Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 130,319 Bytes
afd65d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
\input{preamble}

% OK, start here.
%
\begin{document}

\title{Criteria for Representability}

\maketitle

\phantomsection
\label{section-phantom}

\tableofcontents




\section{Introduction}
\label{section-introduction}

\noindent
The purpose of this chapter is to find criteria guaranteeing that a
stack in groupoids over the category of schemes with the fppf topology
is an algebraic stack. Historically, this often involved proving that
certain functors were representable, see Grothendieck's lectures
\cite{Gr-I},
\cite{Gr-II},
\cite{Gr-III},
\cite{Gr-IV},
\cite{Gr-V}, and
\cite{Gr-VI}.
This explains the title of this chapter. Another important source
of this material comes from the work of Artin, see
\cite{ArtinI},
\cite{ArtinII},
\cite{Artin-Theorem-Representability},
\cite{Artin-Construction-Techniques},
\cite{Artin-Algebraic-Spaces},
\cite{Artin-Algebraic-Approximation},
\cite{Artin-Implicit-Function}, and
\cite{ArtinVersal}.

\medskip\noindent
Some of the notation, conventions and terminology in this chapter is awkward
and may seem backwards to the more experienced reader. This is intentional.
Please see Quot, Section \ref{quot-section-conventions} for an
explanation.



\section{Conventions}
\label{section-conventions}

\noindent
The conventions we use in this chapter are the same as those in the
chapter on algebraic stacks, see
Algebraic Stacks, Section \ref{algebraic-section-conventions}.




\section{What we already know}
\label{section-done-so-far}

\noindent
The analogue of this chapter for algebraic spaces is the chapter entitled
``Bootstrap'', see
Bootstrap, Section \ref{bootstrap-section-introduction}.
That chapter already contains some representability results.
Moreover, some of the preliminary material treated there we already
have worked out in the chapter on algebraic stacks.
Here is a list:
\begin{enumerate}
\item We discuss morphisms of presheaves representable by algebraic spaces in
Bootstrap, Section
\ref{bootstrap-section-morphism-representable-by-spaces}.
In
Algebraic Stacks, Section
\ref{algebraic-section-morphisms-representable-by-algebraic-spaces}
we discuss the notion of a $1$-morphism of categories fibred in groupoids
being representable by algebraic spaces.
\item We discuss properties of morphisms of presheaves representable by
algebraic spaces in
Bootstrap, Section
\ref{bootstrap-section-representable-by-spaces-properties}.
In
Algebraic Stacks, Section
\ref{algebraic-section-representable-properties}
we discuss properties of $1$-morphisms of categories fibred in groupoids
representable by algebraic spaces.
\item We proved that if $F$ is a sheaf whose diagonal is representable
by algebraic spaces and which has an \'etale covering by an algebraic
space, then $F$ is an algebraic space, see
Bootstrap, Theorem \ref{bootstrap-theorem-bootstrap}.
(This is a weak version of the result in the next item on the list.)
\item
\label{item-bootstrap-final}
We proved that if $F$ is a sheaf and if there exists an algebraic
space $U$ and a morphism $U \to F$ which is representable by algebraic
spaces, surjective, flat, and locally of finite presentation, then
$F$ is an algebraic space, see
Bootstrap, Theorem \ref{bootstrap-theorem-final-bootstrap}.
\item We have also proved the ``smooth'' analogue of
(\ref{item-bootstrap-final}) for algebraic
stacks: If $\mathcal{X}$ is a stack in groupoids over
$(\Sch/S)_{fppf}$ and if there exists a stack in groupoids
$\mathcal{U}$ over $(\Sch/S)_{fppf}$ which is representable
by an algebraic space and a $1$-morphism $u : \mathcal{U} \to \mathcal{X}$
which is representable by algebraic spaces, surjective, and smooth
then $\mathcal{X}$ is an algebraic stack, see
Algebraic Stacks, Lemma
\ref{algebraic-lemma-smooth-surjective-morphism-implies-algebraic}.
\end{enumerate}
Our first task now is to prove the analogue of
(\ref{item-bootstrap-final}) for algebraic
stacks in general; it is
Theorem \ref{theorem-bootstrap}.



\section{Morphisms of stacks in groupoids}
\label{section-1-morphisms}

\noindent
This section is preliminary and should be skipped on a first reading.

\begin{lemma}
\label{lemma-etale-permanence}
Let $\mathcal{X} \to \mathcal{Y} \to \mathcal{Z}$
be $1$-morphisms of categories fibred in groupoids over
$(\Sch/S)_{fppf}$.
If $\mathcal{X} \to \mathcal{Z}$ and $\mathcal{Y} \to \mathcal{Z}$ are
representable by algebraic spaces and \'etale so is
$\mathcal{X} \to \mathcal{Y}$.
\end{lemma}

\begin{proof}
Let $\mathcal{U}$ be a representable category fibred in groupoids over $S$.
Let $f : \mathcal{U} \to \mathcal{Y}$ be a $1$-morphism. We have to show that
$\mathcal{X} \times_\mathcal{Y} \mathcal{U}$ is representable by an
algebraic space and \'etale over $\mathcal{U}$.
Consider the composition $h : \mathcal{U} \to \mathcal{Z}$. Then
$$
\mathcal{X} \times_\mathcal{Z} \mathcal{U}
\longrightarrow
\mathcal{Y} \times_\mathcal{Z} \mathcal{U}
$$
is a $1$-morphism between categories fibres in groupoids which are both
representable by algebraic spaces and both \'etale over $\mathcal{U}$.
Hence by
Properties of Spaces, Lemma \ref{spaces-properties-lemma-etale-permanence}
this is represented by an \'etale morphism of algebraic spaces.
Finally, we obtain the result we want as the morphism $f$ induces
a morphism $\mathcal{U} \to \mathcal{Y} \times_\mathcal{Z} \mathcal{U}$
and we have
$$
\mathcal{X} \times_\mathcal{Y} \mathcal{U} =
(\mathcal{X} \times_\mathcal{Z} \mathcal{U})
\times_{(\mathcal{Y} \times_\mathcal{Z} \mathcal{U})}
\mathcal{U}.
$$
\end{proof}

\begin{lemma}
\label{lemma-stack-in-setoids-descent}
Let $\mathcal{X}, \mathcal{Y}, \mathcal{Z}$ be stacks in groupoids
over $(\Sch/S)_{fppf}$. Suppose that $\mathcal{X} \to \mathcal{Y}$
and $\mathcal{Z} \to \mathcal{Y}$ are $1$-morphisms.
If
\begin{enumerate}
\item $\mathcal{Y}$, $\mathcal{Z}$ are representable by algebraic spaces
$Y$, $Z$ over $S$,
\item the associated morphism of algebraic spaces $Y \to Z$ is surjective,
flat and locally of finite presentation, and
\item $\mathcal{Y} \times_\mathcal{Z} \mathcal{X}$ is a stack in
setoids,
\end{enumerate}
then $\mathcal{X}$ is a stack in setoids.
\end{lemma}

\begin{proof}
This is a special case of
Stacks, Lemma \ref{stacks-lemma-stack-in-setoids-descent}.
\end{proof}

\noindent
The following lemma is the analogue of
Algebraic Stacks, Lemma
\ref{algebraic-lemma-smooth-surjective-morphism-implies-algebraic}
and will be superseded by the stronger
Theorem \ref{theorem-bootstrap}.

\begin{lemma}
\label{lemma-flat-finite-presentation-surjective-diagonal}
Let $S$ be a scheme.
Let $u : \mathcal{U} \to \mathcal{X}$ be a $1$-morphism of
stacks in groupoids over $(\Sch/S)_{fppf}$. If
\begin{enumerate}
\item $\mathcal{U}$ is representable by an algebraic space, and
\item $u$ is representable by algebraic spaces, surjective, flat and
locally of finite presentation,
\end{enumerate}
then
$\Delta : \mathcal{X} \to \mathcal{X} \times \mathcal{X}$
representable by algebraic spaces.
\end{lemma}

\begin{proof}
Given two schemes $T_1$, $T_2$ over $S$ denote
$\mathcal{T}_i = (\Sch/T_i)_{fppf}$ the associated representable
fibre categories. Suppose given $1$-morphisms
$f_i : \mathcal{T}_i \to \mathcal{X}$.
According to
Algebraic Stacks, Lemma \ref{algebraic-lemma-representable-diagonal}
it suffices to prove that the $2$-fibered
product $\mathcal{T}_1 \times_\mathcal{X} \mathcal{T}_2$
is representable by an algebraic space. By
Stacks, Lemma
\ref{stacks-lemma-2-fibre-product-stacks-in-setoids-over-stack-in-groupoids}
this is in any case a stack in setoids. Thus
$\mathcal{T}_1 \times_\mathcal{X} \mathcal{T}_2$ corresponds
to some sheaf $F$ on $(\Sch/S)_{fppf}$, see
Stacks, Lemma \ref{stacks-lemma-stack-in-setoids-characterize}.
Let $U$ be the algebraic space which represents $\mathcal{U}$.
By assumption
$$
\mathcal{T}_i' = \mathcal{U} \times_{u, \mathcal{X}, f_i} \mathcal{T}_i
$$
is representable by an algebraic space $T'_i$ over $S$. Hence
$\mathcal{T}_1' \times_\mathcal{U} \mathcal{T}_2'$ is representable
by the algebraic space $T'_1 \times_U T'_2$.
Consider the commutative diagram
$$
\xymatrix{
&
\mathcal{T}_1 \times_{\mathcal X} \mathcal{T}_2 \ar[rr]\ar'[d][dd] & &
\mathcal{T}_1 \ar[dd] \\
\mathcal{T}_1' \times_\mathcal{U} \mathcal{T}_2' \ar[ur]\ar[rr]\ar[dd] & &
\mathcal{T}_1' \ar[ur]\ar[dd] \\
&
\mathcal{T}_2 \ar'[r][rr] & &
\mathcal X \\
\mathcal{T}_2' \ar[rr]\ar[ur] & &
\mathcal{U} \ar[ur] }
$$
In this diagram the bottom square, the right square, the back square, and
the front square are $2$-fibre products. A formal argument then shows
that $\mathcal{T}_1' \times_\mathcal{U} \mathcal{T}_2' \to
\mathcal{T}_1 \times_{\mathcal X} \mathcal{T}_2$
is the ``base change'' of $\mathcal{U} \to \mathcal{X}$, more precisely
the diagram
$$
\xymatrix{
\mathcal{T}_1' \times_\mathcal{U} \mathcal{T}_2' \ar[d] \ar[r] &
\mathcal{U} \ar[d] \\
\mathcal{T}_1 \times_{\mathcal X} \mathcal{T}_2 \ar[r] &
\mathcal{X}
}
$$
is a $2$-fibre square.
Hence $T'_1 \times_U T'_2 \to F$ is representable by algebraic spaces,
flat, locally of finite presentation and surjective, see
Algebraic Stacks, Lemmas
\ref{algebraic-lemma-map-fibred-setoids-representable-algebraic-spaces},
\ref{algebraic-lemma-base-change-representable-by-spaces},
\ref{algebraic-lemma-map-fibred-setoids-property}, and
\ref{algebraic-lemma-base-change-representable-transformations-property}.
Therefore $F$ is an algebraic space by
Bootstrap, Theorem \ref{bootstrap-theorem-final-bootstrap}
and we win.
\end{proof}

\begin{lemma}
\label{lemma-second-diagonal}
Let $\mathcal{X}$ be a category fibred in groupoids over $(\Sch/S)_{fppf}$.
The following are equivalent
\begin{enumerate}
\item $\Delta_\Delta : \mathcal{X} \to
\mathcal{X} \times_{\mathcal{X} \times \mathcal{X}} \mathcal{X}$
is representable by algebraic spaces,
\item for every $1$-morphism $\mathcal{V} \to \mathcal{X} \times \mathcal{X}$
with $\mathcal{V}$ representable (by a scheme) the fibre product
$\mathcal{Y} =
\mathcal{X} \times_{\Delta, \mathcal{X} \times \mathcal{X}} \mathcal{V}$
has diagonal representable by algebraic spaces.
\end{enumerate}
\end{lemma}

\begin{proof}
Although this is a bit of a brain twister, it is completely formal.
Namely, recall that
$\mathcal{X} \times_{\mathcal{X} \times \mathcal{X}} \mathcal{X} =
\mathcal{I}_\mathcal{X}$ is the inertia of $\mathcal{X}$ and that
$\Delta_\Delta$ is the identity section of $\mathcal{I}_\mathcal{X}$, see
Categories, Section \ref{categories-section-inertia}.
Thus condition (1) says the following: Given a scheme $V$, an object $x$ of
$\mathcal{X}$ over $V$, and a morphism $\alpha : x \to x$ of $\mathcal{X}_V$
the condition ``$\alpha = \text{id}_x$'' defines an algebraic space over $V$.
(In other words, there exists a monomorphism of algebraic spaces $W \to V$
such that a morphism of schemes $f : T \to V$ factors through $W$
if and only if $f^*\alpha = \text{id}_{f^*x}$.)

\medskip\noindent
On the other hand, let $V$ be a scheme and let $x, y$ be objects of
$\mathcal{X}$ over $V$. Then $(x, y)$ define a morphism
$\mathcal{V} = (\Sch/V)_{fppf} \to \mathcal{X} \times \mathcal{X}$.
Next, let $h : V' \to V$ be a morphism of schemes and let
$\alpha : h^*x \to h^*y$ and $\beta : h^*x \to h^*y$ be morphisms
of $\mathcal{X}_{V'}$. Then $(\alpha, \beta)$ define a morphism
$\mathcal{V}' = (\Sch/V)_{fppf} \to \mathcal{Y} \times \mathcal{Y}$.
Condition (2) now says that (with any choices as above) the
condition ``$\alpha = \beta$'' defines an algebraic space over $V$.

\medskip\noindent
To see the equivalence, given $(\alpha, \beta)$ as in (2) we see that
(1) implies that ``$\alpha^{-1} \circ \beta = \text{id}_{h^*x}$''
defines an algebraic space. The implication (2) $\Rightarrow$ (1)
follows by taking $h = \text{id}_V$ and $\beta = \text{id}_x$.
\end{proof}











\section{Limit preserving on objects}
\label{section-limit-preserving}

\noindent
Let $S$ be a scheme. Let $p : \mathcal{X} \to \mathcal{Y}$ be a $1$-morphism
of categories fibred in groupoids over $(\Sch/S)_{fppf}$. We will say that
$p$ is {\it limit preserving on objects} if the following condition holds:
Given any data consisting of
\begin{enumerate}
\item an affine scheme $U = \lim_{i \in I} U_i$ which is written as the
directed limit of affine schemes $U_i$ over $S$,
\item an object $y_i$ of $\mathcal{Y}$ over $U_i$ for some $i$,
\item an object $x$ of $\mathcal{X}$ over $U$, and
\item an isomorphism $\gamma : p(x) \to y_i|_U$,
\end{enumerate}
then there exists an $i' \geq i$, an object $x_{i'}$ of
$\mathcal{X}$ over $U_{i'}$, an isomorphism
$\beta : x_{i'}|_U \to x$, and an isomorphism
$\gamma_{i'} : p(x_{i'}) \to y_i|_{U_{i'}}$
such that
\begin{equation}
\label{equation-limit-preserving}
\vcenter{
\xymatrix{
p(x_{i'}|_U) \ar[d]_{p(\beta)} \ar[rr]_{\gamma_{i'}|_U} & &
(y_i|_{U_{i'}})|_U \ar@{=}[d] \\
p(x) \ar[rr]^\gamma & & y_i|_U
}
}
\end{equation}
commutes. In this situation we say that ``$(i', x_{i'}, \beta, \gamma_{i'})$
is a {\it solution} to the problem posed by our data (1), (2), (3), (4)''.
The motivation for this definition comes from
Limits of Spaces,
Lemma \ref{spaces-limits-lemma-characterize-relative-limit-preserving}.

\begin{lemma}
\label{lemma-base-change-limit-preserving}
Let $p : \mathcal{X} \to \mathcal{Y}$ and $q : \mathcal{Z} \to \mathcal{Y}$
be $1$-morphisms of categories fibred in groupoids over $(\Sch/S)_{fppf}$.
If $p : \mathcal{X} \to \mathcal{Y}$ is limit preserving on objects, then so
is the base change
$p' : \mathcal{X} \times_\mathcal{Y} \mathcal{Z} \to \mathcal{Z}$
of $p$ by $q$.
\end{lemma}

\begin{proof}
This is formal. Let $U = \lim_{i \in I} U_i$ be the directed limit
of affine schemes $U_i$ over $S$, let $z_i$ be an object of $\mathcal{Z}$
over $U_i$ for some $i$, let $w$ be an object of
$\mathcal{X} \times_\mathcal{Y} \mathcal{Z}$ over $U$, and let
$\delta : p'(w) \to z_i|_U$ be an isomorphism.
We may write
$w = (U, x, z, \alpha)$ for some object $x$ of $\mathcal{X}$ over $U$
and object $z$ of $\mathcal{Z}$ over $U$ and isomorphism
$\alpha : p(x) \to q(z)$. Note that $p'(w) = z$ hence
$\delta : z \to z_i|_U$. Set $y_i = q(z_i)$ and
$\gamma = q(\delta) \circ \alpha : p(x) \to y_i|_U$.
As $p$ is limit preserving on objects there exists an $i' \geq i$
and an object $x_{i'}$ of $\mathcal{X}$ over $U_{i'}$ as well as
isomorphisms $\beta : x_{i'}|_U \to x$ and
$\gamma_{i'} : p(x_{i'}) \to y_i|_{U_{i'}}$ such that
(\ref{equation-limit-preserving}) commutes. Then we consider the object
$w_{i'} = (U_{i'}, x_{i'}, z_i|_{U_{i'}}, \gamma_{i'})$ of
$\mathcal{X} \times_\mathcal{Y} \mathcal{Z}$ over $U_{i'}$
and define isomorphisms
$$
w_{i'}|_U = (U, x_{i'}|_U, z_i|_U, \gamma_{i'}|_U)
\xrightarrow{(\beta, \delta^{-1})}
(U, x, z, \alpha) = w
$$
and
$$
p'(w_{i'}) = z_i|_{U_{i'}} \xrightarrow{\text{id}} z_i|_{U_{i'}}.
$$
These combine to give a solution to the problem.
\end{proof}

\begin{lemma}
\label{lemma-composition-limit-preserving}
Let $p : \mathcal{X} \to \mathcal{Y}$ and $q : \mathcal{Y} \to \mathcal{Z}$
be $1$-morphisms of categories fibred in groupoids over $(\Sch/S)_{fppf}$.
If $p$ and $q$ are limit preserving on objects, then so is the composition
$q \circ p$.
\end{lemma}

\begin{proof}
This is formal. Let $U = \lim_{i \in I} U_i$ be the directed limit
of affine schemes $U_i$ over $S$, let $z_i$ be an object of $\mathcal{Z}$
over $U_i$ for some $i$, let $x$ be an object of $\mathcal{X}$ over $U$,
and let $\gamma : q(p(x)) \to z_i|_U$ be an isomorphism. As $q$ is
limit preserving on objects there exist an $i' \geq i$, an object
$y_{i'}$ of $\mathcal{Y}$ over $U_{i'}$, an isomorphism
$\beta : y_{i'}|_U \to p(x)$, and an isomorphism
$\gamma_{i'} : q(y_{i'}) \to z_i|_{U_{i'}}$
such that (\ref{equation-limit-preserving}) is commutative. As $p$ is
limit preserving on objects there exist an $i'' \geq i'$, an object
$x_{i''}$ of $\mathcal{X}$ over $U_{i''}$, an isomorphism
$\beta' : x_{i''}|_U \to x$, and an isomorphism
$\gamma'_{i''} : p(x_{i''}) \to y_{i'}|_{U_{i''}}$
such that (\ref{equation-limit-preserving}) is commutative.
The solution is to take $x_{i''}$ over $U_{i''}$ with isomorphism
$$
q(p(x_{i''})) \xrightarrow{q(\gamma'_{i''})}
q(y_{i'})|_{U_{i''}} \xrightarrow{\gamma_{i'}|_{U_{i''}}}
z_i|_{U_{i''}}
$$
and isomorphism $\beta' : x_{i''}|_U \to x$. We omit the verification
that (\ref{equation-limit-preserving}) is commutative.
\end{proof}

\begin{lemma}
\label{lemma-representable-by-spaces-limit-preserving}
Let $p : \mathcal{X} \to \mathcal{Y}$ be a $1$-morphism of categories
fibred in groupoids over $(\Sch/S)_{fppf}$. If $p$ is
representable by algebraic spaces, then the following are equivalent:
\begin{enumerate}
\item $p$ is limit preserving on objects, and
\item $p$ is locally of finite presentation (see
Algebraic Stacks,
Definition \ref{algebraic-definition-relative-representable-property}).
\end{enumerate}
\end{lemma}

\begin{proof}
Assume (2). Let $U = \lim_{i \in I} U_i$ be the directed limit
of affine schemes $U_i$ over $S$, let $y_i$ be an object of $\mathcal{Y}$
over $U_i$ for some $i$, let $x$ be an object of $\mathcal{X}$ over $U$,
and let $\gamma : p(x) \to y_i|_U$ be an isomorphism. Let
$X_{y_i}$ denote an algebraic space over $U_i$ representing the $2$-fibre
product
$$
(\Sch/U_i)_{fppf} \times_{y_i, \mathcal{Y}, p} \mathcal{X}.
$$
Note that $\xi = (U, U \to U_i, x, \gamma^{-1})$ defines an object of
this $2$-fibre product over $U$. Via the $2$-Yoneda lemma $\xi$ corresponds
to a morphism $f_\xi : U \to X_{y_i}$ over $U_i$. By
Limits of Spaces, Proposition
\ref{spaces-limits-proposition-characterize-locally-finite-presentation}
there exists an $i' \geq i$ and a morphism $f_{i'} : U_{i'} \to X_{y_i}$
such that $f_\xi$ is the composition of $f_{i'}$ and the projection
morphism $U \to U_{i'}$. Also, the $2$-Yoneda lemma tells us that
$f_{i'}$ corresponds to an object
$\xi_{i'} = (U_{i'}, U_{i'} \to U_i, x_{i'}, \alpha)$ of
the displayed $2$-fibre product over $U_{i'}$ whose restriction to
$U$ recovers $\xi$. In particular we obtain an isomorphism
$\gamma : x_{i'}|U \to x$. Note that $\alpha : y_i|_{U_{i'}} \to p(x_{i'})$.
Hence we see that taking $x_{i'}$, the isomorphism
$\gamma : x_{i'}|U \to x$, and the isomorphism
$\beta = \alpha^{-1} : p(x_{i'}) \to y_i|_{U_{i'}}$
is a solution to the problem.

