Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 57,353 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 |
(* ========================================================================= *)
(* Conversion to Skolem normal form. *)
(* ========================================================================= *)
let HOLDS_EXISTS_LEMMA = prove
(`!p t x M v preds:num#num->bool.
interpretation (functions_term t,preds) M /\
valuation(M) (v:num->A) /\
holds M v (formsubst (valmod (x,t) V) p)
==> holds M v (??x p)`,
REPEAT GEN_TAC THEN REWRITE_TAC[HOLDS_FORMSUBST1] THEN
REWRITE_TAC[HOLDS] THEN DISCH_TAC THEN
EXISTS_TAC `termval M (v:num->A) t` THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC INTERPRETATION_TERMVAL THEN
EXISTS_TAC `preds:num#num->bool` THEN ASM_REWRITE_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* One-step Skolemization of ??x p using new function f. *)
(* ------------------------------------------------------------------------- *)
let Skolem1_DEF = new_definition
`Skolem1 f x p =
formsubst (valmod (x,Fn f (MAP V (list_of_set(FV(??x p))))) V) p`;;
let HOLDS_SKOLEM1 = prove
(`!f x p.
prenex(??x p) /\
~((f,CARD(FV(??x p))) IN functions_form(??x p))
==> prenex(Skolem1 f x p) /\
(FV(Skolem1 f x p) = FV(??x p)) /\
size(Skolem1 f x p) < size(??x p) /\
(predicates_form (Skolem1 f x p) = predicates_form(??x p)) /\
(functions_form(??x p) SUBSET functions_form (Skolem1 f x p)) /\
(functions_form (Skolem1 f x p) SUBSET ((f,CARD(FV(??x p))) INSERT
functions_form(??x p))) /\
(!M. interpretation (language {p}) M /\
~(Dom(M) = EMPTY) /\
(!v:num->A. valuation(M) v ==> holds M v (??x p))
==> ?M'. (Dom(M') = Dom(M)) /\
(Pred(M') = Pred(M)) /\
(!g zs. ~(g = f) \/ ~(LENGTH zs = CARD(FV(??x p)))
==> (Fun(M') g zs = Fun(M) g zs)) /\
interpretation (language {(Skolem1 f x p)}) M' /\
(!v. valuation(M') v ==> holds M' v (Skolem1 f x p))) /\
(!N. interpretation (language {(Skolem1 f x p)}) N /\
~(Dom(N) = EMPTY)
==> !v:num->A. valuation(N) (v:num->A) /\
holds N v (Skolem1 f x p) ==> holds N v (??x p))`,
let lemma1 = prove
(`!l. LIST_UNION (MAP (\x. {x}) l) = set_of_list l`,
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[set_of_list; LIST_UNION; MAP] THEN
SET_TAC[]) in
let lemma2 = prove
(`!s. FINITE(s) ==> (LIST_UNION (MAP (\x. {x}) (list_of_set s)) = s)`,
GEN_TAC THEN REWRITE_TAC[lemma1; SET_OF_LIST_OF_SET]) in
let lemma3 = prove
(`holds M v p /\
(Dom M = Dom M') /\
(!P zs. Pred M P zs = Pred M' P zs) /\
(!f zs.
f,LENGTH zs IN functions_form p ==> (Fun M f zs = Fun M' f zs))
==> holds M' v p`,
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
DISCH_THEN(MP_TAC o MATCH_MP HOLDS_FUNCTIONS) THEN
ASM_MESON_TAC[]) in
REPEAT GEN_TAC THEN STRIP_TAC THEN ASM_CASES_TAC `x IN FV(p)` THENL
[ALL_TAC;
SUBGOAL_THEN `Skolem1 f x p = p` SUBST1_TAC THENL
[GEN_REWRITE_TAC RAND_CONV [GSYM FORMSUBST_TRIV] THEN
REWRITE_TAC[Skolem1_DEF] THEN MATCH_MP_TAC FORMSUBST_VALUATION THEN
GEN_TAC THEN REWRITE_TAC[valmod] THEN COND_CASES_TAC THEN
ASM_REWRITE_TAC[]; ALL_TAC] THEN
ASM_REWRITE_TAC[] THEN REPEAT STRIP_TAC THENL
[RULE_ASSUM_TAC(REWRITE_RULE[PRENEX]) THEN ASM_REWRITE_TAC[];
UNDISCH_TAC `~(x IN FV(p))` THEN
REWRITE_TAC[FV; Exists_DEF; Not_DEF; EXTENSION; IN_UNION; IN_DELETE;
NOT_IN_EMPTY] THEN MESON_TAC[];
REWRITE_TAC[SIZE] THEN ARITH_TAC;
REWRITE_TAC[Exists_DEF; Not_DEF; predicates_form; UNION_EMPTY];
REWRITE_TAC[Exists_DEF; Not_DEF; functions_form; UNION_EMPTY; SUBSET_REFL];
REWRITE_TAC[Exists_DEF; Not_DEF; functions_form; UNION_EMPTY] THEN SET_TAC[];
W(EXISTS_TAC o rand o rand o lhand o snd o dest_exists o snd) THEN
ASM_REWRITE_TAC[] THEN
GEN_TAC THEN DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN
REWRITE_TAC[HOLDS] THEN
DISCH_THEN(CHOOSE_THEN (MP_TAC o CONJUNCT2)) THEN
MATCH_MP_TAC EQ_IMP THEN
MATCH_MP_TAC HOLDS_VALUATION THEN
REWRITE_TAC[valmod] THEN UNDISCH_TAC `~(x IN FV(p))` THEN
CONV_TAC(ONCE_DEPTH_CONV COND_ELIM_CONV) THEN MESON_TAC[];
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN
DISCH_THEN(X_CHOOSE_TAC `a:A`) THEN REWRITE_TAC[HOLDS] THEN
EXISTS_TAC `a:A` THEN ASM_REWRITE_TAC[] THEN
UNDISCH_TAC `holds N (v:num->A) p` THEN
MATCH_MP_TAC EQ_IMP THEN
MATCH_MP_TAC HOLDS_VALUATION THEN
REWRITE_TAC[valmod] THEN UNDISCH_TAC `~(x IN FV(p))` THEN
CONV_TAC(ONCE_DEPTH_CONV COND_ELIM_CONV) THEN MESON_TAC[]]] THEN
RULE_ASSUM_TAC(REWRITE_RULE[PRENEX]) THEN REWRITE_TAC[Skolem1_DEF] THEN
ASM_REWRITE_TAC[PRENEX_FORMSUBST] THEN
ASM_REWRITE_TAC[SIZE_FORMSUBST; SIZE; ARITH_RULE `x < 3 + x`] THEN
CONJ_TAC THENL
[REWRITE_TAC[FORMSUBST_FV] THEN
REWRITE_TAC[valmod] THEN CONV_TAC(ONCE_DEPTH_CONV COND_ELIM_CONV) THEN
REWRITE_TAC[FVT; NOT_IN_EMPTY; IN_INSERT] THEN
REWRITE_TAC[GSYM MAP_o; o_DEF] THEN REWRITE_TAC[FVT] THEN
REWRITE_TAC[MATCH_MP lemma2 (SPEC `??x p` FV_FINITE)] THEN
REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN
UNDISCH_TAC `x IN FV p` THEN
REWRITE_TAC[FV; Exists_DEF; Not_DEF; UNION_EMPTY; IN_DELETE] THEN MESON_TAC[];
ALL_TAC] THEN
REWRITE_TAC[FORMSUBST_PREDICATES] THEN CONJ_TAC THENL
[REWRITE_TAC[predicates_form; Exists_DEF; Not_DEF; UNION_EMPTY]; ALL_TAC] THEN
FIRST_ASSUM(fun th ->
REWRITE_TAC[MATCH_MP FORMSUBST_FUNCTIONS_FORM_1 th]) THEN
CONJ_TAC THENL
[REWRITE_TAC[Exists_DEF; Not_DEF; functions_form; UNION_EMPTY; SUBSET_UNION];
ALL_TAC] THEN
CONJ_TAC THENL
[REWRITE_TAC[functions_term] THEN
SUBGOAL_THEN `!l. LIST_UNION (MAP functions_term (MAP V l)) = EMPTY`
(fun th -> REWRITE_TAC[th]) THENL
[LIST_INDUCT_TAC THEN
ASM_REWRITE_TAC[LIST_UNION; MAP; functions_term] THEN
SET_TAC[]; ALL_TAC] THEN
REWRITE_TAC[LENGTH_MAP] THEN
SUBGOAL_THEN `LENGTH(list_of_set(FV(??x p))) = CARD(FV(??x p))`
SUBST1_TAC THENL
[MATCH_MP_TAC LENGTH_LIST_OF_SET THEN REWRITE_TAC[FV_FINITE];
ALL_TAC] THEN
REWRITE_TAC[Exists_DEF; Not_DEF; functions_form] THEN
REWRITE_TAC[SUBSET; IN_INSERT; IN_UNION; NOT_IN_EMPTY; DISJ_ACI];
ALL_TAC] THEN
REPEAT STRIP_TAC THENL
[EXISTS_TAC `Dom(M):A->bool,
(\g zs. if (g = f) /\ (LENGTH zs = CARD(FV(??x p)))
then @a. a IN Dom(M) /\
holds M
(valmod (x,a)
(ITLIST valmod
(MAP2 (\x a. (x,a))
(list_of_set(FV(??x p)))
zs)
(\z. @c. c IN Dom(M)))) p
else Fun(M) g zs),
Pred(M)` THEN
ASM_REWRITE_TAC[Dom_DEF; Pred_DEF; Fun_DEF] THEN
CONJ_TAC THENL [REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
CONJ_TAC THENL
[REWRITE_TAC[language; interpretation] THEN
SUBGOAL_THEN
