Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 83,353 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
(* ========================================================================= *)
(* HOL basics                                                                *)
(* ========================================================================= *)

ARITH_RULE
 `(a * x + b * y + a * y) EXP 3 + (b * x) EXP 3 +
  (a * x + b * y + b * x) EXP 3 + (a * y) EXP 3 =
  (a * x + a * y + b * x) EXP 3 + (b * y) EXP 3 +
  (a * y + b * y + b * x) EXP 3 + (a * x) EXP 3`;;

(* ========================================================================= *)
(* Propositional logic                                                       *)
(* ========================================================================= *)

TAUT
 `(~input_a ==> (internal <=> T)) /\
  (~input_b ==> (output <=> internal)) /\
  (input_a ==> (output <=> F)) /\
  (input_b ==> (output <=> F))
  ==> (output <=> ~(input_a \/ input_b))`;;

TAUT
`(i1 /\ i2 <=> a) /\
 (i1 /\ i3 <=> b) /\
 (i2 /\ i3 <=> c) /\
 (i1 /\ c <=> d) /\
 (m /\ r <=> e) /\
 (m /\ w <=> f) /\
 (n /\ w <=> g) /\
 (p /\ w <=> h) /\
 (q /\ w <=> i) /\
 (s /\ x <=> j) /\
 (t /\ x <=> k) /\
 (v /\ x <=> l) /\
 (i1 \/ i2 <=> m) /\
 (i1 \/ i3 <=> n) /\
 (i1 \/ q <=> p) /\
 (i2 \/ i3 <=> q) /\
 (i3 \/ a <=> r) /\
 (a \/ w <=> s) /\
 (b \/ w <=> t) /\
 (d \/ h <=> u) /\
 (c \/ w <=> v) /\
 (~e <=> w) /\
 (~u <=> x) /\
 (i \/ l <=> o1) /\
 (g \/ k <=> o2) /\
 (f \/ j <=> o3)
 ==> (o1 <=> ~i1) /\ (o2 <=> ~i2) /\ (o3 <=> ~i3)`;;

(* ========================================================================= *)
(* Abstractions and quantifiers                                              *)
(* ========================================================================= *)

MESON[]
 `((?x. !y. P(x) <=> P(y)) <=> ((?x. Q(x)) <=> (!y. Q(y)))) <=>
  ((?x. !y. Q(x) <=> Q(y)) <=> ((?x. P(x)) <=> (!y. P(y))))`;;

MESON[]
`(!x y z. P x y /\ P y z ==> P x z) /\
 (!x y z. Q x y /\ Q y z ==> Q x z) /\
 (!x y. P x y ==> P y x) /\
 (!x y. P x y \/ Q x y)
 ==> (!x y. P x y) \/ (!x y. Q x y)`;;

let ewd1062 = MESON[]
 `(!x. x <= x) /\
  (!x y z. x <= y /\ y <= z ==> x <= z) /\
  (!x y. f(x) <= y <=> x <= g(y))
  ==> (!x y. x <= y ==> f(x) <= f(y)) /\
      (!x y. x <= y ==> g(x) <= g(y))`;;

let ewd1062 = MESON[]
 `(!x. R x x) /\
  (!x y z. R x y /\ R y z ==> R x z) /\
  (!x y. R (f x) y <=> R x (g y))
  ==> (!x y. R x y ==> R (f x) (f y)) /\
      (!x y. R x y ==> R (g x) (g y))`;;

MESON[] `(?!x. g(f x) = x) <=> (?!y. f(g y) = y)`;;

MESON [ADD_ASSOC; ADD_SYM] `m + (n + p) = n + (m + p)`;;

(* ========================================================================= *)
(* Tactics and tacticals                                                     *)
(* ========================================================================= *)

g `2 <= n /\ n <= 2 ==> f(2,2) + n < f(n,n) + 7`;;
e DISCH_TAC;;
b();;
e(CONV_TAC(REWRITE_CONV[LE_ANTISYM]));;
e(SIMP_TAC[]);;
e(ONCE_REWRITE_TAC[EQ_SYM_EQ]);;
e DISCH_TAC;;
e(ASM_REWRITE_TAC[]);;
e(CONV_TAC ARITH_RULE);;
let trivial = top_thm();;

g `2 <= n /\ n <= 2 ==> f(2,2) + n < f(n,n) + 7`;;
e(CONV_TAC(REWRITE_CONV[LE_ANTISYM]));;
e(SIMP_TAC[]);;
e(ONCE_REWRITE_TAC[EQ_SYM_EQ]);;
e DISCH_TAC;;
e(ASM_REWRITE_TAC[]);;
e(CONV_TAC ARITH_RULE);;
let trivial = top_thm();;

g `2 <= n /\ n <= 2 ==> f(2,2) + n < f(n,n) + 7`;;
e(CONV_TAC(REWRITE_CONV[LE_ANTISYM]) THEN
  SIMP_TAC[] THEN ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN
  DISCH_TAC THEN ASM_REWRITE_TAC[] THEN CONV_TAC ARITH_RULE);;
let trivial = top_thm();;

let trivial = prove
 (`2 <= n /\ n <= 2 ==> f(2,2) + n < f(n,n) + 7`,
  CONV_TAC(REWRITE_CONV[LE_ANTISYM]) THEN
  SIMP_TAC[] THEN ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN
  DISCH_TAC THEN ASM_REWRITE_TAC[] THEN CONV_TAC ARITH_RULE);;

let trivial = prove
 (`!x y:real. &0 < x * y ==> (&0 < x <=> &0 < y)`,
  REPEAT GEN_TAC THEN MP_TAC(SPECL [`--x`; `y:real`] REAL_LE_MUL) THEN
  MP_TAC(SPECL [`x:real`; `--y`] REAL_LE_MUL) THEN REAL_ARITH_TAC);;

let trivial = prove
 (`!x y:real. &0 < x * y ==> (&0 < x <=> &0 < y)`,
  MATCH_MP_TAC REAL_WLOG_LE THEN CONJ_TAC THEN REPEAT GEN_TAC THEN
  MP_TAC(SPECL [`--x`; `y:real`] REAL_LE_MUL) THEN REAL_ARITH_TAC);;

let SUM_OF_NUMBERS = prove
 (`!n. nsum(1..n) (\i. i) = (n * (n + 1)) DIV 2`,
  INDUCT_TAC THEN ASM_REWRITE_TAC[NSUM_CLAUSES_NUMSEG] THEN ARITH_TAC);;

let SUM_OF_SQUARES = prove
 (`!n. nsum(1..n) (\i. i * i) = (n * (n + 1) * (2 * n + 1)) DIV 6`,
  INDUCT_TAC THEN ASM_REWRITE_TAC[NSUM_CLAUSES_NUMSEG] THEN ARITH_TAC);;

let SUM_OF_CUBES = prove
 (`!n. nsum(1..n) (\i. i*i*i) = (n * n * (n + 1) * (n + 1)) DIV 4`,
  INDUCT_TAC THEN ASM_REWRITE_TAC[NSUM_CLAUSES_NUMSEG] THEN ARITH_TAC);;

(* ========================================================================= *)
(* HOL's number systems                                                      *)
(* ========================================================================= *)

REAL_ARITH `!x y:real. (abs(x) - abs(y)) <= abs(x - y)`;;

INT_ARITH
 `!a b a' b' D:int.
     (a pow 2 - D * b pow 2) * (a' pow 2 - D * b' pow 2) =
     (a * a' + D * b * b') pow 2 - D * (a * b' + a' * b) pow 2`;;

REAL_ARITH
 `!x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11:real.
        x3 = abs(x2) - x1 /\
        x4 = abs(x3) - x2 /\
        x5 = abs(x4) - x3 /\
        x6 = abs(x5) - x4 /\
        x7 = abs(x6) - x5 /\
        x8 = abs(x7) - x6 /\
        x9 = abs(x8) - x7 /\
        x10 = abs(x9) - x8 /\
        x11 = abs(x10) - x9
        ==> x1 = x10 /\ x2 = x11`;;

REAL_ARITH `!x y:real. x < y ==> x < (x + y) / &2 /\ (x + y) / &2 < y`;;

REAL_ARITH
 `((x1 pow 2 + x2 pow 2 + x3 pow 2 + x4 pow 2) pow 2) =
  ((&1 / &6) * ((x1 + x2) pow 4 + (x1 + x3) pow 4 + (x1 + x4) pow 4 +
                (x2 + x3) pow 4 + (x2 + x4) pow 4 + (x3 + x4) pow 4) +
   (&1 / &6) * ((x1 - x2) pow 4 + (x1 - x3) pow 4 + (x1 - x4) pow 4 +
                (x2 - x3) pow 4 + (x2 - x4) pow 4 + (x3 - x4) pow 4))`;;

ARITH_RULE `x < 2 ==> 2 * x + 1 < 4`;;

(**** Fails
ARITH_RULE `~(2 * m + 1 = 2 * n)`;;
 ****)

ARITH_RULE `x < 2 EXP 30 ==> (429496730 * x) DIV (2 EXP 32) = x DIV 10`;;

(**** Fails
ARITH_RULE `x <= 2 EXP 30 ==> (429496730 * x) DIV (2 EXP 32) = x DIV 10`;;
 ****)

(**** Fails
ARITH_RULE `1 <= x /\ 1 <= y ==> 1 <= x * y`;;
 ****)

(**** Fails
REAL_ARITH `!x y:real. x = y ==> x * y = y pow 2`;;
 ****)

prioritize_real();;

REAL_RING
  `s = (a + b + c) / &2
   ==> s * (s - b) * (s - c) + s * (s - c) * (s - a) +
       s * (s - a) * (s - b) - (s - a) * (s - b) * (s - c) =
       a * b * c`;;

REAL_RING `a pow 2 = &2 /\ x pow 2 + a * x + &1 = &0 ==> x pow 4 + &1 = &0`;;

REAL_RING
 `(a * x pow 2 + b * x + c = &0) /\
  (a * y pow 2 + b * y + c = &0) /\
  ~(x = y)
  ==> (a * x * y = c) /\ (a * (x + y) + b = &0)`;;

REAL_RING
 `p = (&3 * a1 - a2 pow 2) / &3 /\
  q = (&9 * a1 * a2 - &27 * a0 - &2 * a2 pow 3) / &27 /\
  x = z + a2 / &3 /\
  x * w = w pow 2 - p / &3
  ==> (z pow 3 + a2 * z pow 2 + a1 * z + a0 = &0 <=>
       if p = &0 then x pow 3 = q
       else (w pow 3) pow 2 - q * (w pow 3) - p pow 3 / &27 = &0)`;;

REAL_FIELD `&0 < x ==> &1 / x - &1 / (&1 + x) = &1 / (x * (&1 + x))`;;

REAL_FIELD
`s pow 2 = b pow 2 - &4 * a * c
 ==> (a * x pow 2 + b * x + c = &0 <=>
      if a = &0 then
         if b = &0 then
            if c = &0 then T else F
         else x = --c / b
      else x = (--b + s) / (&2 * a) \/ x = (--b + --s) / (&2 * a))`;;

(**** This needs an external SDP solver to assist with proof

needs "Examples/sos.ml";;