\medskip\noindent
Assume (1). Choose a scheme $T$ and a $1$-morphism
$y : (\Sch/T)_{fppf} \to \mathcal{Y}$. Let
$X_y$ be an algebraic space over $T$ representing the $2$-fibre product
$(\Sch/T)_{fppf} \times_{y, \mathcal{Y}, p} \mathcal{X}$.
We have to show that $X_y \to T$ is locally of finite presentation.
To do this we will use the criterion in
Limits of Spaces, Remark \ref{spaces-limits-remark-limit-preserving}.
Consider an affine scheme $U = \lim_{i \in I} U_i$ written as the
directed limit of affine schemes over $T$.
Pick any $i \in I$ and set $y_i = y|_{U_i}$. Also denote $i'$ an element
of $I$ which is bigger than or equal to $i$. By the $2$-Yoneda lemma
morphisms $U \to X_y$ over $T$ correspond bijectively
to isomorphism classes of pairs $(x, \alpha)$ where $x$ is an object
of $\mathcal{X}$ over $U$ and $\alpha : y|_U \to p(x)$ is an isomorphism.
Of course giving $\alpha$ is, up to an inverse, the same thing as giving
an isomorphism $\gamma : p(x) \to y_i|_U$.
Similarly for morphisms $U_{i'} \to X_y$ over $T$. Hence (1) guarantees
that the canonical map
$$
\colim_{i' \geq i} X_y(U_{i'}) \longrightarrow X_y(U)
$$
is surjective in this situation. It follows from
Limits of Spaces, Lemma \ref{spaces-limits-lemma-surjection-is-enough}
that $X_y \to T$ is locally of finite presentation.
\end{proof}

\begin{lemma}
\label{lemma-open-immersion-limit-preserving}
Let $p : \mathcal{X} \to \mathcal{Y}$ be a $1$-morphism of categories
fibred in groupoids over $(\Sch/S)_{fppf}$. Assume $p$ is representable
by algebraic spaces and an open immersion. Then $p$ is limit preserving
on objects.
\end{lemma}

\begin{proof}
This follows from
Lemma \ref{lemma-representable-by-spaces-limit-preserving}
and (via the general principle
Algebraic Stacks, Lemma
\ref{algebraic-lemma-representable-transformations-property-implication})
from the fact that an open immersion of algebraic spaces is
locally of finite presentation, see
Morphisms of Spaces, Lemma
\ref{spaces-morphisms-lemma-open-immersion-locally-finite-presentation}.
\end{proof}

\noindent
Let $S$ be a scheme. In the following lemma we need the notion of the
{\it size} of an algebraic space $X$ over $S$. Namely, given a cardinal
$\kappa$ we will say $X$ has $\text{size}(X) \leq \kappa$ if and only
if there exists a scheme $U$ with $\text{size}(U) \leq \kappa$ (see
Sets, Section \ref{sets-section-categories-schemes}) and a surjective
\'etale morphism $U \to X$.

\begin{lemma}
\label{lemma-check-representable-limit-preserving}
Let $S$ be a scheme.
Let $\kappa = \text{size}(T)$ for some $T \in \Ob((\Sch/S)_{fppf})$.
Let $f : \mathcal{X} \to \mathcal{Y}$ be a $1$-morphism
of categories fibred in groupoids over $(\Sch/S)_{fppf}$
such that
\begin{enumerate}
\item $\mathcal{Y} \to (\Sch/S)_{fppf}$ is limit preserving on objects,
\item for an affine scheme $V$ locally of finite presentation over $S$ and
$y \in \Ob(\mathcal{Y}_V)$ the fibre product
$(\Sch/V)_{fppf} \times_{y, \mathcal{Y}} \mathcal{X}$ is representable
by an algebraic space of size $\leq \kappa$\footnote{The condition on
size can be dropped by those ignoring set theoretic issues.},
\item $\mathcal{X}$ and $\mathcal{Y}$ are stacks for the Zariski topology.
\end{enumerate}
Then $f$ is representable by algebraic spaces.
\end{lemma}

\begin{proof}
Let $V$ be a scheme over $S$ and $y \in \mathcal{Y}_V$. We have to prove
$(\Sch/V)_{fppf} \times_{y, \mathcal{Y}} \mathcal{X}$ is representable
by an algebraic space.

\medskip\noindent
Case I: $V$ is affine and maps into an affine open $\Spec(\Lambda) \subset S$.
Then we can write $V = \lim V_i$ with each $V_i$ affine and of finite
presentation over $\Spec(\Lambda)$, see
Algebra, Lemma \ref{algebra-lemma-ring-colimit-fp}.
Then $y$ comes from an object $y_i$ over $V_i$ for some $i$ by assumption (1).
By assumption (3) the fibre product
$(\Sch/V_i)_{fppf} \times_{y_i, \mathcal{Y}} \mathcal{X}$ is representable
by an algebraic space $Z_i$. Then 
$(\Sch/V)_{fppf} \times_{y, \mathcal{Y}} \mathcal{X}$ is representable
by $Z \times_{V_i} V$.

\medskip\noindent
Case II: $V$ is general. Choose an affine open covering
$V = \bigcup_{i \in I} V_i$ such that each $V_i$ maps into an affine open
of $S$. We first claim
that $\mathcal{Z} = (\Sch/V)_{fppf} \times_{y, \mathcal{Y}} \mathcal{X}$
is a stack in setoids for the Zariski topology. Namely, it is a stack in
groupoids for the Zariski topology by
Stacks, Lemma \ref{stacks-lemma-2-product-stacks-in-groupoids}.
Then suppose that $z$ is an object of $\mathcal{Z}$ over a scheme $T$.
Denote $g : T \to V$ the morphism corresponding to the
projection of $z$ in $(\Sch/V)_{fppf}$. Consider the Zariski sheaf
$\mathit{I} = \mathit{Isom}_{\mathcal{Z}}(z, z)$. By Case I we see that
$\mathit{I}|_{g^{-1}(V_i)} = *$ (the singleton sheaf). Hence
$\mathcal{I} = *$. Thus $\mathcal{Z}$ is fibred in setoids. To finish
the proof we have to show that the Zariski sheaf
$Z : T \mapsto \Ob(\mathcal{Z}_T)/\cong$ is an algebraic space, see
Algebraic Stacks, Lemma
\ref{algebraic-lemma-characterize-representable-by-space}.
There is a map $p : Z \to V$ (transformation of functors) and by Case I
we know that $Z_i = p^{-1}(V_i)$ is an algebraic space. The morphisms
$Z_i \to Z$ are representable by open immersions and
$\coprod Z_i \to Z$ is surjective (in the Zariski topology).
Hence $Z$ is a sheaf for the fppf topology by
Bootstrap, Lemma \ref{bootstrap-lemma-glueing-sheaves}.
Thus Spaces, Lemma \ref{spaces-lemma-glueing-algebraic-spaces}
applies and we conclude that $Z$ is an algebraic space\footnote{
To see that the set theoretic condition of that lemma is satisfied
we argue as follows: First choose the open covering such that
$|I| \leq \text{size}(V)$. Next, choose schemes $U_i$ of size
$\leq \max(\kappa, \text{size}(V))$ and surjective \'etale morphisms
$U_i \to Z_i$; we can do this by assumption (2) and
Sets, Lemma \ref{sets-lemma-bound-size-fibre-product}
(details omitted). Then
Sets, Lemma \ref{sets-lemma-what-is-in-it}
implies that $\coprod U_i$ is an object of $(\Sch/S)_{fppf}$.
Hence $\coprod Z_i$ is an algebraic space by
Spaces, Lemma \ref{spaces-lemma-coproduct-algebraic-spaces}.
}.
\end{proof}

\begin{lemma}
\label{lemma-check-property-limit-preserving}
Let $S$ be a scheme. Let $f : \mathcal{X} \to \mathcal{Y}$ be a $1$-morphism
of categories fibred in groupoids over $(\Sch/S)_{fppf}$. Let $\mathcal{P}$
be a property of morphisms of algebraic spaces as in
Algebraic Stacks, Definition
\ref{algebraic-definition-relative-representable-property}. If
\begin{enumerate}
\item $f$ is representable by algebraic spaces,
\item $\mathcal{Y} \to (\Sch/S)_{fppf}$ is limit preserving on objects,
\item for an affine scheme $V$ locally of finite presentation over $S$ and
$y \in \mathcal{Y}_V$ the resulting morphism of algebraic spaces
$f_y : F_y \to V$, see Algebraic Stacks, Equation
(\ref{algebraic-equation-representable-by-algebraic-spaces}),
has property $\mathcal{P}$.
\end{enumerate}
Then $f$ has property $\mathcal{P}$.
\end{lemma}

\begin{proof}
Let $V$ be a scheme over $S$ and $y \in \mathcal{Y}_V$. We have to show
that $F_y \to V$ has property $\mathcal{P}$. Since $\mathcal{P}$ is
fppf local on the base we may assume that $V$ is an affine scheme which
maps into an affine open $\Spec(\Lambda) \subset S$. Thus we can write
$V = \lim V_i$ with each $V_i$ affine and of finite presentation over
$\Spec(\Lambda)$, see Algebra, Lemma \ref{algebra-lemma-ring-colimit-fp}.
Then $y$ comes from an object $y_i$ over $V_i$ for some $i$ by assumption (2).
By assumption (3) the morphism $F_{y_i} \to V_i$ has property $\mathcal{P}$.
As $\mathcal{P}$ is stable under arbitrary base change and since
$F_y = F_{y_i} \times_{V_i} V$ we conclude that $F_y \to V$ has property
$\mathcal{P}$ as desired.
\end{proof}



\section{Formally smooth on objects}
\label{section-formally-smooth}

\noindent
Let $S$ be a scheme. Let $p : \mathcal{X} \to \mathcal{Y}$ be a $1$-morphism
of categories fibred in groupoids over $(\Sch/S)_{fppf}$. We will say that
$p$ is {\it formally smooth on objects} if the following condition holds:
Given any data consisting of
\begin{enumerate}
\item a first order thickening $U \subset U'$ of affine schemes over $S$,
\item an object $y'$ of $\mathcal{Y}$ over $U'$,
\item an object $x$ of $\mathcal{X}$ over $U$, and
\item an isomorphism $\gamma : p(x) \to y'|_U$,
\end{enumerate}
then there exists an object $x'$ of
$\mathcal{X}$ over $U'$ with an isomorphism
$\beta : x'|_U \to x$ and an isomorphism $\gamma' : p(x') \to y'$
such that
\begin{equation}
\label{equation-formally-smooth}
\vcenter{
\xymatrix{
p(x'|_U) \ar[d]_{p(\beta)} \ar[rr]_{\gamma'|_U} & &
y'|_U \ar@{=}[d] \\
p(x) \ar[rr]^\gamma & & y'|_U
}
}
\end{equation}
commutes.  In this situation we say that ``$(x', \beta, \gamma')$
is a {\it solution} to the problem posed by our data (1), (2), (3), (4)''.

\begin{lemma}
\label{lemma-base-change-formally-smooth}
Let $p : \mathcal{X} \to \mathcal{Y}$ and $q : \mathcal{Z} \to \mathcal{Y}$
be $1$-morphisms of categories fibred in groupoids over $(\Sch/S)_{fppf}$.
If $p : \mathcal{X} \to \mathcal{Y}$ is formally smooth on objects, then so
is the base change
$p' : \mathcal{X} \times_\mathcal{Y} \mathcal{Z} \to \mathcal{Z}$
of $p$ by $q$.
\end{lemma}

\begin{proof}
This is formal. Let $U \subset U'$ be a first order thickening
of affine schemes over $S$, let $z'$ be an object of $\mathcal{Z}$
over $U'$, let $w$ be an object of
$\mathcal{X} \times_\mathcal{Y} \mathcal{Z}$ over $U$, and let
$\delta : p'(w) \to z'|_U$ be an isomorphism.
We may write
$w = (U, x, z, \alpha)$ for some object $x$ of $\mathcal{X}$ over $U$
and object $z$ of $\mathcal{Z}$ over $U$ and isomorphism
$\alpha : p(x) \to q(z)$. Note that $p'(w) = z$ hence
$\delta : z \to z|_U$. Set $y' = q(z')$ and
$\gamma = q(\delta) \circ \alpha : p(x) \to y'|_U$.
As $p$ is formally smooth on objects there exists an
object $x'$ of $\mathcal{X}$ over $U'$ as well as
isomorphisms $\beta : x'|_U \to x$ and $\gamma' : p(x') \to y'$ such that
(\ref{equation-formally-smooth}) commutes. Then we consider the object
$w = (U', x', z', \gamma')$ of $\mathcal{X} \times_\mathcal{Y} \mathcal{Z}$
over $U'$ and define isomorphisms
$$
w'|_U = (U, x'|_U, z'|_U, \gamma'|_U)
\xrightarrow{(\beta, \delta^{-1})}
(U, x, z, \alpha) = w
$$
and
$$
p'(w') = z' \xrightarrow{\text{id}} z'.
$$
These combine to give a solution to the problem.
\end{proof}

\begin{lemma}
\label{lemma-composition-formally-smooth}
Let $p : \mathcal{X} \to \mathcal{Y}$ and $q : \mathcal{Y} \to \mathcal{Z}$
be $1$-morphisms of categories fibred in groupoids over $(\Sch/S)_{fppf}$.
If $p$ and $q$ are formally smooth on objects, then so is the composition
$q \circ p$.
\end{lemma}

\begin{proof}
This is formal. Let $U \subset U'$ be a first order thickening
of affine schemes over $S$, let $z'$ be an object of $\mathcal{Z}$
over $U'$, let $x$ be an object of $\mathcal{X}$ over $U$,
and let $\gamma : q(p(x)) \to z'|_U$ be an isomorphism. As $q$ is
formally smooth on objects there exist an object
$y'$ of $\mathcal{Y}$ over $U'$, an isomorphism
$\beta : y'|_U \to p(x)$, and an isomorphism $\gamma' : q(y') \to z'$
such that (\ref{equation-formally-smooth}) is commutative. As $p$ is
formally smooth on objects there exist an object
$x'$ of $\mathcal{X}$ over $U'$, an isomorphism
$\beta' : x'|_U \to x$, and an isomorphism $\gamma'' : p(x') \to y'$
such that (\ref{equation-formally-smooth}) is commutative.
The solution is to take $x'$ over $U'$ with isomorphism
$$
q(p(x')) \xrightarrow{q(\gamma'')} q(y') \xrightarrow{\gamma'} z'
$$
and isomorphism $\beta' : x'|_U \to x$. We omit the verification
that (\ref{equation-formally-smooth}) is commutative.
\end{proof}

\noindent
Note that the class of formally smooth morphisms of algebraic spaces is
stable under arbitrary base change and local on the target in the
fpqc topology, see
More on Morphisms of Spaces,
Lemma \ref{spaces-more-morphisms-lemma-base-change-formally-smooth} and
\ref{spaces-more-morphisms-lemma-descending-property-formally-smooth}.
Hence condition (2) in the lemma below makes sense.

\begin{lemma}
\label{lemma-representable-by-spaces-formally-smooth}
Let $p : \mathcal{X} \to \mathcal{Y}$ be a $1$-morphism of categories
fibred in groupoids over $(\Sch/S)_{fppf}$. If $p$ is
representable by algebraic spaces, then the following are equivalent:
\begin{enumerate}
\item $p$ is formally smooth on objects, and
\item $p$ is formally smooth (see
Algebraic Stacks,
Definition \ref{algebraic-definition-relative-representable-property}).
\end{enumerate}
\end{lemma}

\begin{proof}
Assume (2). Let $U \subset U'$ be a first order thickening
of affine schemes over $S$, let $y'$ be an object of $\mathcal{Y}$
over $U'$, let $x$ be an object of $\mathcal{X}$ over $U$,
and let $\gamma : p(x) \to y'|_U$ be an isomorphism. Let
$X_{y'}$ denote an algebraic space over $U'$ representing the $2$-fibre
product
$$
(\Sch/U')_{fppf} \times_{y', \mathcal{Y}, p} \mathcal{X}.
$$
Note that $\xi = (U, U \to U', x, \gamma^{-1})$ defines an object of
this $2$-fibre product over $U$. Via the $2$-Yoneda lemma $\xi$ corresponds
to a morphism $f_\xi : U \to X_{y'}$ over $U'$. As $X_{y'} \to U'$ is
formally smooth by assumption there exists a morphism
$f' : U' \to X_{y'}$ such that $f_\xi$ is the composition of $f'$
and the morphism $U \to U'$. Also, the $2$-Yoneda lemma tells us that
$f'$ corresponds to an object $\xi' = (U', U' \to U', x', \alpha)$ of
the displayed $2$-fibre product over $U'$ whose restriction to
$U$ recovers $\xi$. In particular we obtain an isomorphism
$\gamma : x'|U \to x$. Note that $\alpha : y' \to p(x')$.
Hence we see that taking $x'$, the isomorphism
$\gamma : x'|U \to x$, and the isomorphism
$\beta = \alpha^{-1} : p(x') \to y'$
is a solution to the problem.

