Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 14,355 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
(*
Authors: Jose Divasón
Sebastiaan Joosten
René Thiemann
Akihisa Yamada
*)
section \<open>Finite Rings and Fields\<close>
text \<open>We start by establishing some preliminary results about finite rings and finite fields\<close>
subsection \<open>Finite Rings\<close>
theory Finite_Field
imports
"HOL-Computational_Algebra.Primes"
"HOL-Number_Theory.Residues"
"HOL-Library.Cardinality"
Subresultants.Binary_Exponentiation
Polynomial_Interpolation.Ring_Hom_Poly
begin
typedef ('a::finite) mod_ring = "{0..<int CARD('a)}" by auto
setup_lifting type_definition_mod_ring
lemma CARD_mod_ring[simp]: "CARD('a mod_ring) = CARD('a::finite)"
proof -
have "card {y. \<exists>x\<in>{0..<int CARD('a)}. (y::'a mod_ring) = Abs_mod_ring x} = card {0..<int CARD('a)}"
proof (rule bij_betw_same_card)
have "inj_on Rep_mod_ring {y. \<exists>x\<in>{0..<int CARD('a)}. y = Abs_mod_ring x}"
by (meson Rep_mod_ring_inject inj_onI)
moreover have "Rep_mod_ring ` {y. \<exists>x\<in>{0..<int CARD('a)}. (y::'a mod_ring) = Abs_mod_ring x} = {0..<int CARD('a)}"
proof (auto simp add: image_def Rep_mod_ring_inject)
fix xb show "0 \<le> Rep_mod_ring (Abs_mod_ring xb)"
using Rep_mod_ring atLeastLessThan_iff by blast
assume xb1: "0 \<le> xb" and xb2: "xb < int CARD('a)"
thus " Rep_mod_ring (Abs_mod_ring xb) < int CARD('a)"
by (metis Abs_mod_ring_inverse Rep_mod_ring atLeastLessThan_iff le_less_trans linear)
have xb: "xb \<in> {0..<int CARD('a)}" using xb1 xb2 by simp
show "\<exists>xa::'a mod_ring. (\<exists>x\<in>{0..<int CARD('a)}. xa = Abs_mod_ring x) \<and> xb = Rep_mod_ring xa"
by (rule exI[of _ "Abs_mod_ring xb"], auto simp add: xb1 xb2, rule Abs_mod_ring_inverse[OF xb, symmetric])
qed
ultimately show "bij_betw Rep_mod_ring
{y. \<exists>x\<in>{0..<int CARD('a)}. (y::'a mod_ring) = Abs_mod_ring x}
{0..<int CARD('a)}"
by (simp add: bij_betw_def)
qed
thus ?thesis
unfolding type_definition.univ[OF type_definition_mod_ring]
unfolding image_def by auto
qed
instance mod_ring :: (finite) finite
proof (intro_classes)
show "finite (UNIV::'a mod_ring set)"
unfolding type_definition.univ[OF type_definition_mod_ring]
using finite by simp
qed
instantiation mod_ring :: (finite) equal
begin
lift_definition equal_mod_ring :: "'a mod_ring \<Rightarrow> 'a mod_ring \<Rightarrow> bool" is "(=)" .
instance by (intro_classes, transfer, auto)
end
instantiation mod_ring :: (finite) comm_ring
begin
lift_definition plus_mod_ring :: "'a mod_ring \<Rightarrow> 'a mod_ring \<Rightarrow> 'a mod_ring" is
"\<lambda> x y. (x + y) mod int (CARD('a))" by simp
lift_definition uminus_mod_ring :: "'a mod_ring \<Rightarrow> 'a mod_ring" is
"\<lambda> x. if x = 0 then 0 else int (CARD('a)) - x" by simp
lift_definition minus_mod_ring :: "'a mod_ring \<Rightarrow> 'a mod_ring \<Rightarrow> 'a mod_ring" is
"\<lambda> x y. (x - y) mod int (CARD('a))" by simp
lift_definition times_mod_ring :: "'a mod_ring \<Rightarrow> 'a mod_ring \<Rightarrow> 'a mod_ring" is
"\<lambda> x y. (x * y) mod int (CARD('a))" by simp
lift_definition zero_mod_ring :: "'a mod_ring" is 0 by simp
instance
by standard
(transfer; auto simp add: mod_simps algebra_simps intro: mod_diff_cong)+
end
lift_definition to_int_mod_ring :: "'a::finite mod_ring \<Rightarrow> int" is "\<lambda> x. x" .