SOS_RULE `1 <= x /\ 1 <= y ==> 1 <= x * y`;;

REAL_SOS
 `!a1 a2 a3 a4:real.
      &0 <= a1 /\ &0 <= a2 /\ &0 <= a3 /\ &0 <= a4
      ==> a1 pow 2 +
          ((a1 + a2) / &2) pow 2 +
          ((a1 + a2 + a3) / &3) pow 2 +
          ((a1 + a2 + a3 + a4) / &4) pow 2
         <= &4 * (a1 pow 2 + a2 pow 2 + a3 pow 2 + a4 pow 2)`;;

REAL_SOS
 `!a b c:real.
      a >= &0 /\ b >= &0 /\ c >= &0
      ==> &3 / &2 * (b + c) * (a + c) * (a + b) <=
          a * (a + c) * (a + b) +
          b * (b + c) * (a + b) +
          c * (b + c) * (a + c)`;;

SOS_CONV `&2 * x pow 4 + &2 * x pow 3 * y - x pow 2 * y pow 2 + &5 * y pow 4`;;

PURE_SOS
`x pow 4 + &2 * x pow 2 * z + x pow 2 - &2 * x * y * z +
          &2 * y pow 2 * z pow 2 + &2 * y * z pow 2 + &2 * z pow 2 - &2 * x +
          &2 *  y * z + &1 >= &0`;;

*****)

needs "Examples/cooper.ml";;

COOPER_RULE `ODD n ==> 2 * n DIV 2 < n`;;

COOPER_RULE `!n. n >= 8 ==> ?a b. n = 3 * a + 5 * b`;;

needs "Rqe/make.ml";;

REAL_QELIM_CONV `!x. &0 <= x ==> ?y. y pow 2 = x`;;

(* ========================================================================= *)
(* Inductive definitions                                                     *)
(* ========================================================================= *)

(* ------------------------------------------------------------------------- *)
(* Bug puzzle.                                                               *)
(* ------------------------------------------------------------------------- *)

prioritize_real();;

let move = new_definition
 `move ((ax,ay),(bx,by),(cx,cy)) ((ax',ay'),(bx',by'),(cx',cy')) <=>
        (?a. ax' = ax + a * (cx - bx) /\ ay' = ay + a * (cy - by) /\
             bx' = bx /\ by' = by /\ cx' = cx /\ cy' = cy) \/
        (?b. bx' = bx + b * (ax - cx) /\ by' = by + b * (ay - cy) /\
             ax' = ax /\ ay' = ay /\ cx' = cx /\ cy' = cy) \/
        (?c. ax' = ax /\ ay' = ay /\ bx' = bx /\ by' = by /\
             cx' = cx + c * (bx - ax) /\ cy' = cy + c * (by - ay))`;;

let reachable_RULES,reachable_INDUCT,reachable_CASES =
 new_inductive_definition
  `(!p. reachable p p) /\
   (!p q r. move p q /\ reachable q r ==> reachable p r)`;;

let oriented_area = new_definition
 `oriented_area ((ax,ay),(bx,by),(cx,cy)) =
      ((bx - ax) * (cy - ay) - (cx - ax) * (by - ay)) / &2`;;

let MOVE_INVARIANT = prove
 (`!p p'. move p p' ==> oriented_area p = oriented_area p'`,
  REWRITE_TAC[FORALL_PAIR_THM; move; oriented_area] THEN CONV_TAC REAL_RING);;

let REACHABLE_INVARIANT = prove
 (`!p p'. reachable p p' ==> oriented_area p = oriented_area p'`,
  MATCH_MP_TAC reachable_INDUCT THEN MESON_TAC[MOVE_INVARIANT]);;

let IMPOSSIBILITY_B = prove
 (`~(reachable ((&0,&0),(&3,&0),(&0,&3)) ((&1,&2),(&2,&5),(-- &2,&3)) \/
     reachable ((&0,&0),(&3,&0),(&0,&3)) ((&1,&2),(-- &2,&3),(&2,&5)) \/
     reachable ((&0,&0),(&3,&0),(&0,&3)) ((&2,&5),(&1,&2),(-- &2,&3)) \/
     reachable ((&0,&0),(&3,&0),(&0,&3)) ((&2,&5),(-- &2,&3),(&1,&2)) \/
     reachable ((&0,&0),(&3,&0),(&0,&3)) ((-- &2,&3),(&1,&2),(&2,&5)) \/
     reachable ((&0,&0),(&3,&0),(&0,&3)) ((-- &2,&3),(&2,&5),(&1,&2)))`,
  STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP REACHABLE_INVARIANT) THEN
  REWRITE_TAC[oriented_area] THEN REAL_ARITH_TAC);;

(* ------------------------------------------------------------------------- *)
(* Verification of a simple concurrent program.                              *)
(* ------------------------------------------------------------------------- *)

let init = new_definition
 `init (x,y,pc1,pc2,sem) <=>
        pc1 = 10 /\ pc2 = 10 /\ x = 0 /\ y = 0 /\ sem = 1`;;

let trans = new_definition
 `trans (x,y,pc1,pc2,sem) (x',y',pc1',pc2',sem') <=>
        pc1 = 10 /\ sem > 0 /\ pc1' = 20 /\ sem' = sem - 1 /\
                   (x',y',pc2') = (x,y,pc2) \/
        pc2 = 10 /\ sem > 0 /\ pc2' = 20 /\ sem' = sem - 1 /\
                   (x',y',pc1') = (x,y,pc1) \/
        pc1 = 20 /\ pc1' = 30 /\ x' = x + 1 /\
                   (y',pc2',sem') = (y,pc2,sem) \/
        pc2 = 20 /\ pc2' = 30 /\ y' = y + 1 /\ x' = x /\
                   pc1' = pc1 /\ sem' = sem \/
        pc1 = 30 /\ pc1' = 10 /\ sem' = sem + 1 /\
                   (x',y',pc2') = (x,y,pc2) \/
        pc2 = 30 /\ pc2' = 10 /\ sem' = sem + 1 /\
                   (x',y',pc1') = (x,y,pc1)`;;

let mutex = new_definition
 `mutex (x,y,pc1,pc2,sem) <=> pc1 = 10 \/ pc2 = 10`;;

let indinv = new_definition
 `indinv (x:num,y:num,pc1,pc2,sem) <=>
        sem + (if pc1 = 10 then 0 else 1) + (if pc2 = 10 then 0 else 1) = 1`;;

needs "Library/rstc.ml";;

let INDUCTIVE_INVARIANT = prove
 (`!init invariant transition P.
        (!s. init s ==> invariant s) /\
        (!s s'. invariant s /\ transition s s' ==> invariant s') /\
        (!s. invariant s ==> P s)
        ==> !s s':A. init s /\ RTC transition s s' ==> P s'`,
  REPEAT GEN_TAC THEN MP_TAC(ISPECL
   [`transition:A->A->bool`;
    `\s s':A. invariant s ==> invariant s'`] RTC_INDUCT) THEN
  MESON_TAC[]);;

let MUTEX = prove
 (`!s s'. init s /\ RTC trans s s' ==> mutex s'`,
  MATCH_MP_TAC INDUCTIVE_INVARIANT THEN EXISTS_TAC `indinv` THEN
  REWRITE_TAC[init; trans; indinv; mutex; FORALL_PAIR_THM; PAIR_EQ] THEN
  ARITH_TAC);;

(* ========================================================================= *)
(* Wellfounded induction                                                     *)
(* ========================================================================= *)

let NSQRT_2 = prove
 (`!p q. p * p = 2 * q * q ==> q = 0`,
  MATCH_MP_TAC num_WF THEN REWRITE_TAC[RIGHT_IMP_FORALL_THM] THEN
  REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o AP_TERM `EVEN`) THEN
  REWRITE_TAC[EVEN_MULT; ARITH] THEN REWRITE_TAC[EVEN_EXISTS] THEN
  DISCH_THEN(X_CHOOSE_THEN `m:num` SUBST_ALL_TAC) THEN
  FIRST_X_ASSUM(MP_TAC o SPECL [`q:num`; `m:num`]) THEN
  ASM_REWRITE_TAC[ARITH_RULE
   `q < 2 * m ==> q * q = 2 * m * m ==> m = 0 <=>
    (2 * m) * 2 * m = 2 * q * q ==> 2 * m <= q`] THEN
  ASM_MESON_TAC[LE_MULT2; MULT_EQ_0; ARITH_RULE `2 * x <= x <=> x = 0`]);;

(* ========================================================================= *)
(* Changing proof style                                                      *)
(* ========================================================================= *)

let fix ts = MAP_EVERY X_GEN_TAC ts;;

let assume lab t =
  DISCH_THEN(fun th -> if concl th = t then LABEL_TAC lab th
                       else failwith "assume");;

let we're finished tac = tac;;

let suffices_to_prove q tac = SUBGOAL_THEN q (fun th -> MP_TAC th THEN tac);;

let note(lab,t) tac =
  SUBGOAL_THEN t MP_TAC THENL [tac; ALL_TAC] THEN
  DISCH_THEN(fun th -> LABEL_TAC lab th);;

let have t = note("",t);;

let cases (lab,t) tac =
  SUBGOAL_THEN t MP_TAC THENL [tac; ALL_TAC] THEN
  DISCH_THEN(REPEAT_TCL DISJ_CASES_THEN (LABEL_TAC lab));;

let consider (x,lab,t) tac =
  let tm = mk_exists(x,t) in
  SUBGOAL_THEN tm (X_CHOOSE_THEN x (LABEL_TAC lab)) THENL [tac; ALL_TAC];;

let trivial = MESON_TAC[];;
let algebra = CONV_TAC NUM_RING;;
let arithmetic = ARITH_TAC;;

let by labs tac = MAP_EVERY (fun l -> USE_THEN l MP_TAC) labs THEN tac;;

let using ths tac = MAP_EVERY MP_TAC ths THEN tac;;

let so constr arg tac = constr arg (FIRST_ASSUM MP_TAC THEN tac);;

let NSQRT_2 = prove
 (`!p q. p * p = 2 * q * q ==> q = 0`,
  suffices_to_prove
   `!p. (!m. m < p ==> (!q. m * m = 2 * q * q ==> q = 0))
        ==> (!q. p * p = 2 * q * q ==> q = 0)`
   (MATCH_ACCEPT_TAC num_WF) THEN
  fix [`p:num`] THEN
  assume("A") `!m. m < p ==> !q. m * m = 2 * q * q ==> q = 0` THEN
  fix [`q:num`] THEN
  assume("B") `p * p = 2 * q * q` THEN
  so have `EVEN(p * p) <=> EVEN(2 * q * q)` (trivial) THEN
  so have `EVEN(p)` (using [ARITH; EVEN_MULT] trivial) THEN
  so consider (`m:num`,"C",`p = 2 * m`) (using [EVEN_EXISTS] trivial) THEN
  cases ("D",`q < p \/ p <= q`) (arithmetic) THENL
   [so have `q * q = 2 * m * m ==> m = 0` (by ["A"] trivial) THEN
    so we're finished (by ["B"; "C"] algebra);

    so have `p * p <= q * q` (using [LE_MULT2] trivial) THEN
    so have `q * q = 0` (by ["B"] arithmetic) THEN
    so we're finished (algebra)]);;