\medskip\noindent
Assume (1). Choose a scheme $T$ and a $1$-morphism
$y : (\Sch/T)_{fppf} \to \mathcal{Y}$. Let
$X_y$ be an algebraic space over $T$ representing the $2$-fibre product
$(\Sch/T)_{fppf} \times_{y, \mathcal{Y}, p} \mathcal{X}$.
We have to show that $X_y \to T$ is formally smooth.
Hence it suffices to show that given a first order thickening
$U \subset U'$ of affine schemes over $T$, then
$X_y(U') \to X_y(U')$ is surjective (morphisms in the
category of algebraic spaces over $T$). Set $y' = y|_{U'}$.
By the $2$-Yoneda lemma morphisms $U \to X_y$ over $T$ correspond bijectively
to isomorphism classes of pairs $(x, \alpha)$ where $x$ is an object
of $\mathcal{X}$ over $U$ and $\alpha : y|_U \to p(x)$ is an isomorphism.
Of course giving $\alpha$ is, up to an inverse, the same thing as giving
an isomorphism $\gamma : p(x) \to y'|_U$.
Similarly for morphisms $U' \to X_y$ over $T$. Hence (1) guarantees
the surjectivity of $X_y(U') \to X_y(U')$
in this situation and we win.
\end{proof}







\section{Surjective on objects}
\label{section-formally-surjective}

\noindent
Let $S$ be a scheme. Let $p : \mathcal{X} \to \mathcal{Y}$ be a $1$-morphism
of categories fibred in groupoids over $(\Sch/S)_{fppf}$. We will say that
$p$ is {\it surjective on objects} if the following condition holds:
Given any data consisting of
\begin{enumerate}
\item a field $k$ over $S$, and
\item an object $y$ of $\mathcal{Y}$ over $\Spec(k)$,
\end{enumerate}
then there exists an extension $K/k$ of fields over $S$, an
object $x$ of $\mathcal{X}$ over $\Spec(K)$
such that $p(x) \cong y|_{\Spec(K)}$.

\begin{lemma}
\label{lemma-base-change-surjective}
Let $p : \mathcal{X} \to \mathcal{Y}$ and $q : \mathcal{Z} \to \mathcal{Y}$
be $1$-morphisms of categories fibred in groupoids over $(\Sch/S)_{fppf}$.
If $p : \mathcal{X} \to \mathcal{Y}$ is surjective on objects, then so
is the base change
$p' : \mathcal{X} \times_\mathcal{Y} \mathcal{Z} \to \mathcal{Z}$
of $p$ by $q$.
\end{lemma}

\begin{proof}
This is formal. Let $z$ be an object of $\mathcal{Z}$ over a field $k$.
As $p$ is surjective on objects there exists an extension $K/k$
and an object $x$ of $\mathcal{X}$ over $K$ and an isomorphism
$\alpha : p(x) \to q(z)|_{\Spec(K)}$. Then
$w = (\Spec(K), x, z|_{\Spec(K)}, \alpha)$ is an object of
$\mathcal{X} \times_\mathcal{Y} \mathcal{Z}$ over $K$ with
$p'(w) = z|_{\Spec(K)}$.
\end{proof}

\begin{lemma}
\label{lemma-composition-surjective}
Let $p : \mathcal{X} \to \mathcal{Y}$ and $q : \mathcal{Y} \to \mathcal{Z}$
be $1$-morphisms of categories fibred in groupoids over $(\Sch/S)_{fppf}$.
If $p$ and $q$ are surjective on objects, then so is the composition
$q \circ p$.
\end{lemma}

\begin{proof}
This is formal. Let $z$ be an object of $\mathcal{Z}$ over a field $k$.
As $q$ is surjective on objects there exists a field extension $K/k$
and an object $y$ of $\mathcal{Y}$ over $K$ such that
$q(y) \cong x|_{\Spec(K)}$. As $p$ is surjective on objects there
exists a field extension $L/K$ and an object $x$ of $\mathcal{X}$
over $L$ such that $p(x) \cong y|_{\Spec(L)}$. Then the field extension
$L/k$ and the object $x$ of $\mathcal{X}$ over $L$ satisfy
$q(p(x)) \cong z|_{\Spec(L)}$ as desired.
\end{proof}

\begin{lemma}
\label{lemma-representable-by-spaces-surjective}
Let $p : \mathcal{X} \to \mathcal{Y}$ be a $1$-morphism of categories
fibred in groupoids over $(\Sch/S)_{fppf}$. If $p$ is
representable by algebraic spaces, then the following are equivalent:
\begin{enumerate}
\item $p$ is surjective on objects, and
\item $p$ is surjective (see
Algebraic Stacks,
Definition \ref{algebraic-definition-relative-representable-property}).
\end{enumerate}
\end{lemma}

\begin{proof}
Assume (2). Let $k$ be a field and let $y$ be an object of
$\mathcal{Y}$ over $k$. Let $X_y$ denote an algebraic space over $k$
representing the $2$-fibre product
$$
(\Sch/\Spec(k))_{fppf} \times_{y, \mathcal{Y}, p} \mathcal{X}.
$$
As we've assumed that $p$ is surjective we see that $X_y$ is not empty.
Hence we can find a field extension $K/k$ and a $K$-valued point
$x$ of $X_y$. Via the $2$-Yoneda lemma this corresponds to an object
$x$ of $\mathcal{X}$ over $K$ together with an isomorphism
$p(x) \cong y|_{\Spec(K)}$ and we see that (1) holds.

\medskip\noindent
Assume (1). Choose a scheme $T$ and a $1$-morphism
$y : (\Sch/T)_{fppf} \to \mathcal{Y}$. Let
$X_y$ be an algebraic space over $T$ representing the $2$-fibre product
$(\Sch/T)_{fppf} \times_{y, \mathcal{Y}, p} \mathcal{X}$.
We have to show that $X_y \to T$ is surjective. By
Morphisms of Spaces, Definition \ref{spaces-morphisms-definition-surjective}
we have to show that $|X_y| \to |T|$ is surjective.
This means exactly that given a field $k$ over $T$ and a
morphism $t : \Spec(k) \to T$ there exists a field extension
$K/k$ and a morphism $x : \Spec(K) \to X_y$ such that
$$
\xymatrix{
\Spec(K) \ar[d] \ar[r]_x & X_y \ar[d] \\
\Spec(k) \ar[r]^t & T
}
$$
commutes. By the $2$-Yoneda lemma this means exactly that we have to find
$k \subset K$ and an object $x$ of $\mathcal{X}$ over $K$ such that
$p(x) \cong t^*y|_{\Spec(K)}$. Hence (1) guarantees that this is
the case and we win.
\end{proof}












\section{Algebraic morphisms}
\label{section-algebraic}

\noindent
The following notion is occasionally useful.

\begin{definition}
\label{definition-algebraic}
Let $S$ be a scheme. Let $F : \mathcal{X} \to \mathcal{Y}$ be a
$1$-morphism of stacks in groupoids over $(\Sch/S)_{fppf}$.
We say that $F$ is {\it algebraic} if for every scheme $T$ and every
object $\xi$ of $\mathcal{Y}$ over $T$ the $2$-fibre product
$$
(\Sch/T)_{fppf} \times_{\xi, \mathcal{Y}} \mathcal{X}
$$
is an algebraic stack over $S$.
\end{definition}

\noindent
With this terminology in place we have the following result that generalizes
Algebraic Stacks, Lemma
\ref{algebraic-lemma-representable-morphism-to-algebraic}.

\begin{lemma}
\label{lemma-algebraic-morphism-to-algebraic}
Let $S$ be a scheme.
Let $F : \mathcal{X} \to \mathcal{Y}$ be a $1$-morphism of
stacks in groupoids over $(\Sch/S)_{fppf}$. If
\begin{enumerate}
\item $\mathcal{Y}$ is an algebraic stack, and
\item $F$ is algebraic (see above),
\end{enumerate}
then $\mathcal{X}$ is an algebraic stack.
\end{lemma}

\begin{proof}
By assumption (1) there exists a scheme $T$ and an object
$\xi$ of $\mathcal{Y}$ over $T$ such that the corresponding
$1$-morphism $\xi : (\Sch/T)_{fppf} \to \mathcal{Y}$
is smooth an surjective. Then
$\mathcal{U} = (\Sch/T)_{fppf} \times_{\xi, \mathcal{Y}} \mathcal{X}$
is an algebraic stack by assumption (2).
Choose a scheme $U$ and a surjective smooth $1$-morphism
$(\Sch/U)_{fppf} \to \mathcal{U}$.
The projection $\mathcal{U} \longrightarrow \mathcal{X}$
is, as the base change of the morphism
$\xi : (\Sch/T)_{fppf} \to \mathcal{Y}$,
surjective and smooth, see
Algebraic Stacks, Lemma
\ref{algebraic-lemma-base-change-representable-transformations-property}.
Then the composition
$(\Sch/U)_{fppf} \to \mathcal{U} \to \mathcal{X}$
is surjective and smooth as a composition of surjective and smooth
morphisms, see
Algebraic Stacks, Lemma
\ref{algebraic-lemma-composition-representable-transformations-property}.
Hence $\mathcal{X}$ is an algebraic stack by
Algebraic Stacks, Lemma
\ref{algebraic-lemma-smooth-surjective-morphism-implies-algebraic}.
\end{proof}

\begin{lemma}
\label{lemma-map-from-algebraic}
Let $S$ be a scheme. Let $F : \mathcal{X} \to \mathcal{Y}$ be a $1$-morphism
of stacks in groupoids over $(\Sch/S)_{fppf}$. If $\mathcal{X}$ is an
algebraic stack and $\Delta : \mathcal{Y} \to \mathcal{Y} \times \mathcal{Y}$
is representable by algebraic spaces, then $F$ is algebraic.
\end{lemma}

\begin{proof}
Choose a representable stack in groupoids $\mathcal{U}$ and a surjective
smooth $1$-morphism $\mathcal{U} \to \mathcal{X}$. Let $T$ be a scheme and
let $\xi$ be an object of $\mathcal{Y}$ over $T$. The morphism of
$2$-fibre products
$$
(\Sch/T)_{fppf} \times_{\xi, \mathcal{Y}} \mathcal{U}
\longrightarrow
(\Sch/T)_{fppf} \times_{\xi, \mathcal{Y}} \mathcal{X}
$$
is representable by algebraic spaces, surjective, and smooth as a
base change of $\mathcal{U} \to \mathcal{X}$, see
Algebraic Stacks,
Lemmas \ref{algebraic-lemma-base-change-representable-by-spaces} and
\ref{algebraic-lemma-base-change-representable-transformations-property}.
By our condition on the diagonal of $\mathcal{Y}$ we see that
the source of this morphism is representable by an algebraic space, see
Algebraic Stacks, Lemma \ref{algebraic-lemma-representable-diagonal}.
Hence the target is an algebraic stack by
Algebraic Stacks,
Lemma \ref{algebraic-lemma-smooth-surjective-morphism-implies-algebraic}.
\end{proof}

\begin{lemma}
\label{lemma-diagonals-and-algebraic-morphisms}
Let $S$ be a scheme. Let $F : \mathcal{X} \to \mathcal{Y}$ be a $1$-morphism
of stacks in groupoids over $(\Sch/S)_{fppf}$.
If $F$ is algebraic and
$\Delta : \mathcal{Y} \to \mathcal{Y} \times \mathcal{Y}$
is representable by algebraic spaces, then
$\Delta : \mathcal{X} \to \mathcal{X} \times \mathcal{X}$
is representable by algebraic spaces.
\end{lemma}

\begin{proof}
Assume $F$ is algebraic and
$\Delta : \mathcal{Y} \to \mathcal{Y} \times \mathcal{Y}$
is representable by algebraic spaces.
Take a scheme $U$ over $S$ and two objects $x_1, x_2$ of
$\mathcal{X}$ over $U$.
We have to show that $\mathit{Isom}(x_1, x_2)$ is an algebraic space
over $U$, see
Algebraic Stacks, Lemma \ref{algebraic-lemma-representable-diagonal}.
Set $y_i = F(x_i)$. We have a morphism of sheaves of sets
$$
f : \mathit{Isom}(x_1, x_2) \to \mathit{Isom}(y_1, y_2)
$$
and the target is an algebraic space by assumption.
Thus it suffices to show that $f$ is representable by
algebraic spaces, see Bootstrap, Lemma
\ref{bootstrap-lemma-representable-by-spaces-over-space}.
Thus we can choose a scheme $V$ over $U$ and an
isomorphism $\beta : y_{1, V} \to y_{2, V}$ and
we have to show the functor
$$
(\Sch/V)_{fppf} \to \textit{Sets},\quad
T/V \mapsto \{\alpha : x_{1, T} \to x_{2, T}
\text{ in }\mathcal{X}_T \mid F(\alpha) = \beta|_T\}
$$
is an algebraic space. Consider the objects
$z_1 = (V, x_{1, V}, \text{id})$ and 
$z_2 = (V, x_{2, V}, \beta)$ of
$$
\mathcal{Z} = (\Sch/V)_{fppf} \times_{y_{1, V}, \mathcal{Y}} \mathcal{X}
$$
Then it is straightforward to verify that
the functor above is equal to $\mathit{Isom}(z_1, z_2)$
on $(\Sch/V)_{fppf}$. Hence this is an algebraic space
by our assumption that $F$ is algebraic (and the definition
of algebraic stacks).
\end{proof}
















\section{Spaces of sections}
\label{section-spaces-sections}

\noindent
Given morphisms $W \to Z \to U$ we can consider the functor that associates
to a scheme $U'$ over $U$ the set of sections $\sigma : Z_{U'} \to W_{U'}$
of the base change $W_{U'} \to Z_{U'}$ of the morphism $W \to Z$.
In this section we prove some preliminary lemmas on this functor.

\begin{lemma}
\label{lemma-surjection-space-of-sections}
Let $Z \to U$ be a finite morphism of schemes.
Let $W$ be an algebraic space and let $W \to Z$ be a
surjective \'etale morphism. Then there exists a surjective
\'etale morphism $U' \to U$ and a section
$$
\sigma : Z_{U'} \to W_{U'}
$$
of the morphism $W_{U'} \to Z_{U'}$.
\end{lemma}

\begin{proof}
We may choose a separated scheme $W'$ and a surjective \'etale morphism
$W' \to W$. Hence after replacing $W$ by $W'$ we may assume that $W$
is a separated scheme. Write $f : W \to Z$ and $\pi : Z \to U$.
Note that $f \circ \pi : W \to U$ is separated as
$W$ is separated (see
Schemes, Lemma \ref{schemes-lemma-compose-after-separated}).
Let $u \in U$ be a point. Clearly it suffices
to find an \'etale neighbourhood $(U', u')$ of $(U, u)$ such that
a section $\sigma$ exists over $U'$. Let $z_1, \ldots, z_r$
be the points of $Z$ lying above $u$. For each $i$ choose a point
$w_i \in W$ which maps to $z_i$. We may pick an \'etale neighbourhood
$(U', u') \to (U, u)$ such that the conclusions of
More on Morphisms, Lemma
\ref{more-morphisms-lemma-etale-splits-off-quasi-finite-part-technical-variant}
hold for both $Z \to U$ and the points $z_1, \ldots, z_r$
and $W \to U$ and the points $w_1, \ldots, w_r$. Hence, after
replacing $(U, u)$ by $(U', u')$ and relabeling, we may assume that
all the field extensions $\kappa(z_i)/\kappa(u)$ and
$\kappa(w_i)/\kappa(u)$ are purely inseparable, and moreover
that there exist disjoint union decompositions
$$
Z = V_1 \amalg \ldots \amalg V_r \amalg A, \quad
W = W_1 \amalg \ldots \amalg W_r \amalg B
$$
by open and closed subschemes
with $z_i \in V_i$, $w_i \in W_i$ and $V_i \to U$, $W_i \to U$ finite.
After replacing $U$ by $U \setminus \pi(A)$ we may assume that
$A = \emptyset$, i.e., $Z = V_1 \amalg \ldots \amalg V_r$.
After replacing $W_i$ by $W_i \cap f^{-1}(V_i)$ and
$B$ by $B \cup \bigcup W_i \cap f^{-1}(Z \setminus V_i)$
we may assume that $f$ maps $W_i$ into $V_i$.
Then $f_i = f|_{W_i} : W_i \to V_i$ is a morphism of schemes finite over $U$,
hence finite (see
Morphisms, Lemma \ref{morphisms-lemma-finite-permanence}).
It is also \'etale (by assumption),
$f_i^{-1}(\{z_i\}) = w_i$, and induces an isomorphism of residue
fields $\kappa(z_i) = \kappa(w_i)$ (because both are purely inseparable
extensions of $\kappa(u)$ and $\kappa(w_i)/\kappa(z_i)$
is separable as $f$ is \'etale). Hence by
\'Etale Morphisms, Lemma \ref{etale-lemma-finite-etale-one-point}
we see that $f_i$ is an isomorphism in a neighbourhood $V_i'$ of
$z_i$. Since $\pi : Z \to U$ is closed, after shrinking $U$, we may assume
that $W_i \to V_i$ is an isomorphism. This proves the lemma.
\end{proof}

\begin{lemma}
\label{lemma-space-of-sections}
Let $Z \to U$ be a finite locally free morphism of schemes.
Let $W$ be an algebraic space and let $W \to Z$ be an \'etale morphism.
Then the functor
$$
F : (\Sch/U)_{fppf}^{opp} \longrightarrow \textit{Sets},
$$
defined by the rule
$$
U' \longmapsto
F(U') =
\{\sigma : Z_{U'} \to W_{U'}\text{ section of }W_{U'} \to Z_{U'}\}
$$
is an algebraic space and the morphism $F \to U$ is \'etale.
\end{lemma}

\begin{proof}
Assume first that $W \to Z$ is also separated.
Let $U'$ be a scheme over $U$ and let $\sigma \in F(U')$. By
Morphisms of Spaces, Lemma \ref{spaces-morphisms-lemma-section-immersion}
the morphism $\sigma$ is a closed immersion.
Moreover, $\sigma$ is \'etale by
Properties of Spaces, Lemma \ref{spaces-properties-lemma-etale-permanence}.
Hence $\sigma$ is also an open immersion, see
Morphisms of Spaces,
Lemma \ref{spaces-morphisms-lemma-etale-universally-injective-open}.
In other words, $Z_\sigma = \sigma(Z_{U'}) \subset W_{U'}$ is
an open subspace such that the morphism $Z_\sigma \to Z_{U'}$
is an isomorphism. In particular, the morphism $Z_\sigma \to U'$
is finite. Hence we obtain a transformation of functors
$$
F \longrightarrow (W/U)_{fin}, \quad
\sigma \longmapsto (U' \to U, Z_\sigma)
$$
where $(W/U)_{fin}$ is the finite part of the morphism $W \to U$
introduced in
More on Groupoids in Spaces, Section
\ref{spaces-more-groupoids-section-finite}.
It is clear that this transformation of functors is injective (since we can
recover $\sigma$ from $Z_\sigma$ as the inverse of the isomorphism
$Z_\sigma \to Z_{U'}$). By
More on Groupoids in Spaces, Proposition
\ref{spaces-more-groupoids-proposition-finite-algebraic-space}
we know that $(W/U)_{fin}$ is an algebraic space \'etale over $U$.
Hence to finish the proof in this case it suffices to show that
$F \to (W/U)_{fin}$ is representable and an open immersion.
To see this suppose that we are given a morphism of schemes $U' \to U$
and an open subspace $Z' \subset W_{U'}$ such that $Z' \to U'$
is finite. Then it suffices to show that there exists an
open subscheme $U'' \subset U'$ such that a morphism
$T \to U'$ factors through $U''$ if and only if $Z' \times_{U'} T$
maps isomorphically to $Z \times_{U'} T$. This follows from
More on Morphisms of Spaces, Lemma
\ref{spaces-more-morphisms-lemma-where-isomorphism}
(here we use that $Z \to B$ is flat and locally of finite presentation
as well as finite).
Hence we have proved the lemma in case $W \to Z$ is separated
as well as \'etale.

