Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 108,655 Bytes
afd65d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 |
\documentclass{article}
\usepackage[T1]{fontenc}
\usepackage{textcomp}
\renewcommand{\rmdefault}{ptm}
\usepackage[scaled=0.92]{helvet}
\usepackage[psamsfonts]{amsfonts}
\usepackage{amsmath, amsbsy,verbatim}
\usepackage[dvips, bookmarks, colorlinks=true, plainpages = false,
citecolor = blue, urlcolor = blue, filecolor = blue]{hyperref}
\newtheorem{corollary}{Corollary}
\newtheorem{definition}{Definition}
\newtheorem{lemma}{Lemma}
\newtheorem{theorem}{Theorem}
\newtheorem{example}{Example}
\newcommand{\proof}{\noindent{\sc\bf Proof}\quad }
\def\endproof{{\hfill \vbox{\hrule\hbox{%
\vrule height1.3ex\hskip0.8ex\vrule}\hrule }}\par}
\newcommand{\bbox}{\phantom{1}\hfill{\rule{6pt}{6pt}}}
\newcommand{\pd}[2]{\frac{\partial{#1}}{\partial{#2}}}
\newcommand{\dst}{\displaystyle}
\newcommand{\place}{\bigskip\hrule\bigskip\noindent}
\newcommand{\set}[2]{\left\{#1\, \big|\, #2\right\}}
\newcommand{\exer}[1]{\par\noindent{\bf $#1$}.}
\newcommand{\boxit}[1]{\bigskip\noindent{\bf
#1}\\\vskip-6pt\hskip-\parindent}
\newcounter{lcal}
\newenvironment{alist}{\begin{list}{\bf (\alph{lcal})}
{\topsep 0pt\partopsep 0pt\labelwidth 14pt
\labelsep 8pt\leftmargin 22pt\itemsep 0pt
\usecounter{lcal}}}{\end{list}}
\newcounter{exercise}
\newenvironment{exerciselist}{\begin{list}{\bf \arabic{exercise}.}
{\topsep 10pt\partopsep 0pt\labelwidth 16pt
\labelsep 12pt\leftmargin 28pt
\itemsep 8pt\usecounter{exercise}}}{\end{list}}
\begin{document}
\thispagestyle{empty}
\bf
\begin{center}
{\Huge FUNCTIONS DEFINED BY\\ \medskip IMPROPER INTEGRALS}
\vspace{.5in}
\huge
\bigskip
\vspace{.75in}
\bf\huge
\href{http://ramanujan.math.trinity.edu/wtrench/index.shtml}
{William F. Trench}
\medskip
\\\large
Andrew G. Cowles Distinguished Professor Emeritus\\
Department of Mathematics\\
Trinity University \\
San Antonio, Texas, USA\\
\href{mailto:{wtrench@trinity.edu}}
{wtrench@trinity.edu}
\large
\vspace*{.75in}
\end{center}
\rm
\noindent
This is a supplement to the author's
\href{http://ramanujan.math.trinity.edu/wtrench/texts/TRENCH_REAL_ANALYSIS.PDF}
{\large Introduction to Real Analysis}.
It has been judged to meet the evaluation criteria set by the
Editorial Board
of the American Institute of Mathematics in connection with the Institute's
\href{http://www.aimath.org/textbooks/}
{Open
Textbook Initiative}.
It may be copied, modified, redistributed, translated, and
built upon subject to the Creative
Commons
\href{http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_G}
{Attribution-NonCommercial-ShareAlike 3.0 Unported License}.
A complete instructor's solution manual is available by email to
\href{mailto:wtrench@trinity.edu}
{wtrench@trinity.edu},
subject to verification of the requestor's
faculty status.
\newpage
\rm
\section{Foreword} \label{section:foreword}
This is a revised version of Section~7.5 of my \emph{Advanced Calculus}
(Harper \& Row, 1978).
It is a supplement to my textbook
\href{http://ramanujan.math.trinity.edu/wtrench/texts/TRENCH_REAL_ANALYSIS.PDF}
{\emph{Introduction to Real Analysis}}, which
is referenced several times here.
You
should review Section~3.4 (Improper Integrals) of that book before
reading this document.
\section{Introduction}\label{section:introduction}
In Section~7.2 (pp. 462--484)
we considered functions of the form
$$
F(y)=\int_{a}^{b}f(x,y)\,dx, \quad c \le y \le d.
$$
We saw that if $f$ is continuous on
$[a,b]\times
[c,d]$, then
$F$ is continuous on $[c,d]$ (Exercise~7.2.3, p.~481) and that
we can reverse the order of integration in
$$
\int_{c}^{d}F(y)\,dy=\int_{c}^{d}\left(\int_{a}^{b}f(x,y)\,dx\right)\,dy
$$
to evaluate it as
$$
\int_{c}^{d}F(y)\,dy=\int_{a}^{b}\left(\int_{c}^{d}f(x,y)\,dy\right)\,dx
$$
(Corollary~7.2.3, p.~466).
Here is another important property of $F$.
\begin{theorem} \label{theorem:1}
If $f$ and $f_{y}$ are continuous on $[a,b]\times [c,d],$
then
\begin{equation} \label{eq:1}
F(y)=\int_{a}^{b}f(x,y)\,dx, \quad c \le y \le d,
\end{equation}
is continuously differentiable on $[c,d]$ and $F'(y)$ can be obtained
by differentiating \eqref{eq:1}
under the
integral sign with respect to $y;$ that is,
\begin{equation} \label{eq:2}
F'(y)=\int_{a}^{b}f_{y}(x,y)\,dx, \quad c \le y \le d.
\end{equation}
Here $F'(a)$ and $f_{y}(x,a)$ are derivatives
from the right and $F'(b)$ and $f_{y}(x,b)$ are
derivatives from the left$.$
\end{theorem}
\proof
If $y$ and $y+\Delta y$ are in $[c,d]$ and $\Delta y\ne0$, then
\begin{equation} \label{eq:3}
\frac{F(y+\Delta y)-F(y)}{\Delta y}=
\int_{a}^{b}\frac{f(x,y+\Delta y)-f(x,y)}{\Delta y}\,dx.
\end{equation}
From the mean value theorem (Theorem~2.3.11, p.~83), if
$x\in[a,b]$ and $y$, $y+\Delta y\in[c,d]$, there is a
$y(x)$ between $y$ and $y+\Delta y$ such that
$$
f(x,y+\Delta y)-f(x,y)=f_{y}(x,y)\Delta y=
f_{y}(x,y(x))\Delta y+(f_{y}(x,y(x)-f_{y}(x,y))\Delta y.
$$
From this and \eqref{eq:3},
\begin{equation} \label{eq:4}
\left|\frac{F(y+\Delta y)-F(y)}{\Delta
y}-\int_{a}^{b}f_{y}(x,y)\,dx\right|
\le \int_{a}^{b} |f_{y}(x,y(x))-f_{y}(x,y)|\,dx.
\end{equation}
Now suppose $\epsilon>0$. Since $f_{y}$ is uniformly continuous
on the compact set $[a,b]\times [c,d]$
(Corollary~5.2.14, p.~314) and $y(x)$ is between $y$ and $y+\Delta y$,
there is a $\delta>0$ such that if $|\Delta|<\delta$ then
$$
|f_{y}(x,y)-f_{y}(x,y(x))|<\epsilon,\quad
(x,y)\in[a,b]\times [c,d].
$$
This and \eqref{eq:4} imply that
$$
\left|\frac{F(y+\Delta y-F(y))}{\Delta
y}-\int_{a}^{b}f_{y}(x,y)\,dx\right|<\epsilon(b-a)
$$
if $y$ and $y+\Delta y$ are in $[c,d]$ and $0<|\Delta y|<\delta$.
This implies \eqref{eq:2}. Since
the integral in \eqref{eq:2} is continuous
on $[c,d]$ (Exercise~7.2.3, p.~481, with $f$ replaced by $f_{y}$), $F'$
is continuous on
$[c,d]$.
\endproof
\begin{example} \label{example:1} \rm
Since
$$
f(x,y)=\cos xy\text{\quad and\quad} f_{y}(x,y)=-x\sin xy
$$
are continuous for all $(x,y)$,
Theorem~\ref{theorem:1} implies that if
\begin{equation} \label{eq:5}
F(y)=\int_{0}^{\pi} \cos xy\,dx,\quad -\infty<y<\infty,
\end{equation}
then
\begin{equation} \label{eq:6}
F'(y)=-\int_{0}^{\pi}x\sin xy\,dx,\quad -\infty<y<\infty.
\end{equation}
(In applying Theorem~\ref{theorem:1} for a specific value
of $y$, we take
$R=[0,\pi]\times [-\rho,\rho]$, where $\rho>|y|$.) This provides a
convenient way to evaluate the integral in \eqref{eq:6}:
integrating the right side of \eqref{eq:5} with respect to $x$ yields
$$
F(y)=\frac{\sin xy}{y}\bigg|_{x=0}^{\pi}=\frac{\sin\pi y}{y}, \quad
y\ne0.
$$
Differentiating this and using \eqref{eq:6} yields
$$
\int_{0}^{\pi}x\sin xy\,dx =\frac{\sin \pi y}{y^{2}}-
\frac{\pi\cos \pi y}{y}, \quad y\ne0.
$$
To verify this, use integration by parts. \bbox
\end{example}
We will study the continuity,
differentiability, and integrability of
$$
F(y)=\int_{a}^{b}f(x,y)\,dx,\quad y\in S,
$$
where $S$ is an interval or a union of intervals,
and $F$ is a convergent improper integral for each $y\in S$.
If the domain of $f$ is $[a,b)\times S$ where
$-\infty<a< b\le \infty$,
we say that $F$ is \emph{pointwise convergent on $S$} or simply
\emph{convergent on $S$}, and write
\begin{equation} \label{eq:7}
\int_{a}^{b}f(x,y)\,dx=\lim_{r\to b-}\int_{a}^{r}f(x,y)\,dx
\end{equation}
if,
for each $y\in S$ and every
$\epsilon>0$, there is an $r=r_{0}(y)$ (which also depends on $\epsilon$)
such that
\begin{equation} \label{eq:8}
\left|F(y)-\int_{a}^{r}f(x,y)\,dx\right|=
\left|\int_{r}^{b}f(x,y)\,dx\right|< \epsilon,
\quad r_{0}(y)\le y<b.
\end{equation}
If the domain of $f$ is $(a,b]\times S$ where $-\infty\le a<b<\infty$,
we replace \eqref{eq:7} by
$$
\int_{a}^{b}f(x,y)\,dx=\lim_{r\to a+}\int_{r}^{b}f(x,y)\,dx
$$
and \eqref{eq:8} by
$$
\left|F(y)-\int_{r}^{b}f(x,y)\,dx\right|=
\left|\int_{a}^{r}f(x,y)\,dx\right|< \epsilon,
\quad a<r\le r_{0}(y).
$$
In general, pointwise convergence of $F$ for all $y\in S$ does not imply
that $F$ is continuous or integrable on $[c,d]$, and the additional
assumptions that $f_{y}$ is continuous and $\int_{a}^{b}f_{y}(x,y)\,dx$
converges do not imply \eqref{eq:2}.
\begin{example} \label{example:2} \rm
The function
$$
f(x,y)=ye^{-|y|x}
$$
is continuous on $[0,\infty)\times (-\infty,\infty)$ and
$$
F(y)=\int_{0}^{\infty}f(x,y)\,dx =\int_{0}^{\infty}ye^{-|y|x}\,dx
$$
converges for all $y$, with
$$
F(y)=
\begin{cases}
-1& y<0,\\
\phantom{-}0&y=0,\\
\phantom{-}1&y>0;\\
\end{cases}
$$
therefore, $F$ is discontinuous at $y=0$.
\end{example}
\begin{example} \label{example:3} \rm
The function
$$
f(x,y)=y^{3}e^{-y^{2}x}
$$
is continuous on $[0,\infty)\times (-\infty,\infty)$.
Let
$$
F(y)=\int_{0}^{\infty}f(x,y)\,dx=
\int_{0}^{\infty}y^{3}e^{-y^{2}x}\,dx =y,\quad -\infty<y<\infty.
$$
Then
$$
F'(y)=1, \quad -\infty<y<\infty.
$$
However,
$$
\int_{0}^{\infty}\pd{}{y}(y^{3}e^{-y^{2}x})\,dx
=\int_{0}^{\infty}(3y^{2}-2y^{4}x)e^{-y^{2}x}\,dx=
\begin{cases}
1,& y\ne0,\\
0,& y=0,
\end{cases}
$$
so
$$
F'(y)\ne\int_{0}^{\infty}\pd{f(x,y)}{y}\,dx\text{\quad if\quad}y=0.
$$
\end{example}
\section{Preparation} \label{section:preparation}
We begin with two useful convergence criteria for improper integrals
that do not involve a parameter.
Consistent with the definition on p.~152, we say that $f$ is locally
integrable on
an interval $I$ if it is integrable on every finite closed subinterval of
$I$.
\begin{theorem}[
\href{http://www-history.mcs.st-and.ac.uk/Biographies/Cauchy.html}
{Cauchy}
Criterion for Convergence of an Improper
Integral I]
\label{theorem:2}
Suppose $g$ is
locally integrable on $[a,b)$ and denote
$$
G(r)=\int_{a}^{r}g(x)\,dx,\quad a\le r<b.
$$
Then the improper integral $\int_{a}^{b}g(x)\,dx$ converges if and only
if$,$ for each
$\epsilon >0,$ there is an $r_{0}\in[a,b)$ such that
\begin{equation} \label{eq:9}
|G(r)-G(r_{1})|<\epsilon,\quad r_{0}\le r,r_{1}<b.
\end{equation}
\end{theorem}
\proof For necessity, suppose $\int_{a}^{b}g(x)\,dx=L$. By definition,
this means that for each $\epsilon>0$ there is an $r_{0}\in [a,b)$
such that
$$
|G(r)-L|<\frac{\epsilon}{2}
\text{\quad and\quad}
|G(r_{1})-L|<\frac{\epsilon}{2},\quad
r_{0}\le r,r_{1}<b.
$$
Therefore
\begin{eqnarray*}
|G(r)-G(r_{1})|&=&|(G(r)-L)-(G(r_{1})-L)|\\
&\le& |G(r)-L|+|G(r_{1})-L|<
\epsilon,\quad r_{0}\le r,r_{1}<b.
\end{eqnarray*}
For sufficiency, \eqref{eq:9} implies that
$$
|G(r)|= |G(r_{1})+(G(r)-G(r_{1}))|< |G(r_{1})|+|G(r)-G(r_{1})|\le
|G(r_{1})|+\epsilon,
$$
$r_{0}\le r\le r_{1}<b$. Since $G$ is also bounded on the
compact set
$[a,r_{0}]$ (Theorem~5.2.11, p.~313), $G$ is bounded on $[a,b)$. Therefore
the monotonic functions
$$
\overline{G}(r)=\sup\set{G(r_{1})}{r\le r_{1}<b} \text{\quad and\quad}
\underline{G}(r)=\inf\set{G(r_{1})}{r\le r_{1}<b}
$$
are well defined on $[a,b)$, and
$$
\lim_{r\to b-}\overline{G}(r)=\overline{L}
\text{\quad and\quad}
\lim_{r\to b-}\underline{G}(r)=\underline{L}
$$
both exist and are finite (Theorem~2.1.11, p.~47).
From \eqref{eq:9},
\begin{eqnarray*}
|G(r)-G(r_{1})|&=&|(G(r)-G(r_{0}))-(G(r_{1})-G(r_{0}))|\\
&\le &|G(r)-G(r_{0})|+|G(r_{1})-G(r_{0})|< 2\epsilon,
\end{eqnarray*}
so
$$
\overline{G}(r)-\underline{G}(r)\le 2\epsilon, \quad r_{0}\le r, r_{1}<b.
$$
Since
$\epsilon$ is an arbitrary positive number, this implies that
$$
\lim_{r\to b-}(\overline{G}(r)-\underline{G}(r))=0,
$$
so
$\overline{L}=\underline{L}$. Let $L=\overline{L}=\underline{L}$.
Since
$$
\underline{G}(r)\le G(r)\le \overline{G}(r),
$$
it follows that $\lim_{r\to b-} G(r)=L$. \endproof
We leave the proof of the following theorem to you
(Exercise~\ref{exer:2}).
\begin{theorem}[Cauchy Criterion for Convergence of an Improper
Integral II]
\label{theorem:3}
Suppose $g$ is
locally integrable on $(a,b]$ and denote
$$
G(r)=\int_{r}^{b}g(x)\,dx,\quad a\le r<b.
$$
Then the improper integral $\int_{a}^{b}g(x)\,dx$ converges if and only
if$,$ for each
$\epsilon >0,$ there is an $r_{0}\in(a,b]$ such that
$$
|G(r)-G(r_{1})|<\epsilon,\quad a<r,r_{1}\le r_{0}.
$$
\end{theorem}
To see why we associate Theorems~\ref{theorem:2} and~\ref{theorem:3} with
Cauchy, compare them with Theorem~4.3.5 (p.~204)
\section{Uniform convergence of improper integrals}\label{section:uniform}
\medskip
Henceforth we deal with functions $f=f(x,y)$ with domains
$I\times S$, where $S$ is an interval or a union of intervals and $I$ is
of one of the following forms:
\begin{itemize}
\item $[a,b)$ with $-\infty<a<b\le \infty$;
\item $(a,b]$ with $-\infty\le a<b< \infty$;
\item $(a,b)$ with $-\infty\le a\le b\le \infty$.
\end{itemize}
In all cases it is to be understood that $f$ is locally integrable with
respect to $x$ on $I$.
When we say that the
improper integral $\int_{a}^{b}f(x,y)\,dx$ has a stated property ``on
S'' we mean that it has the property for every $y\in S$.
\begin{definition} \label{definition:1}
If the improper integral
\begin{equation} \label{eq:10}
\int_{a}^{b}f(x,y)\,dx=\lim_{r\to b-}\int_{a}^{r}f(x,y)\,dx
\end{equation}
converges on $S,$ it
is said to converge
uniformly $($or be uniformly convergent$)$ on $S$ if$,$ for each
$\epsilon>0,$ there is an
$r_{0} \in [a,b)$
such that
$$
\left|\int_{a}^{b}f(x,y)\,dx-\int_{a}^{r}f(x,y)\,dx\right|
< \epsilon,\quad y\in S, \quad r_{0}\le r<b,
$$
or$,$ equivalently$,$
\begin{equation} \label{eq:11}
\left|\int_{r}^{b}f(x,y)\,dx\right|< \epsilon, \quad
y\in S,\quad r_{0}\le r<b.
\end{equation}
\end{definition}
The crucial difference between pointwise and uniform convergence is that
$r_{0}(y)$ in \eqref{eq:8} may depend upon the particular value of $y$,
while the
$r_{0}$ in \eqref{eq:11} does not: one choice must work for all $y\in S$.
Thus, uniform convergence
implies pointwise convergence, but pointwise convergence does not imply
uniform convergence.
\begin{theorem}{\bf$($Cauchy Criterion for Uniform Convergence I$)$}
\label{theorem:4}
The improper integral in \eqref{eq:10}
converges uniformly on $S$ if and only if$,$ for each $\epsilon>0,$ there
is an
$r_{0} \in [a,b)$ such that
\begin{equation} \label{eq:12}
\left|\int_{r}^{r_{1}}f(x,y)\,dx\right|< \epsilon, \quad y\in S,\quad
r_{0}\le r,r_{1}<b.
\end{equation}
\end{theorem}
\proof Suppose $\int_{a}^{b} f(x,y)\,dx$ converges uniformly on
$S$ and $\epsilon>0$.
From Definition~\ref{definition:1},
there is an
$r_{0}\in [a,b)$ such that
\begin{equation} \label{eq:13}
\left|\int_{r}^{b}f(x,y)\,dx\right| <\frac{\epsilon}{2}
\text{\, and\,}
\left|\int_{r_{1}}^{b}f(x,y)\,dx\right|
<\frac{\epsilon}{2} ,\quad y\in S, \quad r_{0}\le r,r_{1}<b.
\end{equation}
Since
$$
\int_{r}^{r_{1}}f(x,y)\,dx=
\int_{r}^{b}f(x,y)\,dx-
\int_{r_{1}}^{b}f(x,y)\,dx,
$$
\eqref{eq:13} and the triangle inequality imply
\eqref{eq:12}.
For the converse, denote
$$
F(y)=\int_{a}^{r}f(x,y)\,dx.
$$
Since \eqref{eq:12} implies that
\begin{equation} \label{eq:14}
|F(r,y)-F(r_{1},y)|< \epsilon,\quad y\in S, \quad
r_{0}\le r, r_{1}<b,
\end{equation}
Theorem~\ref{theorem:2} with $G(r)=F(r,y)$ ($y$ fixed
but arbitrary in $S$) implies that $\int_{a}^{b} f(x,y)\,dx$
converges pointwise for $y\in S$.
