jan-hq's picture
Update README.md
d40dfce verified
---
dataset_info:
features:
- name: index
dtype: int64
- name: tokens
sequence: int64
- name: text
dtype: string
splits:
- name: train
num_bytes: 19886519752
num_examples: 2420047
download_size: 3660752702
dataset_size: 19886519752
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
license: mit
task_categories:
- automatic-speech-recognition
language:
- en
tags:
- audio2text
- multimodal model
size_categories:
- 1M<n<10M
---
## Dataset Overview
This dataset contains over 2,4M English ASR samples, using:
- The a training set of [parler-tts/mls_eng_10k](https://huggingface.co/datasets/parler-tts/mls_eng_10k)
- Tokenized using [WhisperVQ](https://huggingface.co/WhisperSpeech/WhisperSpeech/blob/main/whisper-vq-stoks-medium-en%2Bpl.model).
## Usage
```python
from datasets import load_dataset, Audio
# Load Instruction Speech dataset
dataset = load_dataset("homebrewltd/raw-speech-whispervq-v1",split='train')
```
## Dataset Fields
Field | Type | Description |
|------------------|------------|--------------------------------------------------|
| `tokens` | sequence | Tokenized using Encodec |
| `text` | sequence | Converted audio tokens |
## Bias, Risks, and Limitations
- Dataset may reflect biases inherent in its source.
- Current version lacks quality control for prompts and responses.
- The usage of Encodec may compromise sound tokens quality.
- Users should consider these limitations when applying the dataset.
## Licensing Information
The dataset is released under the [MIT license](https://opensource.org/license/MIT).
## Citation Information
```
@article{Instruction Speech 2024,
title={Instruction Speech},
author={JanAI},
year=2024,
month=June},
url={https://huggingface.co/datasets/jan-hq/instruction-speech}
```