\medskip\noindent
In the general case we choose a separated scheme $W'$ and a surjective
\'etale morphism $W' \to W$. Note that the morphisms $W' \to W$ and
$W \to Z$ are separated as their source is separated. Denote $F'$ the
functor associated to $W' \to Z \to U$ as in the lemma. In the first
paragraph of the proof we showed that $F'$ is representable by an
algebraic space \'etale over $U$. By
Lemma \ref{lemma-surjection-space-of-sections}
the map of functors $F' \to F$ is surjective for the \'etale topology
on $\Sch/U$. Moreover, if $U'$ and $\sigma : Z_{U'} \to W_{U'}$
define a point $\xi \in F(U')$, then the fibre product
$$
F'' = F' \times_{F, \xi} U'
$$
is the functor on $\Sch/U'$ associated to the morphisms
$$
W'_{U'} \times_{W_{U'}, \sigma} Z_{U'} \to Z_{U'} \to U'.
$$
Since the first morphism is separated as a base change of a separated
morphism, we see that $F''$ is an algebraic space \'etale over $U'$
by the result of the first paragraph. It follows that $F' \to F$ is a
surjective \'etale transformation of functors, which is representable
by algebraic spaces. Hence $F$ is an algebraic space by
Bootstrap, Theorem \ref{bootstrap-theorem-final-bootstrap}.
Since $F' \to F$ is an \'etale surjective morphism of algebraic spaces
it follows that $F \to U$ is \'etale because $F' \to U$ is \'etale.
\end{proof}









\section{Relative morphisms}
\label{section-relative-morphisms}

\noindent
We continue the discussion started in
More on Morphisms, Section \ref{more-morphisms-section-relative-morphisms}.

\medskip\noindent
Let $S$ be a scheme. Let $Z \to B$ and $X \to B$ be morphisms of
algebraic spaces over $S$. Given a scheme $T$ we can consider pairs
$(a, b)$ where $a : T \to B$
is a morphism and $b : T \times_{a, B} Z \to T \times_{a, B} X$
is a morphism over $T$. Picture
\begin{equation}
\label{equation-hom}
\vcenter{
\xymatrix{
T \times_{a, B} Z \ar[rd] \ar[rr]_b & &
T \times_{a, B} X \ar[ld] & Z \ar[rd] & & X \ar[ld] \\
& T \ar[rrr]^a & & & B
}
}
\end{equation}
Of course, we can also think of $b$ as a morphism
$b : T \times_{a, B} Z \to X$ such that
$$
\xymatrix{
T \times_{a, B} Z \ar[r] \ar[d] \ar@/^1pc/[rrr]_-b &
Z \ar[rd] & & X \ar[ld] \\
T \ar[rr]^a & & B
}
$$
commutes. In this situation we can define a functor
\begin{equation}
\label{equation-hom-functor}
\mathit{Mor}_B(Z, X) : (\Sch/S)^{opp} \longrightarrow \textit{Sets},
\quad
T \longmapsto \{(a, b)\text{ as above}\}
\end{equation}
Sometimes we think of this as a functor defined on the category
of schemes over $B$, in which case we drop $a$ from the notation.

\begin{lemma}
\label{lemma-hom-functor-sheaf}
Let $S$ be a scheme. Let $Z \to B$ and $X \to B$ be morphisms of
algebraic spaces over $S$. Then
\begin{enumerate}
\item $\mathit{Mor}_B(Z, X)$ is a sheaf on
$(\Sch/S)_{fppf}$.
\item If $T$ is an algebraic space over $S$, then there is a
canonical bijection
$$
\Mor_{\Sh((\Sch/S)_{fppf})}(T, \mathit{Mor}_B(Z, X))
=
\{(a, b)\text{ as in }(\ref{equation-hom})\}
$$
\end{enumerate}
\end{lemma}

\begin{proof}
Let $T$ be an algebraic space over $S$. Let $\{T_i \to T\}$ be an fppf
covering of $T$ (as in
Topologies on Spaces, Section \ref{spaces-topologies-section-fppf}).
Suppose that $(a_i, b_i) \in \mathit{Mor}_B(Z, X)(T_i)$ such
that $(a_i, b_i)|_{T_i \times_T T_j} = (a_j, b_j)|_{T_i \times_T T_j}$
for all $i, j$. Then by
Descent on Spaces,
Lemma \ref{spaces-descent-lemma-fpqc-universal-effective-epimorphisms}
there exists a unique morphism $a : T \to B$ such that $a_i$ is the
composition of $T_i \to T$ and $a$. Then
$\{T_i \times_{a_i, B} Z \to T \times_{a, B} Z\}$ is an fppf covering
too and the same lemma implies there exists a unique morphism
$b : T \times_{a, B} Z \to T \times_{a, B} X$ such that $b_i$ is the
composition of $T_i \times_{a_i, B} Z \to T \times_{a, B} Z$ and $b$. Hence
$(a, b) \in \mathit{Mor}_B(Z, X)(T)$ restricts to $(a_i, b_i)$
over $T_i$ for all $i$.

\medskip\noindent
Note that the result of the preceding paragraph in particular implies (1).

\medskip\noindent
Let $T$ be an algebraic space over $S$. In order to prove (2) we will
construct mutually inverse maps between the displayed sets. In the
following when we say ``pair'' we mean a pair $(a, b)$ fitting
into (\ref{equation-hom}).

\medskip\noindent
Let $v : T \to \mathit{Mor}_B(Z, X)$ be a natural transformation.
Choose a scheme $U$ and a surjective \'etale morphism $p : U \to T$.
Then $v(p) \in \mathit{Mor}_B(Z, X)(U)$ corresponds to a pair $(a_U, b_U)$
over $U$. Let $R = U \times_T U$ with projections $t, s : R \to U$.
As $v$ is a transformation of functors we see that the pullbacks of
$(a_U, b_U)$ by $s$ and $t$ agree. Hence, since $\{U \to T\}$ is an
fppf covering, we may apply the result of the first paragraph that
deduce that there exists a unique pair $(a, b)$ over $T$.

\medskip\noindent
Conversely, let $(a, b)$ be a pair over $T$.
Let $U \to T$, $R = U \times_T U$, and $t, s : R \to U$ be as
above. Then the restriction $(a, b)|_U$ gives rise to a
transformation of functors $v : h_U \to \mathit{Mor}_B(Z, X)$ by the
Yoneda lemma
(Categories, Lemma \ref{categories-lemma-yoneda}).
As the two pullbacks $s^*(a, b)|_U$ and $t^*(a, b)|_U$
are equal, we see that $v$ coequalizes the two maps
$h_t, h_s : h_R \to h_U$. Since $T = U/R$ is the fppf quotient sheaf by
Spaces, Lemma \ref{spaces-lemma-space-presentation}
and since $\mathit{Mor}_B(Z, X)$ is an fppf sheaf by (1) we conclude
that $v$ factors through a map $T \to \mathit{Mor}_B(Z, X)$.

\medskip\noindent
We omit the verification that the two constructions above are mutually
inverse.
\end{proof}

\begin{lemma}
\label{lemma-base-change-hom-functor}
Let $S$ be a scheme. Let $Z \to B$, $X \to B$, and $B' \to B$
be morphisms of algebraic spaces over $S$. Set $Z' = B' \times_B Z$
and $X' = B' \times_B X$. Then
$$
\mathit{Mor}_{B'}(Z', X')
=
B' \times_B \mathit{Mor}_B(Z, X)
$$
in $\Sh((\Sch/S)_{fppf})$.
\end{lemma}

\begin{proof}
The equality as functors follows immediately from the definitions.
The equality as sheaves follows from this because both sides are
sheaves according to
Lemma \ref{lemma-hom-functor-sheaf}
and the fact that a fibre product of sheaves is the same as the
corresponding fibre product of pre-sheaves (i.e., functors).
\end{proof}

\begin{lemma}
\label{lemma-etale-covering-hom-functor}
Let $S$ be a scheme. Let $Z \to B$ and $X' \to X \to B$ be morphisms of
algebraic spaces over $S$. Assume
\begin{enumerate}
\item $X' \to X$ is \'etale, and
\item $Z \to B$ is finite locally free.
\end{enumerate}
Then $\mathit{Mor}_B(Z, X') \to \mathit{Mor}_B(Z, X)$ is representable
by algebraic spaces and \'etale. If $X' \to X$ is also surjective,
then $\mathit{Mor}_B(Z, X') \to \mathit{Mor}_B(Z, X)$ is surjective.
\end{lemma}

\begin{proof}
Let $U$ be a scheme and let $\xi = (a, b)$ be an element of
$\mathit{Mor}_B(Z, X)(U)$. We have to prove that the functor
$$
h_U \times_{\xi, \mathit{Mor}_B(Z, X)} \mathit{Mor}_B(Z, X')
$$
is representable by an algebraic space \'etale over $U$. Set
$Z_U = U \times_{a, B} Z$ and $W = Z_U \times_{b, X} X'$.
Then $W \to Z_U \to U$ is as in
Lemma \ref{lemma-space-of-sections}
and the sheaf $F$ defined there is identified with the fibre product
displayed above. Hence the first assertion of the lemma.
The second assertion follows from this and
Lemma \ref{lemma-surjection-space-of-sections}
which guarantees that $F \to U$ is surjective in the situation above.
\end{proof}

\begin{proposition}
\label{proposition-hom-functor-algebraic-space}
Let $S$ be a scheme. Let $Z \to B$ and $X \to B$ be morphisms of
algebraic spaces over $S$. If $Z \to B$ is finite locally free
then $\mathit{Mor}_B(Z, X)$ is an algebraic space.
\end{proposition}

\begin{proof}
Choose a scheme $B' = \coprod B'_i$ which is a disjoint union of
affine schemes $B'_i$ and an \'etale surjective morphism $B' \to B$.
We may also assume that $B'_i \times_B Z$ is the spectrum of a ring
which is finite free as a $\Gamma(B'_i, \mathcal{O}_{B'_i})$-module.
By
Lemma \ref{lemma-base-change-hom-functor}
and
Spaces, Lemma
\ref{spaces-lemma-base-change-representable-transformations-property}
the morphism $\mathit{Mor}_{B'}(Z', X') \to \mathit{Mor}_B(Z, X)$
is surjective \'etale. Hence by
Bootstrap, Theorem \ref{bootstrap-theorem-final-bootstrap}
it suffices to prove the proposition when $B = B'$ is a disjoint union of
affine schemes $B'_i$ so that each $B'_i \times_B Z$ is finite free
over $B'_i$. Then it actually suffices to prove the result for the restriction
to each $B'_i$. Thus we may assume that $B$ is affine and that
$\Gamma(Z, \mathcal{O}_Z)$ is a finite free $\Gamma(B, \mathcal{O}_B)$-module.

\medskip\noindent
Choose a scheme $X'$ which is a disjoint union of affine schemes and
a surjective \'etale morphism $X' \to X$. By
Lemma \ref{lemma-etale-covering-hom-functor}
the morphism $\mathit{Mor}_B(Z, X') \to \mathit{Mor}_B(Z, X)$
is representable by algebraic spaces, \'etale, and surjective.
Hence by
Bootstrap, Theorem \ref{bootstrap-theorem-final-bootstrap}
it suffices to prove the proposition when $X$ is a disjoint union
of affine schemes. This reduces us to the case discussed in the next
paragraph.

\medskip\noindent
Assume $X = \coprod_{i \in I} X_i$ is a disjoint union of affine
schemes, $B$ is affine, and that $\Gamma(Z, \mathcal{O}_Z)$ is a finite
free $\Gamma(B, \mathcal{O}_B)$-module. For any finite subset
$E \subset I$ set
$$
F_E = \mathit{Mor}_B(Z, \coprod\nolimits_{i \in E} X_i).
$$
By More on Morphisms,
Lemma \ref{more-morphisms-lemma-hom-from-finite-free-into-affine}
we see that $F_E$ is an algebraic space. Consider the morphism
$$
\coprod\nolimits_{E \subset I\text{ finite}} F_E
\longrightarrow
\mathit{Mor}_B(Z, X)
$$
Each of the morphisms
$F_E \to \mathit{Mor}_B(Z, X)$ is an open immersion, because it is
simply the locus parametrizing pairs $(a, b)$ where $b$ maps into
the open subscheme $\coprod\nolimits_{i \in E} X_i$ of $X$. Moreover,
if $T$ is quasi-compact, then for any pair $(a, b)$ the image
of $b$ is contained in $\coprod\nolimits_{i \in E} X_i$ for some
$E \subset I$ finite. Hence the displayed arrow is in fact an
open covering and we win\footnote{Modulo
some set theoretic arguments. Namely, we have to show that
$\coprod F_E$ is an algebraic space. This follows because
$|I| \leq \text{size}(X)$ and $\text{size}(F_E) \leq \text{size}(X)$
as follows from the explicit description of $F_E$ in the proof of
More on Morphisms,
Lemma \ref{more-morphisms-lemma-hom-from-finite-free-into-affine}.
Some details omitted.} by
Spaces, Lemma \ref{spaces-lemma-glueing-algebraic-spaces}.
\end{proof}










\section{Restriction of scalars}
\label{section-restriction-of-scalars}

\noindent
Suppose $X \to Z \to B$ are morphisms of algebraic spaces over $S$.
Given a scheme $T$ we can consider pairs $(a, b)$ where $a : T \to B$
is a morphism and $b : T \times_{a, B} Z \to X$ is a morphism over $Z$.
Picture
\begin{equation}
\label{equation-pairs}
\vcenter{
\xymatrix{
& X \ar[d] \\
T \times_{a, B} Z \ar[d] \ar[ru]^b \ar[r] & Z \ar[d] \\
T \ar[r]^a & B
}
}
\end{equation}
In this situation we can define a
functor
\begin{equation}
\label{equation-restriction-of-scalars}
\text{Res}_{Z/B}(X) : (\Sch/S)^{opp} \longrightarrow \textit{Sets},
\quad
T \longmapsto \{(a, b)\text{ as above}\}
\end{equation}
Sometimes we think of this as a functor defined on the category
of schemes over $B$, in which case we drop $a$ from the notation.

\begin{lemma}
\label{lemma-restriction-of-scalars-sheaf}
Let $S$ be a scheme. Let $X \to Z \to B$ be morphisms of
algebraic spaces over $S$. Then
\begin{enumerate}
\item $\text{Res}_{Z/B}(X)$ is a sheaf on
$(\Sch/S)_{fppf}$.
\item If $T$ is an algebraic space over $S$, then there is a
canonical bijection
$$
\Mor_{\Sh((\Sch/S)_{fppf})}(T, \text{Res}_{Z/B}(X))
=
\{(a, b)\text{ as in }(\ref{equation-pairs})\}
$$
\end{enumerate}
\end{lemma}

\begin{proof}
Let $T$ be an algebraic space over $S$. Let $\{T_i \to T\}$ be an fppf
covering of $T$ (as in
Topologies on Spaces, Section \ref{spaces-topologies-section-fppf}).
Suppose that $(a_i, b_i) \in \text{Res}_{Z/B}(X)(T_i)$ such
that $(a_i, b_i)|_{T_i \times_T T_j} = (a_j, b_j)|_{T_i \times_T T_j}$
for all $i, j$. Then by
Descent on Spaces,
Lemma \ref{spaces-descent-lemma-fpqc-universal-effective-epimorphisms}
there exists a unique morphism $a : T \to B$ such that $a_i$ is the
composition of $T_i \to T$ and $a$. Then
$\{T_i \times_{a_i, B} Z \to T \times_{a, B} Z\}$ is an fppf covering
too and the same lemma implies there exists a unique morphism
$b : T \times_{a, B} Z \to X$ such that $b_i$ is the composition
of $T_i \times_{a_i, B} Z \to T \times_{a, B} Z$ and $b$. Hence
$(a, b) \in \text{Res}_{Z/B}(X)(T)$ restricts to $(a_i, b_i)$
over $T_i$ for all $i$.

\medskip\noindent
Note that the result of the preceding paragraph in particular implies (1).

\medskip\noindent
Let $T$ be an algebraic space over $S$. In order to prove (2) we will
construct mutually inverse maps between the displayed sets. In the
following when we say ``pair'' we mean a pair $(a, b)$ fitting
into (\ref{equation-pairs}).

\medskip\noindent
Let $v : T \to \text{Res}_{Z/B}(X)$ be a natural transformation.
Choose a scheme $U$ and a surjective \'etale morphism $p : U \to T$.
Then $v(p) \in \text{Res}_{Z/B}(X)(U)$ corresponds to a pair $(a_U, b_U)$
over $U$. Let $R = U \times_T U$ with projections $t, s : R \to U$.
As $v$ is a transformation of functors we see that the pullbacks of
$(a_U, b_U)$ by $s$ and $t$ agree. Hence, since $\{U \to T\}$ is an
fppf covering, we may apply the result of the first paragraph that
deduce that there exists a unique pair $(a, b)$ over $T$.

\medskip\noindent
Conversely, let $(a, b)$ be a pair over $T$.
Let $U \to T$, $R = U \times_T U$, and $t, s : R \to U$ be as
above. Then the restriction $(a, b)|_U$ gives rise to a
transformation of functors $v : h_U \to \text{Res}_{Z/B}(X)$ by the
Yoneda lemma
(Categories, Lemma \ref{categories-lemma-yoneda}).
As the two pullbacks $s^*(a, b)|_U$ and $t^*(a, b)|_U$
are equal, we see that $v$ coequalizes the two maps
$h_t, h_s : h_R \to h_U$. Since $T = U/R$ is the fppf quotient sheaf by
Spaces, Lemma \ref{spaces-lemma-space-presentation}
and since $\text{Res}_{Z/B}(X)$ is an fppf sheaf by (1) we conclude
that $v$ factors through a map $T \to \text{Res}_{Z/B}(X)$.

\medskip\noindent
We omit the verification that the two constructions above are mutually
inverse.
\end{proof}

\noindent
Of course the sheaf $\text{Res}_{Z/B}(X)$ comes with a natural transformation
of functors $\text{Res}_{Z/B}(X) \to B$. We will use this without further
mention in the following.

\begin{lemma}
\label{lemma-etale-base-change-restriction-of-scalars}
Let $S$ be a scheme. Let $X \to Z \to B$ and $B' \to B$
be morphisms of algebraic spaces over $S$.
Set $Z' = B' \times_B Z$ and $X' = B' \times_B X$. Then
$$
\text{Res}_{Z'/B'}(X')
=
B' \times_B \text{Res}_{Z/B}(X)
$$
in $\Sh((\Sch/S)_{fppf})$.
\end{lemma}

\begin{proof}
The equality as functors follows immediately from the definitions.
The equality as sheaves follows from this because both sides are
sheaves according to
Lemma \ref{lemma-restriction-of-scalars-sheaf}
and the fact that a fibre product of sheaves is the same as the
corresponding fibre product of pre-sheaves (i.e., functors).
\end{proof}

\begin{lemma}
\label{lemma-etale-covering-restriction-of-scalars}
Let $S$ be a scheme. Let $X' \to X \to Z \to B$ be morphisms of
algebraic spaces over $S$. Assume
\begin{enumerate}
\item $X' \to X$ is \'etale, and
\item $Z \to B$ is finite locally free.
\end{enumerate}
Then $\text{Res}_{Z/B}(X') \to \text{Res}_{Z/B}(X)$ is representable
by algebraic spaces and \'etale. If $X' \to X$ is also surjective,
then $\text{Res}_{Z/B}(X') \to \text{Res}_{Z/B}(X)$ is surjective.
\end{lemma}

\begin{proof}
Let $U$ be a scheme and let $\xi = (a, b)$ be an element of
$\text{Res}_{Z/B}(X)(U)$. We have to prove that the functor
$$
h_U \times_{\xi, \text{Res}_{Z/B}(X)} \text{Res}_{Z/B}(X')
$$
is representable by an algebraic space \'etale over $U$. Set
$Z_U = U \times_{a, B} Z$ and $W = Z_U \times_{b, X} X'$.
Then $W \to Z_U \to U$ is as in
Lemma \ref{lemma-space-of-sections}
and the sheaf $F$ defined there is identified with the fibre product
displayed above. Hence the first assertion of the lemma.
The second assertion follows from this and
Lemma \ref{lemma-surjection-space-of-sections}
which guarantees that $F \to U$ is surjective in the situation above.
\end{proof}

\noindent
At this point we can use the lemmas above to prove that $\text{Res}_{Z/B}(X)$
is an algebraic space whenever $Z \to B$ is finite locally free in almost
exactly the same way as in the proof that $\mathit{Mor}_B(Z, X)$ is an
algebraic spaces, see
Proposition \ref{proposition-hom-functor-algebraic-space}.
Instead we will directly deduce this result from the following lemma
and the fact that $\mathit{Mor}_B(Z, X)$ is an algebraic space.