Therefore, if $\epsilon>0$
then, for each $y\in S$,
there is an $r_{0}(y) \in [a,b)$ such that
\begin{equation} \label{eq:15}
\left|\int_{r}^{b}f(x,y)\,dx\right|< \epsilon, \quad y\in S,\quad
r_{0}(y)\le r< b.
\end{equation}
For each $y\in S$, choose $r_{1}(y)\ge \max[{r_{0}(y),r_{0}}]$. (Recall
\eqref{eq:14}). Then
$$
\int_{r}^{b}f(x,y)\,dx =
\int_{r}^{r_{1}(y)}f(x,y)\,dx+
\int_{r_{1}(y)}^{b}f(x,y)\,dx, \quad
$$
so \eqref{eq:12}, \eqref{eq:15}, and the triangle inequality imply
that
$$
\left|\int_{r}^{b} f(x,y)\,dx\right|< 2\epsilon, \quad y\in S, \quad
r_{0}\le r<b.
$$
\endproof
In practice, we don't explicitly exhibit $r_{0}$ for each given
$\epsilon$.
It suffices to obtain estimates that clearly imply its existence.
\begin{example} \label{example:4} \rm
For the improper integral of Example~\ref{example:2},
$$
\left|\int_{r}^{\infty}f(x,y)\,dx\right|=
\int_{r}^{\infty} |y|e^{-|y|x}=e^{-r|y|}, \quad y\ne0.
$$
If $|y| \ge \rho$, then
$$
\left|\int_{r}^{\infty}f(x,y)\,dx\right| \le e^{-r\rho},
$$
so $\int_{0}^{\infty}f(x,y)\,dx$ converges uniformly on
$(-\infty,\rho]\cup[\rho,\infty)$ if $\rho>0$; however, it does not
converge uniformly on any neighborhood of $y=0$, since, for any
$r>0$,
$e^{-r|y|}>\frac{1}{2}$ if $|y|$ is sufficiently small.
\end{example}
\begin{definition} \label{definition:2}
If the improper integral
$$
\int_{a}^{b}f(x,y)\,dx=\lim_{r\to a+}\int_{r}^{b}f(x,y)\,dx
$$
converges on $S,$ it
is said to converge
uniformly $($or be uniformly convergent$)$ on $S$ if$,$ for each
$\epsilon>0,$ there is an
$r_{0} \in (a,b]$
such that
$$
\left|\int_{a}^{b}f(x,y)\,dx-\int_{r}^{b}f(x,y)\,dx\right|
<\epsilon, \quad y\in S,\quad
a<r\le r_{0},
$$
or$,$ equivalently$,$
$$
\left|\int_{a}^{r} f(x,y)\,dx\right|< \epsilon, \quad y\in S,\quad
a<r\le r_{0}.
$$
\end{definition}
We leave proof of the following theorem to you (Exercise~\ref{exer:3}).
\begin{theorem}{\bf $($Cauchy Criterion for Uniform Convergence II$)$}
\label{theorem:5}
The improper integral
$$
\int_{a}^{b}f(x,y)\,dx =\lim_{r\to a+}\int_{r}^{b}f(x,y)\,dx
$$
converges uniformly on $S$ if and only if$,$
for each $\epsilon>0,$ there is
an $r_{0}\in (a,b]$ such that
$$
\left|\int_{r_{1}}^{r}f(x,y)\,dx\right|< \epsilon,\quad
y\in S,\quad a <r,r_{1}\le r_{0}.
$$
\end{theorem}
We need one more definition, as follows.
\begin{definition} \label{definition:3}
Let $f=f(x,y)$ be defined on $(a,b) \times S,$ where $-\infty\le a<b\le
\infty.$ Suppose $f$ is locally integrable on
$(a,b)$ for all $y\in S$ and let
$c$ be an arbitrary point in $(a,b).$
Then
$\int_{a}^{b}f(x,y)\,dx$ is said to converge
uniformly on $S$ if $\int_{a}^{c}f(x,y)\,dx$ and
$\int_{c}^{b}f(x,y)\,dx$ both converge uniformly on $S.$
\end{definition}
We leave it to you
(Exercise~\ref{exer:4}) to show that this definition is independent
of $c$; that is, if
$\int_{a}^{c}f(x,y)\,dx$ and
$\int_{c}^{b}f(x,y)\,dx$ both converge uniformly on $S$ for
some
$c\in(a,b)$, then they both converge uniformly on $S$ for every
$c \in (a,b)$.
We also leave it you (Exercise~\ref{exer:5}) to show that if
$f$ is bounded
on $[a,b]\times [c,d]$ and $\int_{a}^{b}f(x,y)\,dx$
exists as a proper integral for each $y\in [c,d]$, then it converges
uniformly on $[c,d]$ according to all three
Definitions~\ref{definition:1}--\ref{definition:3}.
\begin{example} \label{example:5} \rm
Consider the improper integral
$$
F(y)=\int_{0}^{\infty}x^{-1/2}e^{-xy}\,dx,
$$
which diverges
if $y\le 0$ (verify). Definition~\ref{definition:3}
applies if $y>0$, so we consider the improper
integrals
$$
F_{1}(y)=\int_{0}^{1}x^{-1/2}e^{-xy}\,dx
\text{\quad and\quad}
F_{2}(y)=\int_{1}^{\infty}x^{-1/2}e^{-xy}\,dx
$$
separately. Moreover, we could just as well define
\begin{equation}\label{eq:16}
F_{1}(y)=\int_{0}^{c}x^{-1/2}e^{-xy}\,dx
\text{\quad and\quad}
F_{2}(y)=\int_{c}^{\infty}x^{-1/2}e^{-xy}\,dx,
\end{equation}
where $c$ is any positive number.
Definition~\ref{definition:2} applies to $F_{1}$.
If $0<r_{1}<r$ and $y\ge 0$, then
$$
\left|\int_{r}^{r_{1}}x^{-1/2}e^{-xy}\,dx\right| <
\int_{r_{1}}^{r}x^{-1/2}\,dx<2r^{1/2},
$$
so $F_{1}(y)$ converges for uniformly on $[0,\infty)$.
Definition~\ref{definition:1} applies to $F_{2}$. Since
$$
\left|\int_{r}^{r_{1}}x^{-1/2}e^{-xy}\,dx\right| < r^{-1/2}
\int_{r}^{\infty}e^{-xy}\,dx = \frac{e^{-ry}}{yr^{1/2}},
$$
$F_{2}(y)$ converges uniformly on $[\rho,\infty)$ if
$\rho>0$. It does not converge uniformly on
$(0,\rho)$, since the change of variable $u=xy$ yields
$$
\int_{r}^{r_{1}}x^{-1/2}e^{-xy}\,dx=y^{-1/2}
\int_{ry}^{r_{1}y}u^{-1/2}e^{-u}\,du,
$$
which, for any fixed $r>0$, can be made arbitrarily large
by taking $y$ sufficiently small and $r=1/y$. Therefore we
conclude that $F(y)$ converges uniformly on $[\rho,\infty)$
if $\rho>0.$
Note that that the constant $c$ in \eqref{eq:16} plays no role in this
argument.
\end{example}
\begin{example} \label{example:6} \rm
Suppose we take
\begin{equation} \label{eq:17}
\int_{0}^{\infty}\frac{\sin u}{u}\,du =\frac{\pi}{2}
\end{equation}
as given (Exercise~\ref{exer:31}{\bf(b)}). Substituting $u=xy$ with $y>0$
yields
\begin{equation} \label{eq:18}
\int_{0}^{\infty}\frac{\sin xy}{x}\,dx=\frac{\pi}{2},\quad y>0.
\end{equation}
What about uniform convergence?
Since $(\sin xy)/x$ is continuous at $x=0$, Definition~\ref{definition:1}
and Theorem~\ref{theorem:4} apply here.
If $0<r<r_{1}$ and $y>0$, then
$$
\int_{r}^{r_{1}}\frac{\sin xy}{x}\,dx=-\frac{1}{y}
\left(\frac{\cos xy}{x}\biggr|_{r}^{r_{1}}+
\int_{r}^{r_{1}}\frac{\cos xy}{x^{2}}\,dx\right),
\text{\, so\quad}
\left|\int_{r}^{r_{1}}\frac{\sin xy}{x}\,dx\right|<\frac{3}{ry}.
$$
Therefore \eqref{eq:18} converges uniformly on
$[\rho,\infty)$ if $\rho>0$. On the other hand, from \eqref{eq:17},
there is a $\delta>0$ such that
$$
\int_{u_{0}}^{\infty}\frac{\sin u}{u}\,du>\frac{\pi}{4}, \quad
0 \le u_{0}<\delta.
$$
This and \eqref{eq:18} imply that
$$
\int_{r}^{\infty}\frac{\sin xy}{x}\,dx=\int_{yr}^{\infty}\frac{\sin
u}{u}\,du
>\frac{\pi}{4}
$$
for any $r>0$ if $0 <y<\delta/r$. Hence, \eqref{eq:18}
does not converge uniformly on any interval $(0,\rho]$ with $\rho>0$.
\end{example}
\section{ Absolutely Uniformly Convergent Improper
Integrals}\label{section:absolutely}
\begin{definition}{\bf$($Absolute Uniform Convergence I$)$}
\label{definition:4}
The improper integral
$$
\int_{a}^{b}f(x,y)\,dx=\lim_{r\to b-}\int_{a}^{r}f(x,y)\,dx
$$
is said to converge absolutely uniformly on $S$ if the improper
integral
$$
\int_{a}^{b}|f(x,y)|\,dx=\lim_{r\to b-}\int_{a}^{r}|f(x,y)|\,dx
$$
converges uniformly on $S$; that is,
if, for each $\epsilon>0$,
there is an $r_{0}\in [a,b)$ such that
$$
\left|\int_{a}^{b}|f(x,y)|\,dx-\int_{a}^{r}|f(x,y)|\,dx\right|
<\epsilon, \quad y\in S,\quad
r_{0}<r<b.
$$
\end{definition}
To see that this definition makes sense, recall that if $f$ is
locally integrable on $[a,b)$ for all $y$ in $S$, then so is $|f|$
(Theorem~3.4.9, p.~161).
Theorem~\ref{theorem:4} with $f$ replaced by $|f|$ implies that
$\int_{a}^{b}f(x,y)\,dx$ converges absolutely uniformly on
$S$ if and only if, for each
$\epsilon>0$, there is an $r_{0}\in [a,b)$ such that
$$
\int_{r}^{r_{1}}|f(x,y)|\,dx<\epsilon,\quad y\in S,\quad
r_{0}\le r<r_{1}<b .
$$
Since
$$
\left|\int_{r}^{r_{1}}f(x,y)\,dx\right| \le
\int_{r}^{r_{1}}|f(x,y)|\,dx,
$$
Theorem~\ref{theorem:4} implies that if $\int_{a}^{b}f(x,y)\,dx$
converges absolutely uniformly on $S$ then it converges
uniformly on $S$.
\begin{theorem} \label{theorem:6}
{\bf$($
\href{http://www-history.mcs.st-and.ac.uk/Biographies/Weierstrass.html}
{Weierstrass}'s
Test for Absolute Uniform Convergence I$)$}
Suppose $M=M(x)$ is nonnegative on $[a,b),$
$\int_{a}^{b}M(x)\,dx<\infty,$ and
\begin{equation} \label{eq:19}
|f(x,y)| \le M(x), \quad y\in S,\quad
a\le x<b.
\end{equation}
Then $\int_{a}^{b}f(x,y)\,dx$
converges absolutely uniformly on $S.$
\end{theorem}
\proof
Denote $\int_{a}^{b}M(x)\,dx=L<\infty$. By definition,
for each $\epsilon>0$ there is an $r_{0}\in [a,b)$ such that
$$
L-\epsilon < \int_{a}^{r}M(x)\,dx \le L,\quad
r_{0}<r<b.
$$
Therefore, if $r_{0}< r\le r_{1},$ then
$$
0\le \int_{r}^{r_{1}}M(x)\,dx=\left(\int_{a}^{r_{1}}M(x)\,dx
-L\right)-
\left(\int_{a}^{r}M(x)\,dx -L\right)<\epsilon
$$
This and \eqref{eq:19} imply that
$$
\int_{r}^{r_{1}}|f(x,y)|\,dx\le
\int_{r}^{r_{1}} M(x)\,dx <\epsilon,\quad y\in S, \quad
a\le r_{0}<r<r_{1}<b.
$$
Now Theorem~\ref{theorem:4}
implies the stated conclusion. \endproof
\begin{example} \label{example:7} \rm
Suppose $g=g(x,y)$ is locally integrable on
$[0,\infty)$ for all $y\in S$
and, for some $a_{0}\ge 0$, there are constants $K$ and $p_{0}$ such that
$$
|g(x,y)| \le Ke^{p_{0}x},\quad y\in S, \quad x\ge a_{0}.
$$
If $p>p_{0}$ and $r\ge a_{0}$, then
\begin{eqnarray*}
\int_{r}^{\infty}e^{-px} |g(x,y)|\,dx &=&
\int_{r}^{\infty} e^{-(p-p_{0})x}e^{-p_{0}x}|g(x,y)|\,dx\\
&\le& K\int_{r}^{\infty} e^{-(p-p_{0})x}\,dx= \frac{K
e^{-(p-p_{0})r}}{p-p_{0}},
\end{eqnarray*}
so
$\int_{0}^{\infty}e^{-px} g(x,y)\,dx $
converges absolutely on $S$.
For example, since
$$
|x^{\alpha}\sin xy|<e^{p_{0}x}\text{\quad and \quad}
|x^{\alpha}\cos xy|<e^{p_{0}x}
$$
for $x$ sufficiently large if $p_{0}>0$, Theorem~\ref{theorem:4}
implies that
$\int_{0}^{\infty}e^{-px}x^{\alpha}\sin xy\,dx$
and
$\int_{0}^{\infty}e^{-px}x^{\alpha}\cos xy\,dx$
converge absolutely uniformly on $(-\infty,\infty)$ if $p>0$
and $\alpha~\ge~0$. As a matter of fact, $\int_{0}^{\infty}e^{-px}x^{\alpha}\sin xy\,dx$
converges absolutely on $(-\infty,\infty)$ if $p>0$ and
$\alpha>-1$. (Why?)
\end{example}
\begin{definition}{\bf$($Absolute Uniform Convergence II$)$}
\label{definition:5}
The improper integral
$$
\int_{a}^{b}f(x,y)\,dx=\lim_{r\to a+}\int_{r}^{b}f(x,y)\,dx
$$
is said to converge absolutely uniformly on $S$ if the improper
integral
$$
\int_{a}^{b}|f(x,y)|\,dx=\lim_{r\to a+}\int_{r}^{b}|f(x,y)|\,dx
$$
converges uniformly on $S$; that is,
if, for each $\epsilon>0$,
there is an $r_{0}\in (a,b]$ such that
$$
\left|\int_{a}^{b}|f(x,y)|\,dx-\int_{r}^{b}|f(x,y)|\,dx\right|
<\epsilon, \quad y\in S, \quad a<r<r_{0}\le b.
$$
\end{definition}
We leave it to you (Exercise~\ref{exer:7}) to prove the following theorem.
\begin{theorem} \label{theorem:7}
{\bf$($Weierstrass's Test for Absolute Uniform Convergence II$)$}
Suppose $M=M(x)$ is nonnegative on $(a,b],$ $\int_{a}^{b}M(x)\,dx<\infty,$
and
$$
|f(x,y)| \le M(x), \quad y\in S, \quad x\in (a,b].
$$
Then $\int_{a}^{b}f(x,y)\,dx$ converges absolutely uniformly on $S$.
\end{theorem}
\begin{example} \label{example:8} \rm
If $g=g(x,y)$ is locally integrable on $(0,1]$ for all $y\in S$
and
$$
|g(x,y)| \le Ax^{-\beta}, \quad 0<x \le x_{0},
$$
for each $y \in S$, then
$$
\int_{0}^{1} x^{\alpha}g(x,y)\,dx
$$
converges absolutely uniformly on $S$ if $\alpha>\beta-1$. To
see this, note that if $0<r< r_{1}\le x_{0}$, then
$$
\int_{r_{1}}^{r}x^{\alpha}|g(x,y)|\,dx \le A\int_{r_{1}}^{r}
x^{\alpha-\beta}\,dx=
\frac{Ax^{\alpha-\beta+1}}{\alpha-\beta+1}\biggr|_{r_{1}}^{r}<
\frac{Ar^{\alpha-\beta+1}}{\alpha-\beta+1}.
$$
Applying this with $\beta=0$ shows that
$$
F(y)=\int_{0}^{1} x^{\alpha}\cos xy\,dx
$$
converges absolutely uniformly on $(-\infty,\infty)$ if $\alpha>-1$
and
$$
G(y)=\int_{0}^{1}x^{\alpha}\sin xy \,dx
$$
converges absolutely uniformly on $(-\infty,\infty)$ if
$\alpha>-2$.
\end{example}
By recalling Theorem~4.4.15 (p.~246),
you can see why we associate Theorems~\ref{theorem:6} and
\ref{theorem:7}
with Weierstrass.
\section{Dirichlet's Tests} \label{section:dirichlet}
Weierstrass's test is useful and important, but it has a basic
shortcoming:
it applies only to absolutely uniformly convergent improper integrals.
The next theorem applies in some cases
where $\int_{a}^{b}f(x,y)\,dx$ converges uniformly on $S$,
but
$\int_{a}^{b}|f(x,y)|\,dx$ does not.
\begin{theorem} \label{theorem:8}
$(${\bf
\href{http://www-history.mcs.st-and.ac.uk/Biographies/Dirichlet.html}
{Dirichlet}'s
Test for Uniform Convergence I}$)$
If $g,$ $g_{x},$ and $h$ are continuous on $[a,b)\times S,$ then
$$
\int_{a}^{b}g(x,y)h(x,y)\,dx
$$
converges uniformly on $S$ if the following
conditions are satisfied$:$
\begin{alist}
\item % a
$\dst{\lim_{x\to b-}\left\{\sup_{y\in S}|g(x,y)|\right\}=0};$
\item % b
There is a constant $M$ such that
$$
\sup_{y\in S}\left|\int_{a}^{x}h(u,y)\,du\right|< M, \quad
a\le x<b;
$$
\item % c
$\int_{a}^{b}|g_{x}(x,y)|\,dx$ converges uniformly on $S.$
\end{alist}
\end{theorem}
\proof
If
\begin{equation} \label{eq:20}
H(x,y)=\int_{a}^{x}h(u,y)\,du,
\end{equation}
then integration by parts yields
\begin{eqnarray}
\int_{r}^{r_{1}}g(x,y)h(x,y)\,dx&=&\int_{r}^{r_{1}}g(x,y)H_{x}(x,y)\,dx
\nonumber\\
&=&g(r_{1},y)H(r_{1},y)-g(r,y)H(r,y)\label{eq:21}\\
&&-\int_{r}^{r_{1}}g_{x}(x,y)H(x,y)\,dx.
\nonumber
\end{eqnarray}
Since assumption {\bf(b)} and \eqref{eq:20} imply that
$|H(x,y)|\le M,$ $(x,y)\in (a,b]\times S$,
Eqn.~\eqref{eq:21} implies that
\begin{equation} \label{eq:22}
\left|\int_{r}^{r_{1}}g(x,y)h(x,y)\,dx\right|<
M\left(2\sup_{x\ge
r}|g(x,y)|+\int_{r}^{r_{1}}|g_{x}(x,y)|\,dx\right)
\end{equation}
on $[r,r_{1}]\times S$.
Now suppose $\epsilon>0$. From assumption {\bf (a)}, there is an
$r_{0} \in [a,b)$ such that $|g(x,y)|<\epsilon$ on $S$ if
$r_{0}\le x <b$.
From assumption {\bf(c)} and Theorem~\ref{theorem:6}, there is an
$s_{0}\in
[a,b)$ such that
$$
\int_{r}^{r_{1}}|g_{x}(x,y)|\,dx<\epsilon, \quad y\in S, \quad
s_{0}<r<r_{1}<b.
$$
Therefore
\eqref{eq:22} implies that
$$
\left|\int_{r}^{r_{1}}g(x,y)h(x,y)\right| < 3M\epsilon, \quad y\in S, \quad
\max(r_{0},s_{0})<r<r_{1}<b.
$$
Now Theorem~\ref{theorem:4} implies the stated conclusion.