(* ========================================================================= *)
(* Recursive definitions                                                     *)
(* ========================================================================= *)

let fib = define
 `fib n = if n = 0 \/ n = 1 then 1 else fib(n - 1) + fib(n - 2)`;;

let fib2 = define
 `(fib2 0 = 1) /\
  (fib2 1 = 1) /\
  (fib2 (n + 2) = fib2(n) + fib2(n + 1))`;;

let halve = define `halve (2 * n) = n`;;

let unknown = define `unknown n = unknown(n + 1)`;;

define
 `!n. collatz(n) = if n <= 1 then n
                   else if EVEN(n) then collatz(n DIV 2)
                   else collatz(3 * n + 1)`;;

let fusc_def = define
 `(fusc (2 * n) = if n = 0 then 0 else fusc(n)) /\
  (fusc (2 * n + 1) = if n = 0 then 1 else fusc(n) + fusc(n + 1))`;;

let fusc = prove
 (`fusc 0 = 0 /\
   fusc 1 = 1 /\
   fusc (2 * n) = fusc(n) /\
   fusc (2 * n + 1) = fusc(n) + fusc(n + 1)`,
  REWRITE_TAC[fusc_def] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
  MP_TAC(INST [`0`,`n:num`] fusc_def) THEN ARITH_TAC);;

let binom = define
 `(!n. binom(n,0) = 1) /\
  (!k. binom(0,SUC(k)) = 0) /\
  (!n k. binom(SUC(n),SUC(k)) = binom(n,SUC(k)) + binom(n,k))`;;

let BINOM_LT = prove
 (`!n k. n < k ==> (binom(n,k) = 0)`,
  INDUCT_TAC THEN INDUCT_TAC THEN REWRITE_TAC[binom; ARITH; LT_SUC; LT] THEN
  ASM_SIMP_TAC[ARITH_RULE `n < k ==> n < SUC(k)`; ARITH]);;

let BINOM_REFL = prove
 (`!n. binom(n,n) = 1`,
  INDUCT_TAC THEN ASM_SIMP_TAC[binom; BINOM_LT; LT; ARITH]);;

let BINOM_FACT = prove
 (`!n k. FACT n * FACT k * binom(n+k,k) = FACT(n + k)`,
  INDUCT_TAC THEN REWRITE_TAC[FACT; ADD_CLAUSES; MULT_CLAUSES; BINOM_REFL] THEN
  INDUCT_TAC THEN REWRITE_TAC[ADD_CLAUSES; FACT; MULT_CLAUSES; binom] THEN
  FIRST_X_ASSUM(MP_TAC o SPEC `SUC k`) THEN POP_ASSUM MP_TAC THEN
  REWRITE_TAC[ADD_CLAUSES; FACT; binom] THEN CONV_TAC NUM_RING);;

let BINOMIAL_THEOREM = prove
 (`!n. (x + y) EXP n = nsum(0..n) (\k. binom(n,k) * x EXP k * y EXP (n - k))`,
  INDUCT_TAC THEN ASM_REWRITE_TAC[EXP] THEN
  REWRITE_TAC[NSUM_SING_NUMSEG; binom; SUB_REFL; EXP; MULT_CLAUSES] THEN
  SIMP_TAC[NSUM_CLAUSES_LEFT; ADD1; ARITH_RULE `0 <= n + 1`; NSUM_OFFSET] THEN
  ASM_REWRITE_TAC[EXP; binom; GSYM ADD1; GSYM NSUM_LMUL] THEN
  REWRITE_TAC[RIGHT_ADD_DISTRIB; NSUM_ADD_NUMSEG; MULT_CLAUSES; SUB_0] THEN
  MATCH_MP_TAC(ARITH_RULE `a = e /\ b = c + d ==> a + b = c + d + e`) THEN
  CONJ_TAC THENL [REWRITE_TAC[MULT_AC; SUB_SUC]; REWRITE_TAC[GSYM EXP]] THEN
  SIMP_TAC[ADD1; SYM(REWRITE_CONV[NSUM_OFFSET]`nsum(m+1..n+1) (\i. f i)`)] THEN
  REWRITE_TAC[NSUM_CLAUSES_NUMSEG; GSYM ADD1; LE_SUC; LE_0] THEN
  SIMP_TAC[NSUM_CLAUSES_LEFT; LE_0] THEN
  SIMP_TAC[BINOM_LT; LT; MULT_CLAUSES; ADD_CLAUSES; SUB_0; EXP; binom] THEN
  SIMP_TAC[ARITH; ARITH_RULE `k <= n ==> SUC n - k = SUC(n - k)`; EXP] THEN
  REWRITE_TAC[MULT_AC]);;

(* ========================================================================= *)
(* Sets and functions                                                        *)
(* ========================================================================= *)

let SURJECTIVE_IFF_RIGHT_INVERSE = prove
 (`(!y. ?x. g x = y) <=> (?f. g o f = I)`,
  REWRITE_TAC[FUN_EQ_THM; o_DEF; I_DEF] THEN MESON_TAC[]);;

let INJECTIVE_IFF_LEFT_INVERSE = prove
 (`(!x y. f x = f y ==> x = y) <=> (?g. g o f = I)`,
  let lemma = MESON[]
   `(!x x'. f x = f x' ==> x = x') <=> (!y:B. ?u:A. !x. f x = y ==> u = x)` in
  REWRITE_TAC[lemma; FUN_EQ_THM; o_DEF; I_DEF] THEN MESON_TAC[]);;

let cantor = new_definition
 `cantor(x,y) = ((x + y) EXP 2 + 3 * x + y) DIV 2`;;

(**** Needs external SDP solver

needs "Examples/sos.ml";;

let CANTOR_LEMMA = prove
 (`cantor(x,y) = cantor(x',y') ==> x + y = x' + y'`,
  REWRITE_TAC[cantor] THEN CONV_TAC SOS_RULE);;

****)

let CANTOR_LEMMA_LEMMA = prove
 (`x + y < x' + y' ==> cantor(x,y) < cantor(x',y')`,
  REWRITE_TAC[ARITH_RULE `x + y < z <=> x + y + 1 <= z`] THEN DISCH_TAC THEN
  REWRITE_TAC[cantor; ARITH_RULE `3 * x + y = (x + y) + 2 * x`] THEN
  MATCH_MP_TAC(ARITH_RULE `x + 2 <= y ==> x DIV 2 < y DIV 2`) THEN
  MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `(x + y + 1) EXP 2 + (x + y + 1)` THEN
  CONJ_TAC THENL [ARITH_TAC; ALL_TAC] THEN
  MATCH_MP_TAC(ARITH_RULE `a:num <= b /\ c <= d ==> a + c <= b + d + e`) THEN
  ASM_SIMP_TAC[EXP_2; LE_MULT2]);;

let CANTOR_LEMMA = prove
 (`cantor(x,y) = cantor(x',y') ==> x + y = x' + y'`,
  MESON_TAC[LT_CASES; LT_REFL; CANTOR_LEMMA_LEMMA]);;

let CANTOR_INJ = prove
 (`!w z. cantor w = cantor z ==> w = z`,
  REWRITE_TAC[FORALL_PAIR_THM; PAIR_EQ] THEN REPEAT GEN_TAC THEN
  DISCH_THEN(fun th -> MP_TAC th THEN ASSUME_TAC(MATCH_MP CANTOR_LEMMA th)) THEN
  ASM_REWRITE_TAC[cantor; ARITH_RULE `3 * x + y = (x + y) + 2 * x`] THEN
  REWRITE_TAC[ARITH_RULE `(a + b + 2 * x) DIV 2 = (a + b) DIV 2 + x`] THEN
  POP_ASSUM MP_TAC THEN ARITH_TAC);;

let CANTOR_THM = prove
 (`~(?f:(A->bool)->A. (!x y. f(x) = f(y) ==> x = y))`,
  REWRITE_TAC[INJECTIVE_IFF_LEFT_INVERSE; FUN_EQ_THM; I_DEF; o_DEF] THEN
  STRIP_TAC THEN FIRST_ASSUM(MP_TAC o SPEC `\x:A. ~(g x x)`) THEN
  MESON_TAC[]);;

(* ========================================================================= *)
(* Inductive datatypes                                                       *)
(* ========================================================================= *)

let line_INDUCT,line_RECURSION = define_type
 "line = Line_1 | Line_2 | Line_3 | Line_4 |
         Line_5 | Line_6 | Line_7";;

let point_INDUCT,point_RECURSION = define_type
 "point = Point_1 | Point_2 | Point_3 | Point_4 |
          Point_5 | Point_6 | Point_7";;

let fano_incidence =
  [1,1; 1,2; 1,3; 2,1; 2,4; 2,5; 3,1; 3,6; 3,7; 4,2; 4,4;
   4,6; 5,2; 5,5; 5,7; 6,3; 6,4; 6,7; 7,3; 7,5; 7,6];;

let fano_point i = mk_const("Point_"^string_of_int i,[]);;
let fano_line i = mk_const("Line_"^string_of_int i,[]);;
let p = `p:point` and l = `l:line` ;;

let fano_clause (i,j) = mk_conj(mk_eq(p,fano_point i),mk_eq(l,fano_line j));;

parse_as_infix("ON",(11,"right"));;

let ON = new_definition
 (mk_eq(`((ON):point->line->bool) p l`,
        list_mk_disj(map fano_clause fano_incidence)));;

let ON_CLAUSES = prove
 (list_mk_conj(allpairs
    (fun i j -> mk_eq(mk_comb(mk_comb(`(ON)`,fano_point i),fano_line j),
                      if mem (i,j) fano_incidence then `T` else `F`))
    (1--7) (1--7)),
  REWRITE_TAC[ON; distinctness "line"; distinctness "point"]);;

let FORALL_POINT = prove
 (`(!p. P p) <=> P Point_1 /\ P Point_2 /\ P Point_3 /\ P Point_4 /\
                 P Point_5 /\ P Point_6 /\ P Point_7`,
  EQ_TAC THENL [SIMP_TAC[]; REWRITE_TAC[point_INDUCT]]);;

let FORALL_LINE = prove
 (`(!p. P p) <=> P Line_1 /\ P Line_2 /\ P Line_3 /\ P Line_4 /\
                 P Line_5 /\ P Line_6 /\ P Line_7`,
  EQ_TAC THENL [SIMP_TAC[]; REWRITE_TAC[line_INDUCT]]);;

let EXISTS_POINT = prove
 (`(?p. P p) <=> P Point_1 \/ P Point_2 \/ P Point_3 \/ P Point_4 \/
                 P Point_5 \/ P Point_6 \/ P Point_7`,
  MATCH_MP_TAC(TAUT `(~p <=> ~q) ==> (p <=> q)`) THEN
  REWRITE_TAC[DE_MORGAN_THM; NOT_EXISTS_THM; FORALL_POINT]);;

let EXISTS_LINE = prove
 (`(?p. P p) <=> P Line_1 \/ P Line_2 \/ P Line_3 \/ P Line_4 \/
                 P Line_5 \/ P Line_6 \/ P Line_7`,
  MATCH_MP_TAC(TAUT `(~p <=> ~q) ==> (p <=> q)`) THEN
  REWRITE_TAC[DE_MORGAN_THM; NOT_EXISTS_THM; FORALL_LINE]);;

let FANO_TAC =
  GEN_REWRITE_TAC DEPTH_CONV
   [FORALL_POINT; EXISTS_LINE; EXISTS_POINT; FORALL_LINE] THEN
  GEN_REWRITE_TAC DEPTH_CONV
   (basic_rewrites() @
    [ON_CLAUSES; distinctness "point"; distinctness "line"]);;

let FANO_RULE tm = prove(tm,FANO_TAC);;

let AXIOM_1 = FANO_RULE
`!p p'. ~(p = p') ==> ?l. p ON l /\ p' ON l /\
                          !l'. p ON l' /\ p' ON l' ==> l' = l`;;

let AXIOM_2 = FANO_RULE
 `!l l'. ?p. p ON l /\ p ON l'`;;

let AXIOM_3 = FANO_RULE
 `?p p' p''. ~(p = p') /\ ~(p' = p'') /\ ~(p = p'') /\
             ~(?l. p ON l /\ p' ON l /\ p'' ON l)`;;

let AXIOM_4 = FANO_RULE
  `!l. ?p p' p''. ~(p = p') /\ ~(p' = p'') /\ ~(p = p'') /\
                  p ON l /\ p' ON l /\ p'' ON l`;;