lift_definition of_int_mod_ring :: "int \<Rightarrow> 'a::finite mod_ring" is
"\<lambda> x. x mod int (CARD('a))" by simp
interpretation to_int_mod_ring_hom: inj_zero_hom to_int_mod_ring
by (unfold_locales; transfer, auto)
lemma int_nat_card[simp]: "int (nat CARD('a::finite)) = CARD('a)" by auto
interpretation of_int_mod_ring_hom: zero_hom of_int_mod_ring
by (unfold_locales, transfer, auto)
lemma of_int_mod_ring_to_int_mod_ring[simp]:
"of_int_mod_ring (to_int_mod_ring x) = x" by (transfer, auto)
lemma to_int_mod_ring_of_int_mod_ring[simp]: "0 \<le> x \<Longrightarrow> x < int CARD('a :: finite) \<Longrightarrow>
to_int_mod_ring (of_int_mod_ring x :: 'a mod_ring) = x"
by (transfer, auto)
lemma range_to_int_mod_ring:
"range (to_int_mod_ring :: ('a :: finite mod_ring \<Rightarrow> int)) = {0 ..< CARD('a)}"
apply (intro equalityI subsetI)
apply (elim rangeE, transfer, force)
by (auto intro!: range_eqI to_int_mod_ring_of_int_mod_ring[symmetric])
subsection \<open>Nontrivial Finite Rings\<close>
class nontriv = assumes nontriv: "CARD('a) > 1"
subclass(in nontriv) finite by(intro_classes,insert nontriv,auto intro:card_ge_0_finite)
instantiation mod_ring :: (nontriv) comm_ring_1
begin
lift_definition one_mod_ring :: "'a mod_ring" is 1 using nontriv[where ?'a='a] by auto
instance by (intro_classes; transfer, simp)
end
interpretation to_int_mod_ring_hom: inj_one_hom to_int_mod_ring
by (unfold_locales, transfer, simp)
lemma of_nat_of_int_mod_ring [code_unfold]:
"of_nat = of_int_mod_ring o int"
proof (rule ext, unfold o_def)
show "of_nat n = of_int_mod_ring (int n)" for n
proof (induct n)
case (Suc n)
show ?case
by (simp only: of_nat_Suc Suc, transfer) (simp add: mod_simps)
qed simp
qed
lemma of_nat_card_eq_0[simp]: "(of_nat (CARD('a::nontriv)) :: 'a mod_ring) = 0"
by (unfold of_nat_of_int_mod_ring, transfer, auto)
lemma of_int_of_int_mod_ring[code_unfold]: "of_int = of_int_mod_ring"
proof (rule ext)
fix x :: int
obtain n1 n2 where x: "x = int n1 - int n2" by (rule int_diff_cases)
show "of_int x = of_int_mod_ring x"
unfolding x of_int_diff of_int_of_nat_eq of_nat_of_int_mod_ring o_def
by (transfer, simp add: mod_diff_right_eq mod_diff_left_eq)
qed
unbundle lifting_syntax
lemma pcr_mod_ring_to_int_mod_ring: "pcr_mod_ring = (\<lambda>x y. x = to_int_mod_ring y)"
unfolding mod_ring.pcr_cr_eq unfolding cr_mod_ring_def to_int_mod_ring.rep_eq ..
lemma [transfer_rule]:
"((=) ===> pcr_mod_ring) (\<lambda> x. int x mod int (CARD('a :: nontriv))) (of_nat :: nat \<Rightarrow> 'a mod_ring)"
by (intro rel_funI, unfold pcr_mod_ring_to_int_mod_ring of_nat_of_int_mod_ring, transfer, auto)
lemma [transfer_rule]:
"((=) ===> pcr_mod_ring) (\<lambda> x. x mod int (CARD('a :: nontriv))) (of_int :: int \<Rightarrow> 'a mod_ring)"
by (intro rel_funI, unfold pcr_mod_ring_to_int_mod_ring of_int_of_int_mod_ring, transfer, auto)
lemma one_mod_card [simp]: "1 mod CARD('a::nontriv) = 1"
using mod_less nontriv by blast
lemma Suc_0_mod_card [simp]: "Suc 0 mod CARD('a::nontriv) = 1"
using one_mod_card by simp
lemma one_mod_card_int [simp]: "1 mod int CARD('a::nontriv) = 1"
proof -
from nontriv [where ?'a = 'a] have "int (1 mod CARD('a::nontriv)) = 1"
by simp
then show ?thesis
using of_nat_mod [of 1 "CARD('a)", where ?'a = int] by simp
qed
lemma pow_mod_ring_transfer[transfer_rule]:
"(pcr_mod_ring ===> (=) ===> pcr_mod_ring)
(\<lambda>a::int. \<lambda>n. a^n mod CARD('a::nontriv)) ((^)::'a mod_ring \<Rightarrow> nat \<Rightarrow> 'a mod_ring)"
unfolding pcr_mod_ring_to_int_mod_ring
proof (intro rel_funI,simp)
fix x::"'a mod_ring" and n
show "to_int_mod_ring x ^ n mod int CARD('a) = to_int_mod_ring (x ^ n)"
proof (induct n)
case 0
thus ?case by auto
next
case (Suc n)
have "to_int_mod_ring (x ^ Suc n) = to_int_mod_ring (x * x ^ n)" by auto
also have "... = to_int_mod_ring x * to_int_mod_ring (x ^ n) mod CARD('a)"
unfolding to_int_mod_ring_def using times_mod_ring.rep_eq by auto
also have "... = to_int_mod_ring x * (to_int_mod_ring x ^ n mod CARD('a)) mod CARD('a)"
using Suc.hyps by auto
also have "... = to_int_mod_ring x ^ Suc n mod int CARD('a)"
by (simp add: mod_simps)
finally show ?case ..