`functions
{(formsubst(valmod (x,Fn f (MAP V (list_of_set(FV(??x p))))) V) p)}
= ((f,CARD(FV(??x p))) INSERT functions_form p)`
SUBST1_TAC THENL
[MP_TAC(SPECL [`x:num`; `Fn f (MAP V (list_of_set(FV(??x p))))`;
`p:form`] FORMSUBST_FUNCTIONS_FORM_1) THEN
ASM_REWRITE_TAC[FVT] THEN
SUBGOAL_THEN `LIST_UNION(MAP FVT (MAP V (list_of_set(FV(??x p))))) =
FV(??x p)`
(fun th -> ASM_REWRITE_TAC[th]) THENL
[SUBGOAL_THEN `FV(??x p) = set_of_list(list_of_set(FV(??x p)))`
(fun th -> GEN_REWRITE_TAC RAND_CONV [th]) THENL
[CONV_TAC SYM_CONV THEN MATCH_MP_TAC SET_OF_LIST_OF_SET THEN
REWRITE_TAC[FV_FINITE]; ALL_TAC] THEN
SPEC_TAC(`list_of_set(FV(??x p))`,`l:num list`) THEN
LIST_INDUCT_TAC THEN
ASM_REWRITE_TAC[LIST_UNION; MAP; FVT; set_of_list] THEN
SET_TAC[]; ALL_TAC] THEN
REWRITE_TAC[functions; IN_INSERT; NOT_IN_EMPTY] THEN
SUBGOAL_THEN `!p. UNIONS {functions_form q | q = p } =
functions_form p`
(fun th -> REWRITE_TAC[th]) THENL
[GEN_TAC THEN REWRITE_TAC[EXTENSION; IN_UNIONS; IN_ELIM_THM] THEN
REWRITE_TAC[GSYM EXTENSION] THEN MESON_TAC[]; ALL_TAC] THEN
DISCH_THEN SUBST1_TAC THEN
REWRITE_TAC[EXTENSION; IN_INSERT; IN_UNION] THEN
X_GEN_TAC `fa:num#num` THEN
GEN_REWRITE_TAC RAND_CONV [DISJ_SYM] THEN
AP_TERM_TAC THEN REWRITE_TAC[functions_term] THEN
SUBGOAL_THEN `!l. LIST_UNION (MAP functions_term (MAP V l)) = EMPTY`
(fun th -> REWRITE_TAC[th]) THENL
[LIST_INDUCT_TAC THEN
ASM_REWRITE_TAC[LIST_UNION; MAP; functions_term] THEN
SET_TAC[]; ALL_TAC] THEN
REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN
AP_TERM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[LENGTH_MAP] THEN
MATCH_MP_TAC LENGTH_LIST_OF_SET THEN REWRITE_TAC[FV_FINITE];
ALL_TAC] THEN
REWRITE_TAC[Dom_DEF; Fun_DEF] THEN
X_GEN_TAC `g:num` THEN X_GEN_TAC `zs:A list` THEN
REWRITE_TAC[IN_INSERT; PAIR_EQ] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THENL
[DISCH_TAC THEN
SUBGOAL_THEN `?a:A. a IN Dom M /\
holds M (valmod (x,a)
(ITLIST valmod (MAP2 (\x a. x,a)
(list_of_set (FV (?? x p))) zs)
(\z. @c. c IN Dom(M)))) p`
(fun th -> REWRITE_TAC[SELECT_RULE th]) THEN
UNDISCH_TAC `!v. valuation M v ==> holds M (v:num->A) (??x p)` THEN
REWRITE_TAC[HOLDS] THEN DISCH_THEN MATCH_MP_TAC THEN
REWRITE_TAC[valuation] THEN
UNDISCH_TAC `ALL (\x:A. x IN Dom M) zs` THEN
SUBGOAL_THEN `LENGTH(list_of_set(FV(??x p))) = LENGTH (zs:A list)`
MP_TAC THENL
[ASM_REWRITE_TAC[] THEN MATCH_MP_TAC LENGTH_LIST_OF_SET THEN
REWRITE_TAC[FV_FINITE]; ALL_TAC] THEN
SPEC_TAC(`list_of_set(FV(??x p))`,`xs:num list`) THEN
SPEC_TAC(`zs:A list`,`zs:A list`) THEN
LIST_INDUCT_TAC THEN REWRITE_TAC[ALL; ITLIST; MAP2; LENGTH] THENL
[GEN_TAC THEN
REWRITE_TAC[LENGTH_EQ_NIL] THEN
DISCH_THEN SUBST1_TAC THEN
REWRITE_TAC[MAP2; ITLIST] THEN
CONV_TAC SELECT_CONV THEN
ASM_REWRITE_TAC[MEMBER_NOT_EMPTY]; ALL_TAC] THEN
LIST_INDUCT_TAC THEN REWRITE_TAC[LENGTH; NOT_SUC] THEN
REWRITE_TAC[SUC_INJ] THEN
DISCH_THEN(fun th -> DISCH_TAC THEN ANTE_RES_THEN MP_TAC th) THEN
ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
REWRITE_TAC[MAP2; ITLIST] THEN
GEN_TAC THEN REWRITE_TAC[valmod] THEN COND_CASES_TAC THEN
ASM_REWRITE_TAC[];
RULE_ASSUM_TAC(REWRITE_RULE[interpretation; language]) THEN
STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[functions; IN_INSERT; NOT_IN_EMPTY] THEN
SUBGOAL_THEN `!p. UNIONS {functions_form q | q = p } =
functions_form p`
(fun th -> ASM_REWRITE_TAC[th]) THEN
GEN_TAC THEN REWRITE_TAC[EXTENSION; IN_UNIONS; IN_ELIM_THM] THEN
REWRITE_TAC[GSYM EXTENSION] THEN MESON_TAC[]]; ALL_TAC] THEN
REWRITE_TAC[HOLDS_FORMSUBST1] THEN
X_GEN_TAC `v:num->A` THEN DISCH_TAC THEN REWRITE_TAC[termval] THEN
REWRITE_TAC[GSYM MAP_o] THEN REWRITE_TAC[o_DEF; termval] THEN
REWRITE_TAC[Fun_DEF; LENGTH_MAP] THEN
SUBGOAL_THEN `LENGTH(list_of_set(FV(??x p))) = CARD(FV (??x p))`
SUBST1_TAC THENL
[MATCH_MP_TAC LENGTH_LIST_OF_SET THEN
REWRITE_TAC[FV_FINITE]; ALL_TAC] THEN
REWRITE_TAC[] THEN MATCH_MP_TAC lemma3 THEN
REWRITE_TAC[Dom_DEF; Pred_DEF; Fun_DEF] THEN CONJ_TAC THENL
[ALL_TAC;
REPEAT STRIP_TAC THEN COND_CASES_TAC THEN REWRITE_TAC[] THEN
UNDISCH_TAC `(f',LENGTH (zs:A list)) IN functions_form p` THEN
ASM_REWRITE_TAC[] THEN
UNDISCH_TAC `~(f,CARD (FV (?? x p)) IN functions_form (?? x p))` THEN
REWRITE_TAC[Exists_DEF; functions_form; Not_DEF; UNION_EMPTY] THEN
DISCH_THEN(fun th -> REWRITE_TAC[th])] THEN
SUBGOAL_THEN
`!a. holds M (valmod (x,a)
(ITLIST valmod
(MAP2 (\x a. x,a) (list_of_set (FV (??x p)))
(MAP (\y. v y) (list_of_set(FV(??x p)))))
(\z. @c. c IN Dom(M)))) p = holds M (valmod (x,a:A) v) p`
(fun th -> REWRITE_TAC[th]) THENL
[ALL_TAC;
SUBGOAL_THEN
`(@a:A. a IN Dom M /\ holds M (valmod (x,a) v) p) IN Dom(M) /\
holds M (valmod (x,(@a. a IN Dom M /\ holds M (valmod (x,a) v) p)) v) p`
(ACCEPT_TAC o CONJUNCT2) THEN CONV_TAC SELECT_CONV THEN
FIRST_ASSUM(MATCH_MP_TAC o REWRITE_RULE[HOLDS]) THEN
RULE_ASSUM_TAC(REWRITE_RULE[valuation; Dom_DEF]) THEN
ASM_REWRITE_TAC[valuation]] THEN
X_GEN_TAC `a:A` THEN MATCH_MP_TAC HOLDS_VALUATION THEN
X_GEN_TAC `z:num` THEN DISCH_TAC THEN REWRITE_TAC[valmod] THEN
ASM_CASES_TAC `z:num = x` THEN ASM_REWRITE_TAC[] THEN
SUBGOAL_THEN `MEM z (list_of_set (FV (??x p)))` MP_TAC THENL
[SUBGOAL_THEN `z IN FV(??x p)`
(fun th -> MESON_TAC[th; MEM_LIST_OF_SET; FV_FINITE]) THEN
ASM_REWRITE_TAC[Exists_DEF; Not_DEF; FV; IN_DELETE; IN_UNION; NOT_IN_EMPTY];
ALL_TAC] THEN
SPEC_TAC(`list_of_set(FV(??x p))`,`l:num list`) THEN
LIST_INDUCT_TAC THEN REWRITE_TAC[MEM] THEN
REWRITE_TAC[ITLIST; MAP2; MAP; valmod] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[];
MATCH_MP_TAC HOLDS_EXISTS_LEMMA THEN
EXISTS_TAC `Fn f (MAP V (list_of_set (FV (?? x p))))` THEN
EXISTS_TAC `predicates_form (formsubst
(valmod (x,Fn f (MAP V (list_of_set(FV(??x p))))) V) p)` THEN
ASM_REWRITE_TAC[] THEN
UNDISCH_TAC
`interpretation
(language
(formsubst (valmod (x,Fn f (MAP V (list_of_set (FV (?? x p))))) V)
p INSERT
EMPTY))
(N:(A->bool)#((num->((A)list->A))#(num->((A)list->bool))))` THEN
REWRITE_TAC[LANGUAGE_1] THEN
MATCH_MP_TAC INTERPRETATION_SUBLANGUAGE THEN
FIRST_ASSUM(fun th ->
REWRITE_TAC[MATCH_MP FORMSUBST_FUNCTIONS_FORM_1 th]) THEN
REWRITE_TAC[SUBSET_UNION]]);;
(* ------------------------------------------------------------------------- *)
(* Multiple Skolemization of a prenex formula. *)
(* ------------------------------------------------------------------------- *)
let Skolems_EXISTENCE = prove
(`!J. ?Skolems. !r.
