File size: 5,820 Bytes
306a138
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
"""TODO: Add a description here."""

import jsonlines
import pandas as pd
from pathlib import Path
from connect_later.split_dataset_into_files import split_augmented_jsonl_dataset
from connect_later.constants import PLASTICC_CLASS_MAPPING, INT_LABELS

import datasets
import pdb

RAW_DATA_PATH = "/pscratch/sd/h/helenqu/plasticc/raw"
DATASET_PATH = "/pscratch/sd/h/helenqu/plasticc/train_augmented_dataset"
ORIG_DATASET_PATH = "/pscratch/sd/h/helenqu/plasticc/raw_train_with_labels"

# PLASTICC_CLASS_MAPPING = {
#     90: "SNIa",
#     67: "SNIa-91bg",
#     52: "SNIax",
#     42: "SNII",
#     62: "SNIbc",
#     95: "SLSN-I",
#     15: "TDE",
#     64: "KN",
#     88: "AGN",
#     92: "RRL",
#     65: "M-dwarf",
#     16: "EB",
#     53: "Mira",
#     6: "$\mu$-Lens-Single",
# }
# INT_LABELS = sorted(PLASTICC_CLASS_MAPPING.keys())

# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {A great new dataset},
author={huggingface, Inc.
},
year={2020}
}
"""

# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
"""

# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
class NewDataset(datasets.GeneratorBasedBuilder):
    """TODO: Short description of my dataset."""

    VERSION = datasets.Version("1.1.0")

    def _info(self):
        # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
        # if self.config.name == "first_domain":  # This is the name of the configuration selected in BUILDER_CONFIGS above
        features = datasets.Features(
            {
                "objid": datasets.Value("string"),
                "times_wv": datasets.Array2D(shape=(300, 2), dtype='float64'), # ith row is [time, central wv of band]
                "target": datasets.Array2D(shape=(300, 2), dtype='float64'), # the time series data, ith row is [flux, flux_err]
                "label": datasets.ClassLabel(
                    num_classes=len(PLASTICC_CLASS_MAPPING),
                    names=[PLASTICC_CLASS_MAPPING[int_label] for int_label in INT_LABELS]
                ),
                "redshift": datasets.Value("float32"),
            }
        )
        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
        )

    def _split_generators(self, dl_manager):
        dataset_path = Path(DATASET_PATH)
        if not (dataset_path / 'train.jsonl').exists():
            print('Splitting dataset into files...')
            split_augmented_jsonl_dataset(DATASET_PATH, Path(ORIG_DATASET_PATH) / "plasticc_train_lightcurves.csv.jsonl", "*.jsonl", 0.8)
        print(f"int index to label mapping: {INT_LABELS}")
        print(f"label to class name mapping: {PLASTICC_CLASS_MAPPING}")

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": dataset_path / "train.jsonl",
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": dataset_path / "val.jsonl",
                    "split": "dev",
                },
            ),
        ]

    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(self, filepath, split):
        # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
        # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
        metadata = pd.read_csv(Path(RAW_DATA_PATH) / 'plasticc_train_metadata.csv.gz')

        with jsonlines.open(filepath) as reader:
            for obj in reader:
                objid = int(obj['object_id'].split('_')[1]) if type(obj['object_id']) == str else obj['object_id'] # avocado objids are of the form 'plasticc_id{_aug_hash}'
                metadata_obj = metadata[metadata['object_id'] == objid]
                label = list(INT_LABELS).index(metadata_obj.true_target.values[0])
                redshift = metadata_obj.true_z.values[0]
                yield obj['object_id'], {
                    "objid": obj['object_id'],
                    "times_wv": obj['times_wv'],
                    "target": obj['lightcurve'],
                    "label": label,
                    "redshift": redshift
                }