\begin{lemma}
\label{lemma-fibre-diagram}
Let $S$ be a scheme. Let $X \to Z \to B$ be morphisms of
algebraic spaces over $S$. The following diagram
$$
\xymatrix{
\mathit{Mor}_B(Z, X) \ar[r] & \mathit{Mor}_B(Z, Z) \\
\text{Res}_{Z/B}(X) \ar[r] \ar[u] & B \ar[u]_{\text{id}_Z}
}
$$
is a cartesian diagram of sheaves on $(\Sch/S)_{fppf}$.
\end{lemma}

\begin{proof}
Omitted. Hint: Exercise in the functorial point of view in algebraic
geometry.
\end{proof}

\begin{proposition}
\label{proposition-restriction-of-scalars-algebraic-space}
Let $S$ be a scheme. Let $X \to Z \to B$ be morphisms of
algebraic spaces over $S$. If $Z \to B$ is finite locally free
then $\text{Res}_{Z/B}(X)$ is an algebraic space.
\end{proposition}

\begin{proof}
By
Proposition \ref{proposition-hom-functor-algebraic-space}
the functors $\mathit{Mor}_B(Z, X)$ and $\mathit{Mor}_B(Z, Z)$
are algebraic spaces. Hence this follows from the cartesian
diagram of
Lemma \ref{lemma-fibre-diagram}
and the fact that fibre products of algebraic spaces exist and
are given by the fibre product in the underlying category of
sheaves of sets (see
Spaces, Lemma
\ref{spaces-lemma-fibre-product-spaces-over-sheaf-with-representable-diagonal}).
\end{proof}






\section{Finite Hilbert stacks}
\label{section-finite-hilbert-stacks}

\noindent
In this section we prove some results concerning the finite
Hilbert stacks $\mathcal{H}_d(\mathcal{X}/\mathcal{Y})$
introduced in
Examples of Stacks, Section \ref{examples-stacks-section-hilbert-d-stack}.

\begin{lemma}
\label{lemma-map-hilbert}
Consider a $2$-commutative diagram
$$
\xymatrix{
\mathcal{X}' \ar[r]_G \ar[d]_{F'} & \mathcal{X} \ar[d]^F \\
\mathcal{Y}' \ar[r]^H & \mathcal{Y}
}
$$
of stacks in groupoids over $(\Sch/S)_{fppf}$ with a given
$2$-isomorphism $\gamma : H \circ F' \to F \circ G$. In this situation we
obtain a canonical $1$-morphism
$\mathcal{H}_d(\mathcal{X}'/\mathcal{Y}') \to
\mathcal{H}_d(\mathcal{X}/\mathcal{Y})$.
This morphism is compatible with the forgetful $1$-morphisms of
Examples of Stacks,
Equation (\ref{examples-stacks-equation-diagram-hilbert-d-stack}).
\end{lemma}

\begin{proof}
We map the object $(U, Z, y', x', \alpha')$ to the object
$(U, Z, H(y'), G(x'), \gamma \star \text{id}_H \star \alpha')$
where $\star$ denotes horizontal composition of $2$-morphisms, see
Categories, Definition \ref{categories-definition-horizontal-composition}.
To a morphism
$(f, g, b, a) :
(U_1, Z_1, y_1', x_1', \alpha_1') \to (U_2, Z_2, y_2', x_2', \alpha_2')$
we assign
$(f, g, H(b), G(a))$.
We omit the verification that this defines a functor between categories over
$(\Sch/S)_{fppf}$.
\end{proof}

\begin{lemma}
\label{lemma-cartesian-map-hilbert}
In the situation of
Lemma \ref{lemma-map-hilbert}
assume that the given square is $2$-cartesian. Then the diagram
$$
\xymatrix{
\mathcal{H}_d(\mathcal{X}'/\mathcal{Y}') \ar[r] \ar[d] &
\mathcal{H}_d(\mathcal{X}/\mathcal{Y}) \ar[d] \\
\mathcal{Y}' \ar[r] &
\mathcal{Y}
}
$$
is $2$-cartesian.
\end{lemma}

\begin{proof}
We get a $2$-commutative diagram by
Lemma \ref{lemma-map-hilbert}
and hence we get a $1$-morphism (i.e., a functor)
$$
\mathcal{H}_d(\mathcal{X}'/\mathcal{Y}')
\longrightarrow
\mathcal{Y}' \times_\mathcal{Y} \mathcal{H}_d(\mathcal{X}/\mathcal{Y})
$$
We indicate why this functor is essentially surjective. Namely, an object
of the category on the right hand side is given by a scheme $U$ over $S$,
an object $y'$ of $\mathcal{Y}'_U$, an object $(U, Z, y, x, \alpha)$
of $\mathcal{H}_d(\mathcal{X}/\mathcal{Y})$ over $U$ and an isomorphism
$H(y') \to y$ in $\mathcal{Y}_U$. The assumption means exactly that
there exists an object $x'$ of $\mathcal{X}'_Z$ such that there exist
isomorphisms $G(x') \cong x$ and $\alpha' : y'|_Z \to F'(x')$ compatible
with $\alpha$. Then we see that $(U, Z, y', x', \alpha')$ is an
object of $\mathcal{H}_d(\mathcal{X}'/\mathcal{Y}')$ over $U$.
Details omitted.
\end{proof}

\begin{lemma}
\label{lemma-etale-covering-hilbert}
In the situation of
Lemma \ref{lemma-map-hilbert}
assume
\begin{enumerate}
\item $\mathcal{Y}' = \mathcal{Y}$ and $H = \text{id}_\mathcal{Y}$,
\item $G$ is representable by algebraic spaces and \'etale.
\end{enumerate}
Then $\mathcal{H}_d(\mathcal{X}'/\mathcal{Y}) \to
\mathcal{H}_d(\mathcal{X}/\mathcal{Y})$ is representable by
algebraic spaces and \'etale.
If $G$ is also surjective, then
$\mathcal{H}_d(\mathcal{X}'/\mathcal{Y}) \to
\mathcal{H}_d(\mathcal{X}/\mathcal{Y})$ is surjective.
\end{lemma}

\begin{proof}
Let $U$ be a scheme and let $\xi = (U, Z, y, x, \alpha)$ be an object of
$\mathcal{H}_d(\mathcal{X}/\mathcal{Y})$ over $U$.
We have to prove that the $2$-fibre product
\begin{equation}
\label{equation-to-show}
(\Sch/U)_{fppf}
\times_{\xi, \mathcal{H}_d(\mathcal{X}/\mathcal{Y})}
\mathcal{H}_d(\mathcal{X}'/\mathcal{Y})
\end{equation}
is representable by an algebraic space \'etale over $U$.
An object of this over $U'$ corresponds to an object
$x'$ in the fibre category of $\mathcal{X}'$ over $Z_{U'}$
such that $G(x') \cong x|_{Z_{U'}}$.
By assumption the $2$-fibre product
$$
(\Sch/Z)_{fppf} \times_{x, \mathcal{X}} \mathcal{X}'
$$
is representable by an algebraic space $W$ such that the projection
$W \to Z$ is \'etale. Then (\ref{equation-to-show})
is representable by the algebraic space $F$ parametrizing sections of
$W \to Z$ over $U$ introduced in
Lemma \ref{lemma-space-of-sections}.
Since $F \to U$ is \'etale we conclude that
$\mathcal{H}_d(\mathcal{X}'/\mathcal{Y}) \to
\mathcal{H}_d(\mathcal{X}/\mathcal{Y})$ is representable by
algebraic spaces and \'etale.
Finally, if $\mathcal{X}' \to \mathcal{X}$ is surjective also,
then $W \to Z$ is surjective, and hence $F \to U$ is surjective by
Lemma \ref{lemma-surjection-space-of-sections}.
Thus in this case
$\mathcal{H}_d(\mathcal{X}'/\mathcal{Y}) \to
\mathcal{H}_d(\mathcal{X}/\mathcal{Y})$ is also surjective.
\end{proof}

\begin{lemma}
\label{lemma-etale-map-hilbert}
In the situation of
Lemma \ref{lemma-map-hilbert}.
Assume that $G$, $H$ are representable by algebraic spaces and \'etale.
Then $\mathcal{H}_d(\mathcal{X}'/\mathcal{Y}') \to
\mathcal{H}_d(\mathcal{X}/\mathcal{Y})$ is representable by
algebraic spaces and \'etale.
If also $H$ is surjective and the induced functor
$\mathcal{X}' \to \mathcal{Y}' \times_\mathcal{Y} \mathcal{X}$
is surjective, then
$\mathcal{H}_d(\mathcal{X}'/\mathcal{Y}') \to
\mathcal{H}_d(\mathcal{X}/\mathcal{Y})$ is surjective.
\end{lemma}

\begin{proof}
Set $\mathcal{X}'' = \mathcal{Y}' \times_\mathcal{Y} \mathcal{X}$. By
Lemma \ref{lemma-etale-permanence}
the $1$-morphism $\mathcal{X}' \to \mathcal{X}''$ is representable by
algebraic spaces and \'etale (in particular the condition in the second
statement of the lemma that $\mathcal{X}' \to \mathcal{X}''$ be surjective
makes sense). We obtain a $2$-commutative diagram
$$
\xymatrix{
\mathcal{X}' \ar[r] \ar[d] &
\mathcal{X}'' \ar[r] \ar[d] &
\mathcal{X} \ar[d] \\
\mathcal{Y}' \ar[r] &
\mathcal{Y}' \ar[r] &
\mathcal{Y}
}
$$
It follows from
Lemma \ref{lemma-cartesian-map-hilbert}
that $\mathcal{H}_d(\mathcal{X}''/\mathcal{Y}')$ is the base change
of $\mathcal{H}_d(\mathcal{X}/\mathcal{Y})$ by $\mathcal{Y}' \to \mathcal{Y}$.
In particular we see that
$\mathcal{H}_d(\mathcal{X}''/\mathcal{Y}') \to
\mathcal{H}_d(\mathcal{X}/\mathcal{Y})$ is
representable by algebraic spaces and \'etale, see
Algebraic Stacks, Lemma
\ref{algebraic-lemma-base-change-representable-transformations-property}.
Moreover, it is also surjective if $H$ is.
 Hence if we can show that
the result holds for the left square in the diagram, then we're done.
In this way we reduce to the case where $\mathcal{Y}' = \mathcal{Y}$
which is the content of
Lemma \ref{lemma-etale-covering-hilbert}.
\end{proof}

\begin{lemma}
\label{lemma-relative-hilbert}
Let $F : \mathcal{X} \to \mathcal{Y}$ be a $1$-morphism of stacks in groupoids
over $(\Sch/S)_{fppf}$. Assume that
$\Delta : \mathcal{Y} \to \mathcal{Y} \times \mathcal{Y}$
is representable by algebraic spaces. Then
$$
\mathcal{H}_d(\mathcal{X}/\mathcal{Y})
\longrightarrow
\mathcal{H}_d(\mathcal{X}) \times \mathcal{Y}
$$
see
Examples of Stacks, Equation
(\ref{examples-stacks-equation-diagram-hilbert-d-stack})
is representable by algebraic spaces.
\end{lemma}

\begin{proof}
Let $U$ be a scheme and let $\xi = (U, Z, p, x, 1)$ be an object of
$\mathcal{H}_d(\mathcal{X}) = \mathcal{H}_d(\mathcal{X}/S)$ over $U$.
Here $p$ is just the structure morphism of $U$.
The fifth component $1$ exists and is unique
since everything is over $S$.
Also, let $y$ be an object of $\mathcal{Y}$ over $U$.
We have to show the $2$-fibre product
\begin{equation}
\label{equation-res-isom}
(\Sch/U)_{fppf}
\times_{\xi \times y, \mathcal{H}_d(\mathcal{X}) \times \mathcal{Y}}
\mathcal{H}_d(\mathcal{X}/\mathcal{Y})
\end{equation}
is representable by an algebraic space. To explain why this is so
we introduce
$$
I = \mathit{Isom}_\mathcal{Y}(y|_Z, F(x))
$$
which is an algebraic space over $Z$ by assumption. Let $a : U' \to U$
be a scheme over $U$. What does it mean to give an object of the fibre
category of (\ref{equation-res-isom}) over $U'$? Well, it means that we
have an object $\xi' = (U', Z', y', x', \alpha')$ of
$\mathcal{H}_d(\mathcal{X}/\mathcal{Y})$ over $U'$ and isomorphisms
$(U', Z', p', x', 1) \cong (U, Z, p, x, 1)|_{U'}$ and
$y' \cong y|_{U'}$. Thus $\xi'$ is isomorphic to
$(U', U' \times_{a, U} Z, a^*y, x|_{U' \times_{a, U} Z}, \alpha)$
for some morphism
$$
\alpha :
a^*y|_{U' \times_{a, U} Z}
\longrightarrow
F(x|_{U' \times_{a, U} Z})
$$
in the fibre category of $\mathcal{Y}$ over $U' \times_{a, U} Z$. Hence
we can view $\alpha$ as a morphism $b : U' \times_{a, U} Z \to I$.
In this way we see that (\ref{equation-res-isom})
is representable by $\text{Res}_{Z/U}(I)$ which is an algebraic space by
Proposition \ref{proposition-restriction-of-scalars-algebraic-space}.
\end{proof}

\noindent
The following lemma is a (partial) generalization of
Lemma \ref{lemma-etale-covering-hilbert}.

\begin{lemma}
\label{lemma-representable-on-top}
Let $F : \mathcal{X} \to \mathcal{Y}$ and $G : \mathcal{X}' \to \mathcal{X}$
be $1$-morphisms of stacks in groupoids over $(\Sch/S)_{fppf}$.
If $G$ is representable by algebraic spaces, then the $1$-morphism
$$
\mathcal{H}_d(\mathcal{X}'/\mathcal{Y})
\longrightarrow
\mathcal{H}_d(\mathcal{X}/\mathcal{Y})
$$
is representable by algebraic spaces.
\end{lemma}

\begin{proof}
Let $U$ be a scheme and let $\xi = (U, Z, y, x, \alpha)$ be an object of
$\mathcal{H}_d(\mathcal{X}/\mathcal{Y})$ over $U$.
We have to prove that the $2$-fibre product
\begin{equation}
\label{equation-to-show-again}
(\Sch/U)_{fppf}
\times_{\xi, \mathcal{H}_d(\mathcal{X}/\mathcal{Y})}
\mathcal{H}_d(\mathcal{X}'/\mathcal{Y})
\end{equation}
is representable by an algebraic space \'etale over $U$.
An object of this over $a : U' \to U$ corresponds to an object
$x'$ of $\mathcal{X}'$ over $U' \times_{a, U} Z$ such that
$G(x') \cong x|_{U' \times_{a, U} Z}$. By assumption the $2$-fibre product
$$
(\Sch/Z)_{fppf} \times_{x, \mathcal{X}} \mathcal{X}'
$$
is representable by an algebraic space $X$ over $Z$. It follows that
(\ref{equation-to-show-again}) is representable by $\text{Res}_{Z/U}(X)$,
which is an algebraic space by
Proposition \ref{proposition-restriction-of-scalars-algebraic-space}.
\end{proof}

\begin{lemma}
\label{lemma-limit-preserving}
Let $F : \mathcal{X} \to \mathcal{Y}$ be a $1$-morphism of stacks in groupoids
over $(\Sch/S)_{fppf}$. Assume $F$ is representable by algebraic
spaces and locally of finite presentation. Then
$$
p : \mathcal{H}_d(\mathcal{X}/\mathcal{Y}) \to \mathcal{Y}
$$
is limit preserving on objects.
\end{lemma}

\begin{proof}
This means we have to show the following: Given
\begin{enumerate}
\item an affine scheme $U = \lim_i U_i$ which is written as the
directed limit of affine schemes $U_i$ over $S$,
\item an object $y_i$ of $\mathcal{Y}$ over $U_i$ for some $i$, and
\item an object $\Xi = (U, Z, y, x, \alpha)$ of
$\mathcal{H}_d(\mathcal{X}/\mathcal{Y})$
over $U$ such that $y = y_i|_U$,
\end{enumerate}
then there exists an $i' \geq i$ and an object
$\Xi_{i'} = (U_{i'}, Z_{i'}, y_{i'}, x_{i'}, \alpha_{i'})$ of
$\mathcal{H}_d(\mathcal{X}/\mathcal{Y})$ over $U_{i'}$ with
$\Xi_{i'}|_U = \Xi$ and $y_{i'} = y_i|_{U_{i'}}$.
Namely, the last two equalities will take care of the commutativity of
(\ref{equation-limit-preserving}).

\medskip\noindent
Let $X_{y_i} \to U_i$ be an algebraic space representing the $2$-fibre
product
$$
(\Sch/U_i)_{fppf} \times_{y_i, \mathcal{Y}, F} \mathcal{X}.
$$
Note that $X_{y_i} \to U_i$ is locally of finite presentation by our
assumption on $F$. Write $\Xi $. It is clear that
$\xi = (Z, Z \to U_i, x, \alpha)$ is an object of the $2$-fibre product
displayed above, hence $\xi$ gives rise to a morphism
$f_\xi : Z \to X_{y_i}$ of algebraic spaces over $U_i$
(since $X_{y_i}$ is the functor of isomorphisms classes of objects of
$(\Sch/U_i)_{fppf} \times_{y, \mathcal{Y}, F} \mathcal{X}$, see
Algebraic Stacks,
Lemma \ref{algebraic-lemma-characterize-representable-by-space}).
By
Limits, Lemmas \ref{limits-lemma-descend-finite-presentation} and
\ref{limits-lemma-descend-finite-locally-free}
there exists an $i' \geq i$ and a finite locally free morphism
$Z_{i'} \to U_{i'}$ of degree $d$ whose base change to $U$ is $Z$. By
Limits of Spaces, Proposition
\ref{spaces-limits-proposition-characterize-locally-finite-presentation}
we may, after replacing $i'$ by a bigger index, assume there exists a
morphism $f_{i'} : Z_{i'} \to X_{y_i}$ such that
$$
\xymatrix{
Z \ar[d] \ar[r] \ar@/^3ex/[rr]^{f_\xi} &
Z_{i'} \ar[d] \ar[r]_{f_{i'}} & X_{y_i} \ar[d] \\
U \ar[r] & U_{i'} \ar[r] & U_i
}
$$
is commutative. We set
$\Xi_{i'} = (U_{i'}, Z_{i'}, y_{i'}, x_{i'}, \alpha_{i'})$
where
\begin{enumerate}
\item $y_{i'}$ is the object of $\mathcal{Y}$ over $U_{i'}$
which is the pullback of $y_i$ to $U_{i'}$,
\item $x_{i'}$ is the object of $\mathcal{X}$ over $Z_{i'}$ corresponding
via the $2$-Yoneda lemma to the $1$-morphism
$$
(\Sch/Z_{i'})_{fppf} \to
\mathcal{S}_{X_{y_i}} \to
(\Sch/U_i)_{fppf} \times_{y_i, \mathcal{Y}, F} \mathcal{X} \to
\mathcal{X}
$$
where the middle arrow is the equivalence which defines $X_{y_i}$
(notation as in
Algebraic Stacks, Sections
\ref{algebraic-section-representable-by-algebraic-spaces} and
\ref{algebraic-section-split}).
\item $\alpha_{i'} : y_{i'}|_{Z_{i'}} \to F(x_{i'})$ is the isomorphism
coming from the $2$-commutativity of the diagram
$$
\xymatrix{
(\Sch/Z_{i'})_{fppf} \ar[r] \ar[rd] &
(\Sch/U_i)_{fppf} \times_{y_i, \mathcal{Y}, F} \mathcal{X}
\ar[r] \ar[d] &
\mathcal{X} \ar[d]^F \\
& (\Sch/U_{i'})_{fppf} \ar[r] & \mathcal{Y}
}
$$
\end{enumerate}
Recall that $f_\xi : Z \to X_{y_i}$ was the morphism corresponding to
the object $\xi = (Z, Z \to U_i, x, \alpha)$ of
$(\Sch/U_i)_{fppf} \times_{y_i, \mathcal{Y}, F} \mathcal{X}$
over $Z$. By construction $f_{i'}$ is the morphism corresponding to
the object $\xi_{i'} = (Z_{i'}, Z_{i'} \to U_i, x_{i'}, \alpha_{i'})$.
As $f_\xi = f_{i'} \circ (Z \to Z_{i'})$ we see that
the object $\xi_{i'} = (Z_{i'}, Z_{i'} \to U_i, x_{i'}, \alpha_{i'})$ pulls
back to $\xi$ over $Z$. Thus $x_{i'}$ pulls back to $x$ and $\alpha_{i'}$
pulls back to $\alpha$. This means that $\Xi_{i'}$ pulls back
to $\Xi$ over $U$ and we win.
\end{proof}










\section{The finite Hilbert stack of a point}
\label{section-hilbert-point}

\noindent
Let $d \geq 1$ be an integer. In
Examples of Stacks, Definition \ref{examples-stacks-definition-hilbert-d-stack}
we defined a stack in groupoids $\mathcal{H}_d$.
In this section we prove that $\mathcal{H}_d$ is an
algebraic stack. We will throughout assume that
$S = \Spec(\mathbf{Z})$.
The general case will follow from this by base change.
Recall that the fibre category of $\mathcal{H}_d$ over a scheme $T$
is the category of finite locally free morphisms $\pi : Z \to T$ of
degree $d$. Instead of classifying these directly we first
study the quasi-coherent sheaves of algebras $\pi_*\mathcal{O}_Z$.

