Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 15,512 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 |
(* ========================================================================= *)
(* Projective coordinates, (x,y,z) |-> (x/z,y/z) and (0,1,0) |-> infinity *)
(* ========================================================================= *)
needs "EC/weierstrass.ml";;
let projective_point = define
`projective_point f (x,y,z) <=>
x IN ring_carrier f /\ y IN ring_carrier f /\ z IN ring_carrier f`;;
let projective_curve = define
`projective_curve (f,a:A,b) (x,y,z) <=>
x IN ring_carrier f /\
y IN ring_carrier f /\
z IN ring_carrier f /\
ring_mul f (ring_pow f y 2) z =
ring_add f (ring_pow f x 3)
(ring_add f (ring_mul f a (ring_mul f x (ring_pow f z 2)))
(ring_mul f b (ring_pow f z 3)))`;;
let weierstrass_of_projective = define
`weierstrass_of_projective (f:A ring) (x,y,z) =
if z = ring_0 f then NONE
else SOME(ring_div f x z,ring_div f y z)`;;
let projective_of_weierstrass = define
`projective_of_weierstrass (f:A ring) NONE = (ring_0 f,ring_1 f,ring_0 f) /\
projective_of_weierstrass f (SOME(x,y)) = (x,y,ring_1 f)`;;
let projective_eq = define
`projective_eq (f:A ring) (x,y,z) (x',y',z') <=>
(z = ring_0 f <=> z' = ring_0 f) /\
ring_mul f x z' = ring_mul f x' z /\
ring_mul f y z' = ring_mul f y' z`;;
let projective_0 = new_definition
`projective_0 (f:A ring,a:A,b:A) = (ring_0 f,ring_1 f,ring_0 f)`;;
let projective_neg = new_definition
`projective_neg (f,a:A,b:A) (x,y,z) = (x:A,ring_neg f y:A,z:A)`;;
let projective_add = new_definition
`projective_add (f,a,b) (x1,y1,z1) (x2,y2,z2) =
if z1 = ring_0 f then (x2,y2,z2)
else if z2 = ring_0 f then (x1,y1,z1)
else if projective_eq f (x1,y1,z1) (x2,y2,z2) then
let t =
ring_add f (ring_mul f a (ring_pow f z1 2))
(ring_mul f (ring_of_num f 3) (ring_pow f x1 2))
and u = ring_mul f y1 z1 in
let v = ring_mul f u (ring_mul f x1 y1) in
let w = ring_sub f (ring_pow f t 2) (ring_mul f (ring_of_num f 8) v) in
(ring_mul f (ring_of_num f 2) (ring_mul f u w),
ring_sub f (ring_mul f t (ring_sub f (ring_mul f (ring_of_num f 4) v) w))
(ring_mul f (ring_of_num f 8)
(ring_mul f (ring_pow f y1 2) (ring_pow f u 2))),
ring_mul f (ring_of_num f 8) (ring_pow f u 3))
else if projective_eq f (projective_neg (f,a,b) (x1,y1,z1)) (x2,y2,z2) then
projective_0 (f,a,b)
else
let u = ring_sub f (ring_mul f y2 z1) (ring_mul f y1 z2)
and v = ring_sub f (ring_mul f x2 z1) (ring_mul f x1 z2) in
let w =
ring_sub f
(ring_sub f (ring_mul f (ring_pow f u 2) (ring_mul f z1 z2))
(ring_pow f v 3))
(ring_mul f (ring_of_num f 2)
(ring_mul f (ring_pow f v 2) (ring_mul f x1 z2))) in
(ring_mul f v w,
ring_sub f
(ring_mul f u
(ring_sub f (ring_mul f (ring_pow f v 2) (ring_mul f x1 z2)) w))
(ring_mul f (ring_pow f v 3) (ring_mul f y1 z2)),
ring_mul f (ring_pow f v 3) (ring_mul f z1 z2))`;;
let PROJECTIVE_CURVE_IMP_POINT = prove
(`!f a b p. projective_curve(f,a,b) p ==> projective_point f p`,
REWRITE_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM] THEN
SIMP_TAC[projective_curve; projective_point]);;
let PROJECTIVE_OF_WEIERSTRASS_POINT_EQ = prove
(`!(f:A ring) p.