Skolems r = \k. PPAT (\x q. !!x (Skolems q k))
(\x q. Skolems (Skolem1 (NUMPAIR J k) x q) (SUC k))
(\p. p) r`,
GEN_TAC THEN MATCH_MP_TAC SIZE_REC THEN REWRITE_TAC[] THEN
REPEAT STRIP_TAC THEN REWRITE_TAC[PPAT_DEF] THEN
REWRITE_TAC[FUN_EQ_THM] THEN X_GEN_TAC `k:num` THEN
ASM_CASES_TAC `?x p. r = !!x p` THEN ASM_REWRITE_TAC[] THENL
[FIRST_X_ASSUM(CHOOSE_THEN (CHOOSE_THEN SUBST_ALL_TAC)) THEN
REWRITE_TAC[form_DISTINCT; form_INJ] THEN
REWRITE_TAC[RIGHT_EXISTS_AND_THM; EXISTS_REFL; GSYM EXISTS_REFL;
SELECT_REFL; CONV_RULE(LAND_CONV(ONCE_DEPTH_CONV SYM_CONV))
(SPEC_ALL SELECT_REFL)] THEN
AP_THM_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
REWRITE_TAC[size] THEN ARITH_TAC; ALL_TAC] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
FIRST_X_ASSUM(CHOOSE_THEN (CHOOSE_THEN SUBST_ALL_TAC)) THEN
REWRITE_TAC[PRENEX_DISTINCT] THEN
REWRITE_TAC[RIGHT_EXISTS_AND_THM; EXISTS_REFL; GSYM EXISTS_REFL;
SELECT_REFL; CONV_RULE(LAND_CONV(ONCE_DEPTH_CONV SYM_CONV))
(SPEC_ALL SELECT_REFL)] THEN
AP_THM_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
REWRITE_TAC[Skolem1_DEF; SIZE_FORMSUBST] THEN
REWRITE_TAC[SIZE] THEN ARITH_TAC);;
let Skolems_SPECIFICATION = prove
(`?Skolems. !J r k.
Skolems J r k =
PPAT (\x q. !!x (Skolems J q k))
(\x q. Skolems J (Skolem1 (NUMPAIR J k) x q) (SUC k))
(\p. p) r`,
REWRITE_TAC[REWRITE_RULE[SKOLEM_THM; FUN_EQ_THM] Skolems_EXISTENCE]);;
let Skolems_DEF = new_specification ["Skolems"] Skolems_SPECIFICATION;;
let HOLDS_SKOLEMS_INDUCTION = prove
(`!n J k p.
(size(p) = n) /\
prenex(p) /\
(!l m. (NUMPAIR J l,m) IN functions_form p ==> l < k)
==> universal((Skolems J p k)) /\
(FV((Skolems J p k)) = FV(p)) /\
(predicates_form (Skolems J p k) = predicates_form p) /\
functions_form p SUBSET functions_form (Skolems J p k) /\
functions_form (Skolems J p k) SUBSET
{NUMPAIR j l,m | j,l,m | (j = J) /\ k <= l} UNION
functions_form p /\
(!M. interpretation (language {p}) M /\
~(Dom M = EMPTY) /\
(!v:num->A. valuation M v ==> holds M v p)
==> ?M'. (Dom M' = Dom M) /\
(Pred M' = Pred M) /\
(!g zs. ~(Fun(M') g zs = Fun(M) g zs)
==> ?l. k <= l /\ (g = NUMPAIR J l)) /\
interpretation (language {(Skolems J p k)}) M' /\
(!v. valuation M' v
==> holds M' v (Skolems J p k))) /\
(!N. interpretation (language {(Skolems J p k)}) N /\
~(Dom(N) = EMPTY)
==> !v:num->A. valuation(N) v /\ holds N v (Skolems J p k)
==> holds N v p)`,
MATCH_MP_TAC num_WF THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN MP_TAC) THEN
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
DISCH_THEN(MP_TAC o ONCE_REWRITE_RULE[prenex_CASES]) THEN
DISCH_THEN(DISJ_CASES_THEN2 ASSUME_TAC MP_TAC) THENL
[SUBGOAL_THEN `Skolems J p k = p` SUBST1_TAC THENL
[ONCE_REWRITE_TAC[Skolems_DEF] THEN
SUBGOAL_THEN `~(?x q. p = !!x q) /\ ~(?x q. p = ??x q)` MP_TAC THENL
[REPEAT STRIP_TAC THEN UNDISCH_TAC `qfree p` THEN
ASM_REWRITE_TAC[QFREE]; ALL_TAC] THEN
SIMP_TAC[PPAT]; ALL_TAC] THEN
REWRITE_TAC[SUBSET_UNION; SUBSET_REFL] THEN
ONCE_REWRITE_TAC[universal_CASES] THEN ASM_REWRITE_TAC[] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
W(EXISTS_TAC o rand o rand o lhand o body o rand o snd) THEN
ASM_REWRITE_TAC[]; ALL_TAC] THEN
DISCH_THEN(DISJ_CASES_THEN
(X_CHOOSE_THEN `x:num` (X_CHOOSE_THEN `r:form`
(CONJUNCTS_THEN2 SUBST_ALL_TAC ASSUME_TAC)))) THEN
REWRITE_TAC[SIZE] THEN DISCH_THEN(SUBST_ALL_TAC o SYM) THENL
[FIRST_X_ASSUM(MP_TAC o check (is_imp o concl) o SPEC `size r`) THEN
REWRITE_TAC[ARITH_RULE `r < 1 + r`] THEN
DISCH_THEN(MP_TAC o SPECL [`J:num`; `k:num`; `r:form`]) THEN
W(C SUBGOAL_THEN (fun th -> REWRITE_TAC[th]) o funpow 2 lhand o snd) THENL
[ASM_REWRITE_TAC[] THEN REPEAT GEN_TAC THEN
RULE_ASSUM_TAC(REWRITE_RULE[functions_form]) THEN
DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN ARITH_TAC; ALL_TAC] THEN
STRIP_TAC THEN
SUBGOAL_THEN `Skolems J (!!x r) k = !!x (Skolems J r k)` SUBST1_TAC THENL
[GEN_REWRITE_TAC LAND_CONV [Skolems_DEF] THEN
SUBGOAL_THEN `?z s. !!x r = !!z s` (fun th -> SIMP_TAC[th; PPAT]) THEN
MESON_TAC[]; ALL_TAC] THEN
ABBREV_TAC `q = Skolems J r k` THEN
ASM_REWRITE_TAC[functions_form; FV] THEN
REWRITE_TAC[predicates_form; functions_form; LANGUAGE_1] THEN
REWRITE_TAC[GSYM LANGUAGE_1] THEN ASM_REWRITE_TAC[] THEN
CONJ_TAC THENL [ASM_MESON_TAC[universal_CASES]; ALL_TAC] THEN
REPEAT STRIP_TAC THENL
[SUBGOAL_THEN
`interpretation (language (r INSERT EMPTY)) M /\
~(Dom M = EMPTY) /\
(!v:num->A. valuation M v ==> holds M v r)`
(ANTE_RES_THEN MP_TAC) THENL
[ASM_REWRITE_TAC[] THEN GEN_TAC THEN
DISCH_THEN(fun th -> ASSUME_TAC th THEN ANTE_RES_THEN MP_TAC th) THEN
REWRITE_TAC[HOLDS] THEN
DISCH_THEN(MP_TAC o SPEC `(v:num->A) x`) THEN
REWRITE_TAC[VALMOD_TRIV] THEN DISCH_THEN MATCH_MP_TAC THEN
RULE_ASSUM_TAC(REWRITE_RULE[valuation]) THEN ASM_REWRITE_TAC[];
MATCH_MP_TAC(prove(`(!x. p x ==> q x) ==> (?x. p x) ==> ?x. q x`,
MESON_TAC[])) THEN
GEN_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[holds] THEN
ASM_MESON_TAC[VALUATION_VALMOD]];
UNDISCH_TAC `holds N (v:num->A) (!!x q)` THEN
REWRITE_TAC[HOLDS] THEN ASM_MESON_TAC[VALUATION_VALMOD]]; ALL_TAC] THEN
MP_TAC(SPECL [`NUMPAIR J k`; `x:num`; `r:form`] HOLDS_SKOLEM1) THEN
W(C SUBGOAL_THEN (fun th -> REWRITE_TAC[th]) o funpow 2 lhand o snd) THENL
[ASM_REWRITE_TAC[PRENEX] THEN ASM_MESON_TAC[LT_REFL]; ALL_TAC] THEN
STRIP_TAC THEN ABBREV_TAC `q = Skolem1 (NUMPAIR J k) x r` THEN
FIRST_X_ASSUM(MP_TAC o check (is_imp o concl) o SPEC `size q`) THEN
RULE_ASSUM_TAC(REWRITE_RULE[SIZE]) THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(MP_TAC o SPECL [`J:num`; `SUC k`; `q:form`]) THEN
ASM_REWRITE_TAC[LT] THEN
W(C SUBGOAL_THEN (fun th -> REWRITE_TAC[th]) o funpow 2 lhand o snd) THENL
[REPEAT GEN_TAC THEN
RULE_ASSUM_TAC(REWRITE_RULE[SUBSET]) THEN
DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN
REWRITE_TAC[IN_INSERT; NUMPAIR_INJ; PAIR_EQ] THEN
ASM_MESON_TAC[]; ALL_TAC] THEN
STRIP_TAC THEN
SUBGOAL_THEN `Skolems J (?? x r) k = Skolems J q (SUC k)` SUBST1_TAC THENL
[EXPAND_TAC "q" THEN GEN_REWRITE_TAC LAND_CONV [Skolems_DEF] THEN
REWRITE_TAC[PPAT];
ABBREV_TAC `s = Skolems J q (SUC k)`] THEN
ASM_REWRITE_TAC[] THEN REPEAT CONJ_TAC THENL
[ASM_MESON_TAC[SUBSET_TRANS];
UNDISCH_TAC `functions_form s SUBSET
{NUMPAIR j l,m | j,l,m | (j = J) /\ SUC k <= l} UNION
functions_form q` THEN
UNDISCH_TAC `functions_form q SUBSET
(NUMPAIR J k,CARD (FV (?? x r))) INSERT functions_form (?? x r)` THEN
REWRITE_TAC[SUBSET; IN_INSERT; IN_UNION; IN_ELIM_THM] THEN
MESON_TAC[NUMPAIR_INJ; ARITH_RULE `SUC k <= l ==> k <= l`; LE_REFL];
REPEAT STRIP_TAC THEN SUBGOAL_THEN
