Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 32,978 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
(*
    Authors:      Jose Divasón
                  Sebastiaan Joosten
                  René Thiemann
                  Akihisa Yamada
*)
subsection \<open>Result is Unique\<close>

text \<open>We combine the finite field factorization algorithm with Hensel-lifting to
  obtain factorizations mod $p^n$. Moreover, we prove results on unique-factorizations
  in mod $p^n$ which admit to extend the uniqueness result for binary Hensel-lifting
  to the general case. As a consequence, our factorization algorithm will produce
  unique factorizations mod $p^n$.\<close> 

theory Berlekamp_Hensel
imports 
  Finite_Field_Factorization_Record_Based
  Hensel_Lifting
begin

hide_const coeff monom

definition berlekamp_hensel :: "int \<Rightarrow> nat \<Rightarrow> int poly \<Rightarrow> int poly list" where
  "berlekamp_hensel p n f = (case finite_field_factorization_int p f of
    (_,fs) \<Rightarrow> hensel_lifting p n f fs)"

text \<open>Finite field factorization in combination with Hensel-lifting delivers 
  factorization modulo $p^k$ where factors are irreducible modulo $p$.
  Assumptions: input polynomial is square-free modulo $p$.\<close>

context poly_mod_prime begin

lemma berlekamp_hensel_main:
  assumes n: "n \<noteq> 0"
    and res: "berlekamp_hensel p n f = gs" 
    and cop: "coprime (lead_coeff f) p" 
    and sf: "square_free_m f" 
    and berl: "finite_field_factorization_int p f = (c,fs)" 
  shows "poly_mod.factorization_m (p ^ n) f (lead_coeff f, mset gs) \<comment> \<open>factorization mod \<open>p^n\<close>\<close>"
    and "sort (map degree fs) = sort (map degree gs)"
    and "\<And> g. g \<in> set gs \<Longrightarrow> monic g \<and> poly_mod.Mp (p^n) g = g \<and>  \<comment> \<open>monic and normalized\<close>
        poly_mod.irreducible_m p g \<and> \<comment> \<open>irreducibility even mod \<open>p\<close>\<close>
        poly_mod.degree_m p g = degree g  \<comment> \<open>mod \<open>p\<close> does not change degree of \<open>g\<close>\<close>"
proof -
  from res[unfolded berlekamp_hensel_def berl split] 
  have hen: "hensel_lifting p n f fs = gs" .
  note bh = finite_field_factorization_int[OF sf berl]
  from bh have "poly_mod.factorization_m p f (c, mset fs)" "c \<in> {0..<p}" "(\<forall>fi\<in>set fs. set (coeffs fi) \<subseteq> {0..<p})" 
    by (auto simp: poly_mod.unique_factorization_m_alt_def)
  note hen = hensel_lifting[OF n hen cop sf, OF this]
  show "poly_mod.factorization_m (p ^ n) f (lead_coeff f, mset gs)" 
    "sort (map degree fs) = sort (map degree gs)"
    "\<And> g. g \<in> set gs \<Longrightarrow> monic g \<and> poly_mod.Mp (p^n) g = g \<and>  
      poly_mod.irreducible_m p g \<and> 
      poly_mod.degree_m p g = degree g" using hen by auto
qed

theorem berlekamp_hensel:
  assumes cop: "coprime (lead_coeff f) p"
    and sf: "square_free_m f"
    and res: "berlekamp_hensel p n f = gs"
    and n: "n \<noteq> 0"
  shows "poly_mod.factorization_m (p^n) f (lead_coeff f, mset gs) \<comment> \<open>factorization mod \<open>p^n\<close>\<close>"
    and "\<And> g. g \<in> set gs \<Longrightarrow> poly_mod.Mp (p^n) g = g \<and> poly_mod.irreducible_m p g
      \<comment> \<open>normalized and \<open>irreducible\<close> even mod \<open>p\<close>\<close>"
proof -
  obtain c fs where "finite_field_factorization_int p f = (c,fs)" by force
  from berlekamp_hensel_main[OF n res cop sf this]
  show "poly_mod.factorization_m (p^n) f (lead_coeff f, mset gs)" 
    "\<And> g. g \<in> set gs \<Longrightarrow> poly_mod.Mp (p^n) g = g \<and> poly_mod.irreducible_m p g" by auto
qed

lemma berlekamp_and_hensel_separated:
  assumes cop: "coprime (lead_coeff f) p"
    and sf: "square_free_m f"
    and res: "hensel_lifting p n f fs = gs"
    and berl: "finite_field_factorization_int p f = (c,fs)"
    and n: "n \<noteq> 0"
  shows "berlekamp_hensel p n f = gs"
    and "sort (map degree fs) = sort (map degree gs)"
proof -
  show "berlekamp_hensel p n f = gs" unfolding res[symmetric]
    berlekamp_hensel_def hensel_lifting_def berl split Let_def ..
  from berlekamp_hensel_main[OF n this cop sf berl] show "sort (map degree fs) = sort (map degree gs)"
    by auto 
qed

end

lemma prime_cop_exp_poly_mod:
  assumes prime: "prime p" and cop: "coprime c p" and n: "n \<noteq> 0"
  shows "poly_mod.M (p^n) c \<in> {1 ..< p^n}"
proof -
  from prime have p1: "p > 1" by (simp add: prime_int_iff)
  interpret poly_mod_2 "p^n" unfolding poly_mod_2_def using p1 n by simp
  from cop p1 m1 have "M c \<noteq> 0"
    by (auto simp add: M_def)
  moreover have "M c < p^n" "M c \<ge> 0" unfolding M_def using m1 by auto
  ultimately show ?thesis by auto
qed