(* ========================================================================= *)
(* Semantics of programming languages                                        *)
(* ========================================================================= *)

let string_INDUCT,string_RECURSION =
  define_type "string = String (int list)";;

let expression_INDUCT,expression_RECURSION = define_type
"expression = Literal num
            | Variable string
            | Plus expression expression
            | Times expression expression";;

let command_INDUCT,command_RECURSION = define_type
  "command = Assign string expression
           | Sequence command command
           | If expression command command
           | While expression command";;

parse_as_infix(";;",(18,"right"));;
parse_as_infix(":=",(20,"right"));;
override_interface(";;",`Sequence`);;
override_interface(":=",`Assign`);;
overload_interface("+",`Plus`);;
overload_interface("*",`Times`);;

let value = define
 `(value (Literal n) s = n) /\
  (value (Variable x) s = s(x)) /\
  (value (e1 + e2) s = value e1 s + value e2 s) /\
  (value (e1 * e2) s = value e1 s * value e2 s)`;;

let sem_RULES,sem_INDUCT,sem_CASES = new_inductive_definition
  `(!x e s s'. s'(x) = value e s /\ (!y. ~(y = x) ==> s'(y) = s(y))
               ==> sem (x := e) s s') /\
   (!c1 c2 s s' s''. sem(c1) s s' /\ sem(c2) s' s'' ==> sem(c1 ;; c2) s s'') /\
   (!e c1 c2 s s'. ~(value e s = 0) /\ sem(c1) s s' ==> sem(If e c1 c2) s s') /\
   (!e c1 c2 s s'. value e s = 0 /\ sem(c2) s s' ==> sem(If e c1 c2) s s') /\
   (!e c s. value e s = 0 ==> sem(While e c) s s) /\
   (!e c s s' s''. ~(value e s = 0) /\ sem(c) s s' /\ sem(While e c) s' s''
                   ==> sem(While e c) s s'')`;;

(**** Fails
  define
   `sem(While e c) s s' <=> if value e s = 0 then (s' = s)
                            else ?s''. sem c s s'' /\ sem(While e c) s'' s'`;;
****)

let DETERMINISM = prove
 (`!c s s' s''. sem c s s' /\ sem c s s'' ==> (s' = s'')`,
  REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
  MATCH_MP_TAC sem_INDUCT THEN REPEAT CONJ_TAC THEN REPEAT GEN_TAC THEN
  DISCH_TAC THEN ONCE_REWRITE_TAC[sem_CASES] THEN
  REWRITE_TAC[distinctness "command"; injectivity "command"] THEN
  REWRITE_TAC[FUN_EQ_THM] THEN ASM_MESON_TAC[]);;

let wlp = new_definition
 `wlp c q s <=> !s'. sem c s s' ==> q s'`;;

let terminates = new_definition
 `terminates c s <=> ?s'. sem c s s'`;;

let wp = new_definition
 `wp c q s <=> terminates c s /\ wlp c q s`;;

let WP_TOTAL = prove
 (`!c. (wp c EMPTY = EMPTY)`,
  REWRITE_TAC[FUN_EQ_THM; wp; wlp; terminates; EMPTY] THEN MESON_TAC[]);;

let WP_MONOTONIC = prove
 (`q SUBSET r ==> wp c q SUBSET wp c r`,
  REWRITE_TAC[SUBSET; IN; wp; wlp; terminates] THEN MESON_TAC[]);;

let WP_DISJUNCTIVE = prove
 (`(wp c p) UNION (wp c q) = wp c (p UNION q)`,
  REWRITE_TAC[FUN_EQ_THM; IN; wp; wlp; IN_ELIM_THM; UNION; terminates] THEN
  MESON_TAC[DETERMINISM]);;

let WP_SEQ = prove
 (`!c1 c2 q. wp (c1 ;; c2) = wp c1 o wp c2`,
  REWRITE_TAC[wp; wlp; terminates; FUN_EQ_THM; o_THM] THEN REPEAT GEN_TAC THEN
  GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [sem_CASES] THEN
  REWRITE_TAC[injectivity "command"; distinctness "command"] THEN
  MESON_TAC[DETERMINISM]);;

let correct = new_definition
 `correct p c q <=> p SUBSET (wp c q)`;;

let CORRECT_PRESTRENGTH = prove
 (`!p p' c q. p SUBSET p' /\ correct p' c q ==> correct p c q`,
  REWRITE_TAC[correct; SUBSET_TRANS]);;

let CORRECT_POSTWEAK = prove
 (`!p c q q'. correct p c q' /\ q' SUBSET q ==> correct p c q`,
  REWRITE_TAC[correct] THEN MESON_TAC[WP_MONOTONIC; SUBSET_TRANS]);;

let CORRECT_SEQ = prove
 (`!p q r c1 c2.
        correct p c1 r /\ correct r c2 q ==> correct p (c1 ;; c2) q`,
  REWRITE_TAC[correct; WP_SEQ; o_THM] THEN
  MESON_TAC[WP_MONOTONIC; SUBSET_TRANS]);;

(* ------------------------------------------------------------------------- *)
(* Need a fresh HOL session here; now doing shallow embedding.               *)
(* ------------------------------------------------------------------------- *)

let assign = new_definition
  `Assign (f:S->S) (q:S->bool) = q o f`;;

parse_as_infix(";;",(18,"right"));;

let sequence = new_definition
 `(c1:(S->bool)->(S->bool)) ;; (c2:(S->bool)->(S->bool)) = c1 o c2`;;

let if_def = new_definition
 `If e (c:(S->bool)->(S->bool)) q = {s | if e s then c q s else q s}`;;

let ite_def = new_definition
 `Ite e (c1:(S->bool)->(S->bool)) c2 q =
    {s | if e s then c1 q s else c2 q s}`;;

let while_RULES,while_INDUCT,while_CASES = new_inductive_definition
         `!q s. If e (c ;; while e c) q s ==> while e c q s`;;

let while_def = new_definition
 `While e c q =
    {s | !w. (!s:S. (if e(s) then c w s else q s) ==> w s) ==> w s}`;;

let monotonic = new_definition
 `monotonic c <=> !q q'. q SUBSET q' ==> (c q) SUBSET (c q')`;;

let MONOTONIC_ASSIGN = prove
 (`monotonic (Assign f)`,
  SIMP_TAC[monotonic; assign; SUBSET; o_THM; IN]);;

let MONOTONIC_IF = prove
 (`monotonic c ==> monotonic (If e c)`,
  REWRITE_TAC[monotonic; if_def] THEN SET_TAC[]);;

let MONOTONIC_ITE = prove
 (`monotonic c1 /\ monotonic c2 ==> monotonic (Ite e c1 c2)`,
  REWRITE_TAC[monotonic; ite_def] THEN SET_TAC[]);;

let MONOTONIC_SEQ = prove
 (`monotonic c1 /\ monotonic c2 ==> monotonic (c1 ;; c2)`,
  REWRITE_TAC[monotonic; sequence; o_THM] THEN SET_TAC[]);;

let MONOTONIC_WHILE = prove
 (`monotonic c ==> monotonic(While e c)`,
  REWRITE_TAC[monotonic; while_def] THEN SET_TAC[]);;

let WHILE_THM = prove
 (`!e c q:S->bool.
    monotonic c
    ==> (!s. If e (c ;; While e c) q s ==> While e c q s) /\
        (!w'. (!s. If e (c ;; (\q. w')) q s ==> w' s)
              ==> (!a. While e c q a ==> w' a)) /\
        (!s. While e c q s <=> If e (c ;; While e c) q s)`,
  REPEAT GEN_TAC THEN DISCH_TAC THEN
  (MP_TAC o GEN_ALL o DISCH_ALL o derive_nonschematic_inductive_relations)
   `!s:S. (if e s then c w s else q s) ==> w s` THEN
  REWRITE_TAC[if_def; sequence; o_THM; IN_ELIM_THM; IMP_IMP] THEN
  DISCH_THEN MATCH_MP_TAC THEN
  REWRITE_TAC[FUN_EQ_THM; while_def; IN_ELIM_THM] THEN
  POP_ASSUM MP_TAC THEN REWRITE_TAC[monotonic] THEN SET_TAC[]);;

let WHILE_FIX = prove
 (`!e c. monotonic c ==> (While e c = If e (c ;; While e c))`,
  REWRITE_TAC[FUN_EQ_THM] THEN MESON_TAC[WHILE_THM]);;

let correct = new_definition
 `correct p c q <=> p SUBSET (c q)`;;

let CORRECT_PRESTRENGTH = prove
 (`!p p' c q. p SUBSET p' /\ correct p' c q ==> correct p c q`,
  REWRITE_TAC[correct; SUBSET_TRANS]);;

let CORRECT_POSTWEAK = prove
 (`!p c q q'. monotonic c /\ correct p c q' /\ q' SUBSET q ==> correct p c q`,
  REWRITE_TAC[correct; monotonic] THEN SET_TAC[]);;

let CORRECT_ASSIGN = prove
 (`!p f q. (p SUBSET (q o f)) ==> correct p (Assign f) q`,
  REWRITE_TAC[correct; assign]);;

let CORRECT_SEQ = prove
 (`!p q r c1 c2.
        monotonic c1 /\ correct p c1 r /\ correct r c2 q
        ==> correct p (c1 ;; c2) q`,
  REWRITE_TAC[correct; sequence; monotonic; o_THM] THEN SET_TAC[]);;

let CORRECT_ITE = prove
 (`!p e c1 c2 q.
       correct (p INTER e) c1 q /\ correct (p INTER (UNIV DIFF e)) c2 q
       ==> correct p (Ite e c1 c2) q`,
  REWRITE_TAC[correct; ite_def] THEN SET_TAC[]);;

let CORRECT_IF = prove
 (`!p e c q.
       correct (p INTER e) c q /\ p INTER (UNIV DIFF e) SUBSET q
       ==> correct p (If e c) q`,
  REWRITE_TAC[correct; if_def] THEN SET_TAC[]);;