`interpretation (language {r}) M /\
~(Dom M = EMPTY) /\
!v:num->A. valuation M v ==> holds M v (?? x r)`
(ANTE_RES_THEN MP_TAC) THENL
[ASM_REWRITE_TAC[] THEN
RULE_ASSUM_TAC(REWRITE_RULE
[LANGUAGE_1; Not_DEF; Exists_DEF; functions_form;
predicates_form; UNION_EMPTY]) THEN
ASM_REWRITE_TAC[LANGUAGE_1]; ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_THEN `M0:(A->bool)#(num->A list->A)#(num->A
list->bool)` STRIP_ASSUME_TAC) THEN
SUBGOAL_THEN
`interpretation (language {q}) M0 /\
~(Dom M0 = EMPTY) /\
(!v:num->A. valuation M0 v ==> holds M0 v q)`
(ANTE_RES_THEN MP_TAC) THENL
[ASM_REWRITE_TAC[]; ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_THEN `M1:(A->bool)#(num->A list->A)#(num->A
list->bool)` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `M1:(A->bool)#(num->A list->A)#(num->A list->bool)` THEN
ASM_REWRITE_TAC[] THEN REPEAT GEN_TAC THEN DISCH_TAC THEN
SUBGOAL_THEN `~(Fun M1 g (zs:A list) = Fun M0 g zs) \/
~(Fun M0 g zs = Fun M g zs)`
MP_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
DISCH_THEN(DISJ_CASES_THEN2 (ANTE_RES_THEN MP_TAC) MP_TAC) THENL
[MESON_TAC[ARITH_RULE `SUC k <= l ==> k <= l`]; ALL_TAC] THEN
CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[] THEN DISCH_TAC THEN
FIRST_ASSUM MATCH_MP_TAC THEN
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NOT_EXISTS_THM]) THEN
MESON_TAC[LE_REFL];
GEN_TAC THEN DISCH_THEN(fun th -> STRIP_ASSUME_TAC th THEN MP_TAC th) THEN
DISCH_THEN(ANTE_RES_THEN ASSUME_TAC) THEN
GEN_TAC THEN DISCH_THEN(fun th -> STRIP_ASSUME_TAC th THEN MP_TAC th) THEN
DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN
MP_TAC(ASSUME `valuation N (v:num->A)`) THEN
REWRITE_TAC[IMP_IMP] THEN
SPEC_TAC(`v:num->A`,`v:num->A`) THEN
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN
UNDISCH_TAC `interpretation (language {s})
(N:(A->bool)#(num->A list->A)#(num->A list->bool))` THEN
REWRITE_TAC[LANGUAGE_1] THEN
MATCH_MP_TAC INTERPRETATION_SUBLANGUAGE THEN
ASM_REWRITE_TAC[]]);;
let HOLDS_SKOLEMS_PRENEX = prove
(`!p.
prenex(p)
==> !K. (!l m. ~(NUMPAIR K l,m IN functions_form p))
==> universal(Skolems K p 0) /\
(FV(Skolems K p 0) = FV(p)) /\
(predicates_form (Skolems K p 0) = predicates_form p) /\
functions_form p SUBSET functions_form (Skolems K p 0) /\
functions_form (Skolems K p 0) SUBSET
{NUMPAIR k l,m | k,l,m | k = K} UNION functions_form p /\
(!M. interpretation (language {p}) M /\
~(Dom M = EMPTY) /\
(!v:num->A. valuation M v ==> holds M v p)
==> ?M'. (Dom M' = Dom M) /\
(Pred M' = Pred M) /\
(!g zs. ~(Fun M' g zs = Fun M g zs)
==> (?l. g =
NUMPAIR K l)) /\
interpretation (language {(Skolems K p 0)}) M' /\
(!v. valuation M' v
==> holds M' v (Skolems K p 0))) /\
(!N. interpretation (language {(Skolems K p 0)}) N /\
~(Dom N = EMPTY)
==> !v:num->A. valuation(N) v /\ holds N v (Skolems K p 0)
==> holds N v p)`,
GEN_TAC THEN DISCH_TAC THEN GEN_TAC THEN DISCH_TAC THEN
MP_TAC(SPECL [`size p`; `K:num`; `0`; `p:form`] HOLDS_SKOLEMS_INDUCTION) THEN
ASM_REWRITE_TAC[LE_0]);;
(* ------------------------------------------------------------------------- *)
(* Now Skolemize an arbitrary (non-prenex) formula. *)
(* ------------------------------------------------------------------------- *)
let Skopre_DEF = new_definition
`Skopre K p = Skolems K (Prenex p) 0`;;
let SKOPRE = prove
(`!p K.
(!l m. ~(NUMPAIR K l,m IN functions_form p))
==> universal(Skopre K p) /\
(FV(Skopre K p) = FV(p)) /\
(predicates_form (Skopre K p) = predicates_form p) /\
functions_form p SUBSET functions_form (Skopre K p) /\
functions_form (Skopre K p) SUBSET
{NUMPAIR k l,m | k,l,m | k = K} UNION functions_form p /\
(!M. interpretation (language {p}) M /\
~(Dom M = EMPTY) /\
(!v:num->A. valuation M v ==> holds M v p)
==> ?M'. (Dom M' = Dom M) /\
(Pred M' = Pred M) /\
(!g zs. ~(Fun M' g zs = Fun M g zs)
==> (?l. g =
NUMPAIR K l)) /\
interpretation (language {(Skopre K p)}) M' /\
(!v. valuation M' v ==> holds M' v (Skopre K p))) /\
(!N. interpretation (language {(Skopre K p)}) N /\
~(Dom(N) = EMPTY)
==> !v:num->A. valuation(N) v /\ holds N v (Skopre K p)
==> holds N v p)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[Skopre_DEF] THEN
MP_TAC(SPEC `p:form` PRENEX_THM) THEN
ABBREV_TAC `r = Prenex p` THEN STRIP_TAC THEN
SUBGOAL_THEN `(functions_form r = functions_form p) /\
(predicates_form r = predicates_form p)`
STRIP_ASSUME_TAC THENL
[RULE_ASSUM_TAC(REWRITE_RULE[LANGUAGE_1; PAIR_EQ]) THEN
ASM_REWRITE_TAC[]; ALL_TAC] THEN
W(fun (_,w) -> SUBGOAL_THEN (subst [`r:form`,`p:form`] w) MP_TAC) THENL
[FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP HOLDS_SKOLEMS_PRENEX) THEN
ASM_REWRITE_TAC[]; ALL_TAC] THEN
MATCH_MP_TAC EQ_IMP THEN
ASM_REWRITE_TAC[] THEN
REPEAT(AP_TERM_TAC ORELSE ABS_TAC) THEN
BINOP_TAC THEN AP_TERM_TAC THEN ABS_TAC THEN
REWRITE_TAC[IMP_CONJ] THEN
REPEAT(MATCH_MP_TAC(TAUT `(a ==> (b = c)) ==> (a ==> b <=> a ==> c)`) THEN
DISCH_TAC) THEN TRY BINOP_TAC THEN
REPEAT((FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]) ORELSE
(FIRST_ASSUM(MATCH_MP_TAC o GSYM) THEN ASM_REWRITE_TAC[]) ORELSE
AP_TERM_TAC ORELSE ABS_TAC) THEN
REFL_TAC);;
(* ------------------------------------------------------------------------- *)
(* Bumping up function indices to leave room for Skolem functions. *)
(* ------------------------------------------------------------------------- *)
let bumpmod = new_definition
`bumpmod(M) = Dom(M),(\k zs. Fun(M) (NUMSND k) zs),Pred(M)`;;
let bumpterm = new_recursive_definition term_RECURSION
`(bumpterm (V x) = V x) /\
(bumpterm (Fn k l) = Fn (NUMPAIR 0 k) (MAP bumpterm l))`;;
let bumpform = new_recursive_definition form_RECURSION
`(bumpform False = False) /\
(bumpform (Atom p l) = Atom p (MAP bumpterm l)) /\
(bumpform (q --> r) = bumpform q --> bumpform r) /\
(bumpform (!!x r) = !!x (bumpform r))`;;
let BUMPTERM = prove
(`!M v t. termval M v t = termval (bumpmod M) v (bumpterm t)`,
GEN_TAC THEN GEN_TAC THEN MATCH_MP_TAC term_INDUCT THEN
REWRITE_TAC[termval; bumpterm] THEN
REPEAT STRIP_TAC THEN REWRITE_TAC[bumpmod; Fun_DEF; NUMPAIR_DEST] THEN
REWRITE_TAC[GSYM bumpmod] THEN REWRITE_TAC[GSYM MAP_o] THEN
AP_TERM_TAC THEN MATCH_MP_TAC MAP_EQ THEN
ASM_REWRITE_TAC[o_THM]);;
let BUMPFORM = prove
(`!M p v. holds M v p = holds (bumpmod M) v (bumpform p)`,
GEN_TAC THEN MATCH_MP_TAC form_INDUCTION THEN
REPEAT STRIP_TAC THEN
ASM_REWRITE_TAC[Dom_DEF; bumpmod; bumpform; holds; Pred_DEF] THEN
REWRITE_TAC[GSYM bumpmod; GSYM MAP_o] THEN
AP_TERM_TAC THEN MATCH_MP_TAC MAP_EQ THEN
REWRITE_TAC[o_THM; GSYM BUMPTERM; ALL_T]);;
let FUNCTIONS_FORM_BUMPFORM = prove
(`!p f m.