\endproof
The statement of this theorem is complicated, but applying it isn't;
just look for a factorization $f=gh$, where $h$ has a bounded
antderivative
on $[a,b)$ and $g$ is ``small'' near $b$. Then integrate by
parts and hope that something nice happens. A similar comment applies
to Theorem~9, which follows.
\begin{example} \label{example:9} \rm
Let
$$
I(y)=\int_{0}^{\infty}\frac{\cos xy}{x+y}\,dx,\quad y>0.
$$
The obvious inequality
$$
\left|\frac{\cos xy}{x+y}\right|\le \frac{1}{x+y}
$$
is useless here, since
$$
\int_{0}^{\infty}\frac{dx}{x+y}=\infty.
$$
However, integration by parts yields
\begin{eqnarray*}
\int_{r}^{r_{1}}\frac{\cos xy}{x+y}\,dx
&=& \frac{\sin xy}{y(x+y)}\biggr|_{r}^{r_{1}}+
\int_{r}^{r_{1}}\frac{\sin xy}{y(x+y)^{2}}\,dx\\
&=&\frac{\sin r_{1}y}{y(r_{1}+y)}-\frac{\sin ry}{y(r+y)}
+\int_{r}^{r_{1}}\frac{\sin xy}{y(x+y)^{2}}\,dx.
\end{eqnarray*}
Therefore, if $0< r<r_{1}$, then
\begin{eqnarray*}
\left|\int_{r}^{r_{1}}\frac{\cos xy}{x+y}\,dx\right|<
\frac{1}{y}\left(\frac{2}{r+y}+\int_{r}^{\infty}\frac{1}{(x+y)^{2}}\right)
\le \frac{3}{y(r+y)^{2}}\le \frac{3}{\rho(r+\rho)}
\end{eqnarray*}
if $y\ge \rho>0$. Now Theorem~\ref{theorem:4} implies that $I(y)$
converges uniformly on $[\rho,\infty)$ if $\rho>0$.
\end{example}
We leave the proof of the following theorem to you (Exercise~\ref{exer:10}).
\begin{theorem} \label{theorem:9}
$(${\bf Dirichlet's Test for Uniform Convergence II}$)$
If $g,$ $g_{x},$ and $h$ are continuous on $(a,b]\times S,$ then
$$
\int_{a}^{b}g(x,y)h(x,y)\,dx
$$
converges uniformly on $S$ if the following
conditions are satisfied$:$
\begin{alist}
\item % a
$\dst{\lim_{x\to a+}\left\{\sup_{y\in S}|g(x,y)|\right\}=0};$
\item % b
There is a constant $M$ such that
$$
\sup_{y\in S}\left|\int_{x}^{b}h(u,y)\,du\right| \le M, \quad
a< x\le b;
$$
\item % c
$\int_{a}^{b}|g_{x}(x,y)|\,dx$ converges uniformly on $S$.
\end{alist}
\end{theorem}
By recalling Theorems~3.4.10 (p.~163), 4.3.20 (p.~217), and 4.4.16
(p.~248), you can see why we associate Theorems~\ref{theorem:8} and
\ref{theorem:9}
with Dirichlet.
\section{Consequences of uniform convergence}\label{section:consequences}
\begin{theorem} \label{theorem:10}
If $f=f(x,y)$ is continuous on either $[a,b)\times [c,d]$ or
$(a,b]\times [c,d]$ and
\begin{equation} \label{eq:23}
F(y)=\int_{a}^{b}f(x,y)\,dx
\end{equation}
converges uniformly on $[c,d],$ then $F$ is continuous on
$[c,d].$ Moreover$,$
\begin{equation} \label{eq:24}
\int_{c}^{d}\left(\int_{a}^{b}f(x,y)\,dx\right)\,dy
=\int_{a}^{b}\left(\int_{c}^{d}f(x,y)\,dy\right)\,dx.
\end{equation}
\end{theorem}
\proof We will assume that $f$ is continuous on $(a,b]\times [c,d]$.
You can consider the other case (Exercise~\ref{exer:14}).
We will first show that $F$ in \eqref{eq:23} is continuous on $[c,d]$.
Since $F$ converges uniformly on $[c,d]$,
Definition~\ref{definition:1}
(specifically, \eqref{eq:11})
implies that if $\epsilon>0$, there is an
$r \in [a,b)$ such that
$$
\left|\int_{r}^{b}f(x,y)\,dx\right|< \epsilon, \quad c \le y \le d.
$$
Therefore, if $c\le y, y_{0}\le d]$, then
\begin{eqnarray*}
|F(y)-F(y_{0})|&=&
\left|\int_{a}^{b}f(x,y)\,dx-\int_{a}^{b}f(x,y_{0})\,dx\right|\\
&\le&\left|\int_{a}^{r}[f(x,y)-f(x,y_{0})]\,dx\right|+
\left|\int_{r}^{b}f(x,y)\,dx\right|\\
&&+\left|\int_{r}^{b}f(x,y_{0})\,dx\right|,
\end{eqnarray*}
so
\begin{equation}\label{eq:25}
|F(y)-F(y_{0})|
\le \int_{a}^{r}|f(x,y)-f(x,y_{0})|\,dx +2\epsilon.
\end{equation}
Since $f$ is uniformly continuous on the compact set $[a,r]\times [c,d]$
(Corollary~5.2.14, p.~314), there is a
$\delta>0$ such that
$$
|f(x,y)-f(x,y_{0})|<\epsilon
$$
if $(x,y)$ and $(x,y_{0})$ are in $[a,r]\times [c,d]$ and
$|y-y_{0}|<\delta$. This and \eqref{eq:25} imply that
$$
|F(y)-F(y_{0})|<(r-a)\epsilon +2\epsilon<(b-a+2)\epsilon
$$
if $y$ and $y_{0}$ are in $[c,d]$ and $|y-y_{0}|<\delta$. Therefore $F$
is continuous on $[c,d]$, so the integral on left side of
\eqref{eq:24} exists. Denote
\begin{equation} \label{eq:26}
I=
\int_{c}^{d}\left(\int_{a}^{b}f(x,y)\,dx\right)\,dy.
\end{equation}
We will
show that the improper
integral on the right side of \eqref{eq:24} converges to $I$. To
this end, denote
$$
I(r)=
\int_{a}^{r}\left(\int_{c}^{d}f(x,y)\,dy\right)\,dx.
$$
Since we can reverse the order of integration of the
continuous function $f$ over the rectangle $[a,r]\times [c,d]$
(Corollary~7.2.2, p.~466),
$$
I(r)=\int_{c}^{d}\left(\int_{a}^{r}f(x,y)\,dx\right)\,dy.
$$
From this and \eqref{eq:26},
$$
I-I(r)=\int_{c}^{d}\left(\int_{r}^{b}f(x,y)\,dx\right)\,dy.
$$
Now suppose $\epsilon>0$. Since $\int_{a}^{b}f(x,y)\,dx$ converges
uniformly on $[c,d]$, there is an $r_{0}\in (a,b]$ such that
$$
\left|\int_{r}^{b}f(x,y)\,dx\right|<\epsilon, \quad
r_{0}<r<b,
$$
so $|I-I(r)|<(d-c)\epsilon$ if $r_{0}<r<b$. Hence,
$$
\lim_{r\to b-}\int_{a}^{r}\left(\int_{c}^{d}f(x,y)\,dy\right)\,dx=
\int_{c}^{d}\left(\int_{a}^{b}f(x,y)\,dx\right)\,dy,
$$
which completes the proof of \eqref{eq:24}. \endproof
\begin{example} \label{example:10} \rm
It is straightforward to verify that
$$
\int_{0}^{\infty}e^{-xy}\,dx=\frac{1}{y}, \quad y>0,
$$
and the convergence is uniform on $[\rho,\infty)$ if
$\rho>0$. Therefore Theorem~\ref{theorem:10} implies that
if $0<y_{1}<y_{2}$, then
\begin{eqnarray*}
\int_{y_{1}}^{y_{2}}\frac{\,dy}{y}&=&
\int_{y_{1}}^{y_{2}}\left( \int_{0}^{\infty}e^{-xy}\,dx\right)\,dy
=\int_{0}^{\infty}\left(\int_{y_{1}}^{y_{2}}e^{-xy}\,dy\right)\,dy \\
&=&\int_{0}^{\infty}\frac{e^{-xy_{1}}-e^{-xy_{2}}}{x}\,dx.
\end{eqnarray*}
Since
$$
\int_{y_{1}}^{y_{2}}\frac{dy}{y}=
\log\frac{y_{2}}{y_{1}}, \quad y_{2} \ge y_{1}>0,
$$
it follows that
$$
\int_{0}^{\infty}\frac{e^{-xy_{1}}-e^{-xy_{2}}}{x}\,dx=
\log\frac{y_{2}}{y_{1}}, \quad y_{2} \ge y_{1}>0.
$$
\end{example}
\begin{example} \label{example:11} \rm
From Example~\ref{example:6},
$$
\int_{0}^{\infty}\frac{\sin xy}{x}\,dx=\frac{\pi}{2}, \quad y>0,
$$
and the convergence is uniform on $[\rho,\infty)$ if $\rho>0$. Therefore,
Theorem~\ref{theorem:10} implies that if $0<y_{1}<y_{2}$, then
\begin{eqnarray}
\frac{\pi}{2}(y_{2}-y_{1})
&=&\int_{y_{1}}^{y_{2}}\left(\int_{0}^{\infty}\frac{\sin
xy}{x}\,dx\right)\,dy
=\int_{0}^{\infty}\left(\int_{y_{1}}^{y_{2}}\frac{\sin
xy}{x}\,dy\right)\,dx
\nonumber\\
&=&\int_{0}^{\infty}\frac{\cos xy_{1}-\cos xy_{2}}{x^{2}} \,dx.
\label{eq:27}
\end{eqnarray}
The last integral converges uniformly on $(-\infty,\infty)$
(Exercise 10{\bf(h)}), and is therefore continuous with respect to
$y_{1}$ on $(-\infty,\infty)$, by
Theorem~\ref{theorem:10}; in particular,
we can let $y_{1}\to0+$ in \eqref{eq:27} and replace $y_{2}$
by $y$ to obtain
$$
\int_{0}^{\infty} \frac{1-\cos xy}{x^{2}}\,dx=\frac{\pi y}{2}, \quad y
\ge 0.
$$
\end{example}
The next theorem is analogous to Theorem~4.4.20 (p.~252).
\begin{theorem} \label{theorem:11}
Let $f$ and $f_{y}$ be continuous on either
$[a,b)\times [c,d]$ or $(a,b]\times [c,d].$ Suppose that
the improper integral
$$
F(y)=\int_{a}^{b}f(x,y)\,dx
$$
converges for some $y_{0} \in [c,d]$ and
$$
G(y)=\int_{a}^{b}f_{y}(x,y)\,dx
$$
converges uniformly on $[c,d].$ Then $F$ converges
uniformly on $[c,d]$ and is given explicitly by
$$
F(y)=F(y_{0})+\int_{y_{0}}^{y} G(t)\,dt,\quad c\le y\le d.
$$
Moreover, $F$ is continuously differentiable on $[c,d]$; specifically,
\begin{equation} \label{eq:28}
F'(y)=G(y), \quad c \le y \le d,
\end{equation}
where $F'(c)$ and $f_{y}(x,c)$ are derivatives
from the right, and $F'(d)$ and $f_{y}(x,d)$ are
derivatives from the left$.$
\end{theorem}
\proof We will assume that $f$ and $f_{y}$ are continuous
on $[a,b)\times [c,d]$. You can consider the other case
(Exercise~\ref{exer:15}).
Let
$$
F_{r}(y)=\int_{a}^{r}f(x,y)\,dx, \quad a\le r<b, \quad c \le y \le d.
$$
Since $f$ and $f_{y}$ are continuous on $[a,r]\times [c,d]$,
Theorem~\ref{theorem:1} implies that
$$
F_{r}'(y)=\int_{a}^{r}f_{y}(x,y)\,dx, \quad c \le y \le d.
$$
Then
\begin{eqnarray*}
F_{r}(y)&=&F_{r}(y_{0})+\int_{y_{0}}^{y}\left(
\int_{a}^{r}f_{y}(x,t)\,dx\right)\,dt\\
&=&F(y_{0})+\int_{y_{0}}^{y}G(t)\,dt \\&&+(F_{r}(y_{0})-F(y_{0}))
-\int_{y_{0}}^{y}\left(\int_{r}^{b}f_{y}(x,t)\,dx\right)\,dt,
\quad c \le y \le d.
\end{eqnarray*}
Therefore,
\begin{eqnarray}
\left|F_{r}(y)-F(y_{0})-\int_{y_{0}}^{y}G(t)\,dt\right|& \le &
|F_{r}(y_{0})-F(y_{0})|\nonumber\\
&&+\left|\int_{y_{0}}^{y}
\int_{r}^{b}f_{y}(x,t)\,dx\right|\,dt.
\label{eq:29}
\end{eqnarray}
Now suppose $\epsilon>0$. Since we have assumed that
$\lim_{r\to b-}F_{r}(y_{0})=F(y_{0})$ exists,
there is an $r_{0}$
in $(a,b)$ such that
$$
|F_{r}(y_{0})-F(y_{0})|<\epsilon,\quad r_{0}<r<b.
$$
Since we have assumed that $G(y)$ converges for
$y\in[c,d]$, there is an $r_{1} \in [a,b)$ such that
$$
\left|\int_{r}^{b}f_{y}(x,t)\,dx\right|<\epsilon, \quad
t\in[c,d], \quad
r_{1}\le r<b.
$$
Therefore, \eqref{eq:29} yields
$$
\left|F_{r}(y)-F(y_{0})-\int_{y_{0}}^{y}G(t)\,dt\right|<
\epsilon(1+|y-y_{0}|) \le \epsilon(1+d-c)
$$
if $\max(r_{0},r_{1}) \le r <b$ and $t\in [c,d]$. Therefore $F(y)$
converges uniformly on $[c,d]$ and
$$
F(y)=F(y_{0})+\int_{y_{0}}^{y}G(t)\,dt, \quad c \le y \le d.
$$
Since $G$ is continuous on $[c,d]$ by
Theorem~\ref{theorem:10}, \eqref{eq:28}
follows from differentiating this (Theorem~3.3.11, p.~141). \endproof
\begin{example} \label{example:12} \rm
Let
$$
I(y)=\int_{0}^{\infty}e^{-yx^{2}}\,dx, \quad y>0.
$$
Since
$$
\int_{0}^{r}e^{-yx^{2}}\,dx=\frac{1}{\sqrt{y}}
\int_{0}^{r\sqrt{y}} e^{-t^{2}}\,dt,
$$
it follows that
$$
I(y)=\frac{1}{\sqrt{y}}\int_{0}^{\infty}e^{-t^{2}}\,dt,
$$
and the convergence is uniform on $[\rho,\infty)$ if $\rho>0$
(Exercise~\ref{exer:8}{\bf(i)}).
To evaluate the last integral, denote
$J(\rho)=\int_{0}^{\rho}e^{-t^{2}}\,dt$;
then
$$
J^{2}(\rho)=\left(\int_{0}^{\rho}e^{-u^{2}}\,du\right)
\left(\int_{0}^{\rho}e^{-v^{2}}\,dv\right)
=\int_{0}^{\rho}\int_{0}^{\rho}e^{-(u^{2}+v^{2})}\,du\,dv.
$$
Transforming to polar coordinates $r=r\cos\theta$, $v=r\sin\theta$
yields
$$
J^{2}(\rho)=\int_{0}^{\pi/2}\int_{0}^{\rho} re^{-r^{2}}\,dr\,d\theta
=\frac{\pi(1-e^{-\rho^{2}})}{4},
\text{\quad so\quad}
J(\rho)=\frac{\sqrt{\pi(1-e^{-\rho^{2}})}}{2}.
$$
Therefore
$$
\int_{0}^{\infty}e^{-t^{2}}\,dt=\lim_{\rho\to\infty}J(\rho)=
\frac{\sqrt{\pi}}{2}\text{\quad and\quad}
\int_{0}^{\infty}e^{-yx^{2}}\,dx= \frac{1}{2}\sqrt{\frac{\pi}{y}},
\quad y>0.
$$
Differentiating this $n$ times with respect to
$y$ yields
$$
\int_{0}^{\infty}x^{2n}e^{-yx^{2}}\,dx=
\frac{1\cdot3\cdots(2n-1)\sqrt{\pi}}{2^{n}y^{n+1/2}}\quad y>0,\quad
n=1,2,3, \dots,
$$
where Theorem~\ref{theorem:11} justifies the differentiation for every
$n$, since all these integrals
converge uniformly on $[\rho,\infty)$ if
$\rho>0$ (Exercise~\ref{exer:8}(i)).
\end{example}
Some advice for applying this theorem: Be sure to check first
that $F(y_{0})=\int_{a}^{b}f(x,y_{0})\,dx$ converges for at least one value
of
$y$. If so, differentiate $\int_{a}^{b}f(x,y)\,dx$ formally to obtain
$\int_{a}^{b}f_{y}(x,y)\,dx$. Then $F'(y)=\int_{a}^{b}f_{y}(x,y)\,dx$
if $y$ is in some interval on which this improper integral converges
uniformly.
\place %
\section{Applications to Laplace transforms} \label{section:laplace}
\medskip
The
\href{http://www-history.mcs.st-and.ac.uk/Biographies/Laplace.html}
{\emph{Laplace}}
\emph{transform} of a function $f$ locally integrable
on $[0,\infty)$ is
$$
F(s)=\int_{0}^{\infty}e^{-sx}f(x)\,dx
$$
for all $s$ such that integral converges. Laplace
transforms are widely applied in mathematics, particularly in solving
differential equations.
We leave it to you to prove the following theorem (Exercise~\ref{exer:26}).
\begin{theorem} \label{theorem:12}
Suppose $f$ is locally integrable on $[0,\infty)$ and
$|f(x)|\le M e^{s_{0}x}$ for sufficiently large $x$.
Then the Laplace
transform of $F$ converges uniformly on $[s_{1},\infty)$ if $s_{1}>s_{0}$.
\end{theorem}
\begin{theorem} \label{theorem:13}
If $f$ is continuous on $[0,\infty)$ and
$H(x)=\int_{0}^{\infty}e^{-s_{0}u}f(u)\,du$
is bounded on $[0,\infty),$ then the Laplace transform of $f$
converges uniformly on $[s_{1},\infty)$ if $s_{1}>s_{0}.$
\end{theorem}
\proof If $0\le r\le r_{1}$,
$$
\int_{r}^{r_{1}}e^{-sx}f(x)\,dx
=\int_{r}^{r_{1}}e^{-(s-s_{0})x}e^{-s_{0}x}f(x)\,dt
=\int_{r}^{r_{1}}e^{-(s-s_{0})t}H'(x)\,dt.
$$
Integration by parts yields
$$
\int_{r}^{r_{1}}e^{-sx}f(x)\,dt=e^{-(s-s_{0})x}H(x)\biggr|_{r}^{r_{1}}
+(s-s_{0})\int_{r}^{r_{1}}e^{-(s-s_{0})x} H(x)\,dx.
$$
Therefore, if $|H(x)|\le M$, then
\begin{eqnarray*}
\left|\int_{r}^{r_{1}}e^{-sx}f(x)\,dx\right|&\le&
M\left|e^{-(s-s_{0})r_{1}}
+e^{-(s-s_{0})r} +(s-s_{0})\int_{r}^{r_{1}}e^{-(s-s_{0})x}\,dx\right|\\
&\le &3Me^{-(s-s_{0})r}\le 3Me^{-(s_{1}-s_{0})r},\quad s\ge s_{1}.
\end{eqnarray*}
Now Theorem~\ref{theorem:4} implies that $F(s)$ converges uniformly
on $[s_{1},\infty)$.
The following theorem draws a considerably stonger conclusion from
the same assumptions.
\begin{theorem} \label{theorem:14}
If $f$ is continuous on $[0,\infty)$ and
$$
H(x)=\int_{0}^{x}e^{-s_{0}u}f(u)\,du
$$
is bounded on $[0,\infty),$ then the Laplace transform of $f$
is infinitely differentiable on $(s_{0},\infty),$ with
\begin{equation} \label{eq:30}
F^{(n)}(s)=(-1)^{n}\int_{0}^{\infty} e^{-sx} x^{n}f(x)\,dx;
\end{equation}
that is, the $n$-th derivative of the Laplace transform of $f(x)$ is the
Laplace transform of $(-1)^{n}x^{n}f(x)$.