context poly_mod_2
begin

context
  fixes p :: int
  assumes prime: "prime p"
begin

interpretation p: poly_mod_prime p using prime by unfold_locales

lemma coprime_lead_coeff_factor: assumes "coprime (lead_coeff (f * g)) p"
  shows "coprime (lead_coeff f) p" "coprime (lead_coeff g) p" 
proof -
  {
    fix f g 
    assume cop: "coprime (lead_coeff (f * g)) p" 
    from this[unfolded lead_coeff_mult]
    have "coprime (lead_coeff f) p" using prime
      by simp
  }
  from this[OF assms] this[of g f] assms
  show "coprime (lead_coeff f) p" "coprime (lead_coeff g) p" by (auto simp: ac_simps)
qed

lemma unique_factorization_m_factor: assumes uf: "unique_factorization_m (f * g) (c,hs)"
  and cop: "coprime (lead_coeff (f * g)) p"  
  and sf: "p.square_free_m (f * g)" 
  and n: "n \<noteq> 0" 
  and m: "m = p^n" 
  shows "\<exists> fs gs. unique_factorization_m f (lead_coeff f,fs) 
  \<and> unique_factorization_m g (lead_coeff g,gs) 
  \<and> Mf (c,hs) = Mf (lead_coeff f * lead_coeff g, fs + gs)
  \<and> image_mset Mp fs = fs \<and> image_mset Mp gs = gs"
proof -
  from prime have p1: "1 < p" by (simp add: prime_int_iff)
  interpret p: poly_mod_2 p by (standard, rule p1)
  note sf = p.square_free_m_factor[OF sf]
  note cop = coprime_lead_coeff_factor[OF cop]
  from cop have copm: "coprime (lead_coeff f) m" "coprime (lead_coeff g) m" 
    by (simp_all add: m)
  have df: "degree_m f = degree f" 
    by (rule degree_m_eq[OF _ m1], insert copm(1) m1, auto)  
  have dg: "degree_m g = degree g" 
    by (rule degree_m_eq[OF _ m1], insert copm(2) m1, auto)  
  define fs where "fs \<equiv> mset (berlekamp_hensel p n f)"
  define gs where "gs \<equiv> mset (berlekamp_hensel p n g)"
  from p.berlekamp_hensel[OF cop(1) sf(1) refl n, folded m]
  have f: "factorization_m f (lead_coeff f,fs)" 
    and f_id: "\<And> f. f \<in># fs \<Longrightarrow> Mp f = f" unfolding fs_def by auto
  from p.berlekamp_hensel[OF cop(2) sf(2) refl n, folded m]
  have g: "factorization_m g (lead_coeff g,gs)" 
    and g_id: "\<And> f. f \<in># gs \<Longrightarrow> Mp f = f" unfolding gs_def by auto
  from factorization_m_prod[OF f g] uf[unfolded unique_factorization_m_alt_def]
  have eq: "Mf (lead_coeff f * lead_coeff g, fs + gs) = Mf (c,hs)" by blast
  have uff: "unique_factorization_m f (lead_coeff f,fs)" 
  proof (rule unique_factorization_mI[OF f])
    fix e ks
    assume "factorization_m f (e,ks)" 
    from factorization_m_prod[OF this g] uf[unfolded unique_factorization_m_alt_def]
      factorization_m_lead_coeff[OF this, unfolded degree_m_eq_lead_coeff[OF df]]
    have "Mf (e * lead_coeff g, ks + gs) = Mf (c,hs)" and e: "M (lead_coeff f) = M e" by blast+
    from this[folded eq, unfolded Mf_def split] 
    have ks: "image_mset Mp ks = image_mset Mp fs" by auto
    show "Mf (e, ks) = Mf (lead_coeff f, fs)" unfolding Mf_def split ks e by simp
  qed
  have idf: "image_mset Mp fs = fs" using f_id by (induct fs, auto)
  have idg: "image_mset Mp gs = gs" using g_id by (induct gs, auto)
  have ufg: "unique_factorization_m g (lead_coeff g,gs)" 
  proof (rule unique_factorization_mI[OF g])
    fix e ks
    assume "factorization_m g (e,ks)" 
    from factorization_m_prod[OF f this] uf[unfolded unique_factorization_m_alt_def]
      factorization_m_lead_coeff[OF this, unfolded degree_m_eq_lead_coeff[OF dg]]
    have "Mf (lead_coeff f * e, fs + ks) = Mf (c,hs)" and e: "M (lead_coeff g) = M e" by blast+
    from this[folded eq, unfolded Mf_def split] 
    have ks: "image_mset Mp ks = image_mset Mp gs" by auto
    show "Mf (e, ks) = Mf (lead_coeff g, gs)" unfolding Mf_def split ks e by simp
  qed
  from uff ufg eq[symmetric] idf idg show ?thesis by auto
qed