f,m IN functions_form(bumpform p)
==> ?k. (f = NUMPAIR 0 k) /\ k,m IN functions_form p`,
MATCH_MP_TAC form_INDUCTION THEN
REWRITE_TAC[functions_form; bumpform; IN_UNION; NOT_IN_EMPTY] THEN
CONJ_TAC THENL [ALL_TAC; MESON_TAC[]] THEN
LIST_INDUCT_TAC THEN REWRITE_TAC[MAP; LIST_UNION; NOT_IN_EMPTY] THEN
REWRITE_TAC[IN_UNION] THEN REPEAT GEN_TAC THEN
DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL
[ALL_TAC; ASM_MESON_TAC[]] THEN
REWRITE_TAC[TAUT `a /\ (b \/ c) <=> a /\ b \/ a /\ c`] THEN
REWRITE_TAC[EXISTS_OR_THM] THEN POP_ASSUM(K ALL_TAC) THEN
DISCH_TAC THEN DISJ1_TAC THEN POP_ASSUM MP_TAC THEN
SPEC_TAC(`h:term`,`t:term`) THEN MATCH_MP_TAC term_INDUCT THEN
REWRITE_TAC[bumpterm; functions_term; NOT_IN_EMPTY] THEN
REWRITE_TAC[IN_INSERT; PAIR_EQ; LENGTH_MAP] THEN REPEAT STRIP_TAC THENL
[ASM_MESON_TAC[]; ALL_TAC] THEN
REWRITE_TAC[TAUT `a /\ (b \/ c) <=> a /\ b \/ a /\ c`] THEN
REWRITE_TAC[EXISTS_OR_THM] THEN DISJ2_TAC THEN
POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN
SPEC_TAC(`l:term list`,`l:term list`) THEN
LIST_INDUCT_TAC THEN
REWRITE_TAC[MAP; LIST_UNION; NOT_IN_EMPTY] THEN
REWRITE_TAC[IN_UNION; ALL] THEN ASM_MESON_TAC[]);;
let BUMPFORM_INTERPRETATION = prove
(`interpretation (language {p}) M
==> interpretation (language {(bumpform p)}) (bumpmod M)`,
REWRITE_TAC[LANGUAGE_1; interpretation] THEN
REWRITE_TAC[Dom_DEF; bumpmod; Fun_DEF] THEN
REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
ASM_REWRITE_TAC[] THEN
ASM_MESON_TAC[FUNCTIONS_FORM_BUMPFORM; NUMPAIR_DEST]);;
let unbumpterm = new_recursive_definition term_RECURSION
`(unbumpterm (V x) = V x) /\
(unbumpterm (Fn k l) = Fn (NUMSND k) (MAP unbumpterm l))`;;
let unbumpform = new_recursive_definition form_RECURSION
`(unbumpform False = False) /\
(unbumpform (Atom p l) = Atom p (MAP unbumpterm l)) /\
(unbumpform (q --> r) = unbumpform q --> unbumpform r) /\
(unbumpform (!!x r) = !!x (unbumpform r))`;;
let UNBUMPTERM = prove
(`!t. unbumpterm(bumpterm t) = t`,
MATCH_MP_TAC term_INDUCT THEN
REWRITE_TAC[unbumpterm; bumpterm; NUMPAIR_DEST] THEN
REPEAT STRIP_TAC THEN AP_TERM_TAC THEN
REWRITE_TAC[GSYM MAP_o] THEN
MATCH_MP_TAC MAP_EQ_DEGEN THEN
ASM_REWRITE_TAC[o_THM]);;
let UNBUMPFORM = prove
(`!p. unbumpform (bumpform p) = p`,
MATCH_MP_TAC form_INDUCTION THEN
REWRITE_TAC[unbumpform; bumpform] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[GSYM MAP_o; o_DEF; UNBUMPTERM] THEN
AP_TERM_TAC THEN MATCH_MP_TAC MAP_EQ_DEGEN THEN
REWRITE_TAC[ALL_T]);;
let unbumpmod = new_definition
`unbumpmod(M) = Dom(M),(\k zs. Fun(M) (NUMPAIR 0 k) zs),Pred(M)`;;
let UNBUMPMOD_TERM = prove
(`!M v t. termval M v (bumpterm t) = termval (unbumpmod M) v t`,
GEN_TAC THEN GEN_TAC THEN MATCH_MP_TAC term_INDUCT THEN
REWRITE_TAC[termval; bumpterm] THEN
REPEAT STRIP_TAC THEN REWRITE_TAC[unbumpmod; Fun_DEF; NUMPAIR_DEST] THEN
REWRITE_TAC[GSYM unbumpmod] THEN REWRITE_TAC[GSYM MAP_o] THEN
AP_TERM_TAC THEN MATCH_MP_TAC MAP_EQ THEN
ASM_REWRITE_TAC[o_THM]);;
let UNBUMPMOD = prove
(`!M p (v:num->A). holds M v (bumpform p) = holds (unbumpmod M) v p`,
GEN_TAC THEN MATCH_MP_TAC form_INDUCTION THEN
REPEAT STRIP_TAC THEN
ASM_REWRITE_TAC[Dom_DEF; unbumpmod; bumpform; holds; Pred_DEF] THEN
REWRITE_TAC[GSYM unbumpmod; GSYM MAP_o] THEN
AP_TERM_TAC THEN MATCH_MP_TAC MAP_EQ THEN
REWRITE_TAC[o_THM; GSYM UNBUMPMOD_TERM; ALL_T]);;
(* ------------------------------------------------------------------------- *)
(* Mapping terms and formulas into terms for unique Skolem functions. *)
(* ------------------------------------------------------------------------- *)
let NUMLIST = new_recursive_definition list_RECURSION
`(NUMLIST [] = 0) /\
(NUMLIST (CONS h t) = NUMPAIR h (NUMLIST t) + 1)`;;
let NUMLIST_INJ = prove
(`!l1 l2. (NUMLIST l1 = NUMLIST l2) = (l1 = l2)`,
REPEAT(LIST_INDUCT_TAC ORELSE STRIP_TAC) THEN
ASM_REWRITE_TAC[NUMLIST; GSYM ADD1; SUC_INJ; NOT_SUC;
CONS_11; NOT_CONS_NIL; NUMPAIR_INJ]);;
let num_of_term = new_nested_recursive_definition term_RECURSION
`(!x. num_of_term (V x) = NUMPAIR 0 x) /\
(!f l. num_of_term (Fn f l) =
NUMPAIR 1 (NUMPAIR f (NUMLIST(MAP num_of_term l))))`;;
let NUM_OF_TERM_INJ = prove
(`!s t. (num_of_term s = num_of_term t) = (s = t)`,
REPEAT(MATCH_MP_TAC term_INDUCT ORELSE STRIP_TAC) THEN
ASM_REWRITE_TAC[num_of_term; NUMPAIR_INJ; NUMLIST_INJ; ARITH] THEN
REWRITE_TAC[term_INJ; term_DISTINCT] THEN
AP_TERM_TAC THEN EQ_TAC THENL [ALL_TAC; MESON_TAC[]] THEN
UNDISCH_TAC
`ALL (\s. !t. (num_of_term s = num_of_term t) = (s = t)) l` THEN
POP_ASSUM(K ALL_TAC) THEN
REWRITE_TAC[IMP_IMP] THEN
SPEC_TAC(`l':term list`,`l':term list`) THEN
SPEC_TAC(`l:term list`,`l:term list`) THEN
REPEAT(LIST_INDUCT_TAC ORELSE GEN_TAC) THEN
REWRITE_TAC[NOT_CONS_NIL; MAP; NUMLIST; num_of_term; CONS_11; ALL] THEN
REWRITE_TAC[num_of_term] THEN ASM_MESON_TAC[]);;
let num_of_form = new_recursive_definition form_RECURSION
`(num_of_form False = NUMPAIR 0 0) /\
(num_of_form (Atom p l) =
NUMPAIR 1 (NUMPAIR p (NUMLIST(MAP num_of_term l)))) /\
(num_of_form (q --> r) =
NUMPAIR 2 (NUMPAIR (num_of_form q) (num_of_form r))) /\
(num_of_form (!!x q) = NUMPAIR 3 (NUMPAIR x (num_of_form q)))`;;
let NUMLIST_NUM_OF_TERM = prove
(`!l1 l2. (NUMLIST (MAP num_of_term l1) = NUMLIST (MAP num_of_term l2)) =
(l1 = l2)`,
REPEAT(LIST_INDUCT_TAC ORELSE GEN_TAC) THEN
REWRITE_TAC[NOT_CONS_NIL; MAP; NUMLIST; num_of_term; CONS_11; ALL] THEN
ASM_REWRITE_TAC[GSYM ADD1; NOT_SUC; SUC_INJ; NUMPAIR_INJ; NUM_OF_TERM_INJ]);;
let NUM_OF_FORM_INJ = prove
