--- license: cc-by-4.0 dataset_info: features: - name: english_reference dtype: string - name: hebrew_reference dtype: string - name: text dtype: string - name: transliteration dtype: string - name: translation dtype: string - name: dStrongs dtype: string - name: manuscript_source dtype: string splits: - name: train num_bytes: 30435977 num_examples: 305638 download_size: 13210659 dataset_size: 30435977 configs: - config_name: default data_files: - split: train path: data/train-* language: - he - en tags: - Bible pretty_name: Original Language Bible Corpus -- Ancient Hebrew --- ## Citation Information If you use this data, please cite: **BibTeX:** ``` @dataset{original_language_bibles, author = {Hope McGovern}, title = {Original Language Bible Corpus: Ancient Hebrew Bible and Ancient Greek New Testament with Word-Level Translations}, year = {2024}, publisher = {Hugging Face Hub}, url = {https://huggingface.co/hmcgovern/original-language-bibles-greek}, note = {Includes word-level annotations and English translations for the Ancient Hebrew Bible (Old Testament) and Ancient Greek New Testament based on earliest manuscript evidence, compiled from STEP Bible (https://www.stepbible.org/).} } ``` ## Aggregate to Line-Level To aggregate this dataset to the line (verse) level, you can use a `.map()` function like this: ``` def aggregate_to_line(examples, priority='english'): aggregated = {} for ref, word, gloss in zip(examples[f"{priority}_reference"], examples["text"], examples["translation"]): verse_key = ".".join(ref.split(".")[:-1]) # Extract the verse key (e.g., Gen.1.1) if verse_key not in aggregated: aggregated[verse_key] = {"texts": [], "translations": []} aggregated[verse_key]["texts"].append(word) aggregated[verse_key]["translations"].append(gloss) # Convert the aggregated results into line-level entries return { "verse": list(aggregated.keys()), "text": [" | ".join(aggregated[verse]["texts"]) for verse in aggregated], "translation": [" | ".join(aggregated[verse]["translations"]) for verse in aggregated], } ds = ds.map(aggregate_to_line, batched=True, remove_columns=ds['train'].column_names, fn_kwargs={"priority": "hebrew"}) ``` Where `priority` denotes whether to use English or Hebrew verse delineations. `english` priority -> 23_547 verses, `hebrew` priority -> 23_499 verses