lemma unique_factorization_factorI:
  assumes ufact: "unique_factorization_m (f * g) FG"
    and cop: "coprime (lead_coeff (f * g)) p"
    and sf: "poly_mod.square_free_m p (f * g)"
    and n: "n \<noteq> 0" 
    and m: "m = p^n" 
  shows "factorization_m f F \<Longrightarrow> unique_factorization_m f F"
    and "factorization_m g G \<Longrightarrow> unique_factorization_m g G"
proof -
  obtain c fg where FG: "FG = (c,fg)" by force
  from unique_factorization_m_factor[OF ufact[unfolded FG] cop sf n m]
  obtain fs gs where ufact: "unique_factorization_m f (lead_coeff f, fs)" 
    "unique_factorization_m g (lead_coeff g, gs)" by auto
  from ufact(1) show "factorization_m f F \<Longrightarrow> unique_factorization_m f F"
    by (metis unique_factorization_m_alt_def)
  from ufact(2) show "factorization_m g G \<Longrightarrow> unique_factorization_m g G"
    by (metis unique_factorization_m_alt_def)
qed

end

lemma monic_Mp_prod_mset: assumes fs: "\<And> f. f \<in># fs \<Longrightarrow> monic (Mp f)" 
  shows "monic (Mp (prod_mset fs))"
proof -
  have "monic (prod_mset (image_mset Mp fs))"
    by (rule monic_prod_mset, insert fs, auto)
  from monic_Mp[OF this] have "monic (Mp (prod_mset (image_mset Mp fs)))" .
  also have "Mp (prod_mset (image_mset Mp fs)) = Mp (prod_mset fs)" by (rule Mp_prod_mset)
  finally show ?thesis .
qed

lemma degree_Mp_mult_monic: assumes "monic f" "monic g"
  shows "degree (Mp (f * g)) = degree f + degree g"
  by (metis zero_neq_one assms degree_monic_mult leading_coeff_0_iff monic_degree_m monic_mult)
  
lemma factorization_m_degree: assumes "factorization_m f (c,fs)" 
  and 0: "Mp f \<noteq> 0" 
  shows "degree_m f = sum_mset (image_mset degree_m fs)" 
proof -
  note a = assms[unfolded factorization_m_def split] 
  hence deg: "degree_m f = degree_m (smult c (prod_mset fs))" 
    and fs: "\<And> f. f \<in># fs \<Longrightarrow> monic (Mp f)" by auto
  define gs where "gs \<equiv> Mp (prod_mset fs)" 
  from monic_Mp_prod_mset[OF fs] have mon_gs: "monic gs" unfolding gs_def .
  have d:"degree (Mp (Polynomial.smult c gs)) = degree gs"
  proof -
    have f1: "0 \<noteq> c" by (metis "0" Mp_0 a(1) smult_eq_0_iff)
    then have "M c \<noteq> 0" by (metis (no_types) "0" assms(1) factorization_m_lead_coeff leading_coeff_0_iff)
    then show "degree (Mp (Polynomial.smult c gs)) = degree gs"
      unfolding monic_degree_m[OF mon_gs,symmetric]
      using f1 by (metis coeff_smult degree_m_eq degree_smult_eq m1 mon_gs monic_degree_m mult_cancel_left1 poly_mod.M_def)
  qed
  note deg
  also have "degree_m (smult c (prod_mset fs)) = degree_m (smult c gs)"
    unfolding gs_def by simp
  also have "\<dots> = degree gs" using d.
  also have "\<dots> = sum_mset (image_mset degree_m fs)" unfolding gs_def
    using fs
  proof (induct fs)
    case (add f fs)
    have mon: "monic (Mp f)" "monic (Mp (prod_mset fs))" using monic_Mp_prod_mset[of fs]
      add(2) by auto
    have "degree (Mp (prod_mset (add_mset f fs))) = degree (Mp (Mp f * Mp (prod_mset fs)))" 
      by (auto simp: ac_simps)
    also have "\<dots> = degree (Mp f) + degree (Mp (prod_mset fs))" 
      by (rule degree_Mp_mult_monic[OF mon])
    also have "degree (Mp (prod_mset fs)) = sum_mset (image_mset degree_m fs)" 
      by (rule add(1), insert add(2), auto)
    finally show ?case by (simp add: ac_simps)
  qed simp
  finally show ?thesis .
qed

lemma degree_m_mult_le: "degree_m (f * g) \<le> degree_m f + degree_m g" 
  using degree_m_mult_le by auto

lemma degree_m_prod_mset_le: "degree_m (prod_mset fs) \<le> sum_mset (image_mset degree_m fs)" 
proof (induct fs)
  case empty
  show ?case by simp
next
  case (add f fs)
  then show ?case using degree_m_mult_le[of f "prod_mset fs"] by auto
qed