(`!q r. (num_of_form q = num_of_form r) = (q = r)`,
MATCH_MP_TAC form_INDUCTION THEN REPEAT CONJ_TAC THENL
[ALL_TAC;
GEN_TAC THEN GEN_TAC;
REPEAT GEN_TAC THEN STRIP_TAC;
REPEAT GEN_TAC THEN STRIP_TAC] THEN
MATCH_MP_TAC form_INDUCTION THEN
ASM_REWRITE_TAC[num_of_form; NUMPAIR_INJ; ARITH; form_DISTINCT;
form_INJ; NUMLIST_NUM_OF_TERM]);;
let form_of_num = new_definition
`form_of_num x = @p. num_of_form p = x`;;
let FORM_OF_NUM = prove
(`form_of_num(num_of_form p) = p`,
REWRITE_TAC[form_of_num; NUM_OF_FORM_INJ]);;
(* ------------------------------------------------------------------------- *)
(* Skolemization function. *)
(* ------------------------------------------------------------------------- *)
let SKOLEMIZE = new_definition
`SKOLEMIZE p = Skopre (num_of_form(bumpform p) + 1) (bumpform p)`;;
let SKOLEMIZE_WORKS = prove
(`!p. universal(SKOLEMIZE p) /\
(FV(SKOLEMIZE p) = FV(bumpform p)) /\
(predicates_form (SKOLEMIZE p) = predicates_form (bumpform p)) /\
functions_form (bumpform p) SUBSET functions_form (SKOLEMIZE p) /\
functions_form (SKOLEMIZE p) SUBSET
{NUMPAIR k l,m | k,l,m | k = num_of_form(bumpform p) + 1} UNION
functions_form (bumpform p) /\
(!M. interpretation (language {(bumpform p)}) M /\
~(Dom M = EMPTY) /\
(!v:num->A. valuation M v ==> holds M v (bumpform p))
==> ?M'. (Dom M' = Dom M) /\
(Pred M' = Pred M) /\
(!g zs. ~(Fun M' g zs = Fun M g zs)
==> (?l. g =
NUMPAIR (num_of_form(bumpform p) + 1)
l)) /\
interpretation (language {(SKOLEMIZE p)}) M' /\
(!v. valuation M' v ==> holds M' v (SKOLEMIZE p))) /\
(!N. interpretation (language {(SKOLEMIZE p)}) N /\
~(Dom(N) = EMPTY)
==> !v:num->A. valuation(N) v /\ holds N v (SKOLEMIZE p)
==> holds N v (bumpform p))`,
GEN_TAC THEN REWRITE_TAC[SKOLEMIZE] THEN MATCH_MP_TAC SKOPRE THEN
SPEC_TAC(`num_of_form(bumpform p)`,`x:num`) THEN
SPEC_TAC(`p:form`,`p:form`) THEN
MATCH_MP_TAC form_INDUCTION THEN
REWRITE_TAC[bumpform; functions_form] THEN
REWRITE_TAC[IN_UNION; NOT_IN_EMPTY] THEN
REPEAT CONJ_TAC THEN REPEAT GEN_TAC THENL
[ALL_TAC; STRIP_TAC THEN ASM_REWRITE_TAC[]] THEN
REWRITE_TAC[GSYM MAP_o] THEN
SPEC_TAC(`x:num`,`x:num`) THEN SPEC_TAC(`l:num`,`y:num`) THEN
SPEC_TAC(`m:num`,`z:num`) THEN SPEC_TAC(`a1:term list`,`l:term list`) THEN
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[LIST_UNION; NOT_IN_EMPTY; MAP] THEN
ASM_REWRITE_TAC[IN_UNION] THEN
SPEC_TAC(`h:term`,`t:term`) THEN POP_ASSUM(K ALL_TAC) THEN
MATCH_MP_TAC term_INDUCT THEN
REWRITE_TAC[functions_term; bumpterm; o_THM; NOT_IN_EMPTY] THEN
GEN_TAC THEN LIST_INDUCT_TAC THEN
REWRITE_TAC[MAP; LIST_UNION; NOT_IN_EMPTY; IN_INSERT; ALL] THEN
REWRITE_TAC[PAIR_EQ; NUMPAIR_INJ; ARITH_RULE `~(x + 1 = 0)`] THEN
STRIP_TAC THEN REPEAT GEN_TAC THEN
ASM_REWRITE_TAC[IN_UNION; DE_MORGAN_THM] THEN
FIRST_ASSUM(fun th -> FIRST_ASSUM(MP_TAC o MATCH_MP th)) THEN
REWRITE_TAC[IN_INSERT; DE_MORGAN_THM] THEN MESON_TAC[]);;
let FUNCTIONS_FORM_SKOLEMIZE = prove
(`!p f m.
f,m IN functions_form(SKOLEMIZE p)
==> (?k. (f = NUMPAIR 0 k) /\ k,m IN functions_form p) \/
(?l. (f = NUMPAIR (num_of_form (bumpform p) + 1) l))`,
REPEAT GEN_TAC THEN DISCH_TAC THEN
MP_TAC(SPEC_ALL SKOLEMIZE_WORKS) THEN
DISCH_THEN(MP_TAC o el 4 o CONJUNCTS) THEN
REWRITE_TAC[SUBSET; IN_UNION] THEN
DISCH_THEN(fun ith -> FIRST_ASSUM(MP_TAC o MATCH_MP ith)) THEN
MATCH_MP_TAC(TAUT `(a ==> a') /\ (b ==> b') ==> a \/ b ==> b' \/ a'`) THEN
CONJ_TAC THENL
[REWRITE_TAC[IN_ELIM_THM; NUMPAIR_INJ; PAIR_EQ] THEN MESON_TAC[];
ALL_TAC] THEN
POP_ASSUM(K ALL_TAC) THEN
SPEC_TAC(`p:form`,`p:form`) THEN
MATCH_MP_TAC form_INDUCTION THEN
REWRITE_TAC[functions_form; bumpform; IN_UNION; NOT_IN_EMPTY] THEN
CONJ_TAC THENL [ALL_TAC; MESON_TAC[]] THEN
LIST_INDUCT_TAC THEN REWRITE_TAC[MAP; LIST_UNION; NOT_IN_EMPTY] THEN
REWRITE_TAC[IN_UNION] THEN DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL
[ALL_TAC; ASM_MESON_TAC[]] THEN
REWRITE_TAC[TAUT `a /\ (b \/ c) <=> a /\ b \/ a /\ c`] THEN
REWRITE_TAC[EXISTS_OR_THM] THEN POP_ASSUM(K ALL_TAC) THEN
DISCH_TAC THEN DISJ1_TAC THEN POP_ASSUM MP_TAC THEN
SPEC_TAC(`h:term`,`t:term`) THEN MATCH_MP_TAC term_INDUCT THEN
REWRITE_TAC[bumpterm; functions_term; NOT_IN_EMPTY] THEN
REWRITE_TAC[IN_INSERT; PAIR_EQ; LENGTH_MAP] THEN REPEAT STRIP_TAC THENL
[ASM_MESON_TAC[]; ALL_TAC] THEN
REWRITE_TAC[TAUT `a /\ (b \/ c) <=> a /\ b \/ a /\ c`] THEN
REWRITE_TAC[EXISTS_OR_THM] THEN DISJ2_TAC THEN
POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN
SPEC_TAC(`l:term list`,`l:term list`) THEN
LIST_INDUCT_TAC THEN
REWRITE_TAC[MAP; LIST_UNION; NOT_IN_EMPTY] THEN
REWRITE_TAC[IN_UNION; ALL] THEN ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Construction of Skolem model for a formula. *)
(* ------------------------------------------------------------------------- *)
let SKOMOD1 = new_definition
`SKOMOD1 p M =
if (!v. valuation M v ==> holds M v p)
then @M'. (Dom M' = Dom (bumpmod M)) /\
(Pred M' = Pred (bumpmod M)) /\
(!g zs.
~(Fun M' g zs = Fun (bumpmod M) g zs)
==> (?l. g =
NUMPAIR (num_of_form (bumpform p) + 1) l)) /\
interpretation (language {(SKOLEMIZE p)}) M' /\
(!v:num->A. valuation M' v
==> holds M' v (SKOLEMIZE p))
else (Dom M,(\g zs. @a:A. a IN Dom(M)),Pred M)`;;
let SKOMOD1_WORKS = prove
(`!M p.
interpretation (language {p}) M /\
~(Dom M = EMPTY)
==> (Dom (SKOMOD1 p M) = Dom (bumpmod M)) /\
(Pred (SKOMOD1 p M) = Pred (bumpmod M)) /\
interpretation (language {(SKOLEMIZE p)}) (SKOMOD1 p M) /\
((!v:num->A. valuation M v ==> holds M v p)
==> (!g zs.
