File size: 4,689 Bytes
e87f7b3 519a5d3 a903c41 e62bc87 a903c41 e62bc87 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import csv
import json
import os
from typing import List
import datasets
import logging
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {TidyTuesday for Python},
author={Holly Cui
},
year={2024}
}
"""
_DESCRIPTION = """\
This dataset compiles TidyTuesday datasets from 2023-2024, aiming to make resources in the R community more accessible for Python users.
"""
_HOMEPAGE = ""
_LICENSE = ""
_URLS = {
"train": "https://raw.githubusercontent.com/hollyyfc/tidytuesday-for-python/main/tidytuesday_json_train.json",
"validation": "https://raw.githubusercontent.com/hollyyfc/tidytuesday-for-python/main/tidytuesday_json_val.json",
}
class TidyTuesdayPython(datasets.GeneratorBasedBuilder):
_URLS = _URLS
VERSION = datasets.Version("1.1.0")
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"date_posted": datasets.Value("string"),
"project_name": datasets.Value("string"),
"project_source": datasets.features.Sequence(datasets.Value("string")),
"description": datasets.Value("string"),
"data_source_url": datasets.Value("string"),
"data_dictionary": datasets.features.Sequence(
{
"variable": datasets.Value("string"),
"class": datasets.Value("string"),
"description": datasets.Value("string"),
}
),
"data": datasets.features.Sequence(
{
"file_name": datasets.Value("string"),
"file_url": datasets.Value("string"),
}
),
"data_load": datasets.features.Sequence(
{
"file_name": datasets.Value("string"),
"load_url": datasets.Value("string"),
}
),
}
),
# No default supervised_keys (as we have to pass both premise
supervised_keys=None,
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
urls_to_download = self._URLS
downloaded_files = dl_manager.download_and_extract(urls_to_download)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": downloaded_files["train"]
}
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": downloaded_files["validation"]
}
),
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, filepath):
logging.info("generating examples from = %s", filepath)
with open(filepath, "r") as j:
tidytuesday_json = json.load(j)
for record in tidytuesday_json:
id_ = record['date_posted']
yield id_, record
'''
yield id_, {
"project_name": record["project_name"],
"project_source": record["project_source"],
"description": record["description"],
"data_source_url": record["data_source_url"],
"data_dictionary": record["data_dictionary"],
"data": record["data"],
}
'''
|