let CORRECT_WHILE = prove
 (`!(<<) p c q e invariant.
      monotonic c /\
      WF(<<) /\
      p SUBSET invariant /\
      (UNIV DIFF e) INTER invariant SUBSET q /\
      (!X:S. correct (invariant INTER e INTER (\s. X = s)) c
                     (invariant INTER (\s. s << X)))
      ==> correct p (While e c) q`,
  REWRITE_TAC[correct; SUBSET; IN_INTER; IN_UNIV; IN_DIFF; IN] THEN
  REPEAT GEN_TAC THEN STRIP_TAC THEN
  SUBGOAL_THEN `!s:S. invariant s ==> While e c q s` MP_TAC THENL
   [ALL_TAC; ASM_MESON_TAC[]] THEN
  FIRST_ASSUM(MATCH_MP_TAC o REWRITE_RULE[WF_IND]) THEN
  X_GEN_TAC `s:S` THEN REPEAT DISCH_TAC THEN
  FIRST_ASSUM(fun th -> ONCE_REWRITE_TAC[MATCH_MP WHILE_FIX th]) THEN
  REWRITE_TAC[if_def; sequence; o_THM; IN_ELIM_THM] THEN
  COND_CASES_TAC THENL [ALL_TAC; ASM_MESON_TAC[]] THEN
  FIRST_X_ASSUM(MP_TAC o SPECL [`s:S`; `s:S`]) THEN ASM_REWRITE_TAC[] THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [monotonic]) THEN
  REWRITE_TAC[SUBSET; IN; RIGHT_IMP_FORALL_THM] THEN
  DISCH_THEN MATCH_MP_TAC THEN ASM_SIMP_TAC[INTER; IN_ELIM_THM; IN]);;

let assert_def = new_definition
 `assert (p:S->bool) (q:S->bool) = q`;;

let variant_def = new_definition
 `variant ((<<):S->S->bool) (q:S->bool) = q`;;

let CORRECT_SEQ_VC = prove
 (`!p q r c1 c2.
        monotonic c1 /\ correct p c1 r /\ correct r c2 q
        ==> correct p (c1 ;; assert r ;; c2) q`,
  REWRITE_TAC[correct; sequence; monotonic; assert_def; o_THM] THEN SET_TAC[]);;

let CORRECT_WHILE_VC = prove
 (`!(<<) p c q e invariant.
      monotonic c /\
      WF(<<) /\
      p SUBSET invariant /\
      (UNIV DIFF e) INTER invariant SUBSET q /\
      (!X:S. correct (invariant INTER e INTER (\s. X = s)) c
                     (invariant INTER (\s. s << X)))
      ==> correct p (While e (assert invariant ;; variant(<<) ;; c)) q`,
  REPEAT STRIP_TAC THEN
  REWRITE_TAC[sequence; variant_def; assert_def; o_DEF; ETA_AX] THEN
  ASM_MESON_TAC[CORRECT_WHILE]);;

let MONOTONIC_ASSERT = prove
 (`monotonic (assert p)`,
  REWRITE_TAC[assert_def; monotonic]);;

let MONOTONIC_VARIANT = prove
 (`monotonic (variant p)`,
  REWRITE_TAC[variant_def; monotonic]);;

let MONO_TAC =
  REPEAT(MATCH_MP_TAC MONOTONIC_WHILE ORELSE
         (MAP_FIRST MATCH_MP_TAC
           [MONOTONIC_SEQ; MONOTONIC_IF; MONOTONIC_ITE] THEN CONJ_TAC)) THEN
  MAP_FIRST MATCH_ACCEPT_TAC
   [MONOTONIC_ASSIGN; MONOTONIC_ASSERT; MONOTONIC_VARIANT];;

let VC_TAC =
  FIRST
   [MATCH_MP_TAC CORRECT_SEQ_VC THEN CONJ_TAC THENL [MONO_TAC; CONJ_TAC];
    MATCH_MP_TAC CORRECT_ITE THEN CONJ_TAC;
    MATCH_MP_TAC CORRECT_IF THEN CONJ_TAC;
    MATCH_MP_TAC CORRECT_WHILE_VC THEN REPEAT CONJ_TAC THENL
     [MONO_TAC; TRY(MATCH_ACCEPT_TAC WF_MEASURE); ALL_TAC; ALL_TAC;
      REWRITE_TAC[FORALL_PAIR_THM; MEASURE] THEN REPEAT GEN_TAC];
    MATCH_MP_TAC CORRECT_ASSIGN];;

needs "Library/prime.ml";;

(* ------------------------------------------------------------------------- *)
(* x = m, y = n;                                                             *)
(* while (!(x == 0 || y == 0))                                               *)
(*  { if (x < y) y = y - x;                                                  *)
(*    else x = x - y;                                                        *)
(*  }                                                                        *)
(* if (x == 0) x = y;                                                        *)
(* ------------------------------------------------------------------------- *)

g `correct
    (\(m,n,x,y). T)
    (Assign (\(m,n,x,y). m,n,m,n) ;;         // x,y := m,n
     assert (\(m,n,x,y). x = m /\ y = n) ;;
     While (\(m,n,x,y). ~(x = 0 \/ y = 0))
      (assert (\(m,n,x,y). gcd(x,y) = gcd(m,n)) ;;
       variant(MEASURE(\(m,n,x,y). x + y)) ;;
       Ite (\(m,n,x,y). x < y)
           (Assign (\(m,n,x,y). m,n,x,y - x))
           (Assign (\(m,n,x,y). m,n,x - y,y))) ;;
     assert (\(m,n,x,y). (x = 0 \/ y = 0) /\ gcd(x,y) = gcd(m,n)) ;;
     If (\(m,n,x,y). x = 0) (Assign (\(m,n,x,y). (m,n,y,y))))
  (\(m,n,x,y). gcd(m,n) = x)`;;

e(REPEAT VC_TAC);;

b();;
e(REPEAT VC_TAC THEN REWRITE_TAC[SUBSET; FORALL_PAIR_THM] THEN
  MAP_EVERY X_GEN_TAC [`m:num`; `n:num`; `x:num`; `y:num`] THEN
  REWRITE_TAC[IN; INTER; UNIV; DIFF; o_DEF; IN_ELIM_THM; PAIR_EQ] THEN
  CONV_TAC(TOP_DEPTH_CONV GEN_BETA_CONV) THEN SIMP_TAC[]);;

e(SIMP_TAC[GCD_SUB; LT_IMP_LE]);;
e ARITH_TAC;;

e(SIMP_TAC[GCD_SUB; NOT_LT] THEN ARITH_TAC);;

e(MESON_TAC[GCD_0]);;

e(MESON_TAC[GCD_0; GCD_SYM]);;

parse_as_infix("refines",(12,"right"));;

let refines = new_definition
 `c2 refines c1 <=> !q. c1(q) SUBSET c2(q)`;;

let REFINES_REFL = prove
 (`!c. c refines c`,
  REWRITE_TAC[refines; SUBSET_REFL]);;

let REFINES_TRANS = prove
 (`!c1 c2 c3. c3 refines c2 /\ c2 refines c1 ==> c3 refines c1`,
  REWRITE_TAC[refines] THEN MESON_TAC[SUBSET_TRANS]);;

let REFINES_CORRECT = prove
 (`correct p c1 q /\ c2 refines c1 ==> correct p c2 q`,
  REWRITE_TAC[correct; refines] THEN MESON_TAC[SUBSET_TRANS]);;

let REFINES_WHILE = prove
 (`c' refines c ==> While e c' refines While e c`,
  REWRITE_TAC[refines; while_def; SUBSET; IN_ELIM_THM; IN] THEN MESON_TAC[]);;

let specification = new_definition
 `specification(p,q) r = if q SUBSET r then p else {}`;;

let REFINES_SPECIFICATION = prove
 (`c refines specification(p,q) ==> correct p c q`,
  REWRITE_TAC[specification; correct; refines] THEN
  MESON_TAC[SUBSET_REFL; SUBSET_EMPTY]);;

(* ========================================================================= *)
(* Number theory                                                             *)
(* ========================================================================= *)

needs "Library/prime.ml";;
needs "Library/pocklington.ml";;
needs "Library/binomial.ml";;

prioritize_num();;

let FERMAT_PRIME_CONV n =
  let tm = subst [mk_small_numeral n,`x:num`] `prime(2 EXP (2 EXP x) + 1)` in
  (RAND_CONV NUM_REDUCE_CONV THENC PRIME_CONV) tm;;

FERMAT_PRIME_CONV 0;;
FERMAT_PRIME_CONV 1;;
FERMAT_PRIME_CONV 2;;
FERMAT_PRIME_CONV 3;;
FERMAT_PRIME_CONV 4;;
FERMAT_PRIME_CONV 5;;
FERMAT_PRIME_CONV 6;;
FERMAT_PRIME_CONV 7;;
FERMAT_PRIME_CONV 8;;

let CONG_TRIVIAL = prove
 (`!x y. n divides x /\ n divides y ==> (x == y) (mod n)`,
  MESON_TAC[CONG_0; CONG_SYM; CONG_TRANS]);;

let LITTLE_CHECK_CONV tm =
  EQT_ELIM((RATOR_CONV(LAND_CONV NUM_EXP_CONV) THENC CONG_CONV) tm);;

LITTLE_CHECK_CONV `(9 EXP 8 == 9) (mod 3)`;;
LITTLE_CHECK_CONV `(9 EXP 3 == 9) (mod 3)`;;
LITTLE_CHECK_CONV `(10 EXP 7 == 10) (mod 7)`;;
LITTLE_CHECK_CONV `(2 EXP 7 == 2) (mod 7)`;;
LITTLE_CHECK_CONV `(777 EXP 13 == 777) (mod 13)`;;

let DIVIDES_FACT_PRIME = prove
 (`!p. prime p ==> !n. p divides (FACT n) <=> p <= n`,
  GEN_TAC THEN DISCH_TAC THEN INDUCT_TAC THEN REWRITE_TAC[FACT; LE] THENL
   [ASM_MESON_TAC[DIVIDES_ONE; PRIME_0; PRIME_1];
    ASM_MESON_TAC[PRIME_DIVPROD_EQ; DIVIDES_LE; NOT_SUC; DIVIDES_REFL;
                  ARITH_RULE `~(p <= n) /\ p <= SUC n ==> p = SUC n`]]);;

let DIVIDES_BINOM_PRIME = prove
 (`!n p. prime p /\ 0 < n /\ n < p ==> p divides binom(p,n)`,
  REPEAT STRIP_TAC THEN
  MP_TAC(AP_TERM `(divides) p` (SPECL [`p - n`; `n:num`] BINOM_FACT)) THEN
  ASM_SIMP_TAC[DIVIDES_FACT_PRIME; PRIME_DIVPROD_EQ; SUB_ADD; LT_IMP_LE] THEN
  ASM_REWRITE_TAC[GSYM NOT_LT; LT_REFL] THEN
  ASM_SIMP_TAC[ARITH_RULE `0 < n /\ n < p ==> p - n < p`]);;