\medskip\noindent
Let $R$ be a ring. Let us temporarily make the following definition:
A {\it free $d$-dimensional algebra over $R$}
is given by a commutative $R$-algebra structure $m$ on $R^{\oplus d}$
such that $e_1 = (1, 0, \ldots, 0)$ is a unit\footnote{It may be better
to think of this as a pair consisting of a multiplication map
$m : R^{\oplus d} \otimes_R R^{\oplus d} \to R^{\oplus d}$ and
a ring map $\psi : R \to R^{\oplus d}$ satisfying a bunch of axioms.}.
We think of $m$ as an $R$-linear map
$$
m : R^{\oplus d} \otimes_R R^{\oplus d} \longrightarrow R^{\oplus d}
$$
such that $m(e_1, x) = m(x, e_1) = x$ and such that $m$ defines a
commutative and associative ring structure. If we write
$m(e_i, e_j) = \sum a_{ij}^ke_k$ then we see this boils down
to the conditions
$$
\left\{
\begin{matrix}
\sum_l a_{ij}^la_{lk}^m = \sum_l a_{il}^ma_{jk}^l & \forall i, j, k, m \\
a_{ij}^k = a_{ji}^k & \forall i, j, k \\
a_{i1}^j = \delta_{ij} & \forall i, j
\end{matrix}
\right.
$$
where $\delta_{ij}$ is the Kronecker $\delta$-function. OK, so let's define
$$
R_{univ} = \mathbf{Z}[a_{ij}^k]/J
$$
where the ideal $J$ is the ideal generated by the relations displayed above.
Denote
$$
m_{univ} :
R_{univ}^{\oplus d} \otimes_{R_{univ}} R_{univ}^{\oplus d}
\longrightarrow
R_{univ}^{\oplus d}
$$
the free $d$-dimensional algebra $m$ over $R_{univ}$ whose structure
constants are the classes of $a_{ij}^k$ modulo $J$.
Then it is clear that given any free $d$-dimensional algebra $m$ over a ring
$R$ there exists a unique $\mathbf{Z}$-algebra homomorphism
$\psi : R_{univ} \to R$ such that $\psi_*m_{univ} = m$ (this means that
$m$ is what you get by applying the base change functor
$- \otimes_{R_{univ}} R$ to $m_{univ}$). In other words, setting
$X = \Spec(R_{univ})$ we obtain a canonical identification
$$
X(T) = \{\text{free }d\text{-dimensional algebras }m\text{ over }R\}
$$
for varying $T = \Spec(R)$. By Zariski localization we obtain
the following seemingly more general identification
\begin{equation}
\label{equation-objects}
X(T) = \{\text{free }d\text{-dimensional algebras }
m\text{ over }\Gamma(T, \mathcal{O}_T)\}
\end{equation}
for any scheme $T$.

\medskip\noindent
Next we talk a little bit about {\it isomorphisms of free $d$-dimensional
$R$-algebras}. Namely, suppose that $m$, $m'$ are two free $d$-dimensional
algebras over a ring $R$. An {\it isomorphism from $m$ to $m'$} is given by
an invertible $R$-linear map
$$
\varphi : R^{\oplus d} \longrightarrow R^{\oplus d}
$$
such that $\varphi(e_1) = e_1$ and such that
$$
m \circ \varphi \otimes \varphi = \varphi \circ m'.
$$
Note that we can compose these so that the collection of
free $d$-dimensional algebras over $R$ becomes a category.
In this way we obtain a functor
\begin{equation}
\label{equation-FAd}
FA_d : \Sch_{fppf}^{opp} \longrightarrow \textit{Groupoids}
\end{equation}
from the category of schemes to groupoids: to a scheme $T$ we associate the
set of free $d$-dimensional algebras over $\Gamma(T, \mathcal{O}_T)$
endowed with the structure
of a category using the notion of isomorphisms just defined.

\medskip\noindent
The above suggests we consider the functor $G$ in groups
which associates to any scheme $T$ the group
$$
G(T) = \{g \in \text{GL}_d(\Gamma(T, \mathcal{O}_T)) \mid g(e_1) = e_1\}
$$
It is clear that $G \subset \text{GL}_d$ (see
Groupoids, Example \ref{groupoids-example-general-linear-group})
is the closed subgroup scheme cut out by the equations
$x_{11} = 1$ and $x_{i1} = 0$ for $i > 1$. Hence $G$ is a smooth
affine group scheme over $\Spec(\mathbf{Z})$. Consider the
action
$$
a : G \times_{\Spec(\mathbf{Z})} X \longrightarrow X
$$
which associates to a $T$-valued point $(g, m)$ with $T = \Spec(R)$
on the left hand side the free $d$-dimensional algebra over $R$
given by
$$
a(g, m) = g^{-1} \circ m \circ g \otimes g.
$$
Note that this means that $g$ defines an isomorphism $m \to a(g, m)$
of $d$-dimensional free $R$-algebras. We omit the verification that
$a$ indeed defines an action of the group scheme $G$ on the scheme $X$.

\begin{lemma}
\label{lemma-represent-FAd}
The functor in groupoids $FA_d$ defined in (\ref{equation-FAd})
is isomorphic (!) to the functor in groupoids which associates
to a scheme $T$ the category with
\begin{enumerate}
\item set of objects is $X(T)$,
\item set of morphisms is $G(T) \times X(T)$,
\item $s : G(T) \times X(T) \to X(T)$ is the projection map,
\item $t : G(T) \times X(T) \to X(T)$ is $a(T)$, and
\item composition $G(T) \times X(T) \times_{s, X(T), t} G(T) \times X(T)
\to G(T) \times X(T)$ is given by $((g, m), (g', m')) \mapsto (gg', m')$.
\end{enumerate}
\end{lemma}

\begin{proof}
We have seen the rule on objects in (\ref{equation-objects}).
We have also seen above that $g \in G(T)$ can be viewed as
a morphism from $m$ to $a(g, m)$ for any free $d$-dimensional algebra $m$.
Conversely, any morphism $m \to m'$ is given by an invertible linear
map $\varphi$ which corresponds to an element $g \in G(T)$ such
that $m' = a(g, m)$.
\end{proof}

\noindent
In fact the groupoid $(X, G \times X, s, t, c)$ described in the
lemma above is the groupoid associated to the action $a : G \times X \to X$
as defined in
Groupoids, Lemma \ref{groupoids-lemma-groupoid-from-action}.
Since $G$ is smooth over $\Spec(\mathbf{Z})$
we see that the two morphisms $s, t : G \times X \to X$ are
smooth: by symmetry it suffices to prove that one of them is, and
$s$ is the base change of $G \to \Spec(\mathbf{Z})$.
Hence $(G \times X, X, s, t, c)$ is a smooth groupoid scheme,
and the quotient stack $[X/G]$ is an algebraic stack by
Algebraic Stacks,
Theorem \ref{algebraic-theorem-smooth-groupoid-gives-algebraic-stack}.

\begin{proposition}
\label{proposition-finite-hilbert-point}
The stack $\mathcal{H}_d$ is equivalent to the quotient stack
$[X/G]$ described above. In particular $\mathcal{H}_d$ is an
algebraic stack.
\end{proposition}

\begin{proof}
Note that by
Groupoids in Spaces, Definition
\ref{spaces-groupoids-definition-quotient-stack}
the quotient stack $[X/G]$ is the stackification of the
category fibred in groupoids associated to the ``presheaf in groupoids''
which associates to a scheme $T$ the groupoid
$$
(X(T), G(T) \times X(T), s, t, c).
$$
Since this ``presheaf in groupoids'' is isomorphic to $FA_d$ by
Lemma \ref{lemma-represent-FAd}
it suffices to prove that the $\mathcal{H}_d$ is the stackification
of (the category fibred in groupoids associated to the
``presheaf in groupoids'') $FA_d$. To do this we first define a
functor
$$
\Spec : FA_d \longrightarrow \mathcal{H}_d
$$
Recall that the fibre category of $\mathcal{H}_d$ over a scheme $T$
is the category of finite locally free morphisms $Z \to T$ of degree $d$.
Thus given a scheme $T$ and a free $d$-dimensional
$\Gamma(T, \mathcal{O}_T)$-algebra $m$ we may assign to this the object
$$
Z = \underline{\Spec}_T(\mathcal{A})
$$
of $\mathcal{H}_{d, T}$
where $\mathcal{A} = \mathcal{O}_T^{\oplus d}$ endowed with a
$\mathcal{O}_T$-algebra structure via $m$. Moreover, if $m'$ is
a second such free $d$-dimensional $\Gamma(T, \mathcal{O}_T)$-algebra
and if $\varphi : m \to m'$ is an isomorphism of these, then
the induced $\mathcal{O}_T$-linear map
$\varphi : \mathcal{O}_T^{\oplus d} \to \mathcal{O}_T^{\oplus d}$
induces an isomorphism
$$
\varphi : \mathcal{A}' \longrightarrow \mathcal{A}
$$
of quasi-coherent $\mathcal{O}_T$-algebras. Hence
$$
\underline{\Spec}_T(\varphi) :
\underline{\Spec}_T(\mathcal{A})
\longrightarrow
\underline{\Spec}_T(\mathcal{A}')
$$
is a morphism in the fibre category $\mathcal{H}_{d, T}$. We omit the
verification that this construction is compatible with base change so
we get indeed a functor $\Spec : FA_d \to \mathcal{H}_d$
as claimed above.

\medskip\noindent
To show that $\Spec : FA_d \to \mathcal{H}_d$ induces an equivalence
between the stackification of $FA_d$ and $\mathcal{H}_d$ it suffices to
check that
\begin{enumerate}
\item $\mathit{Isom}(m, m') = \mathit{Isom}(\Spec(m), \Spec(m'))$
for any $m, m' \in FA_d(T)$.
\item for any scheme $T$ and any object $Z \to T$ of $\mathcal{H}_{d, T}$
there exists a covering $\{T_i \to T\}$ such that $Z|_{T_i}$ is
isomorphic to $\Spec(m)$ for some $m \in FA_d(T_i)$, and
\end{enumerate}
see
Stacks, Lemma \ref{stacks-lemma-stackify-groupoids}.
The first statement follows from the observation that any isomorphism
$$
\underline{\Spec}_T(\mathcal{A})
\longrightarrow
\underline{\Spec}_T(\mathcal{A}')
$$
is necessarily given by a global invertible matrix $g$ when
$\mathcal{A} = \mathcal{A}' = \mathcal{O}_T^{\oplus d}$ as modules.
To prove the second statement let $\pi : Z \to T$ be a finite
locally free morphism of degree $d$. Then $\mathcal{A}$ is a locally
free sheaf $\mathcal{O}_T$-modules of rank $d$.
Consider the element $1 \in \Gamma(T, \mathcal{A})$. This element is
nonzero in $\mathcal{A} \otimes_{\mathcal{O}_{T, t}} \kappa(t)$
for every $t \in T$ since the scheme
$Z_t = \Spec(\mathcal{A} \otimes_{\mathcal{O}_{T, t}} \kappa(t))$
is nonempty being of degree $d > 0$ over $\kappa(t)$. Thus
$1 : \mathcal{O}_T \to \mathcal{A}$ can locally be used as the first
basis element (for example you can use
Algebra, Lemma \ref{algebra-lemma-cokernel-flat} parts (1) and (2)
to see this). Thus, after localizing on
$T$ we may assume that there exists an isomorphism
$\varphi : \mathcal{A} \to \mathcal{O}_T^{\oplus d}$
such that $1 \in \Gamma(\mathcal{A})$ corresponds to the first basis element.
In this situation the multiplication map
$\mathcal{A} \otimes_{\mathcal{O}_T} \mathcal{A} \to \mathcal{A}$
translates via $\varphi$ into a free $d$-dimensional algebra $m$ over
$\Gamma(T, \mathcal{O}_T)$. This finishes the proof.
\end{proof}




\section{Finite Hilbert stacks of spaces}
\label{section-spaces-hilbert}

\noindent
The finite Hilbert stack of an algebraic space is an algebraic stack.

\begin{lemma}
\label{lemma-hilbert-stack-of-space}
Let $S$ be a scheme.
Let $X$ be an algebraic space over $S$.
Then $\mathcal{H}_d(X)$ is an algebraic stack.
\end{lemma}

\begin{proof}
The $1$-morphism
$$
\mathcal{H}_d(X) \longrightarrow \mathcal{H}_d
$$
is representable by algebraic spaces according to
Lemma \ref{lemma-representable-on-top}.
The stack $\mathcal{H}_d$ is an algebraic stack according to
Proposition \ref{proposition-finite-hilbert-point}.
Hence $\mathcal{H}_d(X)$ is an algebraic stack by
Algebraic Stacks,
Lemma \ref{algebraic-lemma-representable-morphism-to-algebraic}.
\end{proof}

\noindent
This lemma allows us to bootstrap.

\begin{lemma}
\label{lemma-hilbert-stack-relative-space}
Let $S$ be a scheme. Let $F : \mathcal{X} \to \mathcal{Y}$ be a $1$-morphism
of stacks in groupoids over $(\Sch/S)_{fppf}$ such that
\begin{enumerate}
\item $\mathcal{X}$ is representable by an algebraic space, and
\item $F$ is representable by algebraic spaces, surjective, flat, and
locally of finite presentation.
\end{enumerate}
Then $\mathcal{H}_d(\mathcal{X}/\mathcal{Y})$ is an algebraic stack.
\end{lemma}

\begin{proof}
Choose a representable stack in groupoids $\mathcal{U}$ over $S$ and a
$1$-morphism $f : \mathcal{U} \to \mathcal{H}_d(\mathcal{X})$
which is representable by algebraic spaces, smooth, and surjective.
This is possible because $\mathcal{H}_d(\mathcal{X})$ is an algebraic stack by
Lemma \ref{lemma-hilbert-stack-of-space}.
Consider the $2$-fibre product
$$
\mathcal{W} =
\mathcal{H}_d(\mathcal{X}/\mathcal{Y})
\times_{\mathcal{H}_d(\mathcal{X}), f}
\mathcal{U}.
$$
Since $\mathcal{U}$ is representable (in particular a stack in setoids)
it follows from
Examples of Stacks, Lemma \ref{examples-stacks-lemma-faithful-hilbert}
and
Stacks, Lemma \ref{stacks-lemma-2-fibre-product-gives-stack-in-setoids}
that $\mathcal{W}$ is a stack in setoids. The $1$-morphism
$\mathcal{W} \to \mathcal{H}_d(\mathcal{X}/\mathcal{Y})$ is
representable by algebraic spaces, smooth, and surjective as a base
change of the morphism $f$ (see
Algebraic Stacks,
Lemmas \ref{algebraic-lemma-base-change-representable-by-spaces} and
\ref{algebraic-lemma-base-change-representable-transformations-property}).
Thus, if we can show that $\mathcal{W}$ is representable by an algebraic space,
then the lemma follows from
Algebraic Stacks,
Lemma \ref{algebraic-lemma-smooth-surjective-morphism-implies-algebraic}.

\medskip\noindent
The diagonal of $\mathcal{Y}$ is representable by algebraic spaces according to
Lemma \ref{lemma-flat-finite-presentation-surjective-diagonal}.
We may apply
Lemma \ref{lemma-relative-hilbert}
to see that the $1$-morphism
$$
\mathcal{H}_d(\mathcal{X}/\mathcal{Y})
\longrightarrow
\mathcal{H}_d(\mathcal{X}) \times \mathcal{Y}
$$
is representable by algebraic spaces. Consider the $2$-fibre product
$$
\mathcal{V} =
\mathcal{H}_d(\mathcal{X}/\mathcal{Y})
\times_{(\mathcal{H}_d(\mathcal{X}) \times \mathcal{Y}), f \times F}
(\mathcal{U} \times \mathcal{X}).
$$
The projection morphism $\mathcal{V} \to \mathcal{U} \times \mathcal{X}$
is representable by algebraic spaces as a base change of the last
displayed morphism. Hence $\mathcal{V}$ is an algebraic space (see
Bootstrap, Lemma \ref{bootstrap-lemma-representable-by-spaces-over-space}
or
Algebraic Stacks,
Lemma \ref{algebraic-lemma-base-change-by-space-representable-by-space}).
The $1$-morphism $\mathcal{V} \to \mathcal{U}$ fits into the following
$2$-cartesian diagram
$$
\xymatrix{
\mathcal{V} \ar[d] \ar[r] & \mathcal{X} \ar[d]^F \\
\mathcal{W} \ar[r] & \mathcal{Y}
}
$$
because
$$
\mathcal{H}_d(\mathcal{X}/\mathcal{Y})
\times_{(\mathcal{H}_d(\mathcal{X}) \times \mathcal{Y}), f \times F}
(\mathcal{U} \times \mathcal{X})
=
(\mathcal{H}_d(\mathcal{X}/\mathcal{Y})
\times_{\mathcal{H}_d(\mathcal{X}), f}
\mathcal{U}) \times_{\mathcal{Y}, F} \mathcal{X}.
$$
Hence $\mathcal{V} \to \mathcal{W}$ is representable by algebraic spaces,
surjective, flat, and locally of finite presentation as a base change
of $F$. It follows that the same thing is true for the corresponding
sheaves of sets associated to $\mathcal{V}$ and $\mathcal{W}$, see
Algebraic Stacks, Lemma \ref{algebraic-lemma-map-fibred-setoids-property}.
Thus we conclude that the sheaf associated to $\mathcal{W}$ is an
algebraic space by
Bootstrap, Theorem \ref{bootstrap-theorem-final-bootstrap}.
\end{proof}




\section{LCI locus in the Hilbert stack}
\label{section-lci}

\noindent
Please consult
Examples of Stacks, Section \ref{examples-stacks-section-hilbert-d-stack}
for notation. Fix a $1$-morphism $F : \mathcal{X} \longrightarrow \mathcal{Y}$
of stacks in groupoids over $(\Sch/S)_{fppf}$. Assume that
$F$ is representable by algebraic spaces. Fix $d \geq 1$. Consider an
object $(U, Z, y, x, \alpha)$ of $\mathcal{H}_d$. There is an
induced $1$-morphism
$$
(\Sch/Z)_{fppf}
\longrightarrow
(\Sch/U)_{fppf} \times_{y, \mathcal{Y}, F} \mathcal{X}
$$
(by the universal property of $2$-fibre products) which is representable by
a morphism of algebraic spaces over $U$.
Namely, since $F$ is representable by algebraic spaces, we may choose
an algebraic space $X_y$ over $U$ which represents the $2$-fibre product
$(\Sch/U)_{fppf} \times_{y, \mathcal{Y}, F} \mathcal{X}$.
Since $\alpha : y|_Z \to F(x)$ is an isomorphism we see that
$\xi = (Z, Z \to U, x, \alpha)$ is an object of the $2$-fibre product
$(\Sch/U)_{fppf} \times_{y, \mathcal{Y}, F} \mathcal{X}$ over $Z$.
Hence $\xi$ gives rise to a morphism $x_\alpha : Z \to X_y$ of algebraic spaces
over $U$ as $X_y$ is the functor of isomorphisms classes of objects of
$(\Sch/U)_{fppf} \times_{y, \mathcal{Y}, F} \mathcal{X}$, see
Algebraic Stacks,
Lemma \ref{algebraic-lemma-characterize-representable-by-space}.
Here is a picture
\begin{equation}
\label{equation-relative-map}
\vcenter{
\xymatrix{
Z \ar[r]_{x_\alpha} \ar[rd] & X_y \ar[d] \\
& U
}
}
\quad\quad
\vcenter{
\xymatrix{
(\Sch/Z)_{fppf} \ar[rd] \ar[r]_-{x, \alpha} &
(\Sch/U)_{fppf} \times_{y, \mathcal{Y}, F} \mathcal{X} \ar[r] \ar[d] &
\mathcal{X} \ar[d]^F \\
& (\Sch/U)_{fppf} \ar[r]^y & \mathcal{Y}
}
}
\end{equation}
We remark that if
$(f, g, b, a) : (U, Z, y, x, \alpha) \to (U', Z', y', x', \alpha')$
is a morphism between objects of $\mathcal{H}_d$, then the morphism
$x'_{\alpha'} : Z' \to X'_{y'}$ is the base change of the morphism
$x_\alpha$ by the morphism $g : U' \to U$ (details omitted).