qed
qed
lemma dvd_mod_ring_transfer[transfer_rule]:
"((pcr_mod_ring :: int \<Rightarrow> 'a :: nontriv mod_ring \<Rightarrow> bool) ===>
(pcr_mod_ring :: int \<Rightarrow> 'a mod_ring \<Rightarrow> bool) ===> (=))
(\<lambda> i j. \<exists>k \<in> {0..<int CARD('a)}. j = i * k mod int CARD('a)) (dvd)"
proof (unfold pcr_mod_ring_to_int_mod_ring, intro rel_funI iffI)
fix x y :: "'a mod_ring" and i j
assume i: "i = to_int_mod_ring x" and j: "j = to_int_mod_ring y"
{ assume "x dvd y"
then obtain z where "y = x * z" by (elim dvdE, auto)
then have "j = i * to_int_mod_ring z mod CARD('a)" by (unfold i j, transfer)
with range_to_int_mod_ring
show "\<exists>k \<in> {0..<int CARD('a)}. j = i * k mod CARD('a)" by auto
}
assume "\<exists>k \<in> {0..<int CARD('a)}. j = i * k mod CARD('a)"
then obtain k where k: "k \<in> {0..<int CARD('a)}" and dvd: "j = i * k mod CARD('a)" by auto
from k have "to_int_mod_ring (of_int k :: 'a mod_ring) = k" by (transfer, auto)
also from dvd have "j = i * ... mod CARD('a)" by auto
finally have "y = x * (of_int k :: 'a mod_ring)" unfolding i j using k by (transfer, auto)
then show "x dvd y" by auto
qed
lemma Rep_mod_ring_mod[simp]: "Rep_mod_ring (a :: 'a :: nontriv mod_ring) mod CARD('a) = Rep_mod_ring a"
using Rep_mod_ring[where 'a = 'a] by auto
subsection \<open>Finite Fields\<close>
text \<open>When the domain is prime, the ring becomes a field\<close>
class prime_card = assumes prime_card: "prime (CARD('a))"
begin
lemma prime_card_int: "prime (int (CARD('a)))" using prime_card by auto
subclass nontriv using prime_card prime_gt_1_nat by (intro_classes,auto)
end
instantiation mod_ring :: (prime_card) field
begin
definition inverse_mod_ring :: "'a mod_ring \<Rightarrow> 'a mod_ring" where
"inverse_mod_ring x = (if x = 0 then 0 else x ^ (nat (CARD('a) - 2)))"
definition divide_mod_ring :: "'a mod_ring \<Rightarrow> 'a mod_ring \<Rightarrow> 'a mod_ring" where
"divide_mod_ring x y = x * ((\<lambda>c. if c = 0 then 0 else c ^ (nat (CARD('a) - 2))) y)"
instance
proof
fix a b c::"'a mod_ring"
show "inverse 0 = (0::'a mod_ring)" by (simp add: inverse_mod_ring_def)
show "a div b = a * inverse b"
unfolding inverse_mod_ring_def by (transfer', simp add: divide_mod_ring_def)
show "a \<noteq> 0 \<Longrightarrow> inverse a * a = 1"
proof (unfold inverse_mod_ring_def, transfer)
let ?p="CARD('a)"
fix x
assume x: "x \<in> {0..<int CARD('a)}" and x0: "x \<noteq> 0"
have p0': "0\<le>?p" by auto
have "\<not> ?p dvd x"
using x x0 zdvd_imp_le by fastforce
then have "\<not> CARD('a) dvd nat \<bar>x\<bar>"
by simp
with x have "\<not> CARD('a) dvd nat x"
by simp
have rw: "x ^ nat (int (?p - 2)) * x = x ^ nat (?p - 1)"
proof -
have p2: "0 \<le> int (?p-2)" using x by simp
have card_rw: "(CARD('a) - Suc 0) = nat (1 + int (CARD('a) - 2))"
using nat_eq_iff x x0 by auto
have "x ^ nat (?p - 2)*x = x ^ (Suc (nat (?p - 2)))" by simp
also have "... = x ^ (nat (?p - 1))"
using Suc_nat_eq_nat_zadd1[OF p2] card_rw by auto
finally show ?thesis .