let DIVIDES_NSUM = prove
 (`!m n. (!i. m <= i /\ i <= n ==> p divides f(i)) ==> p divides nsum(m..n) f`,
  GEN_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[NSUM_CLAUSES_NUMSEG] THEN
  ASM_MESON_TAC[LE; LE_TRANS; DIVIDES_0; DIVIDES_ADD; LE_REFL]);;

let FLT_LEMMA = prove
 (`!p a b. prime p ==> ((a + b) EXP p == a EXP p + b EXP p) (mod p)`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[BINOMIAL_THEOREM] THEN
  SUBGOAL_THEN `1 <= p /\ 0 < p` STRIP_ASSUME_TAC THENL
   [FIRST_ASSUM(MP_TAC o MATCH_MP PRIME_IMP_NZ) THEN ARITH_TAC; ALL_TAC] THEN
  ASM_SIMP_TAC[NSUM_CLAUSES_LEFT; LE_0; ARITH; NSUM_CLAUSES_RIGHT] THEN
  REWRITE_TAC[SUB_0; SUB_REFL; EXP; binom; BINOM_REFL; MULT_CLAUSES] THEN
  GEN_REWRITE_TAC LAND_CONV [ARITH_RULE `a + b = (b + 0) + a`] THEN
  REPEAT(MATCH_MP_TAC CONG_ADD THEN REWRITE_TAC[CONG_REFL]) THEN
  REWRITE_TAC[CONG_0] THEN MATCH_MP_TAC DIVIDES_NSUM THEN
  ASM_MESON_TAC[DIVIDES_RMUL; DIVIDES_BINOM_PRIME; ARITH_RULE
   `0 < p /\ 1 <= i /\ i <= p - 1 ==> 0 < i /\ i < p`]);;

let FERMAT_LITTLE = prove
 (`!p a. prime p ==> (a EXP p == a) (mod p)`,
  GEN_TAC THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN DISCH_TAC THEN
  INDUCT_TAC THENL
   [ASM_MESON_TAC[EXP_EQ_0; CONG_REFL; PRIME_0];
    ASM_MESON_TAC[ADD1; FLT_LEMMA; EXP_ONE; CONG_ADD; CONG_TRANS; CONG_REFL]]);;

let FERMAT_LITTLE_COPRIME = prove
 (`!p a. prime p /\ coprime(a,p) ==> (a EXP (p - 1) == 1) (mod p)`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC CONG_MULT_LCANCEL THEN
  EXISTS_TAC `a:num` THEN ASM_REWRITE_TAC[GSYM(CONJUNCT2 EXP)] THEN
  ASM_SIMP_TAC[PRIME_IMP_NZ; ARITH_RULE `~(p = 0) ==> SUC(p - 1) = p`] THEN
  ASM_SIMP_TAC[FERMAT_LITTLE; MULT_CLAUSES]);;

let FERMAT_LITTLE_VARIANT = prove
 (`!p a. prime p ==> (a EXP (1 + m * (p - 1)) == a) (mod p)`,
  REPEAT STRIP_TAC THEN
  FIRST_ASSUM(DISJ_CASES_TAC o SPEC `a:num` o MATCH_MP PRIME_COPRIME_STRONG)
  THENL [ASM_MESON_TAC[CONG_TRIVIAL; ADD_AC; ADD1; DIVIDES_REXP_SUC];
         ALL_TAC] THEN
  GEN_REWRITE_TAC LAND_CONV [ARITH_RULE `a = a * 1`] THEN
  REWRITE_TAC[EXP_ADD; EXP_1] THEN MATCH_MP_TAC CONG_MULT THEN
  REWRITE_TAC[GSYM EXP_EXP; CONG_REFL] THEN
  ASM_MESON_TAC[COPRIME_SYM; COPRIME_EXP; PHI_PRIME; FERMAT_LITTLE_COPRIME]);;

let RSA = prove
 (`prime p /\ prime q /\ ~(p = q) /\
   (d * e == 1) (mod ((p - 1) * (q - 1))) /\
   plaintext < p * q /\ (ciphertext = (plaintext EXP e) MOD (p * q))
   ==> (plaintext = (ciphertext EXP d) MOD (p * q))`,
  REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
  ASM_SIMP_TAC[MOD_EXP_MOD; MULT_EQ_0; PRIME_IMP_NZ; EXP_EXP] THEN
  SUBGOAL_THEN `(plaintext == plaintext EXP (e * d)) (mod (p * q))` MP_TAC THENL
   [ALL_TAC; ASM_SIMP_TAC[CONG; MULT_EQ_0; PRIME_IMP_NZ; MOD_LT]] THEN
  GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [MULT_SYM] THEN
  FIRST_X_ASSUM(DISJ_CASES_TAC o GEN_REWRITE_RULE I [CONG_TO_1]) THENL
   [ASM_MESON_TAC[MULT_EQ_1; ARITH_RULE `p - 1 = 1 <=> p = 2`]; ALL_TAC] THEN
  MATCH_MP_TAC CONG_CHINESE THEN ASM_SIMP_TAC[DISTINCT_PRIME_COPRIME] THEN
  ASM_MESON_TAC[FERMAT_LITTLE_VARIANT; MULT_AC; CONG_SYM]);;

(* ========================================================================= *)
(* Real analysis                                                             *)
(* ========================================================================= *)

needs "Library/analysis.ml";;
needs "Library/transc.ml";;

let cheb = define
 `(!x. cheb 0 x = &1) /\
  (!x. cheb 1 x = x) /\
  (!n x. cheb (n + 2) x = &2 * x * cheb (n + 1) x - cheb n x)`;;

let CHEB_INDUCT = prove
 (`!P. P 0 /\ P 1 /\ (!n. P n /\ P(n + 1) ==> P(n + 2)) ==> !n. P n`,
  GEN_TAC THEN STRIP_TAC THEN
  SUBGOAL_THEN `!n. P n /\ P(n + 1)` (fun th -> MESON_TAC[th]) THEN
  INDUCT_TAC THEN ASM_SIMP_TAC[ADD1; GSYM ADD_ASSOC] THEN
  ASM_SIMP_TAC[ARITH]);;

let CHEB_COS = prove
 (`!n x. cheb n (cos x) = cos(&n * x)`,
  MATCH_MP_TAC CHEB_INDUCT THEN
  REWRITE_TAC[cheb; REAL_MUL_LZERO; REAL_MUL_LID; COS_0] THEN
  REPEAT STRIP_TAC THEN
  ASM_REWRITE_TAC[GSYM REAL_OF_NUM_ADD; REAL_MUL_LID; REAL_ADD_RDISTRIB] THEN
  REWRITE_TAC[COS_ADD; COS_DOUBLE; SIN_DOUBLE] THEN
  MP_TAC(SPEC `x:real` SIN_CIRCLE) THEN CONV_TAC REAL_RING);;

let CHEB_RIPPLE = prove
 (`!x. abs(x) <= &1 ==> abs(cheb n x) <= &1`,
  REWRITE_TAC[GSYM REAL_BOUNDS_LE] THEN
  MESON_TAC[CHEB_COS; ACS_COS; COS_BOUNDS]);;

let NUM_ADD2_CONV =
  let add_tm = `(+):num->num->num`
  and two_tm = `2` in
  fun tm ->
    let m = mk_numeral(dest_numeral tm -/ Int 2) in
    let tm' = mk_comb(mk_comb(add_tm,m),two_tm) in
    SYM(NUM_ADD_CONV tm');;

let CHEB_CONV =
  let [pth0;pth1;pth2] = CONJUNCTS cheb in
  let rec conv tm =
   (GEN_REWRITE_CONV I [pth0; pth1] ORELSEC
    (LAND_CONV NUM_ADD2_CONV THENC
     GEN_REWRITE_CONV I [pth2] THENC
     COMB2_CONV
      (funpow 3 RAND_CONV ((LAND_CONV NUM_ADD_CONV) THENC conv))
      conv THENC
     REAL_POLY_CONV)) tm in
  conv;;

CHEB_CONV `cheb 8 x`;;

let CHEB_2N1 = prove
 (`!n x. ((x - &1) * (cheb (2 * n + 1) x - &1) =
          (cheb (n + 1) x - cheb n x) pow 2) /\
         (&2 * (x pow 2 - &1) * (cheb (2 * n + 2) x - &1) =
          (cheb (n + 2) x - cheb n x) pow 2)`,
  ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN GEN_TAC THEN
  MATCH_MP_TAC CHEB_INDUCT THEN REWRITE_TAC[ARITH; cheb; CHEB_2; CHEB_3] THEN
  REPEAT(CHANGED_TAC
   (REWRITE_TAC[GSYM ADD_ASSOC; LEFT_ADD_DISTRIB; ARITH] THEN
    REWRITE_TAC[ARITH_RULE `n + 5 = (n + 3) + 2`;
                ARITH_RULE `n + 4 = (n + 2) + 2`;
                ARITH_RULE `n + 3 = (n + 1) + 2`;

                cheb])) THEN
  CONV_TAC REAL_RING);;

let IVT_LEMMA1 = prove
 (`!f. (!x. f contl x)
       ==> !x y. f(x) <= &0 /\ &0 <= f(y) ==> ?x. f(x) = &0`,
  ASM_MESON_TAC[IVT; IVT2; REAL_LE_TOTAL]);;

let IVT_LEMMA2 = prove
 (`!f. (!x. f contl x) /\ (?x. f(x) <= x) /\ (?y. y <= f(y)) ==> ?x. f(x) = x`,
  REPEAT STRIP_TAC THEN MP_TAC(SPEC `\x. f x - x` IVT_LEMMA1) THEN
  ASM_SIMP_TAC[CONT_SUB; CONT_X] THEN
  SIMP_TAC[REAL_LE_SUB_LADD; REAL_LE_SUB_RADD; REAL_SUB_0; REAL_ADD_LID] THEN
  ASM_MESON_TAC[]);;

let SARKOVSKII_TRIVIAL = prove
 (`!f:real->real. (!x. f contl x) /\ (?x. f(f(f(x))) = x) ==> ?x. f(x) = x`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC IVT_LEMMA2 THEN ASM_REWRITE_TAC[] THEN
  CONJ_TAC THEN MATCH_MP_TAC
   (MESON[] `P x \/ P (f x) \/ P (f(f x)) ==> ?x:real. P x`) THEN
  FIRST_ASSUM(UNDISCH_TAC o check is_eq o concl) THEN REAL_ARITH_TAC);;