projective_point f (projective_of_weierstrass f p) <=>
weierstrass_point f p`,
REWRITE_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM] THEN
REWRITE_TAC[weierstrass_point; projective_of_weierstrass] THEN
SIMP_TAC[projective_point; RING_0; RING_1]);;
let PROJECTIVE_OF_WEIERSTRASS_POINT = prove
(`!(f:A ring) p.
weierstrass_point f p
==> projective_point f (projective_of_weierstrass f p)`,
REWRITE_TAC[PROJECTIVE_OF_WEIERSTRASS_POINT_EQ]);;
let WEIERSTRASS_OF_PROJECTIVE_POINT = prove
(`!(f:A ring) p.
projective_point f p
==> weierstrass_point f (weierstrass_of_projective f p)`,
SIMP_TAC[FORALL_PAIR_THM; weierstrass_of_projective; projective_point] THEN
REPEAT GEN_TAC THEN COND_CASES_TAC THEN
ASM_SIMP_TAC[weierstrass_point; RING_DIV]);;
let PROJECTIVE_OF_WEIERSTRASS_EQ = prove
(`!(f:A ring) p q.
field f
==> (projective_of_weierstrass f p = projective_of_weierstrass f q <=>
p = q)`,
REWRITE_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM; field] THEN
REWRITE_TAC[projective_of_weierstrass; option_DISTINCT; option_INJ] THEN
SIMP_TAC[PAIR_EQ]);;
let WEIERSTRASS_OF_PROJECTIVE_EQ = prove
(`!(f:A ring) p q.
field f /\ projective_point f p /\ projective_point f q
==> (weierstrass_of_projective f p = weierstrass_of_projective f q <=>
projective_eq f p q)`,
REWRITE_TAC[FORALL_PAIR_THM; projective_point] THEN
REWRITE_TAC[weierstrass_of_projective; projective_eq] THEN
REPEAT STRIP_TAC THEN
REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[option_INJ; option_DISTINCT]) THEN
ASM_SIMP_TAC[RING_MUL_RZERO; PAIR_EQ] THEN
REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP (ONCE_REWRITE_RULE[IMP_CONJ_ALT]
(REWRITE_RULE[CONJ_ASSOC] FIELD_MUL_LINV)))) THEN
ASM_REWRITE_TAC[ring_div] THEN
W(MATCH_MP_TAC o INTEGRAL_DOMAIN_RULE o snd) THEN
ASM_SIMP_TAC[RING_INV; FIELD_IMP_INTEGRAL_DOMAIN]);;
let WEIERSTRASS_OF_PROJECTIVE_OF_WEIERSTRASS = prove
(`!(f:A ring) p.
field f /\ weierstrass_point f p
==> weierstrass_of_projective f (projective_of_weierstrass f p) = p`,
REWRITE_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM; field] THEN
SIMP_TAC[weierstrass_of_projective; projective_of_weierstrass;
weierstrass_point; RING_DIV_1]);;
let PROJECTIVE_OF_WEIERSTRASS_OF_PROJECTIVE = prove
(`!(f:A ring) p.
field f /\ projective_point f p
==> projective_eq f
(projective_of_weierstrass f (weierstrass_of_projective f p)) p`,
SIMP_TAC[GSYM WEIERSTRASS_OF_PROJECTIVE_EQ;
WEIERSTRASS_OF_PROJECTIVE_OF_WEIERSTRASS;
PROJECTIVE_OF_WEIERSTRASS_POINT_EQ;
WEIERSTRASS_OF_PROJECTIVE_POINT]);;
let PROJECTIVE_OF_WEIERSTRASS_CURVE_EQ = prove
(`!(f:A ring) a b p.