\end{theorem}
\proof
First we will
show that the integrals
$$
I_{n}(s)=\int_{0}^{\infty}e^{-sx}x^{n}f(x)\,dx,\quad n=0,1,2, \dots
$$
all converge uniformly on $[s_{1},\infty)$ if
$s_{1}>s_{0}$. If $0<r<r_{1}$, then
$$
\int_{r}^{r_{1}}e^{-sx}x^{n}f(x)\,dx=
\int_{r}^{r_{1}}e^{-(s-s_{0})x}e^{-s_{0}x}x^{n}f(x)\,dx
=\int_{r}^{r_{1}}e^{-(s-s_{0})x}x^{n}H'(x)\,dx.
$$
Integrating by parts yields
\begin{eqnarray*}
\int_{r}^{r_{1}}e^{-sx}x^{n}f(x)\,dx
&=&r_{1}^{n}e^{-(s-s_{0})r_{1}}H(r)-r^{n}e^{-(s-s_{0})r}H(r)\\
&&-\int_{r}^{r_{1}}H(x)\left(e^{-(s-s_{0})x}x^{n}\right)'\,dx,
\end{eqnarray*}
where $'$ indicates differentiation with respect to $x$. Therefore, if
$|H(x)|\le M\le \infty$ on $[0,\infty)$, then
$$
\left|\int_{r}^{r_{1}}e^{-sx}x^{n}f(x)\,dx\right|\le
M\left(e^{-(s-s_{0})r}r^{n}+e^{-(s-s_{0})r}r^{n}
+\int_{r}^{\infty}|(e^{-(s-s_{0})x})x^{n})'|\,dx\right).
$$
Therefore, since $e^{-(s-s_{0})r}r^{n}$ decreases monotonically on
$(n,\infty)$ if $s>s_{0}$
(check!),
$$
\left|\int_{r}^{r_{1}}e^{-sx}x^{n}f(x)\,dx\right|<3Me^{-(s-s_{0})r}r^{n},\quad
n<r<r_{1},
$$
so Theorem~\ref{theorem:4} implies that $I_{n}(s)$ converges
uniformly $[s_{1},\infty)$ if $s_{1}>s_{0}$. Now
Theorem~\ref{theorem:11} implies
that $F_{n+1}=-F_{n}'$, and an easy induction proof yields \eqref{eq:30}
(Exercise~\ref{exer:25}).
\endproof
\begin{example} \label{example:13} \rm
Here we apply Theorem~\ref{theorem:12} with $f(x)=\cos ax$ ($a\ne0$) and
$s_{0}=0$. Since
$$
\int_{0}^{x}\cos au\,du=\frac{\sin ax}{a}
$$
is bounded on $(0,\infty)$, Theorem~\ref{theorem:12} implies that
$$
F(s)=\int_{0}^{\infty}e^{-sx}\cos ax\,dx
$$
converges and
\begin{equation} \label{eq:31}
F^{(n)}(s)=(-1)^{n}\int_{0}^{\infty}e^{-sx}x^{n}\cos ax\,dx, \quad s>0.
\end{equation}
(Note that this is also true if $a=0$.) Elementary integration
yields
$$
F(s)=\frac{s}{s^{2}+a^{2}}.
$$
Hence, from \eqref{eq:31},
$$
\int_{0}^{\infty}e^{-sx}x^{n}\cos ax=(-1)^{n}\frac{d^n}{ds^n}
\frac{s}{s^{2}+a^{2}}, \quad n=0,1, \dots.
$$
\end{example}
\newpage
\section{Exercises}
\begin{exerciselist}
\item\label{exer:1}
Suppose $g$ and $h$ are differentiable on $[a,b]$, with
$$
a \le g(y) \le b \text{\quad and\quad} a \le h(y) \le b, \quad
c \le y \le d.
$$
Let $f$ and $f_{y}$ be continuous on $[a,b]\times [c,d]$. Derive
\emph{Liebniz's rule}:
\begin{eqnarray*}
\frac{d}{dy}\int_{g(y)}^{h(y)}f(x,y)\,dx
&=&f(h(y),y)h'(y)-f(g(y),y)g'(y)\\&&+\int_{g(y)}^{h(y)}f_{y}(x,y)\,dx.
\end{eqnarray*}
(Hint: Define $H(y,u,v)=\int_{u}^{v}f(x,y)\,dx$ and use the chain
rule.)
\item\label{exer:2}
Adapt the proof of Theorem~\ref{theorem:2} to prove
Theorem~\ref{theorem:3}.
\item\label{exer:3}
Adapt the proof of Theorem~\ref{theorem:4} to prove
Theorem~\ref{theorem:5}.
\item\label{exer:4}
Show that Definition~\ref{definition:3} is independent
of $c$; that is, if
$\int_{a}^{c}f(x,y)\,dx$ and
$\int_{c}^{b}f(x,y)\,dx$ both converge uniformly on $S$ for
some
$c\in (a,b)$, then they both converge uniformly on $S$
and every
$c\in
(a,b)$.
\item\label{exer:5}
\begin{alist}
\item % a
Show that if $f$ is bounded on $[a,b]\times [c,d]$ and
$\int_{a}^{b}f(x,y)\,dx$ exists as a proper integral for each
$y\in [c,d]$, then it converges uniformly on $[c,d]$
according to all of
Definition~\ref{definition:1}--\ref{definition:3}.
\item % b
Give an example to show that the boundedness of $f$ is essential
in {\bf(a)}.
\end{alist}
\item\label{exer:6}
Working directly from Definition~\ref{definition:1}, discuss uniform
convergence of the following integrals:
\begin{tabular}{ll}
{\bf(a)}
$\dst{\int_{0}^{\infty}\frac{dx}{1+y^{2}x^{2}}\,dx}$ &
{\bf(b)} $\dst{\int_{0}^{\infty}e^{-xy}x^{2}\,dx}$ \\ \\
{\bf(c)} $\dst{\int_{0}^{\infty}x^{2n}e^{-yx^{2}}\,dx}$ &
{\bf(d)} $\dst{\int_{0}^{\infty}\sin xy^{2}\,dx}$ \\\\
{\bf(e)} $\dst{\int_{0}^{\infty}(3y^{2}-2xy)e^{-y^{2}x}\,dx}$ &
{\bf(f)} $\dst{\int_{0}^{\infty}(2xy-y^{2}x^{2})e^{-xy}\,dx}$
\end{tabular}
\item\label{exer:7}
Adapt the proof of Theorem~\ref{theorem:6} to prove
Theorem~\ref{theorem:7}.
\item\label{exer:8}
Use Weierstrass's test to show that the integral converges uniformly
on $S:$
\begin{alist}
\item % a
$\dst{\int_{0}^{\infty}e^{-xy}\sin x\,dx}$,\quad
$S=[\rho,\infty)$,\quad $\rho>0$
\item % b
$\dst{\int_{0}^{\infty}\dst{\frac{\sin x}{x^{y}}}\,dx}$,\quad
$S=[c,d]$, \quad $1<c<d<2$
\item % c
$\dst{\int_{1}^{\infty}e^{-px}\dst{\frac{\sin xy}{x}}\,dx}$,\quad
$p>0$,\quad
$S=(-\infty,\infty)$
\item % d
$\dst{\int_{0}^{1}\frac{e^{xy}}{(1-x)^{y}}}\,dx$, \quad
$S=(-\infty,b)$,\quad $b<1$
\item % e
$\dst{\int_{-\infty}^{\infty}\frac{\cos xy}{1+x^{2}y^{2}}}\,dx$,\quad
$S=(-\infty,-\rho]\cup[\rho,\infty)$,\quad $\rho>0$.
\item % f
$\dst{\int_{1}^{\infty}e^{-x/y}\,dx}$,\quad
$S=[\rho,\infty)$,\quad $\rho>0$
\item % g
$\dst{\int_{-\infty}^{\infty}e^{xy}e^{-x^{2}}\,dx}$,\quad
$S=[-\rho,\rho]$,\quad $\rho>0$
\item % h
$\dst{\int_{0}^{\infty}\frac{\cos xy-\cos ax}{x^{2}}\,dx}$,\quad
$S=(-\infty,\infty)$
\item % i
$\dst{\int_{0}^{\infty}x^{2n}e^{-yx^{2}}\,dx}$,\quad
$S=[\rho,\infty)$,\quad $\rho>0$, \quad $n=0$, $1$, $2$,\dots
\end{alist}
\item\label{exer:9}
\begin{alist}
\item % a
Show that
$$
\Gamma(y)=\int_{0}^{\infty} x^{y-1}e^{-x}\,dx
$$
converges if $y>0$, and uniformly on $[c,d]$ if $0<c<d<\infty$.
\item % b
Use integration by parts to show that
$$
\Gamma(y)=\frac{\Gamma(y+1)}{y},\quad y \ge 0,
$$
and then show by induction that
$$
\Gamma(y)=\frac{\Gamma(y+n)}{y(y+1)\cdots(y+n-1)}, \quad y>0, \quad
n=1,2,3, \dots.
$$
How can this be used to define $\Gamma(y)$ in a natural way for all
$y\ne0$, $-1$, $-2$, \dots? (This function is called the \emph{gamma
function}.)
\item % c
Show that $\Gamma(n+1)=n!$ if $n$ is a positive integer.
\item % d
Show that
$$
\int_{0}^{\infty}e^{-st}t^{\alpha}\,dt =s^{-\alpha-1}\Gamma(\alpha+1), \quad
\alpha>-1, \quad s>0.
$$
\end{alist}
\item\label{exer:10}
Show that Theorem~\ref{theorem:8} remains valid with
assumption {\bf(c)} replaced
by the assumption that $|g_{x}(x,y)|$ is monotonic with respect to $x$
for all $y\in S$.
\item\label{exer:11}
Adapt the proof of Theorem~\ref{theorem:8} to prove
Theorem~\ref{theorem:9}.
\item\label{exer:12}
Use Dirichlet's test to show
that the following
integrals converge uniformly on $S=[\rho,\infty)$ if $\rho>0$:
\begin{tabular}{ll}
{\bf(a)} $\dst{\int_{1}^{\infty}\frac{\sin xy}{x^{y}}\,dx}$&
{\bf(b)} $\dst{\int_{2}^{\infty}\frac{\sin xy}{\log x}\,dx}$\\\\
{\bf(c)} $\dst{\int_{0}^{\infty}\frac{\cos xy}{x+y^{2}}\,dx}$&
{\bf(d)} $\dst{\int_{1}^{\infty}\frac{\sin xy}{1+xy}\,dx}$
\end{tabular}
\item\label{exer:13}
Suppose $g,$ $g_{x}$ and $h$ are continuous on $[a,b)\times
S,$ and denote $H(x,y)=\int_{a}^{x}h(u,y)\,du,$ $a\le x<b.$ Suppose also
that
$$
\lim_{x\to b-} \left\{\sup_{y\in S}|g(x,y)H(x,y)|\right\}=0
\text{\quad and \quad}\int_{a}^{b}g_{x}(x,y)H(x,y)\,dx
$$
converges uniformly on $S.$ Show
that $\int_{a}^{b}g(x,y)h(x,y)\,dx$ converges uniformly on $S$.
\item\label{exer:14}
Prove Theorem~\ref{theorem:10} for the case where $f=f(x,y)$
is continuous on $(a,b]\times [c,d]$.
\item\label{exer:15}
Prove Theorem~\ref{theorem:11} for the case where $f=f(x,y)$
is continuous on $(a,b]\times [c,d]$.
\item\label{exer:16}
Show that
$$
C(y)=\int_{-\infty}^{\infty}f(x)\cos xy\,dx
\text{\quad and\quad}
S(y)=\int_{-\infty}^{\infty}f(x)\sin xy\,dx
$$
are continuous on $(-\infty,\infty)$ if
$$
\int_{-\infty}^{\infty}|f(x)|\,dx<\infty.
$$
\item\label{exer:17}
Suppose $f$ is continuously differentiable on $[a,\infty)$,
$\lim_{x\to\infty}f(x)=0$, and
$$
\int_{a}^{\infty}|f'(x)|\,dx<\infty.
$$
Show that the functions
$$
C(y)=\int_{a}^{\infty}f(x)\cos xy\,dx
\text{\quad and\quad}
S(y)=\int_{a}^{\infty}f(x)\sin xy\,dx
$$
are continuous for all $y\ne0$. Give an example showing that they need
not be continuous at $y=0$.
\item\label{exer:18}
Evaluate $F(y)$ and use Theorem~\ref{theorem:11} to
evaluate $I$:
\begin{alist}
\item % a
$F(y)=\dst{\int_{0}^{\infty}\frac{dx}{1+y^{2}x^{2}}}$,
$y\ne0$;\quad
$I=\dst{\int_{0}^{\infty}\frac{\tan^{-1}ax-\tan^{-1}bx}{x}\,dx}$,\quad
$a$, $b>0$
\item % b
$F(y)=\dst{\int_{0}^{\infty}x^{y}\,dx}$,
$y>-1$;\quad
$I=\dst{\int_{0}^{\infty}\frac{x^{a}-x^{b}}{\log x}\,dx}$,
\quad $a$, $b>-1$
\item % c
$F(y)=\dst{\int_{0}^{\infty}e^{-xy}\cos x\,dx}$,\quad
$y>0$
$I=\dst{\int_{0}^{\infty}\frac{e^{-ax}-e^{-bx}}{x}\cos x\,dx}$,\quad
$a$, $b>0$
\item % d
$F(y)=\dst{\int_{0}^{\infty}e^{-xy}\sin x\,dx}$, \quad
$y>0$
$I=\dst{\int_{0}^{\infty}\frac{e^{-ax}-e^{-bx}}{x}\sin x\,dx}$,
\quad $a$, $b>0$
\item % e
$F(y)=\dst{\int_{0}^{\infty}e^{-x}\sin xy\,dx}$;\,
$I=\dst{\int_{0}^{\infty}e^{-x}\dst\frac{1-\cos ax}{x}}\,dx$
\item % f
$F(y)=\dst{\int_{0}^{\infty}e^{-x}\cos xy\,dx}$;\,
$I=\dst{\int_{0}^{\infty}e^{-x}\dst\frac{\sin ax}{x}}\,dx$
\end{alist}
\item\label{exer:19}
Use Theorem~\ref{theorem:11} to evaluate:
\begin{alist}
\item % a
$\dst{\int_{0}^{1}(\log x)^{n}x^{y}\,dx}$, \quad $y>-1$,\quad $n=0$, $1$,
$2$,\dots .
\item % b
$\dst{\int_{0}^{\infty}\dst{\frac{dx}{(x^{2}+y)^{n+1}}}\,dx}$,\quad
$y>0$,\quad
$n=0$,
$1$, $2$, \dots.
\item % c
$\dst{\int_{0}^{\infty}x^{2n+1}e^{-yx^{2}}\,dx}$, \quad $y>0$, \quad
$n=0$,
$1$,
$2$,\dots.
\item % e
$\dst{\int_{0}^{\infty}xy^{x}\,dx}$, \quad $0<y<1$.
\end{alist}
\item\label{exer:20}
\begin{alist}
\item % a
Use Theorem~\ref{theorem:11} and integration by parts
to show that
$$
F(y)=\int_{0}^{\infty}e^{-x^{2}}\cos 2xy\,dx
$$
satisfies
$$
F'+2y F=0.
$$
\item % b
Use part {\bf(a)} to show that
$$
F(y)=\frac{\sqrt{\pi}}{2} e^{-y^{2}}.
$$
\end{alist}
\item\label{exer:21}
Show that
$$
\int_{0}^{\infty}e^{-x^{2}}\sin 2xy\,dx =e^{-y^{2}}\int_{0}^{y}
e^{u^{2}}\,du.
$$
(Hint: See Exercise~~\ref{exer:20}.)
\item\label{exer:22}
State a condition implying that
$$
C(y)=\int_{a}^{\infty}f(x)\cos xy\,dx
\text{\quad and\quad}
S(y)=\int_{a}^{\infty}f(x)\sin xy\,dx
$$
are $n$ times differentiable on for all $y\ne0$.
(Your condition should imply the hypotheses of Exercise~\ref{exer:16}.)
\item\label{exer:23}
Suppose $f$ is continuously differentiable on $[a,\infty)$,
$$
\int_{a}^{\infty}|(x^{k}f(x))'|\,dx<\infty,\quad 0\le k\le n,
$$
and $\lim_{x\to\infty}x^{n}f(x)=0$. Show that if
$$
C(y)=\int_{a}^{\infty}f(x)\cos xy\,dx
\text{\quad and\quad}
S(y)=\int_{a}^{\infty}f(x)\sin xy\,dx,
$$
then
$$
C^{(k)}(y)=\int_{a}^{\infty}x^{k}f(x)\cos xy\,dx
\text{\quad and\quad}
S^{(k)}(y)=\int_{a}^{\infty}x^{k}f(x)\sin xy\,dx,
$$
$0\le k\le n$.
\item\label{exer:24}
Differentiating
$$
F(y)=\int_{1}^{\infty}\cos\frac{y}{x}\,dx
$$
under the integral sign yields
$$
-\int_{1}^{\infty}\frac{1}{x}\sin\frac{y}{x}\,dx,
$$
which converges uniformly on any finite interval.
(Why?) Does this imply that $F$ is differentiable for all $y$?
\item\label{exer:25}
Show that Theorem~\ref{theorem:11} and induction imply
Eq.~\eqref{eq:30}.
\item\label{exer:26}
Prove Theorem~\ref{theorem:12}.
\item\label{exer:27} Show that if $F(s)=\int_{0}^{\infty}e^{-sx}f(x)\,dx$
converges for $s=s_{0}$, then it converges uniformly on $[s_{0},\infty)$.
(What's the difference between this and Theorem~\ref{theorem:13}?)
\item\label{exer:28}
Prove: If $f$ is continuous on $[0,\infty)$ and
$\int_{0}^{\infty}e^{-s_{0}x}f(x)\,dx$ converges, then
$$
\lim_{s\to s_{0}+}\int_{0}^{\infty}e^{-sx}f(x)\,dx=
\int_{0}^{\infty}e^{-s_{0}x}f(x)\,dx.
$$
(Hint: See the proof of Theorem~4.5.12, p.~273.)
\item\label{exer:29} Under the assumptions of Exercise~\ref{exer:28},
show that
$$
\lim_{s\to s_{0}+}\int_{r}^{\infty}e^{-sx}f(x)\,dx=
\int_{r}^{\infty}e^{-s_{0}x}f(x)\,dx,\quad r>0.
$$
\item\label{exer:30}
Suppose $f$ is continuous on $[0,\infty)$ and
$$
F(s)=\int_{0}^{\infty}e^{-sx}f(x)\,dx
$$
converges for $s = s_{0}$. Show that $\lim_{s\to\infty}F(s)=0$.
(Hint: Integrate by parts.)
\item\label{exer:31}
\begin{alist}
\item % a
Starting from the result of
Exercise~\ref{exer:18}{\bf(d)}, let $b\to\infty$
and invoke Exercise~\ref{exer:30} to evaluate
$$
\int_{0}^{\infty}e^{-ax} \frac{\sin x}{x}\,dx, \quad a>0.
$$
\item % b
Use {\bf(a)} and Exercise~\ref{exer:28} to show
that
$$
\int_{0}^{\infty} \frac{\sin x}{x}\,dx =\frac{\pi}{2}.
$$
\end{alist}
\item\label{exer:32}
\begin{alist}
\item % a
Suppose $f$ is continuously differentiable on $[0,\infty)$ and
$$
|f(x)| \le Me^{s_{0}x}, \quad 0\le x\le \infty.
$$
Show that
$$
G(s)=\int_{0}^{\infty} e^{-sx}f'(x)\,dx
$$
converges uniformly on $[s_{1},\infty)$ if $s_{1}>s_{0}$.
(Hint: Integrate by parts.)
\item % b
Show from part {\bf(a)} that
$$
G(s)=\int_{0}^{\infty} e^{-sx}xe^{x^{2}}\sin e^{x^{2}}\,dx
$$
converges uniformly on $[\rho,\infty)$ if $\rho>0$. (Notice
that
this does not follow from Theorem~\ref{theorem:6} or \ref{theorem:8}.)
\end{alist}
\item\label{exer:33}
Suppose $f$ is continuous on $[0,\infty)$,
$$
\lim_{x\to0+}\frac{f(x)}{x}
$$
exists, and
$$
F(s)=\int_{0}^{\infty}e^{-sx}f(x)\,dx
$$
converges for $s=s_{0}$. Show that
$$
\int_{s_{0}}^{\infty}F(u)\,du=\int_{0}^{\infty}e^{-s_{0}x}\frac{f(x)}{x}\,dx.
$$
\end{exerciselist}
\newpage
\bigskip
\section{Answers to selected exercises}\label{section:answers}
\bigskip
\noindent
{\bf\ref{exer:5}. (b)} If $f(x,y)=1/y$ for $y\ne0$ and $f(x,0)=1$, then
$\int_{a}^{b}f(x,y)\,dx$ does not converge uniformly on
$[0,d]$ for any $d>0$.
\bigskip
\noindent
{\bf\ref{exer:6}.}
{\bf(a)}, {\bf(d)}, and {\bf(e)} converge uniformly on
$(-\infty,\rho]\cup[\rho,\infty)$ if $\rho>0$;\, {\bf(b)}, {\bf(c)},
and {\bf(f)} converge uniformly on $[\rho,\infty)$ if
$\rho>0$.
\bigskip
\noindent
{\bf\ref{exer:17}.}
Let $C(y)=\dst{\int_{1}^{\infty}\frac{\cos xy}{x}\,dx}$ and
$S(y)=\dst{\int_{1}^{\infty}\frac{\sin xy}{x}\,dx}$. Then
$C(0)=\infty$ and $S(0)=0$, while $S(y)=\pi/2$ if $y\ne0$.
