Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
json
Sub-tasks:
multiple-choice-qa
Languages:
Bengali
Size:
10K - 100K
License:
sagorsarker
commited on
Commit
•
847854f
1
Parent(s):
66f3c55
Update README.md
Browse files
README.md
CHANGED
@@ -1,17 +1,39 @@
|
|
1 |
---
|
2 |
language:
|
3 |
- bn
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
-
|
6 |
-
|
|
|
7 |
|
8 |
-
## Data details
|
9 |
-
| Split | Number |
|
10 |
-
| ----- | ----- |
|
11 |
-
| Train | 15339 |
|
12 |
-
| Validation | 1838 |
|
13 |
|
14 |
-
##
|
|
|
|
|
|
|
15 |
```json
|
16 |
{
|
17 |
"goal": "ডিম সেদ্ধ করার পদ্ধতি।",
|
@@ -19,4 +41,59 @@ This is the translation version of [piqa]() LLM evaluation datasets. The dataset
|
|
19 |
"sol2": "ডিমগুলো পাত্রে রাখুন আর সেখানে এক ইঞ্চি ঠাণ্ডা জল দিয়ে ঢাকনা দিন, মাঝারি আঁচে ফুটিয়ে নিন, তারপর ঢাকনা বন্ধ রেখে গ্যাস বন্ধ করে 8 থেকে 10 মিনিট রেখে দিন।",
|
20 |
"label": 1
|
21 |
}
|
22 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
language:
|
3 |
- bn
|
4 |
+
license: unknown
|
5 |
+
task_categories:
|
6 |
+
- question-answering
|
7 |
+
multilinguality:
|
8 |
+
- monolingual
|
9 |
+
size_categories:
|
10 |
+
- 10K<n<100K
|
11 |
+
task_ids:
|
12 |
+
- multiple-choice-qa
|
13 |
+
dataset_info:
|
14 |
+
features:
|
15 |
+
- name: goal
|
16 |
+
dtype: string
|
17 |
+
- name: sol1
|
18 |
+
dtype: string
|
19 |
+
- name: sol2
|
20 |
+
dtype: string
|
21 |
+
- name: label
|
22 |
+
dtype:
|
23 |
+
class_label:
|
24 |
+
names:
|
25 |
+
'0': '0'
|
26 |
+
'1': '1'
|
27 |
---
|
28 |
+
## Dataset Summary
|
29 |
+
|
30 |
+
This is the translated version of the [PIQA](https://huggingface.co/datasets/ybisk/piqa) LLM evaluation dataset. The dataset was translated using a new method called Expressive Semantic Translation (EST), which combines Google Translation with LLM-based rewriting. PIQA introduces the task of physical commonsense reasoning and provides a corresponding benchmark for understanding physical interactions in everyday situations. It focuses on atypical solutions to practical problems, inspired by instructional guides from instructables.com, and aims to tackle one of the major challenges in AI: understanding and reasoning about physical commonsense knowledge.
|
31 |
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
+
## Dataset Structure
|
34 |
+
### Data Instances
|
35 |
+
An example looks like this:
|
36 |
+
|
37 |
```json
|
38 |
{
|
39 |
"goal": "ডিম সেদ্ধ করার পদ্ধতি।",
|
|
|
41 |
"sol2": "ডিমগুলো পাত্রে রাখুন আর সেখানে এক ইঞ্চি ঠাণ্ডা জল দিয়ে ঢাকনা দিন, মাঝারি আঁচে ফুটিয়ে নিন, তারপর ঢাকনা বন্ধ রেখে গ্যাস বন্ধ করে 8 থেকে 10 মিনিট রেখে দিন।",
|
42 |
"label": 1
|
43 |
}
|
44 |
+
```
|
45 |
+
|
46 |
+
### Data Fields
|
47 |
+
|
48 |
+
List and describe the fields present in the dataset. Mention their data type, and whether they are used as input or output in any of the tasks the dataset currently supports. If the data has span indices, describe their attributes, such as whether they are at the character level or word level, whether they are contiguous or not, etc. If the datasets contains example IDs, state whether they have an inherent meaning, such as a mapping to other datasets or pointing to relationships between data points.
|
49 |
+
|
50 |
+
- `goal`: the question which requires physical commonsense to be answered correctly
|
51 |
+
- `sol1`: the first solution
|
52 |
+
- `sol2`: the second solution
|
53 |
+
- `label`: the correct solution. `0` refers to `sol1` and `1` refers to `sol2`
|
54 |
+
|
55 |
+
|
56 |
+
## Data Split
|
57 |
+
| Split | Number |
|
58 |
+
| ----- | ----- |
|
59 |
+
| Train | 15339 |
|
60 |
+
| Validation | 1838 |
|
61 |
+
|
62 |
+
## Dataset Creation
|
63 |
+
|
64 |
+
### Curation Rationale
|
65 |
+
|
66 |
+
### Source Data
|
67 |
+
|
68 |
+
#### Initial Data Collection and Normalization
|
69 |
+
|
70 |
+
#### Who are the source language producers?
|
71 |
+
|
72 |
+
### Annotations
|
73 |
+
|
74 |
+
#### Annotation process
|
75 |
+
|
76 |
+
#### Who are the annotators?
|
77 |
+
|
78 |
+
### Personal and Sensitive Information
|
79 |
+
|
80 |
+
## Considerations for Using the Data
|
81 |
+
|
82 |
+
### Social Impact of Dataset
|
83 |
+
|
84 |
+
### Discussion of Biases
|
85 |
+
|
86 |
+
### Other Known Limitations
|
87 |
+
|
88 |
+
## Additional Information
|
89 |
+
|
90 |
+
### Dataset Curators
|
91 |
+
|
92 |
+
### Licensing Information
|
93 |
+
|
94 |
+
The dataset is licensed under the MIT License.
|
95 |
+
|
96 |
+
## Citation Information
|
97 |
+
|
98 |
+
|
99 |
+
## Contributions
|