(* ========================================================================= *)
(* Embedding of logics                                                       *)
(* ========================================================================= *)

let string_INDUCT,string_RECURSION = define_type
 "string = String num";;

parse_as_infix("&&",(16,"right"));;
parse_as_infix("||",(15,"right"));;
parse_as_infix("-->",(14,"right"));;
parse_as_infix("<->",(13,"right"));;

parse_as_prefix "Not";;
parse_as_prefix "Box";;
parse_as_prefix "Diamond";;

let form_INDUCT,form_RECURSION = define_type
 "form = False
       | True
       | Atom string
       | Not form
       | && form form
       | || form form
       | --> form form
       | <-> form form
       | Box form
       | Diamond form";;

let holds = define
 `(holds (W,R) V False w <=> F) /\
  (holds (W,R) V True w <=> T) /\
  (holds (W,R) V (Atom a) w <=> V a w) /\
  (holds (W,R) V (Not p) w <=> ~(holds (W,R) V p w)) /\
  (holds (W,R) V (p && q) w <=> holds (W,R) V p w /\ holds (W,R) V q w) /\
  (holds (W,R) V (p || q) w <=> holds (W,R) V p w \/ holds (W,R) V q w) /\
  (holds (W,R) V (p --> q) w <=> holds (W,R) V p w ==> holds (W,R) V q w) /\
  (holds (W,R) V (p <-> q) w <=> holds (W,R) V p w <=> holds (W,R) V q w) /\
  (holds (W,R) V (Box p) w <=>
        !w'. w' IN W /\ R w w' ==> holds (W,R) V p w') /\
  (holds (W,R) V (Diamond p) w <=>
        ?w'. w' IN W /\ R w w' /\ holds (W,R) V p w')`;;

let holds_in = new_definition
 `holds_in (W,R) p = !V w. w IN W ==> holds (W,R) V p w`;;

parse_as_infix("|=",(11,"right"));;

let valid = new_definition
 `L |= p <=> !f. L f ==> holds_in f p`;;

let S4 = new_definition
 `S4(W,R) <=> ~(W = {}) /\ (!x y. R x y ==> x IN W /\ y IN W) /\
              (!x. x IN W ==> R x x) /\
              (!x y z. R x y /\ R y z ==> R x z)`;;

let LTL = new_definition
 `LTL(W,R) <=> (W = UNIV) /\ !x y:num. R x y <=> x <= y`;;

let GL = new_definition
 `GL(W,R) <=> ~(W = {}) /\ (!x y. R x y ==> x IN W /\ y IN W) /\
              WF(\x y. R y x) /\ (!x y z:num. R x y /\ R y z ==> R x z)`;;

let MODAL_TAC =
  REWRITE_TAC[valid; FORALL_PAIR_THM; holds_in; holds] THEN MESON_TAC[];;

let MODAL_RULE tm = prove(tm,MODAL_TAC);;

let TAUT_1 = MODAL_RULE `L |= Box True`;;
let TAUT_2 = MODAL_RULE `L |= Box(A --> B) --> Box A --> Box B`;;
let TAUT_3 = MODAL_RULE `L |= Diamond(A --> B) --> Box A --> Diamond B`;;
let TAUT_4 = MODAL_RULE `L |= Box(A --> B) --> Diamond A --> Diamond B`;;
let TAUT_5 = MODAL_RULE `L |= Box(A && B) --> Box A && Box B`;;
let TAUT_6 = MODAL_RULE `L |= Diamond(A || B) --> Diamond A || Diamond B`;;

let HOLDS_FORALL_LEMMA = prove
 (`!W R P. (!A V. P(holds (W,R) V A)) <=> (!p:W->bool. P p)`,
  REPEAT GEN_TAC THEN EQ_TAC THENL [DISCH_TAC THEN GEN_TAC; SIMP_TAC[]] THEN
  POP_ASSUM(MP_TAC o SPECL [`Atom a`; `\a:string. (p:W->bool)`]) THEN
  GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [GSYM ETA_AX] THEN
  REWRITE_TAC[holds] THEN REWRITE_TAC[ETA_AX]);;

let MODAL_SCHEMA_TAC =
  REWRITE_TAC[holds_in; holds] THEN MP_TAC HOLDS_FORALL_LEMMA THEN
  REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN
  DISCH_THEN(fun th -> REWRITE_TAC[th]);;

let MODAL_REFL = prove
 (`!W R. (!w:W. w IN W ==> R w w) <=> !A. holds_in (W,R) (Box A --> A)`,
  MODAL_SCHEMA_TAC THEN MESON_TAC[]);;

let MODAL_TRANS = prove
 (`!W R. (!w w' w'':W. w IN W /\ w' IN W /\ w'' IN W /\
                       R w w' /\ R w' w'' ==> R w w'') <=>
         (!A. holds_in (W,R) (Box A --> Box(Box A)))`,
  MODAL_SCHEMA_TAC THEN MESON_TAC[]);;

let MODAL_SERIAL = prove
 (`!W R. (!w:W. w IN W ==> ?w'. w' IN W /\ R w w') <=>
         (!A. holds_in (W,R) (Box A --> Diamond A))`,
  MODAL_SCHEMA_TAC THEN MESON_TAC[]);;

let MODAL_SYM = prove
 (`!W R. (!w w':W. w IN W /\ w' IN W /\ R w w' ==> R w' w) <=>
         (!A. holds_in (W,R) (A --> Box(Diamond A)))`,
  MODAL_SCHEMA_TAC THEN EQ_TAC THENL [MESON_TAC[]; REPEAT STRIP_TAC] THEN
  FIRST_X_ASSUM(MP_TAC o SPECL [`\v:W. v = w`; `w:W`]) THEN ASM_MESON_TAC[]);;

let MODAL_WFTRANS = prove
 (`!W R. (!x y z:W. x IN W /\ y IN W /\ z IN W /\ R x y /\ R y z ==> R x z) /\
         WF(\x y. x IN W /\ y IN W /\ R y x) <=>
         (!A. holds_in (W,R) (Box(Box A --> A) --> Box A))`,
  MODAL_SCHEMA_TAC THEN REWRITE_TAC[WF_IND] THEN EQ_TAC THEN
  STRIP_TAC THEN REPEAT CONJ_TAC THENL
   [REPEAT GEN_TAC THEN REPEAT DISCH_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC;
    X_GEN_TAC `w:W` THEN FIRST_X_ASSUM(MP_TAC o SPECL
     [`\v:W. v IN W /\ R w v /\ !w''. w'' IN W /\ R v w'' ==> R w w''`; `w:W`]);
    X_GEN_TAC `P:W->bool` THEN DISCH_TAC THEN
    FIRST_X_ASSUM(MP_TAC o SPEC `\x:W. !w:W. x IN W /\ R w x ==> P x`) THEN
    MATCH_MP_TAC MONO_FORALL] THEN
  ASM_MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Need a fresh HOL session here: doing shallow embedding.                   *)
(* ------------------------------------------------------------------------- *)

parse_as_prefix "Not";;
parse_as_infix("&&",(16,"right"));;
parse_as_infix("||",(15,"right"));;
parse_as_infix("-->",(14,"right"));;
parse_as_infix("<->",(13,"right"));;

let false_def = define `False = \t:num. F`;;
let true_def = define `True = \t:num. T`;;
let not_def = define `Not p = \t:num. ~(p t)`;;
let and_def = define `p && q = \t:num. p t /\ q t`;;
let or_def = define `p || q = \t:num. p t \/ q t`;;
let imp_def = define `p --> q = \t:num. p t ==> q t`;;
let iff_def = define `p <-> q = \t:num. p t <=> q t`;;

let forever = define `forever p = \t:num. !t'. t <= t' ==> p t'`;;
let sometime = define `sometime p = \t:num. ?t'. t <= t' /\ p t'`;;

let next = define `next p = \t:num. p(t + 1)`;;

parse_as_infix("until",(17,"right"));;

let until = define
  `p until q =
    \t:num. ?t'. t <= t' /\ (!t''. t <= t'' /\ t'' < t' ==> p t'') /\ q t'`;;

(* ========================================================================= *)
(* HOL as a functional programming language                                  *)
(* ========================================================================= *)

type ite = False | True | Atomic of int | Ite of ite*ite*ite;;

let rec norm e =
  match e with
    Ite(False,y,z) -> norm z
  | Ite(True,y,z) -> norm y
  | Ite(Atomic i,y,z) -> Ite(Atomic i,norm y,norm z)
  | Ite(Ite(u,v,w),y,z) -> norm(Ite(u,Ite(v,y,z),Ite(w,y,z)))
  | _ -> e;;

let ite_INDUCT,ite_RECURSION = define_type
 "ite = False | True | Atomic num | Ite ite ite ite";;

let eth = prove_general_recursive_function_exists
 `?norm. (norm False = False) /\
         (norm True = True) /\
         (!i. norm (Atomic i) = Atomic i) /\
         (!y z. norm (Ite False y z) = norm z) /\
         (!y z. norm (Ite True y z) = norm y) /\
         (!i y z. norm (Ite (Atomic i) y z) =
                    Ite (Atomic i) (norm y) (norm z)) /\
         (!u v w y z. norm (Ite (Ite u v w) y z) =
                        norm (Ite u (Ite v y z) (Ite w y z)))`;;

let sizeof = define
 `(sizeof False = 1) /\
  (sizeof True = 1) /\
  (sizeof(Atomic i) = 1) /\
  (sizeof(Ite x y z) = sizeof x * (1 + sizeof y + sizeof z))`;;

let eth' =
  let th = prove
   (hd(hyp eth),
    EXISTS_TAC `MEASURE sizeof` THEN
    REWRITE_TAC[WF_MEASURE; MEASURE_LE; MEASURE; sizeof] THEN ARITH_TAC) in
  PROVE_HYP th eth;;

let norm = new_specification ["norm"] eth';;

let SIZEOF_INDUCT = REWRITE_RULE[WF_IND; MEASURE]  (ISPEC`sizeof` WF_MEASURE);;

let SIZEOF_NZ = prove
 (`!e. ~(sizeof e = 0)`,
  MATCH_MP_TAC ite_INDUCT THEN SIMP_TAC[sizeof; ADD_EQ_0; MULT_EQ_0; ARITH]);;

let ITE_INDUCT = prove
 (`!P. P False /\
       P True /\
       (!i. P(Atomic i)) /\
       (!y z. P z ==> P(Ite False y z)) /\
       (!y z. P y ==> P(Ite True y z)) /\
       (!i y z. P y /\ P z ==> P (Ite (Atomic i) y z)) /\
       (!u v w x y z. P(Ite u (Ite v y z) (Ite w y z))
                      ==> P(Ite (Ite u v w) y z))
       ==> !e. P e`,
  GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC SIZEOF_INDUCT THEN
  MATCH_MP_TAC ite_INDUCT THEN ASM_REWRITE_TAC[] THEN
  MATCH_MP_TAC ite_INDUCT THEN POP_ASSUM_LIST
   (fun ths -> REPEAT STRIP_TAC THEN FIRST(mapfilter MATCH_MP_TAC ths)) THEN
  REPEAT CONJ_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
  POP_ASSUM_LIST(K ALL_TAC) THEN
  REWRITE_TAC[sizeof] THEN TRY ARITH_TAC THEN
  REWRITE_TAC[LEFT_ADD_DISTRIB; RIGHT_ADD_DISTRIB; MULT_CLAUSES] THEN
  REWRITE_TAC[MULT_AC; ADD_AC; LT_ADD_LCANCEL] THEN
  REWRITE_TAC[ADD_ASSOC; LT_ADD_RCANCEL] THEN
  MATCH_MP_TAC(ARITH_RULE `~(b = 0) /\ ~(c = 0) ==> a < (b + a) + c`) THEN
  REWRITE_TAC[MULT_EQ_0; SIZEOF_NZ]);;