field f /\ a IN ring_carrier f /\ b IN ring_carrier f /\
weierstrass_point f p
==> (projective_curve (f,a,b) (projective_of_weierstrass f p) <=>
weierstrass_curve (f,a,b) p)`,
REWRITE_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM; weierstrass_point] THEN
REWRITE_TAC[weierstrass_curve; projective_of_weierstrass] THEN
SIMP_TAC[projective_curve; RING_0; RING_1] THEN
REPEAT STRIP_TAC THEN REPEAT(FIRST_X_ASSUM(MP_TAC o SYM)) THEN
W(MATCH_MP_TAC o INTEGRAL_DOMAIN_RULE o snd) THEN
ASM_SIMP_TAC[FIELD_IMP_INTEGRAL_DOMAIN]);;
let PROJECTIVE_OF_WEIERSTRASS_CURVE = prove
(`!(f:A ring) a b p.
field f /\ a IN ring_carrier f /\ b IN ring_carrier f /\
weierstrass_curve (f,a,b) p
==> projective_curve (f,a,b) (projective_of_weierstrass f p)`,
MESON_TAC[PROJECTIVE_OF_WEIERSTRASS_CURVE_EQ;
WEIERSTRASS_CURVE_IMP_POINT]);;
let WEIERSTRASS_OF_PROJECTIVE_CURVE = prove
(`!(f:A ring) a b p.
field f /\ a IN ring_carrier f /\ b IN ring_carrier f /\
projective_curve (f,a,b) p
==> weierstrass_curve (f,a,b) (weierstrass_of_projective f p)`,
SIMP_TAC[FORALL_PAIR_THM; weierstrass_of_projective; projective_curve] THEN
REPEAT STRIP_TAC THEN COND_CASES_TAC THEN
ASM_SIMP_TAC[weierstrass_curve; RING_DIV] THEN
REPEAT(FIRST_X_ASSUM(MP_TAC o SYM)) THEN
REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP (ONCE_REWRITE_RULE[IMP_CONJ_ALT]
(REWRITE_RULE[CONJ_ASSOC] FIELD_MUL_LINV)))) THEN
ASM_REWRITE_TAC[ring_div] THEN
W(MATCH_MP_TAC o INTEGRAL_DOMAIN_RULE o snd) THEN
ASM_SIMP_TAC[RING_INV; FIELD_IMP_INTEGRAL_DOMAIN]);;
let PROJECTIVE_POINT_NEG = prove
(`!(f:A ring) a b p.
field f /\ a IN ring_carrier f /\ b IN ring_carrier f /\
projective_point f p
==> projective_point f (projective_neg (f,a,b) p)`,
REWRITE_TAC[FORALL_PAIR_THM; projective_neg; projective_point] THEN
REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN
REPEAT(FIRST_X_ASSUM(MP_TAC o SYM)) THEN
W(MATCH_MP_TAC o INTEGRAL_DOMAIN_RULE o snd) THEN
ASM_SIMP_TAC[FIELD_IMP_INTEGRAL_DOMAIN]);;
let PROJECTIVE_CURVE_NEG = prove
(`!(f:A ring) a b p.
field f /\ a IN ring_carrier f /\ b IN ring_carrier f /\
projective_curve (f,a,b) p
==> projective_curve (f,a,b) (projective_neg (f,a,b) p)`,
REWRITE_TAC[FORALL_PAIR_THM; projective_neg; projective_curve] THEN
REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN
REPEAT(FIRST_X_ASSUM(MP_TAC o SYM)) THEN
W(MATCH_MP_TAC o INTEGRAL_DOMAIN_RULE o snd) THEN
ASM_SIMP_TAC[FIELD_IMP_INTEGRAL_DOMAIN]);;
let WEIERSTRASS_OF_PROJECTIVE_NEG = prove
(`!(f:A ring) a b p.
field f /\ a IN ring_carrier f /\ b IN ring_carrier f /\
projective_point f p
==> weierstrass_of_projective f (projective_neg (f,a,b) p) =
weierstrass_neg (f,a,b) (weierstrass_of_projective f p)`,
REWRITE_TAC[FORALL_PAIR_THM; projective_neg; weierstrass_of_projective;
projective_point] THEN
REPEAT STRIP_TAC THEN COND_CASES_TAC THEN
ASM_REWRITE_TAC[weierstrass_neg; option_INJ; PAIR_EQ] THEN
FIELD_TAC);;
let PROJECTIVE_EQ_NEG = prove
(`!(f:A ring) a b p p'.