end


context poly_mod_prime
begin

lemma unique_factorization_m_factor_partition: assumes l0: "l \<noteq> 0" 
  and uf: "poly_mod.unique_factorization_m (p^l) f (lead_coeff f, mset gs)" 
  and f: "f = f1 * f2" 
  and cop: "coprime (lead_coeff f) p" 
  and sf: "square_free_m f" 
  and part: "List.partition (\<lambda>gi. gi dvdm f1) gs = (gs1, gs2)" 
shows "poly_mod.unique_factorization_m (p^l) f1 (lead_coeff f1, mset gs1)"
  "poly_mod.unique_factorization_m (p^l) f2 (lead_coeff f2, mset gs2)"
proof -
  interpret pl: poly_mod_2 "p^l" by (standard, insert m1 l0, auto)
  let ?I = "image_mset pl.Mp" 
  note Mp_pow [simp] = Mp_Mp_pow_is_Mp[OF l0 m1]
  have [simp]: "pl.Mp x dvdm u = (x dvdm u)" for x u unfolding dvdm_def using Mp_pow[of x]
    by (metis poly_mod.mult_Mp(1))
  have gs_split: "set gs = set gs1 \<union> set gs2" using part by auto
  from pl.unique_factorization_m_factor[OF prime uf[unfolded f] _ _ l0 refl, folded f, OF cop sf]
  obtain hs1 hs2 where uf': "pl.unique_factorization_m f1 (lead_coeff f1, hs1)" 
      "pl.unique_factorization_m f2 (lead_coeff f2, hs2)"
    and gs_hs: "?I (mset gs) = hs1 + hs2"
    unfolding pl.Mf_def split by auto
  have gs_gs: "?I (mset gs) = ?I (mset gs1) + ?I (mset gs2)" using part 
    by (auto, induct gs arbitrary: gs1 gs2, auto)
  with gs_hs have gs_hs12: "?I (mset gs1) + ?I (mset gs2) = hs1 + hs2" by auto
  note pl_dvdm_imp_p_dvdm = pl_dvdm_imp_p_dvdm[OF l0]
  note fact = pl.unique_factorization_m_imp_factorization[OF uf]
  have gs1: "?I (mset gs1) = {#x \<in># ?I (mset gs). x dvdm f1#}"
    using part by (auto, induct gs arbitrary: gs1 gs2, auto)
  also have "\<dots> = {#x \<in># hs1. x dvdm f1#} + {#x \<in># hs2. x dvdm f1#}" unfolding gs_hs by simp
  also have "{#x \<in># hs2. x dvdm f1#} = {#}" 
  proof (rule ccontr)
    assume "\<not> ?thesis" 
    then obtain x where x: "x \<in># hs2" and dvd: "x dvdm f1" by fastforce
    from x gs_hs have "x \<in># ?I (mset gs)" by auto
    with fact[unfolded pl.factorization_m_def]
    have xx: "pl.irreducible\<^sub>d_m x" "monic x" by auto
    from square_free_m_prod_imp_coprime_m[OF sf[unfolded f]] 
    have cop_h_f: "coprime_m f1 f2" by auto  
    from pl.factorization_m_mem_dvdm[OF pl.unique_factorization_m_imp_factorization[OF uf'(2)], of x] x 
    have "pl.dvdm x f2" by auto
    hence "x dvdm f2" by (rule pl_dvdm_imp_p_dvdm)
    from cop_h_f[unfolded coprime_m_def, rule_format, OF dvd this] 
    have "x dvdm 1" by auto
    from dvdm_imp_degree_le[OF this xx(2) _ m1] have "degree x = 0" by auto
    with xx show False unfolding pl.irreducible\<^sub>d_m_def by auto
  qed
  also have "{#x \<in># hs1. x dvdm f1#} = hs1"
  proof (rule ccontr)
    assume "\<not> ?thesis" 
    from filter_mset_inequality[OF this]
    obtain x where x: "x \<in># hs1" and dvd: "\<not> x dvdm f1" by blast
    from pl.factorization_m_mem_dvdm[OF pl.unique_factorization_m_imp_factorization[OF uf'(1)], 
      of x] x dvd 
    have "pl.dvdm x f1" by auto
    from pl_dvdm_imp_p_dvdm[OF this] dvd show False by auto
  qed
  finally have gs_hs1: "?I (mset gs1) = hs1" by simp
  with gs_hs12 have "?I (mset gs2) = hs2" by auto
  with uf' gs_hs1 have "pl.unique_factorization_m f1 (lead_coeff f1, ?I (mset gs1))"
     "pl.unique_factorization_m f2 (lead_coeff f2, ?I (mset gs2))" by auto
  thus "pl.unique_factorization_m f1 (lead_coeff f1, mset gs1)"
     "pl.unique_factorization_m f2 (lead_coeff f2, mset gs2)"
    unfolding pl.unique_factorization_m_def 
    by (auto simp: pl.Mf_def image_mset.compositionality o_def)
qed