\bigskip
\noindent
{\bf\ref{exer:18}.}
{\bf(a)}
$F(y)=\dst{\frac{\pi}{2|y|}}$;\quad $I=\dst{\frac{\pi}{2}\log\frac{a}{b}}$
\quad
{\bf(b)} $F(y)=\dst{\frac{1}{y+1}}$;\quad $I=\dst{\log\frac{a+1}{b+1}}$
\bigskip
{\bf(c)}
$F(y)=\dst{\frac{y}{y^{2}+1}}$;\quad
$I=\dst{\frac{1}{2}\,\frac{b^{2}+1}{a^{2}+1}}$
{\bf(d)}
$F(y)=\dst{\frac{1}{y^{2}+1}}$;\quad $I=\tan^{-1}b-\tan^{-1}a$
{\bf(e)}
$F(y)=\dst{\frac{y}{y^{2}+1}}$;\quad $I=\dst{\frac{1}{2}}\log(1+a^{2})$
{\bf(f)}
$F(y)=\dst{\frac{1}{y^{2}+1}}$;\quad $I=\tan^{-1}a$
\bigskip
\noindent
{\bf\ref{exer:19}.}
{\bf(a)} $(-1)^{n}n!(y+1)^{-n-1}$ \quad
{\bf(b)} $\pi2^{-2n-1}\dst{\binom{2n}{n}}y^{-n-1/2}$
{\bf(c)} $\dst{\frac{n!}{2y^{n+1}}}$ $(\log y)^{-2}$
{\bf(d)} $\dst{\frac{1}{(\log x)^{2}}}$
\noindent
{\bf\ref{exer:22}.}
$\dst{\int_{-\infty}^{\infty}|x^{n}f(x)|\,dx<\infty}$
\bigskip
\noindent
{\bf\ref{exer:24}.}
No; the integral defining $F$ diverges for all $y$.
\bigskip
\noindent
{\bf\ref{exer:31}.}
{\bf(a)}\, $\dst{\frac{\pi}{2}}-\tan^{-1}a$
\end{document}
\newpage
\setlength{\parindent}{0pt}
\centerline{\large Beginning of manual}
{\bf 1.}
If
$H(y,u,v)=\dst{\int_{u}^{v}f(x,y)\,dx}$
then
$$
H_{u}(y,u,v)=-f(u,y),
\quad H_{v}(y,u,v)=f(v,y),
$$
and, by Theorem~1,
$H_{y}(u,v,y) =\dst{\int_{u}^{v}f_{y}(x,y)\,dx}$.
If
$$
F(y)=H(y,g(y),h(y))=\int_{g(y)}^{h(y)}f(x,y)\,dx,
$$
then
\begin{eqnarray*}
F'(y)&=&H_{v}(y, g(y),h(y))h'(y)+H_{u}(y,g(y),h(y))g'(y)+
H_{y}(y,g(y),h(y))\\
&=& f(h(y),y)h'(y)-f(g(y),y)g'(y)
+\int_{g(y)}^{h(y)} f_{y}(x,y)\,dx.
\end{eqnarray*}
\medskip
{\bf 2.}
{\bf Theorem 3 (Cauchy Criterion for Convergence of an Improper
Integral II)} \it
Suppose $g$ is
integrable on every finite closed subinterval of $(a,b]$ and denote
$$
G(r)=\int_{r}^{b}g(x)\,dx,\quad a< r\le b.
$$
Then the improper integral $\int_{a}^{b}g(x)\,dx$ converges if and only
if$,$ for each
$\epsilon >0,$ there is an $r_{0}\in(a,b]$ such that
\begin{equation}\tag{A}
|G(r)-G(r_{1})|\le\epsilon,\quad a<r,r_{1}\le r_{0}.
\end{equation} \rm
\proof For necessity, suppose $\int_{a}^{b}g(x)\,dx=L$. By definition,
this means that for each $\epsilon>0$ there is an $r_{0}\in (a,b]$
such that
$$
|G(r)-L|<\frac{\epsilon}{2}
\text{\quad and\quad}
|G(r_{1})-L|<\frac{\epsilon}{2}, \quad
a< r,r_{1}\le r_{0}.
$$
Therefore,
\begin{eqnarray*}
|G(r)-G(r_{1})|&=&|(G(r)-L)-(G(r_{1})-L)|\\
&\le& |G(r)-L|+|G(r_{1})-L|\le
\epsilon,\quad
a< r,r_{1}\le r_{0}.
\end{eqnarray*}
For sufficiency, (A) implies that
$$
|G(r)|= |G(r_{1})+(G(r)-G(r_{1}))|\le |G(r_{1})|+|G(r)-G(r_{1})|\le
|G(r_{1})|+\epsilon,
$$
$a< r_{1}\le r_{0}$. Since $G$ is also bounded on the
compact set
$[r_{0},b]$ (Theorem~5.2.11, p.~313), $G$ is bounded on $(a,b]$.
Therefore the monotonic functions
$$
\overline{G}(r)=\sup\set{G(r_{1})}{a<r_{1}\le r} \text{\quad and\quad}
\underline{G}(r)=\inf\set{G(r_{1})}{a<r_{1}\le r}
$$
are well defined on $(a,b]$, and
$$
\lim_{r\to a+}\overline{G}(r)=\overline{L}
\text{\quad and\quad}
\lim_{r\to a+}\underline{G}(r)=\underline{L}
$$
both exist and are finite (Theorem~2.1.11, p.~47).
From (A),
\begin{eqnarray*}
|G(r)-G(r_{1})|&=&|(G(r)-G(r_{0}))-(G(r_{1})-G(r_{0}))|\\
&\le &|G(r)-G(r_{0})|+|G(r_{1})-G(r_{0})|\le 2\epsilon,
\end{eqnarray*}
so
$\overline{G}(r)-\underline{G}(r)\le 2\epsilon$.
Since
$\epsilon$ is an arbitrary positive number, this implies that
$$
\lim_{r\to a+}(\overline{G}(r)-\underline{G}(r))=0,
$$
so $\overline{L}=\underline{L}$. Let $L=\overline{L}=\underline{L}$.
Since
$$
\underline{G}(r)\le G(r)\le \overline{G}(r),
$$
it follows that $\lim_{r\to a+} G(r)=L$.
\medskip
{\bf 3.}
{\bf Theorem~5 $($Cauchy Criterion for Uniform
Convergence II$)$} \it
The improper integral
$$
\int_{a}^{b}f(x,y)\,dx =\lim_{r\to a+}\int_{r}^{b}f(x,y)\,dx
$$
converges uniformly on $S$ if and only if$,$
for each $\epsilon>0,$ there is
an $r_{0}\in (a,b]$ such that
\begin{equation}\tag{A}
\left|\int_{r_{1}}^{r}f(x,y)\,dx\right|< \epsilon, \quad y\in S,
\quad a <r,r_{1}\le r_{0}.
\end{equation}
\rm
\proof Suppose $\int_{a}^{b} f(x,y)\,dx$ converges uniformly on
$S$ and $\epsilon>0$.
From Definition~2,
there is an
$r_{0}\in (a,b]$ such that
\begin{equation} \tag{B}
\left|\int_{a}^{r}f(x,y)\,dx\right| <\frac{\epsilon}{2}
\text{\quad and\quad}
\left|\int_{a}^{r_{1}}f(x,y)\,dx\right|
<\frac{\epsilon}{2},\, y\in S, \, a< r,r_{1}\le r_{0}.
\end{equation}
Since
$$
\int_{r_{1}}^{r}f(x,y)\,dx=
\int_{r_{1}}^{b}f(x,y)\,dx-
\int_{r}^{b}f(x,y)\,dx
$$
(B) and the triangle inequality imply (A).
For the converse, denote
$$
F(y)=\int_{r}^{b}f(x,y)\,dx.
$$
Since (A) implies that
$$
|F(r,y)-F(r_{1},y)|\le \epsilon, \quad y\in S, \quad
a< r, r_{1}\le r_{0},
$$
Theorem~2 with $G(r)=F(r,y)$ ($y$ fixed
but arbitrary in $S$) implies that $\int_{a}^{b} f(x,y)\,dx$
converges pointwise for $y\in S$.
Therefore, if $\epsilon>0$
then, for each $y\in S$,
there is an $r_{0}(y) \in (a,b]$ such that
\begin{equation} \tag{C}
\left|\int_{a}^{r}f(x,y)\,dx\right|\le \epsilon,
\quad y\in S,\quad
a<r\le r_{0}(y).
\end{equation}
For each $y\in S$, choose $r_{1}(y)\le \min[{r_{0}(y),r_{0}}]$. Then
$$
\int_{a}^{r}f(x,y)\,dx =
\int_{a}^{r_{1}(y)}f(x,y)\,dx+
\int_{r_{1}(y)}^{r}f(x,y)\,dx, \quad
$$
so (A), (C), and the triangle inequality imply
that
$$
\left|\int_{a}^{r} f(x,y)\,dx\right|\le 2\epsilon,\quad y\in S,\quad a<r\le
r_{0}
$$
\medskip
{\bf 4.}
From Definition~3, $\int_{a}^{b}f(x,y)\,dx$
converges uniformly on $S$ if and only if
$\int_{a}^{c}f(x,y)\,dx$ and $\int_{c}^{b}f(x,y)\,dx$ both converge
uniformly on $S$, where $c\in(a,b)$.
From Theorems~4 and Theorem~5, this is true if and only if, for any
$\epsilon>0$ there are points $r_{0}$ and $s_{0}$ in $(a,b)$ such that
$$
\left|\int_{r}^{r_{1}}f(x,y)\,dx\right|\le \epsilon,\quad y\in S,\quad
r_{0}\le r,r_{1}<b
$$
and
$$
\left|\int_{s_{1}}^{s}f(x,y)\,dx\right|\le \epsilon,\quad y\in S,\quad
a< s,s_{1}<s_{0}.
$$
These conditions are independent of $c$.
\medskip
{\bf 5. (a)}
If $|f(x,y)|\le M$ on $[a,b]\times [c,d]$ then
$$
\left|\int_{r_{1}}^{r_{2}}f(x,y)\,dx\right|\le M|r_{2}-r_{1}|
$$
so the Cauchy convergence theorems imply the conclusion.
\medskip
{\bf (b)} Define
$f=f(x,y)$ on $[0,1]\times [0,1]$ by
$$
f(x,y)= \begin{cases}\dst\frac{1}{y} &\text{if\quad} 0<y\le 1,\\
1&\text{if\quad} y=0.
\end{cases}
$$
Then
$$
\int_{r_{1}}^{r_{2}}f(x,y)\,dx= \begin{cases}\dst\frac{r_{2}-r_{1}}{y}
&\text{if\quad}
0<y\le 1,\\
r_{2}-r_{1}&\text{if\quad} y=0.
\end{cases}
$$
Therefore $f$ does not satisfy the requirements of Cauchy's convergence
theorems.
\medskip
{\bf 6.}
In all parts
$I(y)$ denotes the given integral.
\medskip {\bf(a)}
$I(0)=\infty$. If $y\ne0$ let
$u=xy$; then
$I(y)=\dst{\frac{1}{y}\int_{0}^{\infty}\frac{du}{1+u^{2}}}$.
If $\rho>0$ and $\epsilon >0$, choose $r$ so that
$\dst{\int_{r}^{\infty}\frac{du}{1+u^{2}}}< \rho\epsilon$.
Then
$\dst{\frac{1}{|y|}\int_{r}^{\infty}\frac{du}{1+u^{2}}}<\epsilon$ if
$|y|\ge
\rho$, so $I(y)$ converges uniformly on
$(-\infty, \rho]\bigcup [\rho,\infty)$ if $\rho>0$.
\medskip {\bf(b)}
$I(y)=\infty$ if $y\le0$. If $y>0$
let $u=xy$; then
$I(y)=\dst{\frac{1}{y^{3}}\int_{0}^{\infty}e^{-u}u^{2}\,du}$.
If $\rho>0$ and $\epsilon >0$, choose $r$ so that
$\dst{\int_{r}^{\infty}e^{-u}u^{2}\,du}<\rho^{3}\epsilon$.
Then
$\dst{\frac{1}{y^{3}}\int_{r}^{\infty}e^{-u}u^{2}\,du}<\epsilon$ if $y\ge
\rho$, so $I(y)$ converges uniformly on
$[\rho,\infty)$ if $\rho>0$.
\medskip {\bf(c)}
$I(y)=\infty$ if $y\le0$. If $y>0$ let $u=xy^{1/2}$; then
$I(y)=\dst{y^{-n-1/2}\int_{0}^{\infty}u^{2n}e^{-u}\,du}$.
If $\rho>0$ and $\epsilon >0$, we can choose $r$ so that
$\dst{\int_{r}^{\infty}u^{2n}e^{-u}\,du}<\epsilon
\rho^{n+1/2}$. Then
$y^{-n-1/2}\dst{\int_{r}^{\infty}u^{2n}e^{-u}\,du}<\epsilon$ if $y\ge
\rho$,
so $I(y)$ converges uniformly on
$S=[\rho,\infty)$ if $\rho>0$.
\medskip {\bf(d)}
Since $I(-y)=-I(y)$, it suffices to assume that $y>0$. If $u=yx^{2}$ then
$I(y)=\dst{\frac{1}{2\sqrt{y}}\int_{0}^{\infty}\frac{\sin
u\,du}{\sqrt{u}}}$. From Example 3.4.14 (p.~162), this integral
converges conditionally.
If $\rho>0$ and $\epsilon >0$, we can choose $r$ so that
$\dst{\left|\int_{r}^{\infty}\frac{\sin
u\,du}{\sqrt{u}}\right|}<2\epsilon\sqrt{\rho}$, so
$I(y)$ converges uniformly on
$(-\infty,-\rho]\bigcup[\rho,\infty)$ if $\rho>0.$
\medskip {\bf(e)}
If $u=y^{2}x$ then
$\dst{I(y)=3\int_{0}^{\infty}e^{-u}\,du
-\frac{2}{y^{3}}\int_{0}^{\infty} ue^{-u}\,du}$.
If $\rho>0$, we can choose $r$ so that
$\dst{3\int_{r}^{\infty}e^{-u}\,du<\frac{\epsilon}{2}}$
and
$\dst{\int_{r}^{\rho}ue^{-u}\,du<\frac{\rho^{3}\epsilon}{2}}$.
Then
$$
\left|3\int_{r}^{\infty}e^{-u}\,du
-\frac{3}{y^{3}}\int_{r}^{\infty} ue^{-u}\,du\right|<\epsilon
\text{\quad if\quad} |y|\ge \rho,
$$
so $I(y)$ converges uniformly on
$(-\infty, \rho]\bigcup [\rho,\infty)$ if $\rho>0$.
\medskip {\bf(f)}
$I(y)=-\infty$ if $y\le0$. If $y>0$, let $u=xy$; then
$I(y)=\dst{\frac{1}{y}\int_{0}^{\infty}(2u-u^{2})e^{-u}\,du}$.
If $\rho>0$ and $\epsilon >0$, we can choose $r$ so that
$\dst{\int_{r}^{\infty}|2u-u^{2}|e^{-u}\,du}<\epsilon \rho$,
so $I(y)$ converges uniformly on
$S=[\rho,\infty)$ if $\rho>0$.
\medskip
{\bf 7.}
{\bf Theorem~7 $($Weierstrass's Test for Absolute Uniform Convergence
II$)$} Suppose $f=f(x,y)$ is locally integrable
$(a,b]$ and, for some $b_{0}\in (a,b],$
\begin{equation}\tag{A}
|f(x,y)| \le M(x), \:
y\in S, \: x\in (a,b_{0}],
\end{equation}
where
$$
\int_{a}^{b_{0}}M(x)\,dx<\infty.
$$
Then $\int_{a}^{b}f(x,y)\,dx$ converges absolutely uniformly on $S.$
\proof
Denote $\int_{a}^{b_{0}}M(x)\,dx=L<\infty$. By definition,
for each $\epsilon>0$ there is an $r_{0}\in (a,b_{0}]$ such that
$$
L-\epsilon \le \int_{r}^{b_{0}}M(x)\,dx \le L,\quad
a<r\le r_{0}.
$$
Therefore, if $a<r_{1}< r\le r_{0}$, then
$$
0\le \int_{r_{1}}^{r}M(x)\,dx=\left(\int_{r_{1}}^{b_{0}}M(x)\,dx
-L\right)-
\left(\int_{r}^{b_{0}}M(x)\,dx -L\right)<\epsilon.
$$
This and (A) imply that
$$
\int_{r_{1}}^{r}|f(x,y)|\,dx\le
\int_{r_{1}}^{r} M(x)\,dx <\epsilon, \: y\in S,\:
a<r_{1}\le r_{0}\le b.
$$
Now Theorem~5
implies the stated conclusion.
\medskip
{\bf 8. (a)}
$|e^{-xy}\sin x|\le e^{-\rho x}$ if $y\ge\rho$ and
$\int_{\rho}^{\infty}e^{-\rho x}\,dx<\infty$.
\medskip
{\bf(b)}
$\dst{\int_{0}^{\infty}\frac{\sin x\,dx}{x^{y}}}=I_{1}(y)+I_{2}(y)$,
where
$$
I_{1}(y)=\int_{0}^{1}\frac{\sin x\,dx}{x^{y}}
\text{\quad and\quad}
I_{2}(y)=\int_{1}^{\infty}\frac{\sin x\,dx}{x^{y}}
$$
are both improper integrals.
Since
$$
\sin x= x-\left(\frac{x^{3}}{3!}-\frac{x^{5}}{5!}\right)
-\left(\frac{x^{7}}{7!}-\frac{x^{9}}{9!}\right)+ \cdots <x,\quad 0\le x
\le 1.
$$
If $0\le 1$ and $y\le d\le 2$, then
$$
\left|\frac{\sin x}{x^{y}}\right|\le x^{1-y}\le x^{1-d} \text{\:so\:}
\int_{0}^{1}x^{-1+y}\,dx<\int_{0}^{1}x^{-1+d}\,dx=\frac{1}{2-d}
$$
so $I_{1}(y)$ converges absolutely uniformly on $S$.
Since $c>1$,
$$
\frac{|\sin x|}{x^{y}}\le x^{-c} \text{\quad and\quad}
\int_{1}^{\infty}x^{-c} \,dx=\frac{1}{c-1}\text{\quad if \quad}
$$
$I_{2}(y)$ converges absolutely uniformly on $S$.
\medskip
{\bf (c)}
If $x\ge 1$ then
$\dst{e^{-px}\left|\frac{\sin xy}{x}\right|\le e^{-px}}$ for all $y$ and
$\dst{\int_{1}^{\infty}e^{-px}\,dx<\infty}$, since $p>0$.
\medskip {\bf(d)}
$\dst{\frac{e^{xy}}{(1-x)^{y}}}\le \dst{\frac{e^{b}}{(1-x)^{b}}}$, if
$0\le
x<1$ and $ y\le b$, and $\dst{\int_{0}^{1}(1-x)^{-b}\,dx}<\infty$ if
$b<1$.
\medskip {\bf(e)}
If $|y|\ge \rho>0$ then $\dst{\left|\frac{\cos xy}{1+x^{2}y^{2}}\right|\le
\frac{1}{1+\rho^{2}x^{2}}}$ for all $x$, and
$\dst{\int_{0}^{\infty}\frac{dx}{1+\rho^{2}x^{2}}}<\infty$.
\medskip {\bf(f)}
If $y\ge \rho>0$ then $e^{-x/y}\le e^{-x/\rho}$ and
$\dst{\int_{0}^{\infty}e^{-x/\rho}\,dx<\infty}$.
\medskip {\bf(g)}
If $|y|\le \rho$ then $e^{xy}e^{-x^{2}}\le e^{x\rho}e^{-x^{2}}$ and
$\dst{\int_{-\infty}^{\infty}e^{x\rho}e^{-x^{2}}\,dx}<\infty$.
\medskip {\bf(h)}
If $|x|\ge 1$ then $|\cos xy-\cos ax|\le 2$ and
$\dst{\int_{1}^{\infty}\frac{2\,dx}{x^{2}}}<\infty$.
\medskip \noindent {\bf(i)}
If $y\ge \rho>0$ then $e^{-yx^{2}}\le e^{-\rho x^{2}}$ and
$\dst{\int_{0}^{\infty} x^{2n}e^{-\rho x^{2}}\,dx<\infty}$.