~(Fun (SKOMOD1 p M) g zs = Fun (bumpmod M) g zs)
==> (?l. g =
NUMPAIR (num_of_form (bumpform p) + 1) l)) /\
(!v:num->A. valuation (SKOMOD1 p M) v
==> holds (SKOMOD1 p M) v (SKOLEMIZE p)))`,
REPEAT GEN_TAC THEN STRIP_TAC THEN REWRITE_TAC[SKOMOD1] THEN
COND_CASES_TAC THEN REWRITE_TAC[GSYM CONJ_ASSOC] THENL
[ONCE_REWRITE_TAC[AC CONJ_ACI `d /\ p /\ i /\ g /\ v <=>
d /\ p /\ g /\ i /\ v`] THEN
CONV_TAC SELECT_CONV THEN
MATCH_MP_TAC(el 5 (CONJUNCTS (SPEC_ALL SKOLEMIZE_WORKS))) THEN
REPEAT CONJ_TAC THENL
[MATCH_MP_TAC BUMPFORM_INTERPRETATION THEN ASM_REWRITE_TAC[];
ASM_REWRITE_TAC[Dom_DEF; bumpmod];
REWRITE_TAC[GSYM BUMPFORM] THEN
REWRITE_TAC[valuation; Dom_DEF; bumpmod] THEN
ASM_REWRITE_TAC[GSYM valuation]];
REWRITE_TAC[Dom_DEF; Pred_DEF; Fun_DEF; bumpmod] THEN
REWRITE_TAC[interpretation; Dom_DEF; LANGUAGE_1; Fun_DEF] THEN
REPEAT STRIP_TAC THEN CONV_TAC SELECT_CONV THEN
ASM_REWRITE_TAC[MEMBER_NOT_EMPTY]]);;
let SKOMOD = new_definition
`SKOMOD M =
(Dom M,
(\g zs. if NUMFST g = 0 then Fun M (NUMSND g) zs
else Fun (SKOMOD1 (unbumpform(form_of_num (PRE(NUMFST g)))) M)
g zs),
Pred M)`;;
let SKOMOD_INTERPRETATION = prove
(`interpretation (language {p}) M /\
~(Dom M :A->bool = EMPTY)
==> interpretation (language {(SKOLEMIZE p)}) (SKOMOD M)`,
DISCH_THEN(fun th -> STRIP_ASSUME_TAC th THEN MP_TAC (CONJUNCT1 th)) THEN
REWRITE_TAC[LANGUAGE_1; interpretation] THEN
REWRITE_TAC[Dom_DEF; SKOMOD; Fun_DEF] THEN
DISCH_TAC THEN REPEAT GEN_TAC THEN
DISCH_THEN(fun th -> STRIP_ASSUME_TAC th THEN MP_TAC th) THEN
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
DISCH_THEN(MP_TAC o MATCH_MP FUNCTIONS_FORM_SKOLEMIZE) THEN
STRIP_TAC THEN
ASM_REWRITE_TAC[NUMPAIR_DEST; ARITH_RULE `~(x + 1 = 0)`] THENL
[FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
REWRITE_TAC[GSYM ADD1; PRE; FORM_OF_NUM; UNBUMPFORM] THEN
REWRITE_TAC[ADD1] THEN
MP_TAC(SPEC_ALL SKOMOD1_WORKS) THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o el 1 o CONJUNCTS)) THEN
REWRITE_TAC[LANGUAGE_1; interpretation] THEN
ASM_REWRITE_TAC[bumpmod; Dom_DEF] THEN
DISCH_THEN MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN
ASM_MESON_TAC[]);;
let SKOMOD_WORKS = prove
(`interpretation(language {p}) M /\
~(Dom M = EMPTY)
==> ((!v:num->A. valuation(M) v ==> holds M v p) <=>
(!v:num->A. valuation(SKOMOD M) v
==> holds (SKOMOD M) v (SKOLEMIZE p)))`,
STRIP_TAC THEN REWRITE_TAC[SKOMOD; valuation; Dom_DEF] THEN
REWRITE_TAC[GSYM valuation] THEN EQ_TAC THENL
[DISCH_TAC THEN X_GEN_TAC `v:num->A` THEN DISCH_TAC THEN
SUBGOAL_THEN
`holds (SKOMOD1 p M) (v:num->A) (SKOLEMIZE p)`
MP_TAC THENL
[SUBGOAL_THEN `valuation (SKOMOD1 p M) (v:num->A)` MP_TAC THENL
[MP_TAC(SPEC_ALL SKOMOD1_WORKS) THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(ASSUME_TAC o CONJUNCT1) THEN
UNDISCH_TAC `valuation M (v:num->A)` THEN
ASM_REWRITE_TAC[Dom_DEF; valuation; bumpmod]; ALL_TAC] THEN
SPEC_TAC(`v:num->A`,`v:num->A`) THEN
MP_TAC(SPEC_ALL SKOMOD1_WORKS) THEN ASM_REWRITE_TAC[] THEN
DISCH_TAC THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
MATCH_MP_TAC EQ_IMP THEN
SPEC_TAC(`v:num->A`,`v:num->A`) THEN
MATCH_MP_TAC HOLDS_FUNCTIONS THEN
MP_TAC(SPEC_ALL SKOMOD1_WORKS) THEN ASM_REWRITE_TAC[] THEN
STRIP_TAC THEN ASM_REWRITE_TAC[Dom_DEF; Pred_DEF; bumpmod] THEN
REWRITE_TAC[Fun_DEF] THEN REPEAT GEN_TAC THEN
DISCH_THEN(MP_TAC o MATCH_MP FUNCTIONS_FORM_SKOLEMIZE) THEN
STRIP_TAC THEN ASM_REWRITE_TAC[NUMPAIR_DEST] THENL
[FIRST_X_ASSUM(MP_TAC o SPECL [`NUMPAIR 0 k`; `zs:A list`]) THEN
REWRITE_TAC[bumpmod; Fun_DEF; NUMPAIR_DEST] THEN
REWRITE_TAC[NUMPAIR_INJ; ARITH_RULE `~(0 = x + 1)`];
REWRITE_TAC[ARITH_RULE `~(x + 1 = 0)`] THEN
REWRITE_TAC[GSYM ADD1; PRE; FORM_OF_NUM; UNBUMPFORM]];
DISCH_TAC THEN SUBGOAL_THEN
`!v. valuation (bumpmod M) (v:num->A)
==> holds (bumpmod M) v (bumpform p)`
MP_TAC THENL
[ALL_TAC; REWRITE_TAC[GSYM BUMPFORM; valuation] THEN
REWRITE_TAC[Dom_DEF; bumpmod]] THEN
RULE_ASSUM_TAC(REWRITE_RULE[GSYM SKOMOD]) THEN
GEN_TAC THEN DISCH_TAC THEN
MP_TAC(INST [`@x:A. T`,`ty:A`]
(last (CONJUNCTS(SPEC_ALL SKOLEMIZE_WORKS)))) THEN
DISCH_THEN(MP_TAC o SPEC
`SKOMOD (M:(A->bool)#(num->A list->A)#(num->A list->bool))`) THEN
W(C SUBGOAL_THEN (fun th -> REWRITE_TAC[th]) o funpow 2 lhand o snd) THENL
[CONJ_TAC THENL
[MATCH_MP_TAC SKOMOD_INTERPRETATION THEN ASM_REWRITE_TAC[];
ASM_REWRITE_TAC[SKOMOD; Dom_DEF]]; ALL_TAC] THEN
DISCH_TAC THEN
SUBGOAL_THEN `holds (SKOMOD M) (v:num->A) (bumpform p)` MP_TAC THENL
[FIRST_ASSUM MATCH_MP_TAC THEN CONJ_TAC THENL
[REWRITE_TAC[SKOMOD; valuation; Dom_DEF] THEN
ASM_REWRITE_TAC[GSYM valuation] THEN
UNDISCH_TAC `valuation (bumpmod M) (v:num->A)` THEN
REWRITE_TAC[bumpmod; Dom_DEF; valuation];
FIRST_ASSUM MATCH_MP_TAC THEN
UNDISCH_TAC `valuation (bumpmod M) (v:num->A)` THEN
REWRITE_TAC[bumpmod; Dom_DEF; valuation]];
MATCH_MP_TAC EQ_IMP THEN
SPEC_TAC(`v:num->A`,`v:num->A`) THEN
MATCH_MP_TAC HOLDS_FUNCTIONS THEN
REWRITE_TAC[SKOMOD; Dom_DEF; Fun_DEF; Pred_DEF; bumpmod] THEN
REPEAT GEN_TAC THEN
DISCH_THEN(MP_TAC o MATCH_MP FUNCTIONS_FORM_BUMPFORM) THEN
STRIP_TAC THEN ASM_REWRITE_TAC[NUMPAIR_DEST]]]);;
let SKOLEMIZE_SATISFIABLE = prove
(`(?M. ~(Dom M :A->bool = EMPTY) /\
interpretation (language s) M /\
M satisfies s) <=>
(?M. ~(Dom M :A->bool = EMPTY) /\
interpretation (language {SKOLEMIZE p | p IN s}) M /\
M satisfies {SKOLEMIZE p | p IN s})`,
REWRITE_TAC[satisfies; IN_ELIM_THM] THEN
EQ_TAC THEN STRIP_TAC THENL
[EXISTS_TAC `SKOMOD (M:(A->bool)#(num->A list->A)#(num->A list->bool))` THEN
REPEAT CONJ_TAC THENL
[ASM_REWRITE_TAC[Dom_DEF; SKOMOD];
REWRITE_TAC[interpretation; language; functions] THEN
REWRITE_TAC[IN_UNIONS; IN_ELIM_THM] THEN
REPEAT STRIP_TAC THEN
MP_TAC(SPEC_ALL SKOMOD_INTERPRETATION) THEN
W(C SUBGOAL_THEN (fun t -> REWRITE_TAC[t]) o funpow 2 lhand o snd) THENL
[ASM_REWRITE_TAC[] THEN
UNDISCH_TAC `interpretation (language s)
(M:(A->bool)#(num->A list->A)#(num->A list->bool))` THEN
REWRITE_TAC[interpretation; language] THEN
REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
ASM_REWRITE_TAC[] THEN
SUBGOAL_THEN `functions {p} SUBSET functions s`
(MATCH_MP_TAC o REWRITE_RULE[SUBSET]) THEN
ASM_REWRITE_TAC[] THEN
UNDISCH_TAC `p:form IN s` THEN
REWRITE_TAC[functions] THEN
REWRITE_TAC[SUBSET; IN_UNIONS; IN_INSERT;
NOT_IN_EMPTY; IN_ELIM_THM] THEN
MESON_TAC[]; ALL_TAC] THEN
REWRITE_TAC[interpretation; language] THEN
DISCH_THEN MATCH_MP_TAC THEN
ASM_REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY; functions] THEN
REWRITE_TAC[IN_UNIONS; IN_ELIM_THM] THEN ASM_MESON_TAC[];
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
SUBGOAL_THEN `interpretation (language {p'}) M /\
~(Dom M :A->bool = EMPTY)`
(MP_TAC o MATCH_MP SKOMOD_WORKS) THENL
[ALL_TAC; ASM_MESON_TAC[]] THEN
ASM_REWRITE_TAC[] THEN
UNDISCH_TAC `interpretation (language s)
(M:(A->bool)#(num->A list->A)#(num->A list->bool))` THEN
REWRITE_TAC[language] THEN
MATCH_MP_TAC INTERPRETATION_SUBLANGUAGE THEN