lemma factorization_pn_to_factorization_p: assumes fact: "poly_mod.factorization_m (p^n) C (c,fs)"
  and sf: "square_free_m C" 
  and n: "n \<noteq> 0" 
shows "factorization_m C (c,fs)" 
proof -
  let ?q = "p^n" 
  from n m1 have q: "?q > 1" by simp
  interpret q: poly_mod_2 ?q by (standard, insert q, auto)
  from fact[unfolded q.factorization_m_def]
  have eq: "q.Mp C = q.Mp (Polynomial.smult c (prod_mset fs))" 
    and irr: "\<And> f. f \<in># fs \<Longrightarrow> q.irreducible\<^sub>d_m f" 
    and mon: "\<And> f. f \<in># fs \<Longrightarrow> monic (q.Mp f)" 
    by auto
  from arg_cong[OF eq, of Mp]
  have eq: "eq_m C (smult c (prod_mset fs))" 
    by (simp add: Mp_Mp_pow_is_Mp m1 n)
  show ?thesis unfolding factorization_m_def split
  proof (rule conjI[OF eq], intro ballI conjI)
    fix f
    assume f: "f \<in># fs" 
    from mon[OF this] have mon_qf: "monic (q.Mp f)" .
    hence lc: "lead_coeff (q.Mp f) = 1" by auto
    from mon_qf show mon_f: "monic (Mp f)" 
      by (metis Mp_Mp_pow_is_Mp m1 monic_Mp n)
    from irr[OF f] have irr: "q.irreducible\<^sub>d_m f" .
    hence "q.degree_m f \<noteq> 0" unfolding q.irreducible\<^sub>d_m_def by auto
    also have "q.degree_m f = degree_m f" using mon[OF f]
      by (metis Mp_Mp_pow_is_Mp m1 monic_degree_m n)
    finally have deg: "degree_m f \<noteq> 0" by auto
    from f obtain gs where fs: "fs = {#f#} + gs"
      by (metis mset_subset_eq_single subset_mset.add_diff_inverse)
    from eq[unfolded fs] have "Mp C = Mp (f * smult c (prod_mset gs))" by auto
    from square_free_m_factor[OF square_free_m_cong[OF sf this]]
    have sf_f: "square_free_m f" by simp
    have sf_Mf: "square_free_m (q.Mp f)"
      by (rule square_free_m_cong[OF sf_f], auto simp: Mp_Mp_pow_is_Mp n m1) 
    have "coprime (lead_coeff (q.Mp f)) p" using mon[OF f] prime by simp
    from berlekamp_hensel[OF this sf_Mf refl n, unfolded lc] obtain gs where
      qfact: "q.factorization_m (q.Mp f) (1, mset gs)"
      and "\<And> g. g \<in> set gs \<Longrightarrow> irreducible_m g" by blast
    hence fact: "q.Mp f = q.Mp (prod_list gs)" 
      and gs: "\<And> g. g\<in> set gs \<Longrightarrow> irreducible\<^sub>d_m g \<and> q.irreducible\<^sub>d_m g \<and> monic (q.Mp g)" 
      unfolding q.factorization_m_def by auto
    from q.factorization_m_degree[OF qfact]
    have deg: "q.degree_m (q.Mp f) = sum_mset (image_mset q.degree_m (mset gs))"
      using mon_qf by fastforce
    from irr[unfolded q.irreducible\<^sub>d_m_def]
    have "sum_mset (image_mset q.degree_m (mset gs)) \<noteq> 0" by (fold deg, auto)
    then obtain g gs' where gs1: "gs = g # gs'" by (cases gs, auto)
    {
      assume "gs' \<noteq> []" 
      then obtain h hs where gs2: "gs' = h # hs" by (cases gs', auto)
      from deg gs[unfolded q.irreducible\<^sub>d_m_def] 
      have small: "q.degree_m g < q.degree_m f" 
        "q.degree_m h + sum_mset (image_mset q.degree_m (mset hs)) < q.degree_m f" 
        unfolding gs1 gs2 by auto
      have "q.eq_m f (g * (h * prod_list hs))" 
        using fact unfolding gs1 gs2 by simp
      with irr[unfolded q.irreducible\<^sub>d_m_def, THEN conjunct2, rule_format, of g "h * prod_list hs"]
        small(1) have "\<not> q.degree_m (h * prod_list hs) < q.degree_m f" by auto
      hence "q.degree_m f \<le> q.degree_m (h * prod_list hs)" by simp
      also have "\<dots> = q.degree_m (prod_mset ({#h#} + mset hs))" by simp
      also have "\<dots> \<le> sum_mset (image_mset q.degree_m ({#h#} + mset hs))" 
        by (rule q.degree_m_prod_mset_le)
      also have "\<dots> < q.degree_m f" using small(2) by simp
      finally have False by simp
    }
    hence gs1: "gs = [g]" unfolding gs1 by (cases gs', auto)
    with fact have "q.Mp f = q.Mp g" by auto
    from arg_cong[OF this, of Mp] have eq: "Mp f = Mp g" 
      by (simp add: Mp_Mp_pow_is_Mp m1 n)
    from gs[unfolded gs1] have g: "irreducible\<^sub>d_m g" by auto
    with eq show "irreducible\<^sub>d_m f" unfolding irreducible\<^sub>d_m_def by auto
  qed
qed

lemma unique_monic_hensel_factorization: 
  assumes ufact: "unique_factorization_m C (1,Fs)"
  and C: "monic C" "square_free_m C" 
  and n: "n \<noteq> 0" 
  shows "\<exists> Gs. poly_mod.unique_factorization_m (p^n) C (1, Gs)"
  using ufact C
proof (induct Fs arbitrary: C rule: wf_induct[OF wf_measure[of size]])
  case (1 Fs C)
  let ?q = "p^n" 
  from n m1 have q: "?q > 1" by simp
  interpret q: poly_mod_2 ?q by (standard, insert q, auto)
  note [simp] = Mp_Mp_pow_is_Mp[OF n m1]
  note IH = 1(1)[rule_format]
  note ufact = 1(2)
  hence fact: "factorization_m C (1, Fs)" unfolding unique_factorization_m_alt_def by auto
  note monC = 1(3)
  note sf = 1(4)
  let ?n = "size Fs" 
  {
    fix d gs
    assume qfact: "q.factorization_m C (d,gs)" 
    from q.factorization_m_lead_coeff[OF this] q.monic_Mp[OF monC] 
    have d1: "q.M d = 1" by auto
    
