# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # TODO: Address all TODOs and remove all explanatory comments """TODO: Add a description here.""" import jsonlines import pandas as pd from pathlib import Path from connect_later.split_dataset_into_files import split_augmented_jsonl_dataset from connect_later.constants import PLASTICC_CLASS_MAPPING, INT_LABELS import datasets import pdb RAW_DATA_PATH = "/pscratch/sd/h/helenqu/plasticc/raw" DATASET_PATH = "/pscratch/sd/h/helenqu/plasticc/train_augmented_dataset" ORIG_DATASET_PATH = "/pscratch/sd/h/helenqu/plasticc/raw_train_with_labels" # PLASTICC_CLASS_MAPPING = { # 90: "SNIa", # 67: "SNIa-91bg", # 52: "SNIax", # 42: "SNII", # 62: "SNIbc", # 95: "SLSN-I", # 15: "TDE", # 64: "KN", # 88: "AGN", # 92: "RRL", # 65: "M-dwarf", # 16: "EB", # 53: "Mira", # 6: "$\mu$-Lens-Single", # } # INT_LABELS = sorted(PLASTICC_CLASS_MAPPING.keys()) # TODO: Add BibTeX citation # Find for instance the citation on arxiv or on the dataset repo/website _CITATION = """\ @InProceedings{huggingface:dataset, title = {A great new dataset}, author={huggingface, Inc. }, year={2020} } """ # TODO: Add description of the dataset here # You can copy an official description _DESCRIPTION = """\ This new dataset is designed to solve this great NLP task and is crafted with a lot of care. """ # TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case class NewDataset(datasets.GeneratorBasedBuilder): """TODO: Short description of my dataset.""" VERSION = datasets.Version("1.1.0") def _info(self): # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset # if self.config.name == "first_domain": # This is the name of the configuration selected in BUILDER_CONFIGS above features = datasets.Features( { "objid": datasets.Value("string"), "times_wv": datasets.Array2D(shape=(300, 2), dtype='float64'), # ith row is [time, central wv of band] "target": datasets.Array2D(shape=(300, 2), dtype='float64'), # the time series data, ith row is [flux, flux_err] "label": datasets.ClassLabel( num_classes=len(PLASTICC_CLASS_MAPPING), names=[PLASTICC_CLASS_MAPPING[int_label] for int_label in INT_LABELS] ), "redshift": datasets.Value("float32"), } ) return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=_DESCRIPTION, # This defines the different columns of the dataset and their types features=features, # Here we define them above because they are different between the two configurations ) def _split_generators(self, dl_manager): dataset_path = Path(DATASET_PATH) if not (dataset_path / 'train.jsonl').exists(): print('Splitting dataset into files...') split_augmented_jsonl_dataset(DATASET_PATH, Path(ORIG_DATASET_PATH) / "plasticc_train_lightcurves.csv.jsonl", "*.jsonl", 0.8) print(f"int index to label mapping: {INT_LABELS}") print(f"label to class name mapping: {PLASTICC_CLASS_MAPPING}") return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": dataset_path / "train.jsonl", "split": "train", }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": dataset_path / "val.jsonl", "split": "dev", }, ), ] # method parameters are unpacked from `gen_kwargs` as given in `_split_generators` def _generate_examples(self, filepath, split): # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset. # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example. metadata = pd.read_csv(Path(RAW_DATA_PATH) / 'plasticc_train_metadata.csv.gz') with jsonlines.open(filepath) as reader: for obj in reader: objid = int(obj['object_id'].split('_')[1]) if type(obj['object_id']) == str else obj['object_id'] # avocado objids are of the form 'plasticc_id{_aug_hash}' metadata_obj = metadata[metadata['object_id'] == objid] label = list(INT_LABELS).index(metadata_obj.true_target.values[0]) redshift = metadata_obj.true_z.values[0] yield obj['object_id'], { "objid": obj['object_id'], "times_wv": obj['times_wv'], "target": obj['lightcurve'], "label": label, "redshift": redshift }