\medskip
{\bf 9. (a)}
If $0<x<1$ then $|x^{y-1}e^{-x}|<x^{c-1}$. Therefore, since
$\dst{\int_{0}^{1}x^{c-1}\,dx}<\infty$ if $c>0$,
$\int_{0}^{1}x^{y-1}e^{-x}\,dx$
converges uniformly on $[c,\infty)$ if $c>0$, by Theorem~7. If $x>1$ then
$|x^{y-1}e^{-x}|\le x^{d-1}e^{-x}$ if $y\le d$. Therefore, since
$\dst{\int_{1}^{\infty}x^{d-1}e^{-x}}\,dx<\infty$,
$\dst{\int_{1}^{\infty}x^{y-1}e^{-x}}\,dx$ converges uniformly on
$(-\infty,d]$ for every $d$,
by Theorem~6. Hence, $\dst{\int_{0}^{\infty}x^{y-1}e^{-x}\,dx}$
converges uniformly on $[c,d]$ if $c>0$.
\medskip
{\bf (b)}
If $y>0$ then
\begin{equation}
\Gamma(y)=\int_{0}^{\infty}x^{y-1}e^{-x}\,dx
=\frac{x^{y}e^{-x}}{y}\biggr|_{0}^{\infty}+
\frac{1}{y}\int_{0}^{\infty}x^{y}e^{-x}\,dx
=\frac{\Gamma(y+1)}{y}.
\tag{A}
\end{equation}
Therefore
\begin{equation}
\Gamma(y)=\frac{\Gamma(y+n)}{y(y+1)\cdots (y+n-1)}
\tag{B}
\end{equation}
is true when $n=1$. Now suppose it is true for given positive integer $n$,
and replace $y$ by $y+n$ in (A):
$$
\Gamma(y+n)=\frac{\Gamma(y+n+1)}{y+n}.
$$
Substituting this into (B) yields
$$
\Gamma(y)=\frac{\Gamma(y+n+1)}{y(y+1)\cdots (y+n)},
$$
which completes the induction.
If $-n <y<-n+1$ with $n\le 1$ then $0<y+n<1$ and we can compute
$\Gamma(y+n)$ from the definition in part {\bf (a)}:
$$
\Gamma(y+n)=\int_{0}^{\infty}x^{y+n-1}e^{-x}\,dx.
$$
Then we can define $\Gamma(y)$ by (B).
\medskip
{\bf(c)}
The assertion is true if $n=1$, since
$$
\Gamma(2)=\int_{0}^{\infty}xe^{-x}\,dx =
-xe^{-x}\biggr|_{0}^{\infty}+\int_{0}^{\infty} e^{-x}\,dx = 1.
$$
If $\Gamma(n+1)=n!$ for some $n\ge 1$, then
\begin{eqnarray*}
\Gamma(n+2)&=&\int_{0}^{\infty}x^{n+1}e^{-x}\,dx= -e^{-x}
x^{n+1}\biggr|_{0}^{\infty}+(n+1)
\int_{0}^{\infty}x^{n+1}e^{-x}\,dx\\
&=&(n+1)\Gamma(n+1)=(n+1)n!=(n+1)!,
\end{eqnarray*}
which completes the induction proof.
\medskip
{\bf (d)}
The change of variable $x=st$ yields
$$
\int_{0}^{\infty}e^{-st}t^{\alpha}\,dt=\frac{1}{s^{\alpha+1}}
\int_{0}^{\infty}x^{\alpha}e^{-x}\,dx=\frac{1}{s^{\alpha+1}}
\Gamma(\alpha+1),
$$
from the definition of the Gamma function.
\medskip
\medskip
{\bf 10.}
Since $|g_{x}(x,y)|$ is monotonic with respect to $x$,
\begin{equation}\tag{A}
\int_{r}^{r_{1}}|g_{x}(x,y)|\,dx=|g(r_{1},y)-g(r,y)|,\quad a\le r<r_{1}<b.
\end{equation}
From Assumption {\bf(a)} of Theorem~8, if $\epsilon>0$ there is an
$r_{0}\in
[a,b)$ such that
$$
|g(s,y)|\le \epsilon,\quad y\in S,\quad r_{0}\le s<b.
$$
Therefore, (A) implies that
$$
\int_{r}^{r_{1}}|g_{x}(x,y)\,dx\le 2\epsilon,\quad y\in S,\quad r_{0}\le r\le
r_{1}<b.
$$
Now Theorem~4 implies that $\int_{a}^{b}|g(x,y)|\,dx$ converges uniformly
on $S$, which is assumption {\bf(c)} of Theorem~8.
\medskip
{\bf 11.}
{\bf Theorem~9 $($Dirichlet's Test for Uniform Convergence II}$)$
If $g,$ $g_{x},$ and $h$ are continuous on $(a,b]\times S$ then
$$
\int_{a}^{b}g(x,y)h(x,y)\,dx
$$
converges uniformly on $S$ if the following
conditions are satisfied$:$
\begin{alist}
\item % a
$\dst{\lim_{x\to a+}\left\{\sup_{y\in S}|g(x,y)|\right\}=0};$
\item % b
There is a constant $M$ such that
$$
\sup_{y\in S}\left|\int_{x}^{b}h(u,y)\,du\right| \le M, \quad
a< x\le b;
$$
\item % c
$\int_{a}^{b}|g_{x}(x,y)|\,dx$ converges uniformly on $S$.
\end{alist} \rm
\medskip
\proof
If
\begin{equation} \tag{A}
H(x,y)=\int_{x}^{b}h(u,y)\,du
\end{equation}
then integration by parts yields
\begin{eqnarray*}
\int_{r_{1}}^{r}g(x,y)h(x,y)\,dx&=&-\int_{r_{1}}^{r}g(x,y)H_{x}(x,y)\,dx
\\
&=&-g(r,y)H(r,y)+g(r_{1},y)H(r_{1},y)\\
&&+\int_{r_{1}}^{r}g_{x}(x,y)H(x,y)\,dx.
\end{eqnarray*}
Therefore,
since assumption {\bf(b)} and (A) imply that
$|H(x,y)|\le M$, $(x,y)\in (a,b]\times S$,
\begin{equation}\tag{B}
\left|\int_{r_{1}}^{r}g(x,y)h(x,y)\,dx\right|\le
M\left(2\sup_{a<x\le r}
|g(x,y)|+\int_{r_{1}}^{r}|g_{x}(x,y)|\,dx\right)
\end{equation}
on $[r_{1},r]\times S$.
Now suppose $\epsilon>0$. From assumption {\bf (a)}, there is an
$r_{0} \in [a,b)$ such that $|g(x,y)|<\epsilon$ on $S$ if
$a< x \le r_{0} \le b$.
From assumption {\bf(c)} and Theorem~5, there is an
$s_{0}\in
(a,b]$ such that
$$
\int_{r_{1}}^{r}|g_{x}(x,y)|\,dx<\epsilon,\quad
y\in S,\quad
a<r_{1}<r\le s_{0}.
$$
Therefore
(B) implies that
$$
\left|\int_{r_{1}}^{r}g(x,y)h(x,y)\right| < 3M\epsilon,\quad y\in S,\quad
a<r_{1}<r\min(r_{0},s_{0})
$$
Now Theorem~5 implies the stated conclusion.
\medskip
{\bf 12. (a)}
Denote
$F(y)=\dst{\int_{1}^{\infty}\frac{\sin xy}{x^{y}}}$
and, with $1\le r< r_{1}$,
\begin{eqnarray*}
F(r,r_{1},y)=\int_{r}^{r_{1}}\frac{\sin xy}{x^{y}}\,dx &=&
-\frac{\cos xy}{yx^{y}}\biggr|_{r}^{r_{1}}-
\int_{r}^{r_{1}}\frac{\cos xy}{x^{y+1}}\,dx\\
&=&
\frac{\cos r y}{yr^{y}}-\frac{\cos r_{1}y}{yr_{1}^{y}}-
\int_{r}^{r_{1}}\frac{\cos xy}{x^{y+1}}\,dx.
\end{eqnarray*}
Therefore
$$
|F(r,r_{1},y)|\le
\frac{2}{yr^{y}}+\int_{r}^{r_{1}}x^{-y-1}\,dx<\frac{3}{yr^{y}}, \quad
r,y>0.
$$
Now Theorem~4 implies that $F(y)$ converges uniformly
on $[\rho,\infty)$ if $\rho>0$.
\medskip
{\bf (b)}
Denote
$F(y)=\dst{\int_{2}^{\infty}\frac{\sin xy}{\log x}\,dx}$
and, with $2\le r< r_{1}$,
$$
F(r,r_{1},y)=\int_{r}^{r_{1}}\frac{\sin xy}{\log x}\,dx
=-\frac{\cos xy}{y\log x}\biggr|_{r}^{r_{1}}-
\frac{1}{y}\int_{r}^{r_{1}}\frac{\cos xy}{x(\log x)^{2}}\,dx.
$$
Therefore
$$
|F(r,r_{1},y)|\le \frac{1}{y}\left|\frac{2}{\log r}+\int_{r}^{r_{1}}
\frac{dx}{x(\log x)^{2}}\right|\le \frac{3}{y\log r}.
$$
Now Theorem~4 implies that $F(y)$ converges uniformly
on $[\rho,\infty)$ if $\rho>0$.
\medskip
{\bf (c)}
Denote
$F(y)=\dst{\int_{0}^{\infty}\frac{\cos xy}{x+y^{2}}}$,
and, with $0<r<r_{1}$,
$$
F(r,r_{1},y)=\int_{r}^{r_{1}}\frac{\cos xy}{x+y^{2}}\,dx=
\frac{1}{y}\left(\frac{\sin xy}{x+y^{2}}\biggr|_{r}^{r_{1}}
+\int_{r}^{r_{1}}\frac{\sin xy}{(x+y^{2})^{2}}\,dx\right),
$$
so
$$
|F(r,r_{1},y)|\le \frac{3}{y(r+y^{2})}.
$$
Now Theorem~4 implies that $F(y)$ converges uniformly
on $[\rho,\infty)$ if $\rho>0$.
\medskip
{\bf (d)}
Denote
$F(y)=\dst{\int_{0}^{\infty}\frac{\sin xy}{1+xy}}$,
and, with $0<r<r_{1}$,
$$
F(r,r_{1},y)=\int_{r}^{r_{1}}\frac{\sin xy}{1+xy}\,dx=
-\frac{\cos xy}{y(1+xy)}\biggr|_{r}^{r_{1}}-\int_{r}^{r_{1}}
\frac{\cos xy}{y^{2}(1+xy)^{2}}\,dx,
$$
so
$$
|F(r,r_{1},y)|\le \frac{3}{y(1+ry)}.
$$
Now Theorem~4 implies that $F(y)$ converges uniformly
on $[\rho,\infty)$ if $\rho>0$.
\medskip
{\bf 13.}
Integration by parts yields
\begin{eqnarray*}
\int_{r}^{r_{1}}g(x,y)h(x,y)\,dx&=&\int_{r}^{r_{1}}g(x,y)H_{x}(x,y)\,dx\\
&=&g(r_{1},y)H(r_{1},y)-g(r,y)H(r,y)\\
&&-\int_{r}^{r_{1}}g_{x}(x,y)H(x,y)\,dx,
\end{eqnarray*}
so
$$
\left|\int_{r}^{r_{1}}g(x,y)h(x,y)\,dx\right|\le
2\sup_{x\ge r}\left\{\left\{\sup_{y\in S}|g(x,y)H(x,y)|\right\}\right\}+
\left|\int_{r}^{r_{1}}g_{x}(x,y)H(x,y)\,dx\right|.
$$
Now suppose $\epsilon\ge 0$. From our first assmption, there is an
$s_{0}\in [a,b)$ such that
$$
\sup_{x\ge r}\left\{\left\{\sup_{y\in
S}|g(x,y)H(x,y)|\right\}\right\}<\epsilon, \quad s_{0}\le r<b.
$$
Since $\int_{a}^{b}g_{x}(x,y)H(x,y)\,dx$
converges uniformly on $S$, Theorem~4 implies that there is an $r_{0}\in
[a,b)$ such that
$$
\left|\int_{r}^{r_{1}}g_{x}(x,y)H(x,y)\,dx\right|\le \epsilon, \quad y\in S,
\quad r_{0}\le r<r_{1}<b.
$$
Therefore,
$$
\left|\int_{r}^{r_{1}}g(x,y)h(x,y)\,dx\right|\le 2\epsilon, \quad y\in S, \quad
\max(r_{0},s_{0})\le r<r_{1}<b.
$$
Now Theorem~4 implies that $\int_{a}^{b}g_{x}(x,y)h(x,y)\,dx$
converges uniformly on $S$.
\medskip
{\bf 14. Theorem 10} \it
If $f=f(x,y)$ is continuous on
$(a,b]\times [c,d]$ and
\begin{equation} \tag{A}
F(y)=\int_{a}^{b}f(x,y)\,dx
\end{equation}
converges uniformly on $[c,d],$ then $F$ is continuous on
$[c,d].$ Moreover$,$
\begin{equation} \tag{B}
\int_{c}^{d}\left(\int_{a}^{b}f(x,y)\,dx\right)\,dy
=\int_{a}^{b}\left(\int_{c}^{d}f(x,y)\,dy\right)\,dx.
\end{equation} \rm
We will first show that $F$ in (A) is continuous on $[c,d]$.
Since $F$ converges uniformly on $[c,d]$,
Definition~1
implies that if $\epsilon>0$, there is an
$r \in (a,b]$ such that
$$
\left|\int_{a}^{r}f(x,y)\,dx\right|\le \epsilon, \quad c \le y \le d.
$$
Therefore, if $y$ and $y_{0}$ are in $[c,d]$, then
\begin{eqnarray*}
|F(y)-F(y_{0})|&=&
\left|\int_{a}^{b}f(x,y)\,dx-\int_{a}^{b}f(x,y_{0})\,dx\right|\\
&\le&\left|\int_{r}^{b}[f(x,y)-f(x,y_{0})]\,dx\right|+
\left|\int_{a}^{r}f(x,y)\,dx\right|\\
&&+\left|\int_{a}^{r}f(x,y_{0})\,dx\right|\\
\end{eqnarray*}
so
\begin{equation}\tag{C}
|F(y)-F(y_{0})|
\le \int_{r}^{b}|f(x,y)-f(x,y_{0})|\,dx +2\epsilon.
\end{equation}
Since $f$ is uniformly continuous on the compact set $[r,b]\times [c,d]$
(Corollary~5.2.14, p.~314), there is a
$\delta>0$ such that
$$
|f(x,y)-f(x,y_{0})|<\epsilon
$$
if $(x,y)$ and $(x,y_{0})$ are in $[r,b]\times [c,d]$ and
$|y-y_{0}|<\delta$. This and (C) imply that
$$
|F(y)-F(y_{0})|<(r-a)\epsilon +2\epsilon<(b-a+2)\epsilon
$$
if $y$ and $y_{0}$ are in $[c,d]$ and $|y-y_{0}|<\delta$. Therefore $F$
is continuous on $[c,d]$, so the integral on left side of
(B) exists. Denote
\begin{equation}\tag{D}
I=
\int_{c}^{d}\left(\int_{a}^{b}f(x,y)\,dx\right)\,dy.
\end{equation}
We will
show that the improper
integral on the right side of (B) converges to $I$. To
this end, denote
$$
I(r)=
\int_{r}^{b}\left(\int_{c}^{d}f(x,y)\,dy\right)\,dx.
$$
Since we can reverse the order of integration of the
continuous function $f$ over the rectangle $[r,b]\times [c,d]$
(Corollary~7.2.2, p.~466),
$$
I(r)=\int_{c}^{d}\left(\int_{r}^{b}f(x,y)\,dx\right)\,dy.
$$
From this and (D),
$$
I-I(r)=\int_{c}^{d}\left(\int_{a}^{r}f(x,y)\,dx\right)\,dy.
$$
Now suppose $\epsilon>0$. Since $\int_{a}^{b}f(x,y)\,dx$ converges
uniformly on $[c,d]$, there is an $r_{0}\in (a,b]$ such that
$$
\left|\int_{a}^{r}f(x,y)\,dx\right|<\epsilon, \quad
a<r<r_{0},
%###
$$
so $|I-I(r)|<(d-c)\epsilon$, $a<r<r_{0}$. Hence,
$$
\lim_{r\to a+}\int_{r}^{b}\left(\int_{c}^{d}f(x,y)\,dy\right)\,dx=
\int_{c}^{d}\left(\int_{a}^{b}f(x,y)\,dx\right)\,dy,
$$
which completes the proof of (B).
\medskip
{\bf 15. Theorem~11} \it
Let $f$ and $f_{y}$ be continuous on
$(a,b]\times [c,d],$ and suppose that
$$
F(y)=\int_{a}^{b}f(x,y)\,dx
$$
converges for some $y_{0} \in [c,d]$ and
$$
G(y)=\int_{a}^{b}f_{y}(x,y)\,dx
$$
converges uniformly on $[c,d].$ Then $F$ converges
uniformly on $[c,d]$ and is given explicitly by
$$
F(y)=F(y_{0})+\int_{y_{0}}^{y} G(t)\,dt,\quad c\le y\le d.
$$
Moreover, $F$ is continuously differentiable on $[c,d]$ and
\begin{equation} \tag{A}
F'(y)=G(y), \quad c \le y \le d,
\end{equation}
where $F'(c)$ and $f_{y}(x,c)$ are derivatives
from the right, and $F'(d)$ and $f_{y}(x,d)$ are
derivatives from the left$.$ \rm
\proof Let
$$
F_{r}(y)=\int_{r}^{b}f(x,y)\,dx, \quad a\le r<b,\quad c \le y \le d.
$$
Since $f$ and $f_{y}$ are continuous on $[r,b]\times [c,d]$,
Theorem~1 implies that
$$
F_{r}'(y)=\int_{r}^{b}f_{y}(x,y)\,dx, \quad c \le y \le d.
$$
Therefore
\begin{eqnarray*}
F_{r}(y)&=&F_{r}(y_{0})+\int_{y_{0}}^{y}\left(
\int_{r}^{b}f_{y}(x,t)\,dx\right)\,dt\\
&=&F(y_{0})+\int_{y_{0}}^{y}G(t)\,dt \\&&+(F_{r}(y_{0})-F(y_{0}))
-\int_{y_{0}}^{y}\left(\int_{a}^{r}f_{y}(x,t)\,dx\right)\,dt,
\quad c \le y \le d.
\end{eqnarray*}
Therefore,
\begin{equation}\tag{B}
\left|F_{r}(y)-F(y_{0})-\int_{y_{0}}^{y}G(t)\,dt\right| \le
|F_{r}(y_{0})-F(y_{0})|
+\left|\int_{y_{0}}^{y}
\int_{a}^{r}f_{y}(x,t)\,dx\right|\,dt.
\end{equation}
Now suppose $\epsilon>0$. Since we have assumed that
$\lim_{r\to a+}F_{r}(y_{0})=F(y_{0})$ exists,
there is an $r_{0}$
in $(a,b)$ such that
$$
|F_{r}(y_{0})-F(y_{0})|<\epsilon,\quad a<r< r_{0}.
$$
Since we have assumed that $G(y)$ converges for
$y\in[c,d]$, there is an $r_{1} \in (a,b]$ such that
$$
\left|\int_{a}^{b}f_{y}(x,t)\,dx\right|<\epsilon, \quad
t\in[c,d], \quad
a<r\le r_{1}.
$$
Therefore, (B) yields
$$
\left|F_{r}(y)-F(y_{0})-\int_{y_{0}}^{y}G(t)\,dt\right|<
\epsilon(1+|y-y_{0}|) \le \epsilon(1+d-c)
$$
if $a<r<\min(r_{0},r_{1})$ and $t\in[c,d]$. Therefore
$F(y)$ converges uniformly on $[c,d]$ and
$$
F(y)=F(y_{0})+\int_{y_{0}}^{y}G(t)\,dt, \quad c \le y \le d.
$$
Since $G$ is continuous on $[c,d]$ by
Theorem~10, (A)
follows from differentiating this (Theorem~3.3.11, p.~141).
\medskip
{\bf 16.}
Since
$$
|f(x)\cos xy|\le |f(x)|,\quad
|f(x)\sin xy|\le |f(x)|,\text{\quad and\quad}
\int_{-\infty}^{\infty} |f(x)|\,dx<\infty,
$$
Theorems~6 and 7 imply that $\int_{-\infty}^{\infty}f(x)\cos xy\,dx$
and $\int_{-\infty}^{\infty}f(x) \sin xy\,dx$ converge uniformly
on $(-\infty,\infty)$, so Theorem~10 implies that $C(y)$
and $S(y)$ are continuous on $(-\infty,\infty)$.