    from factorization_pn_to_factorization_p[OF qfact sf n]
    have "factorization_m C (d,gs)" .
    with ufact d1 have "q.M d = 1" "M d = 1" "image_mset Mp gs = image_mset Mp Fs" 
      unfolding unique_factorization_m_alt_def Mf_def by auto    
  } note pre_unique = this
  show ?case
  proof (cases Fs)
    case empty
    with fact C have "Mp C = 1" unfolding factorization_m_def by auto
    hence "degree (Mp C) = 0" by simp
    with degree_m_eq_monic[OF monC m1] have "degree C = 0" by simp
    with monC have C1: "C = 1" using monic_degree_0 by blast
    with fact have fact: "q.factorization_m C (1,{#})" 
      by (auto simp: q.factorization_m_def)
    show ?thesis 
    proof (rule exI, rule q.unique_factorization_mI[OF fact])
      fix d gs
      assume fact: "q.factorization_m C (d,gs)" 
      from pre_unique[OF this, unfolded empty]
      show "q.Mf (d, gs) = q.Mf (1, {#})" by (auto simp: q.Mf_def)
    qed      
  next
    case (add D H) note FDH = this
    let ?D = "Mp D" 
    let ?H = "Mp (prod_mset H)"
    from fact have monFs: "\<And> F. F \<in># Fs \<Longrightarrow> monic (Mp F)" 
      and prod: "eq_m C (prod_mset Fs)" unfolding factorization_m_def by auto
    hence monD: "monic ?D" unfolding FDH by auto
    from square_free_m_cong[OF sf, of "D * prod_mset H"] prod[unfolded FDH]
    have "square_free_m (D * prod_mset H)" by (auto simp: ac_simps)
    from square_free_m_prod_imp_coprime_m[OF this]    
    have "coprime_m D (prod_mset H)" .
    hence cop': "coprime_m ?D ?H" unfolding coprime_m_def dvdm_def Mp_Mp by simp
    from fact have eq': "eq_m (?D * ?H) C"
      unfolding FDH by (simp add: factorization_m_def ac_simps)
    note unique_hensel_binary[OF prime cop' eq' Mp_Mp Mp_Mp monD n]
    from ex1_implies_ex[OF this] this
    obtain A B where CAB: "q.eq_m (A * B) C" and monA: "monic A" and DA: "eq_m ?D A"
      and HB: "eq_m ?H B" and norm: "q.Mp A = A" "q.Mp B = B" 
      and unique: "\<And> D' H'. q.eq_m (D' * H') C \<Longrightarrow>
          monic D' \<Longrightarrow>
          eq_m (Mp D) D' \<Longrightarrow> eq_m (Mp (prod_mset H)) H' \<Longrightarrow> q.Mp D' = D' \<Longrightarrow> q.Mp H' = H'
        \<Longrightarrow> D' = A \<and> H' = B" by blast
    note hensel_bin_wit = CAB monA DA HB norm
    from monA have monA': "monic (q.Mp A)" by (rule q.monic_Mp)
    from q.monic_Mp[OF monC] CAB have monicP:"monic (q.Mp (A * B))" by auto
    have f4: "\<And>p. coeff (A * p) (degree (A * p)) = coeff p (degree p)"
      by (simp add: coeff_degree_mult monA)
    have f2: "\<And>p n i. coeff p n mod i = coeff (poly_mod.Mp i p) n"
        using poly_mod.M_def poly_mod.Mp_coeff by presburger
    hence "coeff B (degree B) = 0 \<or> monic B"
        using monicP f4 by (metis (no_types) norm(2) q.degree_m_eq q.m1)
    hence monB: "monic B"
        using f4 monicP by (metis norm(2) leading_coeff_0_iff)
    from monA monB have lcAB: "lead_coeff (A * B) = 1" by (rule monic_mult)
    hence copAB: "coprime (lead_coeff (A * B)) p" by auto
    from arg_cong[OF CAB, of Mp]
    have CAB': "eq_m C (A * B)" by auto
    from sf CAB' have sfAB: "square_free_m (A * B)" using square_free_m_cong by blast
    from CAB' ufact have ufact: "unique_factorization_m (A * B) (1, Fs)"
      using unique_factorization_m_cong by blast
    have "(1 :: nat) \<noteq> 0" "p = p ^ 1" by auto
    note u_factor = unique_factorization_factorI[OF prime ufact copAB sfAB this]
    from fact DA have "irreducible\<^sub>d_m D" "eq_m A D" unfolding add factorization_m_def by auto
    hence "irreducible\<^sub>d_m A" using Mp_irreducible\<^sub>d_m by fastforce
    from irreducible\<^sub>d_lifting[OF n _ this] have irrA: "q.irreducible\<^sub>d_m A" using monA
      by (simp add: m1 poly_mod.degree_m_eq_monic q.m1)
    
    from add have lenH: "(H,Fs) \<in> measure size" by auto
    from HB fact have factB: "factorization_m B (1, H)" 
      unfolding FDH factorization_m_def by auto
    from u_factor(2)[OF factB] have ufactB: "unique_factorization_m B (1, H)" .

