+
return words, bboxes, ner_tags
|
115 |
+
|
116 |
+
def _process_line_words(self, line_words, label, size, words, ner_tags):
|
117 |
+
cur_line_bboxes = []
|
118 |
+
if label == "other":
|
119 |
+
for w in line_words:
|
120 |
+
words.append(w["text"])
|
121 |
+
ner_tags.append("O")
|
122 |
+
cur_line_bboxes.append(self._normalize_bbox(self._quad_to_box(w["quad"]), size))
|
123 |
+
else:
|
124 |
+
words.append(line_words[0]["text"])
|
125 |
+
ner_tags.append("B-" + label.upper())
|
126 |
+
cur_line_bboxes.append(self._normalize_bbox(self._quad_to_box(line_words[0]["quad"]), size))
|
127 |
+
for w in line_words[1:]:
|
128 |
+
words.append(w["text"])
|
129 |
+
ner_tags.append("I-" + label.upper())
|
130 |
+
cur_line_bboxes.append(self._normalize_bbox(self._quad_to_box(w["quad"]), size))
|
131 |
+
cur_line_bboxes = self._get_line_bbox(cur_line_bboxes)
|
132 |
+
return cur_line_bboxes
|
133 |
+
|
134 |
+
def _normalize_bbox(self, bbox, size):
|
135 |
+
return [
|
136 |
+
int(1000 * bbox[0] / size[0]),
|
137 |
+
int(1000 * bbox[1] / size[1]),
|
138 |
+
int(1000 * bbox[2] / size[0]),
|
139 |
+
int(1000 * bbox[3] / size[1]),
|
140 |
+
]
|
141 |
+
|
142 |
+
def _quad_to_box(self, quad):
|
143 |
+
box = (
|
144 |
+
max(0, quad["x1"]),
|
145 |
+
max(0, quad["y1"]),
|
146 |
+
quad["x3"],
|
147 |
+
quad["y3"]
|
148 |
+
)
|
149 |
+
if box[3] < box[1] or box[2] < box[0]:
|
150 |
+
box = self._fix_box(box)
|
151 |
+
return box
|
152 |
+
|
153 |
+
def _fix_box(self, box):
|
154 |
+
bbox = list(box)
|
155 |
+
if box[3] < box[1]:
|
156 |
+
bbox[1], bbox[3] = bbox[3], bbox[1]
|
157 |
+
if box[2] < box[0]:
|
158 |
+
bbox[0], bbox[2] = bbox[2], bbox[0]
|
159 |
+
return tuple(bbox)
|
160 |
+
|
161 |
+
def _get_line_bbox(self, bboxs):
|
162 |
+
x = [bboxs[i][j] for i in range(len(bboxs)) for j in range(0, len(bboxs[i]), 2)]
|
163 |
+
y = [bboxs[i][j] for i in range(len(bboxs)) for j in range(1, len(bboxs[i]), 2)]
|
164 |
+
x0, y0, x1, y1 = min(x), min(y), max(x), max(y)
|
165 |
+
assert x1 >= x0 and y1 >= y0
|
166 |
+
return [[x0, y0, x1, y1] for _ in range(len(bboxs))]
|