field f /\ a IN ring_carrier f /\ b IN ring_carrier f /\
projective_point f p /\ projective_point f p' /\ projective_eq f p p'
==> projective_eq f
(projective_neg (f,a,b) p) (projective_neg (f,a,b) p')`,
REPEAT GEN_TAC THEN
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
ASM_SIMP_TAC[GSYM WEIERSTRASS_OF_PROJECTIVE_EQ; PROJECTIVE_POINT_NEG] THEN
ASM_SIMP_TAC[WEIERSTRASS_OF_PROJECTIVE_NEG]);;
let WEIERSTRASS_OF_PROJECTIVE_NEG_OF_WEIERSTRASS = prove
(`!(f:A ring) a b p.
field f /\ a IN ring_carrier f /\ b IN ring_carrier f /\
weierstrass_point f p
==> weierstrass_of_projective f
(projective_neg (f,a,b) (projective_of_weierstrass f p)) =
weierstrass_neg (f,a,b) p`,
SIMP_TAC[WEIERSTRASS_OF_PROJECTIVE_NEG;
PROJECTIVE_OF_WEIERSTRASS_POINT;
WEIERSTRASS_OF_PROJECTIVE_OF_WEIERSTRASS]);;
let PROJECTIVE_OF_WEIERSTRASS_NEG = prove
(`!(f:A ring) a b p.
field f /\ a IN ring_carrier f /\ b IN ring_carrier f /\
weierstrass_point f p
==> projective_eq f
(projective_of_weierstrass f (weierstrass_neg (f,a,b) p))
(projective_neg (f,a,b) (projective_of_weierstrass f p))`,
SIMP_TAC[GSYM WEIERSTRASS_OF_PROJECTIVE_EQ;
PROJECTIVE_OF_WEIERSTRASS_POINT;
PROJECTIVE_POINT_NEG; WEIERSTRASS_POINT_NEG;
WEIERSTRASS_OF_PROJECTIVE_NEG;
WEIERSTRASS_OF_PROJECTIVE_OF_WEIERSTRASS]);;
let PROJECTIVE_POINT_ADD = prove
(`!(f:A ring) a b p q.
field f /\ a IN ring_carrier f /\ b IN ring_carrier f /\
projective_point f p /\ projective_point f q
==> projective_point f (projective_add (f,a,b) p q)`,
REWRITE_TAC[FORALL_PAIR_THM; projective_add; projective_point;
projective_0; projective_eq; LET_DEF; LET_END_DEF] THEN
REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN
REPEAT(COND_CASES_TAC THEN
ASM_REWRITE_TAC[projective_add; projective_point;
projective_eq; LET_DEF; LET_END_DEF]) THEN
REPEAT STRIP_TAC THEN RING_CARRIER_TAC);;
let PROJECTIVE_CURVE_ADD = prove
(`!(f:A ring) a b p q.
field f /\ a IN ring_carrier f /\ b IN ring_carrier f /\
projective_curve (f,a,b) p /\ projective_curve (f,a,b) q
==> projective_curve (f,a,b) (projective_add (f,a,b) p q)`,
REWRITE_TAC[FORALL_PAIR_THM; projective_add; projective_curve;
projective_0; projective_eq; LET_DEF; LET_END_DEF] THEN
REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN
REPEAT(COND_CASES_TAC THEN
ASM_REWRITE_TAC[projective_add; projective_curve;
projective_eq; LET_DEF; LET_END_DEF]) THEN
REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN
REPEAT(FIRST_X_ASSUM(MP_TAC o SYM)) THEN
W(MATCH_MP_TAC o INTEGRAL_DOMAIN_RULE o snd) THEN
ASM_SIMP_TAC[FIELD_IMP_INTEGRAL_DOMAIN]);;
let WEIERSTRASS_OF_PROJECTIVE_ADD = prove
(`!(f:A ring) a b p q.