\medskip
{\bf 17.}
If $y\ne0$, integrating by parts yields
\begin{eqnarray*}
C(y)&=&f(x)\frac{\sin xy}{y}\biggr|_{a}^{\infty}-\frac{1}{y}
\int_{a}^{\infty}f'(x)\sin xy \,dx\\
&=&-f(a)\frac{\sin ay}{y}
-\frac{1}{y}\int_{a}^{\infty}f'(x)\sin xy \,dx
\end{eqnarray*}
and
\begin{eqnarray*}
S(y)&=&-f(x)\frac{\cos xy}{y}\biggr|_{a}^{\infty}+\frac{1}{y}
\int_{a}^{\infty}f'(x)\cos xy \,dx \\
&=&f(a)\frac{\cos ay}{y}+
\frac{1}{y}\int_{a}^{\infty}f'(x)\cos xy \,dx,
\end{eqnarray*}
since $\lim_{x\to\infty} f(x)=0$. From Exercise \ref{exer:17} with
$f$ replaced by
$f'$,
$\int_{1}^{\infty}f'(x)\cos xy \,dx$ and
$\int_{1}^{\infty}f'(x)\cos xy\,dx$
are continuous on $(-\infty,\infty)$. Therefore $C(y)$ and $S(y)$ are
continuous on $(-\infty,0)\cup(0,\infty)$.
To see that $C$ and $S$ are not necessarily continuous at $y=0$, let
$a=1$ and
$f(x)=1/x$, so
$$
\lim_{x\to\infty}f(x)=0\text{\quad and\quad}
\int_{1}^{\infty}|f'(x)|=\int_{1}^{\infty}\frac{dx}{x^{2}}=1.
$$
Then
$$
C(y)=\lim_{r\to\infty}\int_{1}^{r}\frac{\cos xy}{x}\,dx
\text{\quad and\quad}
S(y)=\lim_{r\to\infty}\int_{1}^{r}\frac{\sin xy}{x}\,dx,\quad y\ne0.
$$
If $y>0$ make the change of variable $u=xy$ to see that
$$
C(y)=\lim_{r\to\infty}\int_{y}^{ry}\frac{\cos u}{u}\,du=
\int_{y}^{\infty}\frac{\cos u}{u}\,du
$$
and
$$
S(y)=\lim_{r\to\infty}\int_{y}^{ry}\frac{\sin u}{u}\,du.
S(y)=\int_{y}^{\infty}\frac{\sin u}{u}\,du.
$$
Therefore $\lim_{y\to 0+}C(y)=\infty$, so $C$ is not continuous at $y=0$.
Since $S(0)=0$
and
$\lim_{y\to 0+}S(y)=
\dst{\int_{0}^{\infty}\frac{\sin u}{u}\,du}\ne 0$, $S$ is not continuous
at
$y=0$.
\medskip
{\bf 18. (a)}
The integral diverges if $y=0$. If $y\ne0$ substitute
$u=|y|x$ to obtain
\begin{equation}
F(y)=\int_{0}^{\infty}\frac{dx}{1+x^{2}y^{2}}=
\frac{1}{|y|}\int_{0}^{\infty}\frac{du}{1+u^{2}}
=\frac{1}{|y|}\tan^{-1}u\biggr|_{0}^{\infty}=\frac{\pi}{2|y|},
\tag{A}
\end{equation}
so $F(y)$ converges for all $y\ne0$.
To test for uniform convergence,
suppose $|y|>0$ and $0<r<r_{1}$. Then
$$
\int_{r}^{r_{1}}\frac{dx}{1+x^{2}y^{2}}
=\frac{1}{|y|}\int_{r|y|}^{r_{1}|y|} \frac{du}{1+u^{2}}
<\frac{1}{\rho}\int_{r\rho}^{\infty}\frac{du}{1+u^{2}}
$$
if $|y|\ge \rho$. If $\epsilon>0$ there is an $\alpha>0$ such that
$\dst{\frac{1}{\rho}\int_{\alpha}^{\infty}\frac{du}{1+u^{2}}}<\epsilon$.
Therefore $\dst{\int_{r}^{r_{1}}\frac{dx}{1+x^{2}y^{2}}}<\epsilon$ if
$\alpha/\rho<r<r_{1}$. Now Theorem~4 implies that $F(y)$ converges
uniformly on $(-\infty,-\rho]\cup[\rho,\infty)$ if $\rho>0$.
\medskip
To evaluate
$$
I=\dst{\int_{0}^{\infty}\frac{\tan^{-1}ax-\tan^{-1}bx}{x}\,dx},
$$
we note that
$$
\frac{\tan^{-1}ax-\tan^{-1}bx}{x}=\int_{b}^{a}\frac{dy}{1+x^{2}y^{2}}.
$$
Therefore
$$
I=\int_{0}^{\infty}\,dx \int_{b}^{a}\frac{dy}{1+x^{2}y^{2}}
=\int_{b}^{a}\,dy\int_{0}^{\infty}\frac{dx}{1+x^{2}y^{2}}
=\frac{\pi}{2}\int_{b}^{a}\frac{dy}{y}=\frac{\pi}{2}\log\frac{a}{b},
$$
where the second equality is valid because of the uniform convergence
of $F(y)$ on the closed interval with endpoints $a$ and $b$, and the
third equality follows from (A).
\medskip
{\bf (b)}
$F(y)$ is a proper integral if $y\ge 0$ and it diverges if $y\le -1$.
If $-1<y<0$, then
\begin{equation}
F(y)=\int_{0}^{1}x^{y}\,dx=\frac{x^{y+1}}{y+1}\biggr|_{0}^{1}=\frac{1}{y+1}
\tag{A}
\end{equation}
is convergent.
Since
$$
\int_{0}^{r}x^{y}\,dx=\frac{x^{y+1}}{y+1}\biggr|_{0}^{r}=
\frac{r^{y+1}}{y+1}.
$$
and
$$
\frac{\partial}{\partial y}\left (\frac{r^{y+1}}{y+1}\right)
=\frac{r^{y+1}}{y+1}\left(\log r-\frac{1}{y+1}\right)<0
\text{\quad if \quad} 0<r\le 1
\text{\quad and\quad} y>-1,
$$
it follows that
$$
\left|\int_{0}^{r}x^{y}\,dx\right|\le \frac{r^{\rho+1}}{\rho +1}
\text{\quad if\quad} 0<r\le 1\text{\quad and\quad} -1<\rho\le y.
$$
Therefore, Theorem~5 implies that $F(y)$ converges uniformly on
$[\rho,\infty)$ if $\rho>-1$.
\medskip
Now Theorem~11 implies that
$$
I=\dst{\int_{0}^{1}\frac{x^{a}-x^{b}}{\log x}\,dx}
= \int_{0}^{1}\,dx \int_{b}^{a}x^{y}\,dy
=\int_{b}^{a}\,dy\int_{0}^{1}x^{y}\,dx
=\int_{b}^{a}\frac{dy}{y+1}=\log\frac{a+1}{b+1}.
$$
\medskip
{\bf (c)}
$\dst{F(y)=\int_{0}^{\infty} e^{-yx}\cos x \,dx=\frac{y}{y^{2}+1}}$.
Since
$$
\left|\int_{r}^{\infty}e^{-yx} \cos x\,dx\right|\le
\int_{r}^{\infty}e^{-xy}\,dx=\frac{e^{-yr}}{y},
$$
Theorem~4 (or Theorem~6) implies that $F(y)$ converges uniformly on
$[\rho,\infty)$ if $\rho>0$.
Therefore, Theorem implies that if $a$, $b>0$ then
\begin{eqnarray*}
I&=&\int_{0}^{\infty}\frac{e^{-ax}-e^{-bx}}{x}\cos x\,dx
=\int_{0}^{\infty}\cos x\,dx\int_{a}^{b}e^{-yx}\,dy \\
&=&\int_{a}^{b} \,dy\int_{0}^{\infty}e^{-yx}\cos x\,dx
=\int_{a}^{b}\frac{y}{y^{2}+1}\,dy=\frac{1}{2}\log\frac{b^{2}+1}{a^{2}+1}.
\end{eqnarray*}
\medskip
{\bf (d)}
$\dst{F(y)=\int_{0}^{\infty} e^{-yx}\sin x \,dx=\frac{1}{y^{2}+1}}$.
Since
$$
\left|\int_{r}^{\infty}e^{-yx} \sin x\,dx\right|\le
\int_{r}^{\infty}e^{-yx}\,dx=\frac{e^{-yr}}{y},
$$
Theorem~4 (or Theorem~6) implies that $F(y)$
converges uniformly
on every $[\rho,\infty)$ if $\rho>0$.
Therefore, if $a$, $b>0$ then Theorem~11 implies that
\begin{eqnarray*}
I&=&\int_{0}^{\infty}\frac{e^{-ax}-e^{-bx}}{x}\sin x\,dx
=\int_{0}^{\infty}\sin x\,dx\int_{a}^{b}e^{-yx}\,dy \\
&=&\int_{a}^{b} \,dy\int_{0}^{\infty}e^{-yx}\sin x\,dx
=\int_{a}^{b}\frac{1}{y^{2}+1}\,dy=\tan^{-1}b-\tan^{-1}a.
\end{eqnarray*}
\medskip
{\bf(e)}
$\dst{F(y)=\int_{0}^{\infty} e^{-x}\sin xy \,dx=\frac{y}{y^{2}+1}}$.
Since
$$
\left|\int_{r}^{\infty}e^{-x} \sin xy\,dx\right|\le
\int_{r}^{\infty}e^{-x}\,dx=e^{-r},
$$
Theorem~4 (or Theorem~6) implies that $F(y)$ converges uniformly
on $[\rho,\infty)$ if $\rho>0$. Therefore Theorem~11 implies that
\begin{eqnarray*}
I&=&\int_{0}^{\infty}e^{-x}\frac{1-\cos ax}{x}\,dx
=\int_{0}^{\infty}e^{-x}\,dx\int_{0}^{a}\sin xy\,dy\\
&=&\int_{0}^{a}\,dy\int_{0}^{\infty}e^{-x}\sin xy\,dx
=\int_{0}^{a} \frac{y}{y^{2}+1}\,dy=\frac{1}{2}\log(1+a^{2}).
\end{eqnarray*}
\medskip
{\bf(f)}
$\dst{F(y)=\int_{0}^{\infty} e^{-x}\cos xy \,dx=\frac{1}{y^{2}+1}}$.
Since
$$
\left|\int_{r}^{\infty}e^{-x} \cos xy\,dx\right|\le
\int_{r}^{\infty}e^{-x}\,dx=e^{-r},
$$
Theorem~4 (or Theorem~6) implies that $F(y)$ converges uniformly
on $[\rho,\infty)$ if $\rho>0$. Therefore Theorem~11 implies that
\begin{eqnarray*}
I&=&\int_{0}^{\infty}e^{-x}\sin ax\,dx
=\int_{0}^{\infty}e^{-x}\,dx\int_{0}^{a}\cos xy\,dy\\
&=&\int_{0}^{a}\,dy\int_{0}^{\infty}e^{-x}\cos xy\,dx
=\int_{0}^{a} \frac{1}{y^{2}+1}\,dy=\tan^{-1}a.
\end{eqnarray*}
\medskip
{\bf 19. (a)}
We start with
\begin{equation}
F(y)=\int_{0}^{1} x^{y}\,dx =\frac{1}{y+1}\quad y>-1.
\tag{A}
\end{equation}
Formally differentiating this yields
\begin{equation}
F^{(n)}(y)=\int_{0}^{1}(\log x)^{n} x^{y}\,dx
=\frac{(-1)^{n}n!}{(y+1)^{n+1}},\quad y>-1.
\tag{B}
\end{equation}
To justify this we will show by induction that the improper integrals
$$
I_{n}(y)=\int_{0}^{1}(\log x)^{n} x^{y}\,dx,\quad n=0,1,2,
\dots
$$
converge uniformly on $[\rho,\infty)$ if $\rho>-1$. We begin with $n=0$:.
$$
\int_{0}^{r}x^{y}\,dx =
\frac{x^{y+1}}{y+1}\biggr|_{r_{1}}^{r}=\frac{r^{y+1}}{y+1}\le
\frac{r^{y+1}}{\rho+1},\quad -1<\rho\le y.
$$
so $I_{0}(y)=F(y)$ converges uniformly on $[\rho,\infty)$ if $\rho>-1$.
Now suppose that $I_{n}(y)$ converges uniformly on $[\rho,\infty)$.
Integrating by parts yields
\begin{eqnarray*}
\int_{r_{1}}^{r}(\log x)^{n+1}x^{y}\,dx&=&
\frac{r^{y+1}(\log r)^{n+1}-r_{1}^{y+1}(\log r_{1})^{n+1}}
{y+1}\\ &&-\frac{n+1}{y+1}
\int_{r_{1}}^{r}(\log x)^{n}x^{y}\,dx, \quad -1<y<\infty.
\end{eqnarray*}
Letting $r_{1}\to 0$ yields
\begin{equation}\tag{C}
\int_{0}^{r}(\log x)^{n+1} x^{y}\,dx =\frac{r^{y+1}(\log r)^{n+1}}{y+1}
-\frac{n+1}{y+1}\int_{0}^{r}(\log x)^{n}x^{y}\,dx.
\end{equation}
Since the integral on the right converges, it follows that the integral
on the left converges; in fact
$$
\int_{0}^{1}(\log x)^{n+1}x^{y}\,dx=
-\frac{n+1}{y+1}
\int_{0}^{1}(\log x)^{n}x^{y}\,dx.
$$
We must still show that the integral on the left converges uniformly on
$[\rho,\infty)$ if \\$\rho>-1$. To this end, note from (C) that
\begin{equation}\tag{D}
\left|\int_{0}^{r}(\log x)^{n+1} x^{y}\,dx\right| \le
\left|\frac{r^{\rho+1}(\log r)^{n+1}}{\rho+1}\right|
+\frac{n+1}{\rho+1}\left|\int_{0}^{r}(\log x)^{n}x^{y}\,dx\right|
\end{equation}
if $y\ge \rho$,
Now suppose $\epsilon>0$. Since $\dst{\lim_{r\to0+}r^{\rho+1}(\log
r)^{n+1}=0}$, there is an $r_{1}\in (0,1)$ such that
$$
\left|\frac{r^{\rho+1}(\log r)^{n+1}}{\rho+1}\right| \le \frac{\epsilon}{2}
\text{\quad if \quad} 0<r<r_{1}.
$$
Since $\int_{0}^{r}(\log x)^{n}x^{y}\,dx$ is uniformly convergent
(by our induction assumption), there is $r_{2}\in (0,1)$ such that
$$
\frac{n+1}{\rho+1}\left|\int_{0}^{r}(\log x)^{n}x^{y}\,dx\right|\le
\frac{\epsilon}{2},\quad y\ge \rho,
$$
Now (D) implies that
$$
\left|\int_{0}^{r}(\log x)^{n+1} x^{y}\,dx\right|\epsilon,\quad
y\in [\rho,\infty),\quad 0<r<\min(r_{1},r_{2}).
$$
This, Theorem~11, and an easy induction argument imply (B).
\medskip
{\bf (b)}
Substituting $x=u\sqrt{y}$ yields
\begin{equation}
F(y)=\int_{0}^{\infty}\frac{dx}{x^{2}+y}=\frac{1}{\sqrt{y}}\int_{0}^{\infty}
\frac{du}{u^{2}+1}
=\frac{\pi}{2\sqrt{y}},\quad y>0.
\tag{A}
\end{equation}
Formally differentiating this yields yields
\begin{eqnarray*}
\int_{0}^{\infty}\frac{dx}{(x^{2}+y)^{n+1}}
&=&\frac{\pi}{2n+1}1\cdot 3\cdots(2n-1)y^{-n-1/2}
=\frac{\pi}{2^{2n+1}}\frac{(2n)!}{n!}y^{-n-1/2}\\
&=&\frac{\pi}{2^{2n+1}}\binom{2n}{n}y^{-n-1/2},\quad y>0.
\end{eqnarray*}
Theorem~11 implies that
the formal differentiation is legitimate, since, if $y\ge 0$
and $r>0$, then
$$
\int_{r}^{\infty}\frac{dx}{(x^{2}+y)^{n+1}}\le
\int_{r}^{\infty}x^{-2n-2}dx=\frac{r^{-2n-1}}{(2n-1)};
$$
hence,
the improper integrals
$\dst{\int_{0}^{\infty}\frac{dx}{(x^{2}+y)^{n+1}}}$,
$n=0$, $1$, $2$, \dots
converge uniformly on $[0,\infty)$.
\medskip
{\bf (c)}
Denote $I_{n}(y)=\dst{\int_{0}^{\infty}x^{2n+1}e^{-yx^{2}}\,dx}$. Then
$$
I_{0}(y)=\int_{0}^{\infty}xe^{-yx^{2}}=
\frac{1}{2}\int_{0}^{\infty}2xe^{-yx^{2}}\,dx
=-\frac{1}{2y}e^{-yx^{2}}\biggr|_{0}^{\infty}=\frac{1}{2y}.
$$
Since
$$
\int_{r}^{\infty}x^{2n+1}e^{-yx^{2}} \,dx\le
\int_{r}^{\infty}x^{2n+1}e^{-\rho x^{2}} \,dx\text{\quad if\quad}
0<\rho\le r,
$$
if $n\ge 0$, we can differentiate $I_{n}$ formally with respect to
$y\in (0,\infty)$ to obtain
$$
I_{n}(y)=(-1)^{n}I_{0}^{(n)}=\frac{n!}{2y^{n+1}}.
$$
{\bf (d)}
Denote
\begin{eqnarray*}
I(y)&=&\int_{0}^{\infty}y^{x}\,dx =\int_{0}^{\infty}e^{x\log y}\,dx
=\frac{1}{\log y}\int_{0}^{\infty}(\log y) y^{x}\,dx \\
&=&\frac{y^{x}}{\log y}\biggr|_{0}^{\infty}=-\frac{1}{\log y}\quad
0<y<1.
\end{eqnarray*}
Formally differentiating this yields
$I'(y)=\dst{\int_{0}^{\infty}xy^{x-1}\,dx}$.
There are two improper integrals here:
$J_{1}(y)=\dst{\int_{0}^{1}xy^{x-1}\,dx}$ and
$J_{2}(y)=\dst{\int_{1}^{\infty}xy^{x-1}\,dx}$.
If $r<1$ then
$$
\int_{0}^{r}xy^{x-1}\,dx=\frac{1}{y}\int_{0}^{r}xy^{x}\,dx
\le \frac{1}{y}\int_{0}^{r}x\,dx=\frac{r^{2}}{2y}\le
\frac{r^{2}}{2\rho_{1}}, \quad
0<\rho_{1}\le y\le 1.
$$
Therefore $J_{1}(y)$ converges uniformly on $[\rho_{1},1]$.
If $x>r>1$ and $\rho_{2}<1$ then
$$
\int_{r}^{\infty}xy^{x-1}\,dx<\int_{r}^{\infty}x\rho_{2}^{x-1}\,dx
=\frac{1}{\rho_{2}}\int_{r}^{\infty}x\rho_{2}^{x}\,dx,
$$
Since
$$
\lim_{x\to\infty}\frac{1}{\rho_{2}}\int_{r}^{\infty}x\rho_{2}^{x}\,dx =0
$$
Theorem~7 implies that $J_{2}(y)$ converges uniformly on $[0,\rho_{2}]$.
Therefore, if $0<\rho_{1}<\rho_{2}<1$ then
$\dst{\int_{0}^{\infty}xy^{x-1}}$
converges uniformly on $[\rho_{1},\rho_{2}]$. Now Theorem~11 implies that
\begin{equation}\tag{A}
I'(y)=\int_{0}^{\infty}xy^{x-1}\,dx,\quad 0<y<1.
\end{equation}
However, since
$I(y)=-\dst{\frac{1}{\log y}}$, we know that
$I'(y)=\dst{\frac{1}{y(\log y)^{2}}}$. This and (A) imply that
$\dst{\int_{0}^{\infty}xy^{x}\,dx}=\dst{\frac{1}{(\log x)^{2}}}$.
\medskip
{\bf 20.}
Here $F(y)=\dst{\int_{0}^{\infty} e^{-x^{2}}\cos 2xy\,dx}$, so
Theorem~11 implies that
\begin{equation}
F'(y)=-2\int_{0}^{\infty}xe^{-x^{2}}\sin 2xy\,dx,
\tag{A}
\end{equation}
since the integral on the right converges uniformly on $(-\infty,\infty)$,
by Theorem~6.
Integration by parts yields
\begin{eqnarray*}
F(y)&=&
=\frac{1}{2y}\int_{0}^{\infty}e^{-x^{2}}(2y\cos 2xy)\,dx\\
&=&\frac{1}{2y}\left(e^{-x^{2}}\sin 2xy\,dx\biggr|_{0}^{\infty}
+2\int_{0}^{\infty}xe^{-x^{2}}\sin 2xy\,dx\right) \\
&=&\frac{1}{y}
\int_{0}^{\infty}xe^{-x^{2}}\sin 2xy\,dx
=-\frac{1}{2y} F'(y).
\end{eqnarray*}
From this and (A), $F'(y)+2yF(y)=0$, so $\dst{\frac{F'(y)}{F(y)}}=-2y$,
$\log F(y)=-y^{2}+\log F(0)$, and $F(y)=F(0)e^{-y^{2}}$.
