# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import csv import json import os from typing import List import datasets import logging # Find for instance the citation on arxiv or on the dataset repo/website _CITATION = """\ @InProceedings{huggingface:dataset, title = {TidyTuesday for Python}, author={Holly Cui }, year={2024} } """ _DESCRIPTION = """\ This dataset compiles TidyTuesday datasets from 2023-2024, aiming to make resources in the R community more accessible for Python users. """ _HOMEPAGE = "" _LICENSE = "" _URLS = { "train": "https://raw.githubusercontent.com/hollyyfc/tidytuesday-for-python/main/tidytuesday_json_train.json", "validation": "https://raw.githubusercontent.com/hollyyfc/tidytuesday-for-python/main/tidytuesday_json_val.json", } class TidyTuesdayPython(datasets.GeneratorBasedBuilder): _URLS = _URLS VERSION = datasets.Version("1.1.0") def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "date_posted": datasets.Value("string"), "project_name": datasets.Value("string"), "project_source": datasets.features.Sequence(datasets.Value("string")), "description": datasets.Value("string"), "data_source_url": datasets.Value("string"), "data_dictionary": datasets.features.Sequence( { "variable": datasets.Value("string"), "class": datasets.Value("string"), "description": datasets.Value("string"), } ), "data": datasets.features.Sequence( { "file_name": datasets.Value("string"), "file_url": datasets.Value("string"), } ), "data_load": datasets.features.Sequence( { "file_name": datasets.Value("string"), "load_url": datasets.Value("string"), } ), } ), # No default supervised_keys (as we have to pass both premise supervised_keys=None, # Homepage of the dataset for documentation homepage=_HOMEPAGE, # Citation for the dataset citation=_CITATION, ) def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: urls_to_download = self._URLS downloaded_files = dl_manager.download_and_extract(urls_to_download) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": downloaded_files["train"] } ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "filepath": downloaded_files["validation"] } ), ] # method parameters are unpacked from `gen_kwargs` as given in `_split_generators` def _generate_examples(self, filepath): logging.info("generating examples from = %s", filepath) with open(filepath, "r") as j: tidytuesday_json = json.load(j) for record in tidytuesday_json: id_ = record['date_posted'] yield id_, record ''' yield id_, { "project_name": record["project_name"], "project_source": record["project_source"], "description": record["description"], "data_source_url": record["data_source_url"], "data_dictionary": record["data_dictionary"], "data": record["data"], } '''