field f /\ ~(ring_char f = 2) /\ ~(ring_char f = 3) /\
a IN ring_carrier f /\ b IN ring_carrier f /\
projective_point f p /\ projective_point f q
==> weierstrass_of_projective f (projective_add (f,a,b) p q) =
weierstrass_add (f,a,b)
(weierstrass_of_projective f p)
(weierstrass_of_projective f q)`,
REWRITE_TAC[FIELD_CHAR_NOT23; FORALL_PAIR_THM; projective_point] THEN
MAP_EVERY X_GEN_TAC
[`f:A ring`; `a:A`; `b:A`; `x1:A`; `y1:A`; `z1:A`;
`x2:A`; `y2:A`; `z2:A`] THEN
STRIP_TAC THEN REWRITE_TAC[weierstrass_of_projective; projective_add] THEN
MAP_EVERY ASM_CASES_TAC [`z1:A = ring_0 f`; `z2:A = ring_0 f`] THEN
ASM_REWRITE_TAC[weierstrass_of_projective; weierstrass_add] THEN
ASM_REWRITE_TAC[projective_eq; projective_neg; projective_0] THEN
REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN
REWRITE_TAC[LET_DEF; LET_END_DEF] THEN
REPEAT LET_TAC THEN REWRITE_TAC[weierstrass_of_projective] THEN
REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN
REWRITE_TAC[option_DISTINCT; option_INJ; PAIR_EQ] THEN
RULE_ASSUM_TAC(REWRITE_RULE[DE_MORGAN_THM]) THEN
REPEAT(FIRST_X_ASSUM(DISJ_CASES_TAC) ORELSE
FIRST_X_ASSUM(CONJUNCTS_THEN ASSUME_TAC)) THEN
FIELD_TAC THEN NOT_RING_CHAR_DIVIDES_TAC);;
let PROJECTIVE_EQ_ADD = prove
(`!(f:A ring) a b p p' q q'.
field f /\ ~(ring_char f = 2) /\ ~(ring_char f = 3) /\
a IN ring_carrier f /\ b IN ring_carrier f /\
projective_point f p /\ projective_point f p' /\
projective_point f q /\ projective_point f q' /\
projective_eq f p p' /\ projective_eq f q q'
==> projective_eq f
(projective_add (f,a,b) p q) (projective_add (f,a,b) p' q')`,
REPEAT GEN_TAC THEN
REPLICATE_TAC 9 (DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
ASM_SIMP_TAC[GSYM WEIERSTRASS_OF_PROJECTIVE_EQ; PROJECTIVE_POINT_ADD] THEN
ASM_SIMP_TAC[WEIERSTRASS_OF_PROJECTIVE_ADD]);;
let WEIERSTRASS_OF_PROJECTIVE_ADD_OF_WEIERSTRASS = prove
(`!(f:A ring) a b p q.
field f /\ ~(ring_char f = 2) /\ ~(ring_char f = 3) /\
a IN ring_carrier f /\ b IN ring_carrier f /\
weierstrass_point f p /\ weierstrass_point f q
==> weierstrass_of_projective f
(projective_add (f,a,b)
(projective_of_weierstrass f p)
(projective_of_weierstrass f q)) =
weierstrass_add (f,a,b) p q`,
SIMP_TAC[WEIERSTRASS_OF_PROJECTIVE_ADD;
PROJECTIVE_OF_WEIERSTRASS_POINT;
WEIERSTRASS_OF_PROJECTIVE_OF_WEIERSTRASS]);;
let PROJECTIVE_OF_WEIERSTRASS_ADD = prove
(`!(f:A ring) a b p q.
field f /\ ~(ring_char f = 2) /\ ~(ring_char f = 3) /\
a IN ring_carrier f /\ b IN ring_carrier f /\
weierstrass_point f p /\ weierstrass_point f q
==> projective_eq f
(projective_of_weierstrass f (weierstrass_add (f,a,b) p q))
(projective_add (f,a,b)
(projective_of_weierstrass f p)
(projective_of_weierstrass f q))`,
SIMP_TAC[GSYM WEIERSTRASS_OF_PROJECTIVE_EQ;
PROJECTIVE_OF_WEIERSTRASS_POINT;
PROJECTIVE_POINT_ADD; WEIERSTRASS_POINT_ADD;
WEIERSTRASS_OF_PROJECTIVE_ADD;
WEIERSTRASS_OF_PROJECTIVE_OF_WEIERSTRASS]);;
|