Since
$F(0)=\dst{\int_{0}^{\infty}e^{-x^{2}}\,dx}=\dst{\frac{\sqrt{\pi}}{2}}$
(Example~12),
$F(y)=\dst{\frac{\sqrt{\pi}}{2}}e^{-y^{2}}$.
\medskip
{\bf 21.}
Here $F(y)=\dst{\int_{0}^{\infty} e^{-x^{2}}\sin 2xy\,dx}$, so
Theorem~11 implies that
\begin{equation}
F'(y)=2\int_{0}^{\infty}xe^{-x^{2}}\cos 2xy\,dx,
\tag{A}
\end{equation}
since the integral on the right converges uniformly on $(-\infty,\infty)$.
Integrating this by parts yields
\begin{eqnarray*}
F'(y)
&=&-e^{-x^{2}}\cos 2xy\biggr|_{0}^{\infty}-
2y\int_{0}^{\infty} e^{-x^{2}}\sin 2xy\,dx \\
&=&1-2y F(y),
\end{eqnarray*}
so $F'(y)+2yF(y)=1$,
$e^{y^{2}}F'(y)+2e^{y^{2}}yF(y)=e^{y^{2}}$, and
$\dst{\left(e^{y^{2}}F(y)\right)'=e^{y^{2}}}$.
Therefore, since $F(0)=0$,
$F(y)=\dst{e^{-y^{2}}\int_{0}^{y}e^{u^{2}}\,du}$.
{\bf 22.}
Theorems~6 and 11 imply that $S$ and $C$ are $n$ times continuously
differentiable on $(-\infty,\infty)$ if
$\dst{\int_{-\infty}^{\infty}|x^{n}f(x)|\,dx<\infty}$.
\medskip
{\bf 23.}
We will show first that
$$
C_{k}(y)=\int_{a}^{\infty} x^{k}f(x) \cos xy \,dx
\text{\: and\:}
S_{k}(y)=\int_{a}^{\infty}x^{k}f(x)\sin xy\,dx,\: 0\le k\le n,
$$
converge uniformly on
$U_{\rho}=(-\infty,-\rho]\cup[\rho,\infty)$ if $\rho>0$.
Note that if $\lim_{x\to\infty} x^{n}f(x)=0$, then
$\lim_{x\to\infty} x^{k}f(x)=0$, $k=0$, $1$, $2$,\dots $n$.
If $0\le k\le n$, then
\begin{equation}
\tag{A}
\int_{r}^{r_{1}}x^{k}f(x)\cos xy\,dx=
\frac{1}{y}\left[x^{k}f(x)\sin xy\biggr|_{r}^{r_{1}}-
\int_{r}^{r_{1}}(x^{k}f(x))'\sin xy\,dx\right].
\end{equation}
Henceforth $k$ is fixed.
Our assumptions imply that
if $\rho>0$ and $\epsilon>0$ then there is an $r_{0}\in [a,\infty)$ such
that
$$
\int_{r_{0}}^{\infty}|(x^{k}f(x))'|\,dx<\rho\epsilon
\text{\quad and \quad} |x^{k}f(x)|<\rho\epsilon,\quad x\ge r_{0}.
$$
Therefore (A) implies that
$$
\left|\int_{r}^{r_{1}}x^{k}f(x)\cos xy\,dx\right|<3\epsilon,\quad
r_{0}\le r<r_{1},\: y\in (-\infty,-\rho]\cup[\rho,\infty).
$$
Now Theorem~4 implies that $C_{0}$, $C_{1}$,\dots, $C_{k}$ converge
uniformly on $(-\infty,-\rho]\cup[\rho,\infty)$. Since every $y\ne0$
is in such an interval, Theorem~11 now implies that that if $y\ne 0$
then
$$
C^{(k)}(y)=\int_{a}^{\infty}x^{k}f(x)\sin xy\,dx,\quad
0\le k\le n.
$$
A similar argument applies to $S$, $S'$,\dots $S^{(n)}$.
\medskip
{\bf 24.}
Let $I(y;r,r_{1})=\dst{\int_{r}^{r_{1}}\frac{1}{x}\sin\frac{y}{x}\,dx}$.
Assume for the moment that $y\ge 0$.
Substituting $u=y/x$ yields
$$
I(y;r,r_{1})=\int_{y/r_{1}}^{y/r}\left(\frac{u}{y}\right)\sin u
\left(-\frac{y}{u^{2}}\right)\,du =
\int_{y/r_{1}}^{y/r}\frac{\sin u}{u}\,du.
$$
Therefore, since $\dst{\left|\frac{\sin u}{u}\right|}\le 1$ for all $u$,
$|I(y;r,r_{1})|\le y/r$,\quad $1\le r\le r_{1}$. In fact, since
$I(-y;r,r_{1})=-I(y;r,r_{1})$, we can write $|I(y;r,r_{1})\le |y|/r$,
\quad $1\le r\le r_{1}$. Therefore, Theorem~4 implies that
$\dst{\int_{1}^{\infty}\frac{1}{x}\sin\frac{y}{x}\,dx}$ converges
uniformly on every finite interval.
Now
denote $F_{r}(y)=\dst{\int_{1}^{r}\cos\frac{y}{x}\,dx}$.
substituting $u=y/x$ yields
$F_{r}(y)=y\dst{\int_{y/r}^{y}\frac{\cos u}{u^{2}}\,du}$,
so $\lim_{r\to\infty}F_{r}(y)=\infty$ for all $y\ge 0$. Since
$F_{r}(-y)=F_{r}(y)$, it follows that $\lim_{r\to\infty}F_{r}(y)=\infty$
for all $y$, so the answer to the question is ``no.''
\medskip
{\bf 25.}
Let $P_{n}$ be the induction assumption
$$
F^{(n)}(s)=(-1)^{n}\int_{0}^{\infty}e^{-sx}x^{n}f(x)\,dx,\quad s>s_{0},
$$
which is true by the definition of $F$ for $n=0$. If $P_{n}$ is true, then
Theorems~11 and 13 imply that
\begin{eqnarray*}
F^{(n+1)}(s)&=&(-1)^{n}\frac{d}{ds}
\int_{0}^{\infty}e^{-sx}x^{n}f(x)\,dx=(-1)^{n}
\int_{0}^{\infty}\frac{d}{ds}\left(e^{-sx}x^{n}f(x)\right)\,dx\\
&=&(-1)^{n+1}\int_{0}^{\infty}e^{-sx}x^{n+1}f(x)\,dx,
\end{eqnarray*}
so $P_{n}$ implies $P_{n+1}$, which completes the induction proof.
\medskip
{\bf 26.}
Let $G(x)=\dst{\int_{0}^{x}e^{-s_{0}t}f(t)\,dt}$. If $s>s_{0}$ then
\begin{equation}\tag{A}
F(s)=\int_{0}^{\infty}e^{-sx}f(x)\,dx
=\int_{0}^{\infty}e^{-(s-s_{0})x}G'(x)\,dx
=(s-s_{0})\int_{0}^{\infty}e^{-(s-s_{0})x}G(x)\,dx
\end{equation}
(integration by parts). Since
$\dst{(s-s_{0})\int_{0}^{\infty}e^{-(s-s_{0})x}\,dx=1}$, (A) implies that
\begin{equation}\tag{B}
F(s)-F(s_{0})=(s-s_{0})\int_{0}^{\infty}e^{-(s-s_{0})x}(G(x)-F(s_{0}))\,dx.
\end{equation}
Now suppose $\epsilon>0$.
Since
$F(s_{0})=\dst{\int_{0}^{\infty}e^{-s_{0}t}
f(t)\,dt}=\lim_{t\to\infty}G(x)$, there is an $r$ such that
$|G(x)-F(s_{0})|<\epsilon$ if $x\ge r$; hence, from (B), then
\begin{eqnarray*}
|F(s)-F(s_{0})|&\le& (s-s_{0})\int_{0}^{r}e^{-(s-s_{0})x}
|G(x)-F(s_{0})|+\epsilon(s-s_{0})\int_{r}^{\infty}
e^{-(s-s_{0})x}\,dx\\
&<&
(s-s_{0})\int_{0}^{r}e^{-(s-s_{0})x}
|G(x)-F(s_{0})|+\epsilon.
\end{eqnarray*}
Since $r$ is fixed, we can let $s\to s_{0}^{+}$ to conclude that
$\limsup_{s\to s_{0}+}|F(s)-F(s_{0})|\le \epsilon$, which implies that
$\lim_{s\to S_{0}+}F(s)=F(s_{0})$.
\medskip
{\bf 26.}
If $s\ge s_{1}>s_{0}$ then
$$
|e^{-sx}f(x)|= |e^{-(s-s_{0})x}e^{s_{0}x}f(x)|\le M e^{-(s-s_{0})x}
\le M e^{-(s_{1}-s_{0})x}.
$$
Since
$$
\int_{0}^{\infty}Me^{-(s_{1}-s_{0})x}\,dx=\frac{M}{s_{1}-s_{0}}<\infty,
$$
Theorem~6 implies the stated conclusion.
\medskip
{\bf 27.}
In Theorem~13 we assumed only that $\int_{0}^{x}e^{-s_{0}u}f(u)\,du$
is bounded; here we are assuming that
$\int_{0}^{\infty}e^{-s_{0}u}f(u)\,du$ is convergent.
\medskip
Let
$$
G(x)=\int_{x}^{\infty}e^{-s_{0}t}f(t)\,dt
\text{\quad and\quad} H(x)=\sup\set{|G(t)|}{t\ge x}.
$$
Then
\begin{equation}\tag{A}
|G(x)|\le H(x)\text{\quad and \quad}
\lim_{x\to\infty}G(x)=\lim_{x\to\infty}H(x)=0,
\end{equation}
since $\int_{0}^{\infty}e^{-s_{0}x}f(x)\,dx$ converges.
Since $f$ is continuous on $[0,\infty)$,
$G'(x)=-e^{-s_{0}x}f(x)$. Integration by parts yields
\begin{eqnarray*}
\int_{r}^{\infty}e^{-sx}f(x)\,dx&=&
\int_{r}^{\infty}e^{-(s-s_{0})x}(e^{-s_{0}x}f(x))\,dx
=-\int_{0}^{\infty}e^{-(s-s_{0})x}G'(x)\,dx\\
&=&-e^{-(s-s_{0})x}G(x)\biggr|_{r}^{\infty}
+(s-s_{0})\int_{r}^{\infty}e^{-(s-s_{0})x}G(x)\,dx\\
&=&e^{-(s-s_{0})r}G(r)+(s-s_{0})\int_{r}^{\infty}e^{-(s-s_{0})x}G(x)\,dx,\quad s\ge s_{0}.
\end{eqnarray*}
Therefore
\begin{eqnarray*}
\left|\int_{r}^{\infty}e^{-sx}f(x)\,dx\right|&\le&
|G(r)|e^{-(s-s_{0})r}+H(r)(s-s_{0})\int_{r}^{\infty}e^{-(s-s_{0})x}\,dx\\
&=&(G(r)+H(r))e^{-(s-s_{0})r}\le 2H(r)e^{-(s-s_{0})}, \quad s\ge s_{0},
\end{eqnarray*}
so (A) implies that $F(s)$ converges uniformly on $[s_{0},\infty)$.
\medskip
{\bf 28.}
From Theorem~13,
$F(s)=\dst{\int_{0}^{\infty}e^{-sx}f(x)\, dx}$ converges for all $s>s_{0}$.
Denote $G(x)=\dst{\int_{0}^{x}e^{-s_{0}t}f(t)\,dt}$, $x\ge 0$. Then
\begin{eqnarray*}
F(s)&=&\int_{0}^{\infty}e^{-(s-s_{0})x}e^{-s_{0}x}f(x)\,dx=
\int_{0}^{\infty}e^{-(s-s_{0})x}G'(x)\,dx \\
&=&(s-s_{0})\int_{0}^{\infty}e^{-(s-s_{0})x}G(x)\,dx
\end{eqnarray*}
(integration by parts). Since
$\dst{(s-s_{0})\int_{0}^{\infty}e^{-(s-s_{0})x}\,dx}=1$,
$$
F(s)-F(s_{0})=\int_{0}^{\infty}e^{-(s-s_{0})x}(G(x)-F(s_{0}))\,dx
$$
If $\epsilon>0$ there is an $R$ such that $|G(x)-F(s_{0})|<\epsilon$ if
$x\ge R$. Therefore, if $s>s_{0}$ then
\begin{eqnarray*}
|F(s)-F(s_{0})|&<&
(s-s_{0})\int_{0}^{R}e^{-(s-s_{0})x}|G(x)-F(s_{0})|\,dx+\epsilon\\
&<&(s-s_{0})\int_{0}^{R}|G(x)-F(s_{0})|\,dx+\epsilon.
\end{eqnarray*}
Hence
$\limsup_{s\to s_{0}+}|F(s)-F(s_{0})|\le \epsilon$. Since $\epsilon$
is arbitrary, this implies that \\ $\lim_{s\to s_{0}+}|F(s)-F(s_{0})|=0$.
\medskip
{\bf 29.}
The assumptions of Exercise~28 imply that
$\int_{r}^{\infty}e^{-s_{0}x}f(x)\,dx$ converges for every $r>0$. Since
$$
\int_{r}^{\infty}e^{-s_{0}x}f(x)\,dx=\int_{0}^{\infty}e^{-s(r+x)}f(x+r)\,dx
=e^{-sr}\int_{0}^{\infty}e^{-sx}f(x+r)\,dx,
$$
we can apply the result of Exercise~30 with $f(x)$ replaced by $f(x+r)$, to
conclude that
\begin{eqnarray*}
\lim_{s\to s_{0}+}\int_{r}^{\infty}e^{-sx}f(x)\,dx&=&
e^{-s_{0}r}\int_{0}^{\infty}e^{-s_{0}x}f(x+r)\,dx\\
&=&\int_{0}^{\infty}e^{-s_{0}(x+r)}f(x+r)\,dx\\
&=&\int_{r}^{\infty}e^{-s_{0}x}f(x)\,dx.
\end{eqnarray*}
\medskip
{\bf 30.}
If $G(x)=\dst{\int_{0}^{x}e^{-s_{0}t}f(t)\,dt}$, then $|G(x)|\le M$
on $[0,\infty)$ for some $M$. If $\epsilon>0$, there is an $r>0$ such that
\begin{equation}\tag{A}
\int_{0}^{r}e^{-s_{0}x}|f(x)|\,dx <\epsilon.
\end{equation}
If $s>s_{0}$, then
\begin{eqnarray*}
\int_{r}^{\infty}e^{-sx}f(x)\,dx&=&\int_{r}^{\infty}e^{-(s-s_{0})x}G'(x)\,dx \\
&=&e^{-(s-s_{0})x}G(x)\biggr|_{r}^{\infty}
+(s-s_{0})\int_{r}^{\infty}G(x)e^{-(s-s_{0})x}\,dx\\
&=&-e^{-(s-s_{0})r}G(r)
+(s-s_{0})\int_{r}^{\infty}G(x)e^{-(s-s_{0})x}\,dx.
\end{eqnarray*}
Therefore, since $|G(x)|\le M$,
\begin{eqnarray*}
\left|\int_{r}^{\infty}e^{-sx}f(x)\,dx\right|
&\le&Me^{-(s-s_{0})r}+M(s-s_{0})\int_{r}^{\infty}e^{-(s-s_{0})x}\,dx\\
&=&M\left(e^{-(s-s_{0})r}-e^{-(s-s_{0})x}\biggr|_{r}^{\infty}\right)
=2Me^{-(s-s_{0})r}.
\end{eqnarray*}
This and (A) imply that
$$
\left|\int_{0}^{\infty}e^{-sx}f(x)\,dx\right|\le
\epsilon+2Me^{-(s-s_{0})r}.
$$
Therefore,
$$
\limsup_{s\to\infty} \left|\int_{0}^{\infty}e^{-sx}f(x)\,dx\right|\le
\epsilon.
$$
Since $\epsilon$ is arbitrary, this implies that
$$
\limsup_{s\to\infty}\int_{0}^{\infty}e^{-sx}f(x)\,dx=0,
$$
\medskip
{\bf 31. (a)}
From Exercise~18{\bf(d)},
$\dst{\int_{0}^{\infty}\frac{e^{-ax}-e^{-bx}}{x}\sin x\,dx}
=\tan^{-1}b-\tan^{-1}a.$ From Exercise~30, letting $b\to\infty$ yields
$$
\int_{0}^{\infty}e^{-ax}\frac{\sin x}{x}\,dx=
\frac{\pi}{2}-\tan^{-1}a,
\text{\quad so \bf{(b)}\quad}
\int_{0}^{\infty}\frac{\sin x}{x}\,dx=\frac{\pi}{2}.
$$
\medskip
{\bf 32. (a)}
Integrating by parts yields
\begin{equation}\tag{A}
\int_{0}^{r}e^{-sx}f'(x)\,dt
=e^{-sr}f(r)-f(0)
+\int_{0}^{r}se^{-sx}f(x)\,dx.
\end{equation}
Suppose $s\ge s_{1}>s_{0}$.
Since $|f(x)|\le Me^{s_{0}x}$, $e^{-sr}|f(r)|\le Me^{-(s_{1}-s_{0})r}$.
Therefore
$e^{-sr}f(r)=0$ converges uniformly to zero on
$[s_{1},\infty)$. Since
\begin{eqnarray*}
\left|\int_{r}^{\infty}se^{-sx}f(x)\,dx \right|&\le&
M|s|\int_{r}^{\infty}e^{-(s-s_{0})x}\,dx\le
\frac{M|s|e^{-(s_{1}-s_{0})r}}{s-s_{0}}\\
&\le&\frac{M(s-s_{0}+|s_{0}|)e^{-(s_{1}-s_{0})r}}{s-s_{0}}
\le M\left(1+\frac{|s_{0}|}{s_{1}-s_{0}}\right)e^{-(s_{1}-s_{0})r},
\end{eqnarray*}
it follows that
$\dst{\int_{r}^{\infty}se^{-sx}f(x)\,dx}$ converges to zero
uniformly on $[s_{1},\infty)$. Since this implies that
$\dst{\int_{0}^{r}se^{-sx}f(x)\,dx}$ converges uniformly on
$[s_{1},\infty)$,
(A) implies that
$G(s)$ converges uniformly on $[s_{1},\infty)$.
\medskip
{\bf(b)}
In this case let $f'(x)=xe^{x^{2}}\sin e^{x^{2}}$,
so $f(x)=-\dst{\frac{1}{2}}\cos e^{x^{2}}$. Since $|\cos e^{x^{2}}|\le 1$
for all $x$, the hypotheses stated in (a) hold with $s_{0}=0$. Therefore
$G(s)$ converges uniformly on $[\rho,\infty)$ if $\rho>0$.
\medskip
{\bf 33.}
We will first show that
$\dst{\int_{0}^{\infty}e^{-s_{0}x}\frac{f(x)}{x}\,dx}$ converges.
Denote $G(x)=\dst{\int_{0}^{x}e^{-s_{0}t}f(t)\,dt}$. Since $F(s_{0})$
is convergent; say $|G(x)|\le M$, $0\le x<\infty$.
If $0<r<r_{1}$ then
$$
\int_{r}^{r_{1}}e^{-s_{0}x}\frac{f(x)}{x}\,dx=
\int_{r}^{r_{1}}\frac{G'(x)}{x}\,dx
=\frac{G(r)}{r}-\frac{G(r_{1})}{r_{1}}-\int_{r}^{r_{1}}\frac{G(x)}{x^{2}}\,dx.
$$
Therefore
$$
\left|\int_{r}^{r_{1}}e^{-s_{0}x}\frac{f(x)}{x}\,dx\right|\le
\frac{3M}{\rho},\quad \rho<r<r_{1}
$$
so Theorem~2 implies that
$H(s)=\dst{\int_{0}^{\infty}e^{-st}\frac{f(x)}{x}\,dx}$
converge when $s=s_{0}$. Therefore Exercise~27 implies that it converges
uniformly on
$[s_{0},\infty)$,
Therefore Theorem~10 implies that
\begin{eqnarray*}
\int_{s_{0}}^{s}F(u)\,du &=&\int_{s_{0}}^{s}\left(\int_{0}^{\infty}
e^{-ux}f(x)\,dx\right)\,du
=\int_{0}^{\infty}\left(\int_{s_{0}}^{s}e^{-ux}\,du\right)f(x)\,dx\\
&=&\int_{0}^{\infty}\left(e^{-s_{0}x}-e^{-sx}\right)\frac{f(x)}{x}\,dx
\end{eqnarray*}
From Exercise~30 (with $f(x)$ replaced by $f(x)/x$),
$\dst{\lim_{s\to\infty}\int_{0}^{\infty}e^{-sx}\frac{f(x)}{x}\,dx}=0$,
which implies the stated conclusion.
\end{document}
|