\medskip\noindent
Now assume moreover that $F$ is flat and locally of finite presentation.
In this situation we define a full subcategory
$$
\mathcal{H}_{d, lci}(\mathcal{X}/\mathcal{Y}) \subset
\mathcal{H}_d(\mathcal{X}/\mathcal{Y})
$$
consisting of those objects $(U, Z, y, x, \alpha)$ of
$\mathcal{H}_d(\mathcal{X}/\mathcal{Y})$ such
that the corresponding morphism $x_\alpha : Z \to X_y$ is unramified
and a local complete intersection morphism (see
Morphisms of Spaces, Definition \ref{spaces-morphisms-definition-unramified}
and
More on Morphisms of Spaces,
Definition \ref{spaces-more-morphisms-definition-lci}
for definitions).

\begin{lemma}
\label{lemma-lci-locus-stack-in-groupoids}
Let $S$ be a scheme. Fix a $1$-morphism
$F : \mathcal{X} \longrightarrow \mathcal{Y}$
of stacks in groupoids over $(\Sch/S)_{fppf}$.
Assume $F$ is representable by algebraic spaces, flat, and locally
of finite presentation. Then $\mathcal{H}_{d, lci}(\mathcal{X}/\mathcal{Y})$
is a stack in groupoids and the inclusion functor
$$
\mathcal{H}_{d, lci}(\mathcal{X}/\mathcal{Y})
\longrightarrow
\mathcal{H}_d(\mathcal{X}/\mathcal{Y})
$$
is representable and an open immersion.
\end{lemma}

\begin{proof}
Let $\Xi = (U, Z, y, x, \alpha)$ be an object of $\mathcal{H}_d$. It follows
from the remark following
(\ref{equation-relative-map})
that the pullback of $\Xi$ by $U' \to U$ belongs to
$\mathcal{H}_{d, lci}(\mathcal{X}/\mathcal{Y})$ if and only if the base
change of $x_\alpha$ is unramified and a local complete intersection morphism.
Note that $Z \to U$ is finite locally free (hence flat, locally of
finite presentation and universally closed) and that $X_y \to U$ is
flat and locally of finite presentation by our assumption on $F$. Then
More on Morphisms of Spaces, Lemmas
\ref{spaces-more-morphisms-lemma-where-unramified} and
\ref{spaces-more-morphisms-lemma-where-lci}
imply exists an open subscheme $W \subset U$ such that a morphism
$U' \to U$ factors through $W$ if and only if the base change of
$x_\alpha$ via $U' \to U$ is unramified and a local complete intersection
morphism. This implies that
$$
(\Sch/U)_{fppf}
\times_{\Xi, \mathcal{H}_d(\mathcal{X}/\mathcal{Y})}
\mathcal{H}_{d, lci}(\mathcal{X}/\mathcal{Y})
$$
is representable by $W$. Hence the final statement of the lemma
holds. The first statement (that
$\mathcal{H}_{d, lci}(\mathcal{X}/\mathcal{Y})$ is a stack in groupoids)
follows from this and
Algebraic Stacks,
Lemma \ref{algebraic-lemma-open-fibred-category-is-algebraic}.
\end{proof}

\noindent
Local complete intersection morphisms are ``locally unobstructed''.
This holds in much greater generality than the special case
that we need in this chapter here.

\begin{lemma}
\label{lemma-lci-unobstructed}
Let $U \subset U'$ be a first order thickening of affine schemes.
Let $X'$ be an algebraic space flat over $U'$. Set $X = U \times_{U'} X'$.
Let $Z \to U$ be finite locally free of degree $d$. Finally, let
$f : Z \to X$ be unramified and a local complete intersection morphism.
Then there exists a commutative diagram
$$
\xymatrix{
(Z \subset Z') \ar[rd] \ar[rr]_{(f, f')} & & (X \subset X') \ar[ld] \\
& (U \subset U')
}
$$
of algebraic spaces over $U'$ such that $Z' \to U'$ is finite locally free
of degree $d$ and $Z = U \times_{U'} Z'$.
\end{lemma}

\begin{proof}
By
More on Morphisms of Spaces,
Lemma \ref{spaces-more-morphisms-lemma-unramified-lci}
the conormal sheaf $\mathcal{C}_{Z/X}$ of the unramified morphism $Z \to X$
is a finite locally free $\mathcal{O}_Z$-module and by
More on Morphisms of Spaces,
Lemma \ref{spaces-more-morphisms-lemma-transitivity-conormal-lci}
we have an exact sequence
$$
0 \to i^*\mathcal{C}_{X/X'} \to
\mathcal{C}_{Z/X'} \to
\mathcal{C}_{Z/X} \to 0
$$
of conormal sheaves. Since $Z$ is affine this sequence is split. Choose
a splitting
$$
\mathcal{C}_{Z/X'} = i^*\mathcal{C}_{X/X'} \oplus \mathcal{C}_{Z/X}
$$
Let $Z \subset Z''$ be the universal first order thickening of $Z$
over $X'$ (see
More on Morphisms of Spaces,
Section \ref{spaces-more-morphisms-section-universal-thickening}).
Denote $\mathcal{I} \subset \mathcal{O}_{Z''}$ the quasi-coherent sheaf
of ideals corresponding to $Z \subset Z''$. By definition we have
$\mathcal{C}_{Z/X'}$ is $\mathcal{I}$ viewed as a sheaf on $Z$.
Hence the splitting above determines a splitting
$$
\mathcal{I} = i^*\mathcal{C}_{X/X'} \oplus \mathcal{C}_{Z/X}
$$
Let $Z' \subset Z''$ be the closed subscheme cut out by
$\mathcal{C}_{Z/X} \subset \mathcal{I}$ viewed as a quasi-coherent sheaf
of ideals on $Z''$. It is clear that $Z'$ is a first order thickening
of $Z$ and that we obtain a commutative diagram of first order thickenings
as in the statement of the lemma.

\medskip\noindent
Since $X' \to U'$ is flat and since $X = U \times_{U'} X'$ we see that
$\mathcal{C}_{X/X'}$ is the pullback of $\mathcal{C}_{U/U'}$ to $X$, see
More on Morphisms of Spaces, Lemma \ref{spaces-more-morphisms-lemma-deform}.
Note that by construction $\mathcal{C}_{Z/Z'} = i^*\mathcal{C}_{X/X'}$
hence we conclude that $\mathcal{C}_{Z/Z'}$ is isomorphic to the pullback
of $\mathcal{C}_{U/U'}$ to $Z$. Applying
More on Morphisms of Spaces, Lemma \ref{spaces-more-morphisms-lemma-deform}
once again (or its analogue for schemes, see
More on Morphisms, Lemma \ref{more-morphisms-lemma-deform})
we conclude that $Z' \to U'$ is flat and that $Z = U \times_{U'} Z'$.
Finally,
More on Morphisms, Lemma \ref{more-morphisms-lemma-deform-property}
shows that $Z' \to U'$ is finite locally free of degree $d$.
\end{proof}

\begin{lemma}
\label{lemma-lci-formally-smooth}
Let $F : \mathcal{X} \to \mathcal{Y}$ be a $1$-morphism of stacks in groupoids
over $(\Sch/S)_{fppf}$. Assume $F$ is representable by algebraic
spaces, flat, and locally of finite presentation. Then
$$
p : \mathcal{H}_{d, lci}(\mathcal{X}/\mathcal{Y}) \to \mathcal{Y}
$$
is formally smooth on objects.
\end{lemma}

\begin{proof}
We have to show the following: Given
\begin{enumerate}
\item an object $(U, Z, y, x, \alpha)$ of
$\mathcal{H}_{d, lci}(\mathcal{X}/\mathcal{Y})$ over an affine scheme $U$,
\item a first order thickening $U \subset U'$, and
\item an object $y'$ of $\mathcal{Y}$ over $U'$ such that $y'|_U = y$,
\end{enumerate}
then there exists an object $(U', Z', y', x', \alpha')$ of
$\mathcal{H}_{d, lci}(\mathcal{X}/\mathcal{Y})$ over $U'$ with
$Z = U \times_{U'} Z'$, with $x = x'|_Z$, and with
$\alpha = \alpha'|_U$. Namely, the last two equalities will take care
of the commutativity of (\ref{equation-formally-smooth}).

\medskip\noindent
Consider the morphism $x_\alpha : Z \to X_y$ constructed in
Equation (\ref{equation-relative-map}). Denote similarly $X'_{y'}$
the algebraic space over $U'$ representing the $2$-fibre product
$(\Sch/U')_{fppf} \times_{y', \mathcal{Y}, F} \mathcal{X}$.
By assumption the morphism $X'_{y'} \to U'$ is flat (and locally of finite
presentation). As $y'|_U = y$ we see that $X_y = U \times_{U'} X'_{y'}$.
Hence we may apply
Lemma \ref{lemma-lci-unobstructed}
to find $Z' \to U'$ finite locally free of degree $d$ with
$Z = U \times_{U'} Z'$ and with $Z' \to X'_{y'}$ extending $x_\alpha$.
By construction the morphism $Z' \to X'_{y'}$ corresponds to a pair
$(x', \alpha')$. It is clear that $(U', Z', y', x', \alpha')$
is an object of $\mathcal{H}_d(\mathcal{X}/\mathcal{Y})$ over $U'$
with $Z = U \times_{U'} Z'$, with $x = x'|_Z$, and with
$\alpha = \alpha'|_U$. As we've seen in
Lemma \ref{lemma-lci-locus-stack-in-groupoids}
that $\mathcal{H}_{d, lci}(\mathcal{X}/\mathcal{Y}) \subset
\mathcal{H}_d(\mathcal{X}/\mathcal{Y})$ is an ``open substack''
it follows that $(U', Z', y', x', \alpha')$ is an object of
$\mathcal{H}_{d, lci}(\mathcal{X}/\mathcal{Y})$ as desired.
\end{proof}

\begin{lemma}
\label{lemma-lci-surjective}
Let $F : \mathcal{X} \to \mathcal{Y}$ be a $1$-morphism of stacks in groupoids
over $(\Sch/S)_{fppf}$. Assume $F$ is representable by algebraic
spaces, flat, surjective, and locally of finite presentation. Then
$$
\coprod\nolimits_{d \geq 1} \mathcal{H}_{d, lci}(\mathcal{X}/\mathcal{Y})
\longrightarrow
\mathcal{Y}
$$
is surjective on objects.
\end{lemma}

\begin{proof}
It suffices to prove the following: For any field $k$
and object $y$ of $\mathcal{Y}$ over $\Spec(k)$ there exists
an integer $d \geq 1$ and an object $(U, Z, y, x, \alpha)$ of
$\mathcal{H}_{d, lci}(\mathcal{X}/\mathcal{Y})$ with $U = \Spec(k)$.
Namely, in this case we see that $p$ is surjective on objects in the
strong sense that an extension of the field is not needed.

\medskip\noindent
Denote $X_y$ the algebraic space over $U = \Spec(k)$
representing the $2$-fibre product
$(\Sch/U')_{fppf} \times_{y', \mathcal{Y}, F} \mathcal{X}$.
By assumption the morphism $X_y \to \Spec(k)$ is surjective and
locally of finite presentation (and flat). In particular $X_y$ is
nonempty. Choose a nonempty affine scheme $V$ and an \'etale morphism
$V \to X_y$. Note that $V \to \Spec(k)$ is (flat), surjective,
and locally of finite presentation (by
Morphisms of Spaces,
Definition \ref{spaces-morphisms-definition-locally-finite-presentation}).
Pick a closed point $v \in V$ where $V \to \Spec(k)$ is Cohen-Macaulay
(i.e., $V$ is Cohen-Macaulay at $v$), see
More on Morphisms,
Lemma \ref{more-morphisms-lemma-flat-finite-presentation-CM-open}.
Applying
More on Morphisms,
Lemma \ref{more-morphisms-lemma-slice-CM}
we find a regular immersion $Z \to V$ with $Z = \{v\}$.
This implies $Z \to V$ is a closed immersion. Moreover, it follows that
$Z \to \Spec(k)$ is finite (for example by
Algebra, Lemma \ref{algebra-lemma-isolated-point}).
Hence $Z \to \Spec(k)$ is finite locally free of some degree $d$.
Now $Z \to X_y$ is unramified as the composition
of a closed immersion followed by an \'etale morphism
(see
Morphisms of Spaces, Lemmas \ref{spaces-morphisms-lemma-composition-unramified},
\ref{spaces-morphisms-lemma-etale-unramified}, and
\ref{spaces-morphisms-lemma-immersion-unramified}).
Finally, $Z \to X_y$ is a local complete intersection morphism
as a composition of a regular immersion of schemes and an \'etale
morphism of algebraic spaces (see
More on Morphisms, Lemma \ref{more-morphisms-lemma-regular-immersion-lci}
and
Morphisms of Spaces, Lemmas \ref{spaces-morphisms-lemma-etale-smooth} and
\ref{spaces-morphisms-lemma-smooth-syntomic} and
More on Morphisms of Spaces,
Lemmas \ref{spaces-more-morphisms-lemma-flat-lci} and
\ref{spaces-more-morphisms-lemma-composition-lci}).
The morphism $Z \to X_y$ corresponds to an object $x$ of $\mathcal{X}$
over $Z$ together with an isomorphism $\alpha : y|_Z \to F(x)$.
We obtain an object $(U, Z, y, x, \alpha)$ of
$\mathcal{H}_d(\mathcal{X}/\mathcal{Y})$. By what was said above about
the morphism $Z \to X_y$ we see that it actually is an object of the
subcategory $\mathcal{H}_{d, lci}(\mathcal{X}/\mathcal{Y})$ and we win.
\end{proof}




















\section{Bootstrapping algebraic stacks}
\label{section-bootstrap}

\noindent
The following theorem is one of the main results of this chapter.

\begin{theorem}
\label{theorem-bootstrap}
Let $S$ be a scheme. Let $F : \mathcal{X} \to \mathcal{Y}$
be a $1$-morphism of stacks in groupoids over $(\Sch/S)_{fppf}$. If
\begin{enumerate}
\item $\mathcal{X}$ is representable by an algebraic space, and
\item $F$ is representable by algebraic spaces, surjective, flat and
locally of finite presentation,
\end{enumerate}
then $\mathcal{Y}$ is an algebraic stack.
\end{theorem}

\begin{proof}
By
Lemma \ref{lemma-flat-finite-presentation-surjective-diagonal}
we see that the diagonal of $\mathcal{Y}$ is representable by algebraic
spaces. Hence we only need to verify the existence of a $1$-morphism
$f : \mathcal{V} \to \mathcal{Y}$ of stacks in groupoids over
$(\Sch/S)_{fppf}$ with $\mathcal{V}$ representable and
$f$ surjective and smooth. By
Lemma \ref{lemma-hilbert-stack-relative-space}
we know that
$$
\coprod\nolimits_{d \geq 1} \mathcal{H}_d(\mathcal{X}/\mathcal{Y})
$$
is an algebraic stack. It follows from
Lemma \ref{lemma-lci-locus-stack-in-groupoids}
and
Algebraic Stacks,
Lemma \ref{algebraic-lemma-open-fibred-category-is-algebraic}
that
$$
\coprod\nolimits_{d \geq 1} \mathcal{H}_{d, lci}(\mathcal{X}/\mathcal{Y})
$$
is an algebraic stack as well. Choose a representable stack in groupoids
$\mathcal{V}$ over $(\Sch/S)_{fppf}$ and a surjective and smooth
$1$-morphism
$$
\mathcal{V}
\longrightarrow
\coprod\nolimits_{d \geq 1} \mathcal{H}_{d, lci}(\mathcal{X}/\mathcal{Y}).
$$
We claim that the composition
$$
\mathcal{V}
\longrightarrow
\coprod\nolimits_{d \geq 1} \mathcal{H}_{d, lci}(\mathcal{X}/\mathcal{Y})
\longrightarrow
\mathcal{Y}
$$
is smooth and surjective which finishes the proof of the theorem. In fact,
the smoothness will be a consequence of
Lemmas \ref{lemma-limit-preserving} and \ref{lemma-lci-formally-smooth}
and the surjectivity a consequence of
Lemma \ref{lemma-lci-surjective}.
We spell out the details in the following paragraph.