    from sfAB have sfB: "square_free_m B" by (rule square_free_m_factor)
    from IH[OF lenH ufactB monB sfB] obtain Bs where
      IH2: "q.unique_factorization_m B (1, Bs)" by auto
    
    from CAB have "q.Mp C = q.Mp (q.Mp A * q.Mp B)" by simp
    also have "q.Mp A * q.Mp B = q.Mp A * q.Mp (prod_mset Bs)" 
      using IH2 unfolding q.unique_factorization_m_alt_def q.factorization_m_def by auto
    also have "q.Mp \<dots> = q.Mp (A * prod_mset Bs)" by simp
    finally have factC: "q.factorization_m C (1, {# A #} + Bs)" using IH2 monA' irrA
      by (auto simp: q.unique_factorization_m_alt_def q.factorization_m_def)
    show ?thesis 
    proof (rule exI, rule q.unique_factorization_mI[OF factC])
      fix d gs
      assume dgs: "q.factorization_m C (d,gs)"
      from pre_unique[OF dgs, unfolded add] have d1: "q.M d = 1" and
        gs_fs: "image_mset Mp gs = {# Mp D #} + image_mset Mp H" by (auto simp: ac_simps)
      have "\<forall>f m p ma. image_mset f m \<noteq> add_mset (p::int poly) ma \<or>
                (\<exists>mb pa. m = add_mset (pa::int poly) mb \<and> f pa = p \<and> image_mset f mb = ma)"
          by (simp add: msed_map_invR)
      then obtain g hs where gs: "gs = {# g #} + hs" and gD: "Mp g = Mp D" 
        and hsH: "image_mset Mp hs = image_mset Mp H"
        using gs_fs by (metis add_mset_add_single union_commute)
      from dgs[unfolded q.factorization_m_def split] 
      have eq: "q.Mp C = q.Mp (smult d (prod_mset gs))" 
        and irr_mon: "\<And> g. g\<in>#gs \<Longrightarrow> q.irreducible\<^sub>d_m g \<and> monic (q.Mp g)"
        using d1 by auto
      note eq
      also have "q.Mp (smult d (prod_mset gs)) = q.Mp (smult (q.M d) (prod_mset gs))" 
        by simp
      also have "\<dots> = q.Mp (prod_mset gs)" unfolding d1 by simp
      finally have eq: "q.eq_m (q.Mp g * q.Mp (prod_mset hs)) C" unfolding gs by simp
      from gD have Dg: "eq_m (Mp D) (q.Mp g)" by simp
      have "Mp (prod_mset H) = Mp (prod_mset (image_mset Mp H))" by simp
      also have "\<dots> = Mp (prod_mset hs)" unfolding hsH[symmetric] by simp
      finally have Hhs: "eq_m (Mp (prod_mset H)) (q.Mp (prod_mset hs))" by simp
      from irr_mon[of g, unfolded gs] have mon_g: "monic (q.Mp g)" by auto
      from unique[OF eq mon_g Dg Hhs q.Mp_Mp q.Mp_Mp]
      have gA: "q.Mp g = A" and hsB: "q.Mp (prod_mset hs) = B" by auto
      have "q.factorization_m B (1, hs)" unfolding q.factorization_m_def split
        by (simp add: hsB norm irr_mon[unfolded gs])
      with IH2 have hsBs: "q.Mf (1,hs) = q.Mf (1,Bs)" unfolding q.unique_factorization_m_alt_def by blast
      show "q.Mf (d, gs) = q.Mf (1, {# A #} + Bs)" 
        using gA hsBs d1 unfolding gs q.Mf_def by auto
    qed
  qed
qed