qed
have "[int (nat x ^ (CARD('a) - 1)) = int 1] (mod CARD('a))"
using fermat_theorem [OF prime_card \<open>\<not> CARD('a) dvd nat x\<close>]
by (simp only: cong_def cong_def of_nat_mod [symmetric])
then have *: "[x ^ (CARD('a) - 1) = 1] (mod CARD('a))"
using x by auto
have "x ^ (CARD('a) - 2) mod CARD('a) * x mod CARD('a)
= (x ^ nat (CARD('a) - 2) * x) mod CARD('a)" by (simp add: mod_simps)
also have "... = (x ^ nat (?p - 1) mod ?p)" unfolding rw by simp
also have "... = (x ^ (nat ?p - 1) mod ?p)" using p0' by (simp add: nat_diff_distrib')
also have "... = 1"
using * by (simp add: cong_def)
finally show "(if x = 0 then 0 else x ^ nat (int (CARD('a) - 2)) mod CARD('a)) * x mod CARD('a) = 1"
using x0 by auto
qed
qed
end
instantiation mod_ring :: (prime_card) "{normalization_euclidean_semiring, euclidean_ring}"
begin
definition modulo_mod_ring :: "'a mod_ring \<Rightarrow> 'a mod_ring \<Rightarrow> 'a mod_ring" where "modulo_mod_ring x y = (if y = 0 then x else 0)"
definition normalize_mod_ring :: "'a mod_ring \<Rightarrow> 'a mod_ring" where "normalize_mod_ring x = (if x = 0 then 0 else 1)"
definition unit_factor_mod_ring :: "'a mod_ring \<Rightarrow> 'a mod_ring" where "unit_factor_mod_ring x = x"
definition euclidean_size_mod_ring :: "'a mod_ring \<Rightarrow> nat" where "euclidean_size_mod_ring x = (if x = 0 then 0 else 1)"
instance
proof (intro_classes)
fix a :: "'a mod_ring" show "a \<noteq> 0 \<Longrightarrow> unit_factor a dvd 1"
unfolding dvd_def unit_factor_mod_ring_def by (intro exI[of _ "inverse a"], auto)
qed (auto simp: normalize_mod_ring_def unit_factor_mod_ring_def modulo_mod_ring_def
euclidean_size_mod_ring_def field_simps)
end
instantiation mod_ring :: (prime_card) euclidean_ring_gcd
begin
definition gcd_mod_ring :: "'a mod_ring \<Rightarrow> 'a mod_ring \<Rightarrow> 'a mod_ring" where "gcd_mod_ring = Euclidean_Algorithm.gcd"
definition lcm_mod_ring :: "'a mod_ring \<Rightarrow> 'a mod_ring \<Rightarrow> 'a mod_ring" where "lcm_mod_ring = Euclidean_Algorithm.lcm"
definition Gcd_mod_ring :: "'a mod_ring set \<Rightarrow> 'a mod_ring" where "Gcd_mod_ring = Euclidean_Algorithm.Gcd"
definition Lcm_mod_ring :: "'a mod_ring set \<Rightarrow> 'a mod_ring" where "Lcm_mod_ring = Euclidean_Algorithm.Lcm"
instance by (intro_classes, auto simp: gcd_mod_ring_def lcm_mod_ring_def Gcd_mod_ring_def Lcm_mod_ring_def)
end
instantiation mod_ring :: (prime_card) unique_euclidean_ring
begin
definition [simp]: "division_segment_mod_ring (x :: 'a mod_ring) = (1 :: 'a mod_ring)"
instance by intro_classes (auto simp: euclidean_size_mod_ring_def split: if_splits)
end
instance mod_ring :: (prime_card) field_gcd
by intro_classes auto
lemma surj_of_nat_mod_ring: "\<exists> i. i < CARD('a :: prime_card) \<and> (x :: 'a mod_ring) = of_nat i"
by (rule exI[of _ "nat (to_int_mod_ring x)"], unfold of_nat_of_int_mod_ring o_def,
subst nat_0_le, transfer, simp, simp, transfer, auto)
lemma of_nat_0_mod_ring_dvd: assumes x: "of_nat x = (0 :: 'a ::prime_card mod_ring)"
shows "CARD('a) dvd x"
proof -
let ?x = "of_nat x :: int"
from x have "of_int_mod_ring ?x = (0 :: 'a mod_ring)" by (fold of_int_of_int_mod_ring, simp)
hence "?x mod CARD('a) = 0" by (transfer, auto)
hence "x mod CARD('a) = 0" by presburger
thus ?thesis unfolding mod_eq_0_iff_dvd .
qed
end
|