\medskip\noindent
By construction $\mathcal{V} \to
\coprod\nolimits_{d \geq 1} \mathcal{H}_{d, lci}(\mathcal{X}/\mathcal{Y})$
is representable by algebraic spaces, surjective, and smooth (and hence
also locally of finite presentation and formally smooth by the general
principle
Algebraic Stacks, Lemma
\ref{algebraic-lemma-representable-transformations-property-implication}
and
More on Morphisms of Spaces,
Lemma \ref{spaces-more-morphisms-lemma-smooth-formally-smooth}).
Applying
Lemmas \ref{lemma-representable-by-spaces-limit-preserving},
\ref{lemma-representable-by-spaces-formally-smooth}, and
\ref{lemma-representable-by-spaces-surjective}
we see that $\mathcal{V} \to
\coprod\nolimits_{d \geq 1} \mathcal{H}_{d, lci}(\mathcal{X}/\mathcal{Y})$
is limit preserving on objects, formally smooth on objects, and
surjective on objects. The $1$-morphism
$\coprod\nolimits_{d \geq 1} \mathcal{H}_{d, lci}(\mathcal{X}/\mathcal{Y})
\to \mathcal{Y}$ is
\begin{enumerate}
\item limit preserving on objects: this is
Lemma \ref{lemma-limit-preserving}
for $\mathcal{H}_d(\mathcal{X}/\mathcal{Y}) \to \mathcal{Y}$
and we combine it with Lemmas
\ref{lemma-lci-locus-stack-in-groupoids},
\ref{lemma-open-immersion-limit-preserving}, and
\ref{lemma-composition-limit-preserving}
to get it for $\mathcal{H}_{d, lci}(\mathcal{X}/\mathcal{Y}) \to \mathcal{Y}$,
\item formally smooth on objects by
Lemma \ref{lemma-lci-formally-smooth},
and
\item surjective on objects by
Lemma \ref{lemma-lci-surjective}.
\end{enumerate}
Using
Lemmas \ref{lemma-composition-limit-preserving},
\ref{lemma-composition-formally-smooth}, and
\ref{lemma-composition-surjective}
we conclude that the composition $\mathcal{V} \to \mathcal{Y}$ is
limit preserving on objects, formally smooth on objects, and
surjective on objects.
Using
Lemmas \ref{lemma-representable-by-spaces-limit-preserving},
\ref{lemma-representable-by-spaces-formally-smooth}, and
\ref{lemma-representable-by-spaces-surjective}
we see that $\mathcal{V} \to \mathcal{Y}$ is
locally of finite presentation, formally smooth, and surjective.
Finally, using (via the general principle
Algebraic Stacks,
Lemma \ref{algebraic-lemma-representable-transformations-property-implication})
the infinitesimal lifting criterion
(More on Morphisms of Spaces, Lemma
\ref{spaces-more-morphisms-lemma-smooth-formally-smooth})
we see that $\mathcal{V} \to \mathcal{Y}$ is smooth and we win.
\end{proof}








\section{Applications}
\label{section-applications}

\noindent
Our first task is to show that the quotient stack $[U/R]$ associated to
a ``flat and locally finitely presented groupoid'' is an algebraic stack.
See
Groupoids in Spaces,
Definition \ref{spaces-groupoids-definition-quotient-stack}
for the definition of the quotient stack.
The following lemma is preliminary and is the analogue of
Algebraic Stacks,
Lemma \ref{algebraic-lemma-smooth-quotient-smooth-presentation}.

\begin{lemma}
\label{lemma-flat-quotient-flat-presentation}
Let $S$ be a scheme contained in $\Sch_{fppf}$.
Let $(U, R, s, t, c)$ be a groupoid in algebraic spaces over $S$.
Assume $s, t$ are flat and locally of finite presentation.
Then the morphism $\mathcal{S}_U \to [U/R]$ is flat, locally of
finite presentation, and surjective.
\end{lemma}

\begin{proof}
Let $T$ be a scheme and let $x : (\Sch/T)_{fppf} \to [U/R]$
be a $1$-morphism. We have to show that the projection
$$
\mathcal{S}_U \times_{[U/R]} (\Sch/T)_{fppf}
\longrightarrow
(\Sch/T)_{fppf}
$$
is surjective, flat, and locally of finite presentation.
We already know that the left hand side
is representable by an algebraic space $F$, see
Algebraic Stacks, Lemmas \ref{algebraic-lemma-diagonal-quotient-stack} and
\ref{algebraic-lemma-representable-diagonal}.
Hence we have to show the corresponding morphism $F \to T$ of
algebraic spaces is surjective, locally of finite presentation, and flat.
Since we are working with properties of morphisms of algebraic
spaces which are local on the target in the fppf topology we
may check this fppf locally on $T$. By construction, there exists
an fppf covering $\{T_i \to T\}$ of $T$ such that
$x|_{(\Sch/T_i)_{fppf}}$ comes from a morphism
$x_i : T_i \to U$. (Note that $F \times_T T_i$ represents the
$2$-fibre product $\mathcal{S}_U \times_{[U/R]} (\Sch/T_i)_{fppf}$
so everything is compatible with the base change via $T_i \to T$.)
Hence we may assume that $x$ comes from $x : T \to U$.
In this case we see that
$$
\mathcal{S}_U \times_{[U/R]} (\Sch/T)_{fppf}
=
(\mathcal{S}_U \times_{[U/R]} \mathcal{S}_U)
\times_{\mathcal{S}_U} (\Sch/T)_{fppf}
=
\mathcal{S}_R \times_{\mathcal{S}_U} (\Sch/T)_{fppf}
$$
The first equality by
Categories, Lemma \ref{categories-lemma-2-fibre-product-erase-factor}
and the second equality by
Groupoids in Spaces,
Lemma \ref{spaces-groupoids-lemma-quotient-stack-2-cartesian}.
Clearly the last $2$-fibre product is represented by the algebraic
space $F = R \times_{s, U, x} T$ and the projection
$R \times_{s, U, x} T \to T$ is flat and locally of finite presentation
as the base change of the flat locally finitely presented
morphism of algebraic spaces $s : R \to U$.
It is also surjective as $s$ has a section (namely the identity
$e : U \to R$ of the groupoid).
This proves the lemma.
\end{proof}

\noindent
Here is the first main result of this section.

\begin{theorem}
\label{theorem-flat-groupoid-gives-algebraic-stack}
Let $S$ be a scheme contained in $\Sch_{fppf}$.
Let $(U, R, s, t, c)$ be a groupoid in algebraic spaces over $S$.
Assume $s, t$ are flat and locally of finite presentation.
Then the quotient stack $[U/R]$ is an algebraic stack over $S$.
\end{theorem}

\begin{proof}
We check the two conditions of
Theorem \ref{theorem-bootstrap}
for the morphism
$$
(\Sch/U)_{fppf} \longrightarrow [U/R].
$$
The first is trivial (as $U$ is an algebraic space).
The second is
Lemma \ref{lemma-flat-quotient-flat-presentation}.
\end{proof}









\section{When is a quotient stack algebraic?}
\label{section-quotient-algebraic}

\noindent
In
Groupoids in Spaces, Section \ref{spaces-groupoids-section-stacks}
we have defined the quotient stack $[U/R]$ associated to a groupoid
$(U, R, s, t, c)$ in algebraic spaces. Note that $[U/R]$ is a stack
in groupoids whose diagonal is representable by algebraic spaces (see
Bootstrap, Lemma \ref{bootstrap-lemma-quotient-stack-isom}
and
Algebraic Stacks, Lemma \ref{algebraic-lemma-representable-diagonal})
and such that there exists an algebraic space $U$ and a $1$-morphism
$(\Sch/U)_{fppf} \to [U/R]$ which is an ``fppf surjection''
in the sense that it induces a map on presheaves of isomorphism classes of
objects which becomes surjective after sheafification.
However, it is not the case that $[U/R]$ is an algebraic
stack in general. This is not a contradiction with
Theorem \ref{theorem-bootstrap}
as the $1$-morphism $(\Sch/U)_{fppf} \to [U/R]$ is not
representable by algebraic spaces in general, and if it is it may not
be flat and locally of finite presentation.

\medskip\noindent
The easiest way to make examples of non-algebraic quotient stacks is
to look at quotients of the form $[S/G]$ where $S$ is a scheme and $G$
is a group scheme over $S$ acting trivially on $S$. Namely, we will see
below
(Lemma \ref{lemma-BG-algebraic})
that if $[S/G]$ is algebraic, then $G \to S$ has to be flat and locally
of finite presentation. An explicit example can be found in
Examples, Section \ref{examples-section-not-algebraic-stack}.

\begin{lemma}
\label{lemma-quotient-algebraic}
Let $S$ be a scheme and let $B$ be an algebraic space over $S$.
Let $(U, R, s, t, c)$ be a groupoid in algebraic spaces over $B$.
The quotient stack $[U/R]$ is an algebraic stack if and only if
there exists a morphism of algebraic spaces $g : U' \to U$ such that
\begin{enumerate}
\item the composition
$U' \times_{g, U, t} R \to R \xrightarrow{s} U$ is a surjection of
sheaves, and
\item the morphisms $s', t' : R' \to U'$ are flat and locally of finite
presentation where $(U', R', s', t', c')$ is the restriction of
$(U, R, s, t, c)$ via $g$.
\end{enumerate}
\end{lemma}

\begin{proof}
First, assume that $g : U' \to U$ satisfies (1) and (2). Property (1)
implies that $[U'/R'] \to [U/R]$ is an equivalence, see
Groupoids in Spaces,
Lemma \ref{spaces-groupoids-lemma-quotient-stack-restrict-equivalence}.
By
Theorem \ref{theorem-flat-groupoid-gives-algebraic-stack}
the quotient stack $[U'/R']$ is an algebraic stack. Hence
$[U/R]$ is an algebraic stack too, see
Algebraic Stacks, Lemma \ref{algebraic-lemma-equivalent}.

\medskip\noindent
Conversely, assume that $[U/R]$ is an algebraic stack. We may choose a
scheme $W$ and a surjective smooth $1$-morphism
$$
f : (\Sch/W)_{fppf} \longrightarrow [U/R].
$$
By the $2$-Yoneda lemma
(Algebraic Stacks, Section \ref{algebraic-section-2-yoneda})
this corresponds to an object $\xi$ of $[U/R]$ over $W$.
By the description of $[U/R]$ in
Groupoids in Spaces, Lemma \ref{spaces-groupoids-lemma-quotient-stack-objects}
we can find a surjective, flat, locally finitely presented morphism
$b : U' \to W$ of schemes such that $\xi' = b^*\xi$ corresponds to a morphism
$g : U' \to U$. Note that the $1$-morphism
$$
f' : (\Sch/U')_{fppf} \longrightarrow [U/R].
$$
corresponding to $\xi'$ is surjective, flat, and locally of finite
presentation, see
Algebraic Stacks, Lemma
\ref{algebraic-lemma-composition-representable-transformations-property}.
Hence
$(\Sch/U')_{fppf} \times_{[U/R]} (\Sch/U')_{fppf}$
which is represented by the algebraic space
$$
\mathit{Isom}_{[U/R]}(\text{pr}_0^*\xi', \text{pr}_1^*\xi') =
(U' \times_S U')
\times_{(g \circ \text{pr}_0, g \circ \text{pr}_1), U \times_S U} R = R'
$$
(see
Groupoids in Spaces, Lemma
\ref{spaces-groupoids-lemma-quotient-stack-morphisms}
for the first equality; the second is the definition of restriction)
is flat and locally of finite presentation over $U'$ via both $s'$ and $t'$
(by base change, see
Algebraic Stacks, Lemma
\ref{algebraic-lemma-base-change-representable-transformations-property}).
By this description of $R'$ and by
Algebraic Stacks, Lemma \ref{algebraic-lemma-map-space-into-stack}
we obtain a canonical fully faithful $1$-morphism $[U'/R'] \to [U/R]$.
This $1$-morphism is essentially surjective because $f'$ is flat,
locally of finite presentation, and surjective (see
Stacks, Lemma \ref{stacks-lemma-characterize-essentially-surjective-when-ff});
another way to prove this is to use
Algebraic Stacks, Remark
\ref{algebraic-remark-flat-fp-presentation}.
Finally, we can use
Groupoids in Spaces, Lemma
\ref{spaces-groupoids-lemma-quotient-stack-restrict-equivalence}
to conclude that the composition
$U' \times_{g, U, t} R \to R \xrightarrow{s} U$ is a surjection of sheaves.
\end{proof}

\begin{lemma}
\label{lemma-group-quotient-algebraic}
Let $S$ be a scheme and let $B$ be an algebraic space over $S$.
Let $G$ be a group algebraic space over $B$.
Let $X$ be an algebraic space over $B$ and let $a : G \times_B X \to X$
be an action of $G$ on $X$ over $B$.
The quotient stack $[X/G]$ is an algebraic stack if and only if
there exists a morphism of algebraic spaces $\varphi : X' \to X$ such that
\begin{enumerate}
\item $G \times_B X' \to X$, $(g, x') \mapsto a(g, \varphi(x'))$ is a
surjection of sheaves, and
\item the two projections $X'' \to X'$ of the algebraic space $X''$
given by the rule
$$
T \longmapsto \{(x'_1, g, x'_2) \in (X' \times_B G \times_B X')(T)
\mid \varphi(x'_1) = a(g, \varphi(x'_2))\}
$$
are flat and locally of finite presentation.
\end{enumerate}
\end{lemma}

\begin{proof}
This lemma is a special case of
Lemma \ref{lemma-quotient-algebraic}.
Namely, the quotient stack $[X/G]$ is by
Groupoids in Spaces, Definition \ref{spaces-groupoids-definition-quotient-stack}
equal to the quotient stack $[X/G \times_B X]$ of the groupoid in
algebraic spaces $(X, G \times_B X, s, t, c)$ associated to
the group action in
Groupoids in Spaces, Lemma \ref{spaces-groupoids-lemma-groupoid-from-action}.
There is one small observation that is needed to get condition (1).
Namely, the morphism $s : G \times_B X \to X$ is the second projection
and the morphism $t :  G \times_B X \to X$ is the action morphism $a$.
Hence the morphism $h : U' \times_{g, U, t} R \to R \xrightarrow{s} U$ from
Lemma \ref{lemma-quotient-algebraic}
corresponds to the morphism
$$
X' \times_{\varphi, X, a} (G \times_B X) \xrightarrow{\text{pr}_1} X
$$
in the current setting. However, because of the symmetry given by
the inverse of $G$ this morphism is isomorphic to the morphism
$$
(G \times_B X) \times_{\text{pr}_1, X, \varphi} X' \xrightarrow{a} X
$$
of the statement of the lemma. Details omitted.
\end{proof}

\begin{lemma}
\label{lemma-BG-algebraic}
\begin{slogan}
Gerbes are algebraic if and only if the associated groups are flat
and locally of finite presentation
\end{slogan}
Let $S$ be a scheme and let $B$ be an algebraic space over $S$.
Let $G$ be a group algebraic space over $B$.
Endow $B$ with the trivial action of $G$.
Then the quotient stack $[B/G]$ is an algebraic stack
if and only if $G$ is flat and locally of finite presentation over $B$.
\end{lemma}

\begin{proof}
If $G$ is flat and locally of finite presentation over $B$, then
$[B/G]$ is an algebraic stack by
Theorem \ref{theorem-flat-groupoid-gives-algebraic-stack}.

\medskip\noindent
Conversely, assume that $[B/G]$ is an algebraic stack. By
Lemma \ref{lemma-group-quotient-algebraic}
and because the action is trivial, we see
there exists an algebraic space $B'$ and a morphism
$B' \to B$ such that (1) $B' \to B$ is a surjection
of sheaves and (2) the projections
$$
B' \times_B G \times_B B' \to B'
$$
are flat and locally of finite presentation. Note that the base change
$B' \times_B G \times_B B' \to G \times_B B'$ of $B' \to B$
is a surjection of sheaves also. Thus it follows from
Descent on Spaces, Lemma \ref{spaces-descent-lemma-curiosity}
that the projection $G \times_B B' \to B'$ is flat and locally
of finite presentation. By (1) we can find an fppf covering
$\{B_i \to B\}$ such that $B_i \to B$ factors through $B' \to B$.
Hence $G \times_B B_i \to B_i$ is flat and locally of finite presentation
by base change. By
Descent on Spaces, Lemmas
\ref{spaces-descent-lemma-descending-property-flat} and
\ref{spaces-descent-lemma-descending-property-locally-finite-presentation}
we conclude that $G \to B$ is flat and locally of finite presentation.
\end{proof}

\noindent
Later we will see that the quotient stack of a smooth $S$-space
by a group algebraic space $G$ is smooth, even when $G$ is not smooth
(Morphisms of Stacks, Lemma
\ref{stacks-morphisms-lemma-smooth-quotient-stack}).




\section{Algebraic stacks in the \'etale topology}
\label{section-stacks-etale}

\noindent
Let $S$ be a scheme. Instead of working with stacks in groupoids over
the big fppf site $(\Sch/S)_{fppf}$ we could work with stacks in groupoids
over the big \'etale site $(\Sch/S)_\etale$. All of the material in
Algebraic Stacks, Sections
\ref{algebraic-section-representable},
\ref{algebraic-section-2-yoneda},
\ref{algebraic-section-representable-morphism},
\ref{algebraic-section-split},
\ref{algebraic-section-representable-by-algebraic-spaces},
\ref{algebraic-section-morphisms-representable-by-algebraic-spaces},
\ref{algebraic-section-representable-properties}, and
\ref{algebraic-section-stacks}
makes sense for categories fibred in groupoids over $(\Sch/S)_\etale$.
Thus we get a second notion of an algebraic stack by working in the
\'etale topology. This notion is (a priori) weaker than the notion introduced
in Algebraic Stacks, Definition \ref{algebraic-definition-algebraic-stack}
since a stack in the fppf topology is certainly a stack in the \'etale
topology. However, the notions are equivalent as is shown by the following
lemma.

\begin{lemma}
\label{lemma-stacks-etale}
Denote the common underlying category of $\Sch_{fppf}$
and $\Sch_\etale$ by $\Sch_\alpha$ (see
Sheaves on Stacks, Section \ref{stacks-sheaves-section-sheaves} and
Topologies, Remark \ref{topologies-remark-choice-sites}). Let $S$ be an object
of $\Sch_\alpha$. Let
$$
p : \mathcal{X} \to \Sch_\alpha/S
$$
be a category fibred in groupoids with the following properties:
\begin{enumerate}
\item $\mathcal{X}$ is a stack in groupoids over $(\Sch/S)_\etale$,
\item the diagonal $\Delta : \mathcal{X} \to \mathcal{X} \times \mathcal{X}$
is representable by algebraic spaces\footnote{Here we can either mean
sheaves in the \'etale topology whose diagonal is representable and which
have an \'etale surjective covering by a scheme or algebraic spaces as
defined in
Algebraic Spaces, Definition \ref{spaces-definition-algebraic-space}.
Namely, by Bootstrap, Lemma \ref{bootstrap-lemma-spaces-etale}
there is no difference.}, and
\item there exists $U \in \Ob(\Sch_\alpha/S)$
and a $1$-morphism $(\Sch/U)_\etale \to \mathcal{X}$
which is surjective and smooth.
\end{enumerate}
Then $\mathcal{X}$ is an algebraic stack in the sense of
Algebraic Stacks, Definition \ref{algebraic-definition-algebraic-stack}.
\end{lemma}

\begin{proof}
Note that properties (2) and (3) of the lemma and the corresponding
properties (2) and (3) of
Algebraic Stacks, Definition \ref{algebraic-definition-algebraic-stack}
are independent of the topology. This is true because these properties
involve only the notion of a $2$-fibre product of categories fibred in
groupoids, $1$- and $2$-morphisms of categories fibred in groupoids, the
notion of a $1$-morphism of categories fibred in groupoids representable
by algebraic spaces, and what it means for such a $1$-morphism to be
surjective and smooth.
Thus all we have to prove is that an \'etale stack in groupoids
$\mathcal{X}$ with properties (2) and (3) is also an fppf stack in groupoids.

\medskip\noindent
Using (2) let $R$ be an algebraic space representing
$$
(\Sch_\alpha/U) \times_\mathcal{X} (\Sch_\alpha/U)
$$
By (3) the projections $s, t : R \to U$ are smooth. Exactly as in the proof of
Algebraic Stacks, Lemma \ref{algebraic-lemma-map-space-into-stack}
there exists a groupoid in spaces $(U, R, s, t, c)$ and a canonical
fully faithful $1$-morphism $[U/R]_\etale \to \mathcal{X}$
where $[U/R]_\etale$ is the \'etale stackification of presheaf
in groupoids
$$
T \longmapsto (U(T), R(T), s(T), t(T), c(T))
$$
Claim: If $V \to T$ is a surjective smooth morphism from an algebraic space
$V$ to a scheme $T$, then there exists an \'etale covering $\{T_i \to T\}$
refining the covering $\{V \to T\}$. This follows from
More on Morphisms, Lemma \ref{more-morphisms-lemma-etale-dominates-smooth}
or the more general
Sheaves on Stacks, Lemma
\ref{stacks-sheaves-lemma-surjective-flat-locally-finite-presentation}.
Using the claim and arguing exactly as in
Algebraic Stacks, Lemma \ref{algebraic-lemma-stack-presentation}
it follows that $[U/R]_\etale \to \mathcal{X}$ is an
equivalence.

\medskip\noindent
Next, let $[U/R]$ denote the quotient stack in the fppf topology
which is an algebraic stack by
Algebraic Stacks, Theorem
\ref{algebraic-theorem-smooth-groupoid-gives-algebraic-stack}.
Thus we have $1$-morphisms
$$
U \to [U/R]_\etale \to [U/R].
$$
Both $U \to [U/R]_\etale \cong \mathcal{X}$ and
$U \to [U/R]$ are surjective and smooth (the first by assumption
and the second by the theorem) and in both cases the
fibre product $U \times_\mathcal{X} U$ and $U \times_{[U/R]} U$
is representable by $R$. Hence the $1$-morphism
$[U/R]_\etale \to [U/R]$ is fully faithful (since morphisms
in the quotient stacks are given by morphisms into $R$, see
Groupoids in Spaces, Section
\ref{spaces-groupoids-section-explicit-quotient-stacks}).

\medskip\noindent
Finally, for any scheme $T$ and morphism $t : T \to [U/R]$ the fibre product
$V = T \times_{U/R} U$ is an algebraic space surjective and smooth over $T$.
By the claim above there exists an \'etale covering $\{T_i \to T\}_{i \in I}$
and morphisms $T_i \to V$ over $T$. This proves that the object
$t$ of $[U/R]$ over $T$ comes \'etale locally from $U$. We conclude that
$[U/R]_\etale \to [U/R]$ is an equivalence of stacks in
groupoids over $(\Sch/S)_\etale$ by
Stacks, Lemma \ref{stacks-lemma-characterize-essentially-surjective-when-ff}.
This concludes the proof.
\end{proof}










\input{chapters}

\bibliography{my}
\bibliographystyle{amsalpha}

\end{document}