REWRITE_TAC[functions; SUBSET; IN_UNIONS; IN_ELIM_THM] THEN
REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN
UNDISCH_TAC `p':form IN s` THEN ASM_MESON_TAC[]];
ALL_TAC] THEN
EXISTS_TAC
`unbumpmod (M:(A->bool)#(num->A list->A)#(num->A list->bool))` THEN
REWRITE_TAC[GSYM UNBUMPMOD] THEN REPEAT CONJ_TAC THENL
[ASM_REWRITE_TAC[unbumpmod; Dom_DEF];
ALL_TAC;
REPEAT STRIP_TAC THEN
SUBGOAL_THEN
`interpretation (language ({(SKOLEMIZE p)})) M /\
~(Dom M :A->bool = EMPTY)`
(MATCH_MP_TAC o MATCH_MP (last(CONJUNCTS(SPEC_ALL SKOLEMIZE_WORKS)))) THENL
[ASM_REWRITE_TAC[] THEN
FIRST_ASSUM(fun th -> UNDISCH_TAC (concl th) THEN
REWRITE_TAC[language] THEN
MATCH_MP_TAC INTERPRETATION_SUBLANGUAGE) THEN
REWRITE_TAC[functions; SUBSET; IN_ELIM_THM] THEN
REWRITE_TAC[IN_UNIONS; IN_INSERT; NOT_IN_EMPTY; IN_ELIM_THM] THEN
ASM_MESON_TAC[];
CONJ_TAC THENL
[UNDISCH_TAC `valuation (unbumpmod M) (v:num->A)` THEN
REWRITE_TAC[valuation; Dom_DEF; unbumpmod];
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN
UNDISCH_TAC `valuation (unbumpmod M) (v:num->A)` THEN
REWRITE_TAC[valuation; Dom_DEF; unbumpmod] THEN
ASM_MESON_TAC[]]]] THEN
SUBGOAL_THEN
`interpretation (language {bumpform p | p IN s})
(M:(A->bool)#(num->A list->A)#(num->A list->bool))`
MP_TAC THENL
[FIRST_ASSUM(fun th -> UNDISCH_TAC (concl th) THEN
REWRITE_TAC[language] THEN
MATCH_MP_TAC INTERPRETATION_SUBLANGUAGE) THEN
REWRITE_TAC[functions; SUBSET; IN_ELIM_THM; IN_UNIONS] THEN
MP_TAC(GEN `p:form` (el 3
(CONJUNCTS (SPEC `p:form`
(INST [`@x:A. T`,`ty:A`] SKOLEMIZE_WORKS))))) THEN
REWRITE_TAC[SUBSET] THEN MESON_TAC[]; ALL_TAC] THEN
SUBGOAL_THEN `!p. interpretation (language {(bumpform p)})
(M:(A->bool)#(num->A list->A)#(num->A list->bool))
==> interpretation (language {p}) (unbumpmod M)`
MP_TAC THENL
[REWRITE_TAC[LANGUAGE_1; interpretation] THEN
REWRITE_TAC[Dom_DEF; unbumpmod; Fun_DEF] THEN
MATCH_MP_TAC form_INDUCTION THEN
REWRITE_TAC[functions_form; bumpform] THEN
REWRITE_TAC[NOT_IN_EMPTY] THEN
REWRITE_TAC[IN_UNION] THEN
SPEC_TAC(`\x:A. x IN Dom M`,`P:A->bool`) THEN
GEN_TAC THEN CONJ_TAC THENL [ALL_TAC; MESON_TAC[]] THEN
REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
ASM_REWRITE_TAC[] THEN
UNDISCH_TAC `f,LENGTH(l:A list) IN LIST_UNION (MAP functions_term a1)` THEN
SPEC_TAC(`LENGTH(l:A list)`,`k:num`) THEN
SPEC_TAC(`a1:term list`,`l:term list`) THEN
LIST_INDUCT_TAC THEN REWRITE_TAC[MAP; LIST_UNION; NOT_IN_EMPTY] THEN
REWRITE_TAC[IN_UNION] THEN REPEAT STRIP_TAC THENL
[ALL_TAC; ASM_MESON_TAC[]] THEN
DISJ1_TAC THEN UNDISCH_TAC `f,k IN functions_term h` THEN
SPEC_TAC(`h:term`,`t:term`) THEN
MATCH_MP_TAC term_INDUCT THEN
REWRITE_TAC[bumpterm; functions_term; NOT_IN_EMPTY] THEN
REWRITE_TAC[IN_INSERT; NUMPAIR_INJ; PAIR_EQ; LENGTH_MAP] THEN
POP_ASSUM_LIST(K ALL_TAC) THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
DISJ2_TAC THEN POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN
SPEC_TAC(`l:term list`,`l:term list`) THEN
LIST_INDUCT_TAC THEN REWRITE_TAC[MAP; LIST_UNION; NOT_IN_EMPTY] THEN
REWRITE_TAC[ALL; IN_UNION] THEN
POP_ASSUM MP_TAC THEN
W((fun t -> SPEC_TAC(t,`P:term->bool`)) o find_term is_abs o snd) THEN
MESON_TAC[]; ALL_TAC] THEN
REWRITE_TAC[interpretation; language; functions] THEN
REWRITE_TAC[IN_UNIONS; IN_ELIM_THM; IN_INSERT; NOT_IN_EMPTY] THEN
REWRITE_TAC[Dom_DEF; unbumpmod] THEN REWRITE_TAC[GSYM unbumpmod] THEN
POP_ASSUM_LIST(K ALL_TAC) THEN REPEAT STRIP_TAC THEN
SUBGOAL_THEN
`!p. p IN s ==> interpretation (language {p}) (unbumpmod
(M:(A->bool)#(num->A list->A)#(num->A list->bool)))`
MP_TAC THENL
[REPEAT STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `p:form`) THEN
W(C SUBGOAL_THEN (fun t -> REWRITE_TAC[t]) o funpow 2 lhand o snd) THENL
[REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[];
REWRITE_TAC[interpretation; language; functions] THEN
REWRITE_TAC[Dom_DEF; unbumpmod] THEN REWRITE_TAC[GSYM unbumpmod] THEN
REWRITE_TAC[IN_UNIONS; IN_INSERT; IN_ELIM_THM; NOT_IN_EMPTY]];
REWRITE_TAC[interpretation; language; functions] THEN
REWRITE_TAC[IN_INSERT; IN_ELIM_THM; NOT_IN_EMPTY; IN_UNIONS] THEN
REWRITE_TAC[Dom_DEF; unbumpmod] THEN REWRITE_TAC[GSYM unbumpmod] THEN
DISCH_THEN(MP_TAC o SPEC `f':form`) THEN
ASM_REWRITE_TAC[] THEN DISCH_THEN MATCH_MP_TAC THEN
ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]]);;
(* ------------------------------------------------------------------------- *)
(* Skolemization right down to quantifier-free formula. *)
(* ------------------------------------------------------------------------- *)
let specialize = new_recursive_definition form_RECURSION
`(specialize False = False) /\
(specialize (Atom p l) = Atom p l) /\
(specialize (q --> r) = q --> r) /\
(specialize (!!x r) = specialize r)`;;
let SPECIALIZE_SATISFIES = prove
(`!M s. ~(Dom M:A->bool = EMPTY)
==> (M satisfies s <=> M satisfies {specialize p | p IN s})`,
REPEAT STRIP_TAC THEN REWRITE_TAC[satisfies; IN_ELIM_THM] THEN
SUBGOAL_THEN
`!p. (!v:num->A. valuation M v ==> holds M v p) <=>
(!v:num->A. valuation M v ==> holds M v (specialize p))`
(fun th -> MESON_TAC[th]) THEN
MATCH_MP_TAC form_INDUCTION THEN REWRITE_TAC[specialize] THEN
ASM_REWRITE_TAC[HOLDS_UCLOSE]);;
let SPECIALIZE_QFREE = prove
(`!p. universal p ==> qfree(specialize p)`,
MATCH_MP_TAC universal_INDUCT THEN REWRITE_TAC[specialize] THEN
MATCH_MP_TAC form_INDUCTION THEN REWRITE_TAC[qfree; specialize]);;
let SPECIALIZE_LANGUAGE = prove
(`!s. language {specialize p | p IN s} = language s`,
REWRITE_TAC[language; functions; predicates; PAIR_EQ] THEN
REWRITE_TAC[EXTENSION; IN_UNIONS; IN_ELIM_THM] THEN
SUBGOAL_THEN
`(!p. functions_form(specialize p) = functions_form p) /\
(!p. predicates_form(specialize p) = predicates_form p)`
(fun th -> GEN_MESON_TAC 16 40 1[th]) THEN
CONJ_TAC THEN MATCH_MP_TAC form_INDUCTION THEN
REWRITE_TAC[specialize; predicates_form; functions_form]);;
let SKOLEM = new_definition
`SKOLEM p = specialize(SKOLEMIZE p)`;;
let SKOLEM_QFREE = prove
(`!p. qfree(SKOLEM p)`,
REPEAT GEN_TAC THEN REWRITE_TAC[SKOLEM] THEN
MATCH_MP_TAC SPECIALIZE_QFREE THEN
REWRITE_TAC[SKOLEMIZE_WORKS]);;
let SKOLEM_SATISFIABLE = prove
(`(?M. ~(Dom M :A->bool = EMPTY) /\
interpretation (language s) M /\
M satisfies s) =
(?M. ~(Dom M :A->bool = EMPTY) /\
interpretation (language {SKOLEM p | p IN s}) M /\
M satisfies {SKOLEM p | p IN s})`,
GEN_REWRITE_TAC LAND_CONV [SKOLEMIZE_SATISFIABLE] THEN
AP_TERM_TAC THEN ABS_TAC THEN
MATCH_MP_TAC(TAUT `(a ==> (b = c)) ==> (a /\ b <=> a /\ c)`) THEN
DISCH_TAC THEN BINOP_TAC THENL
[AP_THM_TAC THEN AP_TERM_TAC THEN
GEN_REWRITE_TAC LAND_CONV [GSYM SPECIALIZE_LANGUAGE] THEN
AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; SKOLEM] THEN
REWRITE_TAC[IN_ELIM_THM] THEN MESON_TAC[];
REWRITE_TAC[SKOLEM] THEN
FIRST_ASSUM(fun th ->
GEN_REWRITE_TAC LAND_CONV [MATCH_MP SPECIALIZE_SATISFIES th]) THEN
AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; SKOLEM] THEN
REWRITE_TAC[IN_ELIM_THM] THEN MESON_TAC[]]);;
|