theorem berlekamp_hensel_unique:
  assumes cop: "coprime (lead_coeff f) p"
  and sf: "poly_mod.square_free_m p f"
  and res: "berlekamp_hensel p n f = gs"
  and n: "n \<noteq> 0"
  shows "poly_mod.unique_factorization_m (p^n) f (lead_coeff f, mset gs) \<comment> \<open>unique factorization mod \<open>p^n\<close>\<close>"
    "\<And> g. g \<in> set gs \<Longrightarrow> poly_mod.Mp (p^n) g = g   \<comment> \<open>normalized\<close>"
proof -
  let ?q = "p^n" 
  interpret q: poly_mod_2 ?q unfolding poly_mod_2_def using m1 n by simp
  from berlekamp_hensel[OF assms]
  have bh_fact: "q.factorization_m f (lead_coeff f, mset gs)" by auto
  from berlekamp_hensel[OF assms]
  show "\<And> g. g \<in> set gs \<Longrightarrow> poly_mod.Mp (p^n) g = g" by blast
    from prime have p1: "p > 1" by (simp add: prime_int_iff)
  let ?lc = "coeff f (degree f)" 
  define ilc where "ilc \<equiv> inverse_mod ?lc (p ^ n)"
  from cop p1 n have inv: "q.M (ilc * ?lc) = 1"
    by (auto simp add: q.M_def ilc_def inverse_mod_pow)
  hence ilc0: "ilc \<noteq> 0" by (cases "ilc = 0", auto)
  {
    fix q
    assume "ilc * ?lc = ?q * q" 
    from arg_cong[OF this, of q.M] have "q.M (ilc * ?lc) = 0" 
      unfolding q.M_def by auto
    with inv have False by auto
  } note not_dvd = this
  let ?in = "q.Mp (smult ilc f)" 
  have mon: "monic ?in" unfolding q.Mp_coeff coeff_smult
    by (subst q.degree_m_eq[OF _ q.m1], insert not_dvd, auto simp: inv ilc0)
  have "q.Mp f = q.Mp (smult (q.M (?lc * ilc)) f)" using inv by (simp add: ac_simps)
  also have "\<dots> = q.Mp (smult ?lc (smult ilc f))" by simp
  finally have f: "q.Mp f = q.Mp (smult ?lc (smult ilc f))" . 
  from arg_cong[OF f, of Mp]
  have "Mp f = Mp (smult ?lc (smult ilc f))" 
    by (simp add: Mp_Mp_pow_is_Mp n p1)
  from arg_cong[OF this, of square_free_m, unfolded Mp_square_free_m] sf
  have "square_free_m (smult (coeff f (degree f)) (smult ilc f))" by simp
  from square_free_m_smultD[OF this] have sf: "square_free_m (smult ilc f)" .
  have Mp_in: "Mp ?in = Mp (smult ilc f)" 
    by (simp add: Mp_Mp_pow_is_Mp n p1)
  from Mp_square_free_m[of ?in, unfolded Mp_in] sf have sf: "square_free_m ?in"
    unfolding Mp_square_free_m by simp
  obtain a b where "finite_field_factorization_int p ?in = (a,b)" by force
  from finite_field_factorization_int[OF sf this]
  have ufact: "unique_factorization_m ?in (a, mset b)" by auto
  from unique_factorization_m_imp_factorization[OF this]
  have fact: "factorization_m ?in (a, mset b)" .
  from factorization_m_lead_coeff[OF this] monic_Mp[OF mon] 
  have "M a = 1" by auto
  with ufact have "unique_factorization_m ?in (1, mset b)" 
    unfolding unique_factorization_m_def Mf_def by auto
  from unique_monic_hensel_factorization[OF this mon sf n]
  obtain hs where "q.unique_factorization_m ?in (1, hs)" by auto
  hence unique: "q.unique_factorization_m (smult ilc f) (1, hs)"
    unfolding unique_factorization_m_def Mf_def by auto
  from q.factorization_m_smult[OF q.unique_factorization_m_imp_factorization[OF unique], of ?lc]
  have "q.factorization_m (smult (ilc * ?lc) f) (?lc, hs)" by (simp add: ac_simps)
  moreover have "q.Mp (smult (q.M (ilc * ?lc)) f) = q.Mp f" unfolding inv by simp
  ultimately have fact: "q.factorization_m f (?lc, hs)" 
    unfolding q.factorization_m_def by auto
  have "q.unique_factorization_m f (?lc, hs)" 
  proof (rule q.unique_factorization_mI[OF fact])
    fix d us
    assume other_fact: "q.factorization_m f (d,us)" 
    from q.factorization_m_lead_coeff[OF this] have lc: "q.M d = lead_coeff (q.Mp f)" ..
    have lc: "q.M d = q.M ?lc" unfolding lc
      by (metis bh_fact q.factorization_m_lead_coeff)
    from q.factorization_m_smult[OF other_fact, of ilc] unique
    have eq: "q.Mf (d * ilc, us) = q.Mf (1, hs)" unfolding q.unique_factorization_m_def by auto
    thus "q.Mf (d, us) = q.Mf (?lc, hs)" using lc unfolding q.Mf_def by auto
  qed
  with bh_fact show "q.unique_factorization_m f (lead_coeff f, mset gs)" 
    unfolding q.unique_factorization_m_alt_def by metis
qed

lemma hensel_lifting_unique:
  assumes n: "n \<noteq> 0" 
  and res: "hensel_lifting p n f fs = gs"                        \<comment> \<open>result of hensel is fact. \<open>gs\<close>\<close>
  and cop: "coprime (lead_coeff f) p" 
  and sf: "poly_mod.square_free_m p f" 
  and fact: "poly_mod.factorization_m p f (c, mset fs)"          \<comment> \<open>input is fact. \<open>fs mod p\<close>\<close>
  and c: "c \<in> {0..<p}" 
  and norm: "(\<forall>fi\<in>set fs. set (coeffs fi) \<subseteq> {0..<p})" 
shows "poly_mod.unique_factorization_m (p^n) f (lead_coeff f, mset gs)" \<comment> \<open>unique factorization mod \<open>p^n\<close>\<close>
    "sort (map degree fs) = sort (map degree gs)"                       \<comment> \<open>degrees stay the same\<close>
    "\<And> g. g \<in> set gs \<Longrightarrow> monic g \<and> poly_mod.Mp (p^n) g = g \<and>    \<comment> \<open>monic and normalized\<close>
      poly_mod.irreducible_m p g \<and>                              \<comment> \<open>irreducibility even mod \<open>p\<close>\<close>
      poly_mod.degree_m p g = degree g   \<comment> \<open>mod \<open>p\<close> does not change degree of \<open>g\<close>\<close>"
proof -
  note hensel = hensel_lifting[OF assms]
  show "sort (map degree fs) = sort (map degree gs)" 
    "\<And> g. g \<in> set gs \<Longrightarrow> monic g \<and> poly_mod.Mp (p^n) g = g \<and> 
      poly_mod.irreducible_m p g \<and>                            
      poly_mod.degree_m p g = degree g" using hensel by auto
  from berlekamp_hensel_unique[OF cop sf refl n]
  have "poly_mod.unique_factorization_m (p ^ n) f (lead_coeff f, mset (berlekamp_hensel p n f))"  by auto
  with hensel(1) show "poly_mod.unique_factorization_m (p^n) f (lead_coeff f, mset gs)" 
    by (metis poly_mod.unique_factorization_m_alt_def)
qed

end

end