let normalized = define
 `(normalized False <=> T) /\
  (normalized True <=> T) /\
  (normalized(Atomic a) <=> T) /\
  (normalized(Ite False x y) <=> F) /\
  (normalized(Ite True x y) <=> F) /\
  (normalized(Ite (Atomic a) x y) <=> normalized x /\ normalized y) /\
  (normalized(Ite (Ite u v w) x y) <=> F)`;;

let NORMALIZED_NORM = prove
 (`!e. normalized(norm e)`,
  MATCH_MP_TAC ITE_INDUCT THEN REWRITE_TAC[norm; normalized]);;

let NORMALIZED_INDUCT = prove
 (`P False /\
   P True /\
   (!i. P (Atomic i)) /\
   (!i x y. P x /\ P y ==> P (Ite (Atomic i) x y))
   ==> !e. normalized e ==> P e`,
  STRIP_TAC THEN MATCH_MP_TAC ite_INDUCT THEN ASM_REWRITE_TAC[normalized] THEN
  MATCH_MP_TAC ite_INDUCT THEN ASM_MESON_TAC[normalized]);;

let holds = define
 `(holds v False <=> F) /\
  (holds v True <=> T) /\
  (holds v (Atomic i) <=> v(i)) /\
  (holds v (Ite b x y) <=> if holds v b then holds v x else holds v y)`;;

let HOLDS_NORM = prove
 (`!e v. holds v (norm e) <=> holds v e`,
  MATCH_MP_TAC ITE_INDUCT THEN SIMP_TAC[holds; norm] THEN
  REPEAT STRIP_TAC THEN CONV_TAC TAUT);;

let taut = define
 `(taut (t,f) False <=> F) /\
  (taut (t,f) True <=> T) /\
  (taut (t,f) (Atomic i) <=> MEM i t) /\
  (taut (t,f) (Ite (Atomic i) x y) <=>
      if MEM i t then taut (t,f) x
      else if MEM i f then taut (t,f) y
      else taut (CONS i t,f) x /\ taut (t,CONS i f) y)`;;

let tautology = define `tautology e = taut([],[]) (norm e)`;;

let NORMALIZED_TAUT = prove
 (`!e. normalized e
       ==> !f t. (!a. ~(MEM a t /\ MEM a f))
                 ==> (taut (t,f) e <=>
                      !v. (!a. MEM a t ==> v(a)) /\ (!a. MEM a f ==> ~v(a))
                          ==> holds v e)`,
  MATCH_MP_TAC NORMALIZED_INDUCT THEN REWRITE_TAC[holds; taut] THEN
  REWRITE_TAC[NOT_FORALL_THM] THEN REPEAT CONJ_TAC THENL
   [REPEAT STRIP_TAC THEN EXISTS_TAC `\a:num. MEM a t` THEN ASM_MESON_TAC[];
    REPEAT STRIP_TAC THEN EQ_TAC THENL
     [ALL_TAC; DISCH_THEN MATCH_MP_TAC] THEN ASM_MESON_TAC[];
    REPEAT STRIP_TAC THEN REPEAT(COND_CASES_TAC THEN ASM_SIMP_TAC[])] THEN
  ASM_SIMP_TAC[MEM; RIGHT_OR_DISTRIB; LEFT_OR_DISTRIB;
               MESON[] `(!a. ~(MEM a t /\ a = i)) <=> ~(MEM i t)`;
               MESON[] `(!a. ~(a = i /\ MEM a f)) <=> ~(MEM i f)`] THEN
  ASM_REWRITE_TAC[AND_FORALL_THM] THEN AP_TERM_TAC THEN ABS_TAC THEN
  MESON_TAC[]);;

let TAUTOLOGY = prove
 (`!e. tautology e <=> !v. holds v e`,
  MESON_TAC[tautology; HOLDS_NORM; NORMALIZED_TAUT; MEM; NORMALIZED_NORM]);;

let HOLDS_BACK = prove
 (`!v. (F <=> holds v False) /\
       (T <=> holds v True) /\
       (!i. v i <=> holds v (Atomic i)) /\
       (!p. ~holds v p <=> holds v (Ite p False True)) /\
       (!p q. (holds v p /\ holds v q) <=> holds v (Ite p q False)) /\
       (!p q. (holds v p \/ holds v q) <=> holds v (Ite p True q)) /\
       (!p q. (holds v p <=> holds v q) <=>
                   holds v (Ite p q (Ite q False True))) /\
       (!p q. holds v p ==> holds v q <=> holds v (Ite p q True))`,
  REWRITE_TAC[holds] THEN CONV_TAC TAUT);;

let COND_CONV = GEN_REWRITE_CONV I [COND_CLAUSES];;
let AND_CONV = GEN_REWRITE_CONV I [TAUT `(F /\ a <=> F) /\ (T /\ a <=> a)`];;
let OR_CONV = GEN_REWRITE_CONV I [TAUT `(F \/ a <=> a) /\ (T \/ a <=> T)`];;

let rec COMPUTE_DEPTH_CONV conv tm =
  if is_cond tm then
   (RATOR_CONV(LAND_CONV(COMPUTE_DEPTH_CONV conv)) THENC
    COND_CONV THENC
    COMPUTE_DEPTH_CONV conv) tm
  else if is_conj tm then
   (LAND_CONV (COMPUTE_DEPTH_CONV conv) THENC
    AND_CONV THENC
    COMPUTE_DEPTH_CONV conv) tm
  else if is_disj tm then
   (LAND_CONV (COMPUTE_DEPTH_CONV conv) THENC
    OR_CONV THENC
    COMPUTE_DEPTH_CONV conv) tm
  else
   (SUB_CONV (COMPUTE_DEPTH_CONV conv) THENC
    TRY_CONV(conv THENC COMPUTE_DEPTH_CONV conv)) tm;;

g `!v. v 1 \/ v 2 \/ v 3 \/ v 4 \/ v 5 \/ v 6 \/
       ~v 1 \/ ~v 2 \/ ~v 3 \/ ~v 4 \/ ~v 5 \/ ~v 6`;;

e(MP_TAC HOLDS_BACK THEN MATCH_MP_TAC MONO_FORALL THEN
  GEN_TAC THEN DISCH_THEN(fun th -> REWRITE_TAC[th]) THEN
  SPEC_TAC(`v:num->bool`,`v:num->bool`) THEN
  REWRITE_TAC[GSYM TAUTOLOGY; tautology]);;

time e (GEN_REWRITE_TAC COMPUTE_DEPTH_CONV [norm; taut; MEM; ARITH_EQ]);;

ignore(b()); time e (REWRITE_TAC[norm; taut; MEM; ARITH_EQ]);;

(* ========================================================================= *)
(* Vectors                                                                   *)
(* ========================================================================= *)

needs "Multivariate/vectors.ml";;

needs "Examples/solovay.ml";;

g `orthogonal (A - B) (C - B)
   ==> norm(C - A) pow 2 = norm(B - A) pow 2 + norm(C - B) pow 2`;;

e SOLOVAY_VECTOR_TAC;;
e(CONV_TAC REAL_RING);;

g`!x y:real^N. x dot y <= norm x * norm y`;;
e SOLOVAY_VECTOR_TAC;;

(**** Needs external SDP solver
needs "Examples/sos.ml";;

e(CONV_TAC REAL_SOS);;

let EXAMPLE_0 = prove
 (`!a x y:real^N. (y - x) dot (a - y) >= &0 ==> norm(y - a) <= norm(x - a)`,
  SOLOVAY_VECTOR_TAC THEN CONV_TAC REAL_SOS);;
****)

needs "Rqe/make.ml";;
let EXAMPLE_10 = prove
 (`!x:real^N y.
        x dot y > &0
        ==> ?u. &0 < u /\
                !v. &0 < v /\ v <= u ==> norm(v % y - x) < norm x`,
  SOLOVAY_VECTOR_TAC THEN
  W(fun (asl,w) -> MAP_EVERY (fun v -> SPEC_TAC(v,v)) (frees w)) THEN
  CONV_TAC REAL_QELIM_CONV);;

let FORALL_3 = prove
 (`(!i. 1 <= i /\ i <= 3 ==> P i) <=> P 1 /\ P 2 /\ P 3`,
  MESON_TAC[ARITH_RULE `1 <= i /\ i <= 3 <=> (i = 1) \/ (i = 2) \/ (i = 3)`]);;

let SUM_3 = prove
 (`!t. sum(1..3) t = t(1) + t(2) + t(3)`,
  REWRITE_TAC[num_CONV `3`; num_CONV `2`; SUM_CLAUSES_NUMSEG] THEN
  REWRITE_TAC[SUM_SING_NUMSEG; ARITH; REAL_ADD_ASSOC]);;

let VECTOR_3 = prove
 (`(vector [x;y;z] :real^3)$1 = x /\
   (vector [x;y;z] :real^3)$2 = y /\
   (vector [x;y;z] :real^3)$3 = z`,
  SIMP_TAC[vector; LAMBDA_BETA; DIMINDEX_3; LENGTH; ARITH] THEN
  REWRITE_TAC[num_CONV `2`; num_CONV `1`; EL; HD; TL]);;

let DOT_VECTOR = prove
 (`(vector [x1;y1;z1] :real^3) dot (vector [x2;y2;z2]) =
       x1 * x2 + y1 * y2 + z1 * z2`,
  REWRITE_TAC[dot; DIMINDEX_3; SUM_3; VECTOR_3]);;

let VECTOR_ZERO = prove
 (`(vector [x;y;z] :real^3 = vec 0) <=> x = &0 /\ y = &0 /\ z = &0`,
  SIMP_TAC[CART_EQ; DIMINDEX_3; FORALL_3; VEC_COMPONENT; VECTOR_3; ARITH]);;

let ORTHOGONAL_VECTOR = prove
 (`orthogonal (vector [x1;y1;z1] :real^3) (vector [x2;y2;z2]) =
        (x1 * x2 + y1 * y2 + z1 * z2 = &0)`,
  REWRITE_TAC[orthogonal; DOT_VECTOR]);;

parse_as_infix("cross",(20,"right"));;

let cross = new_definition
 `(a:real^3) cross (b:real^3) =
    vector [a$2 * b$3 - a$3 * b$2;
            a$3 * b$1 - a$1 * b$3;
            a$1 * b$2 - a$2 * b$1] :real^3`;;

let VEC3_TAC =
  SIMP_TAC[CART_EQ; LAMBDA_BETA; FORALL_3; SUM_3; DIMINDEX_3; VECTOR_3;
           vector_add; vec; dot; cross; orthogonal; basis; ARITH] THEN
  CONV_TAC REAL_RING;;

let VEC3_RULE tm = prove(tm,VEC3_TAC);;

let ORTHOGONAL_CROSS = VEC3_RULE
 `!x y. orthogonal (x cross y) x /\ orthogonal (x cross y) y /\
        orthogonal x (x cross y) /\ orthogonal y (x cross y)`;;

let LEMMA_0 = VEC3_RULE
 `~(basis 1 :real^3 = vec 0) /\
  ~(basis 2 :real^3 = vec 0) /\
  ~(basis 3 :real^3 = vec 0)`;;

let LEMMA_1 = VEC3_RULE `!u v. u dot (u cross v) = &0`;;

let LEMMA_2 = VEC3_RULE `!u v. v dot (u cross v) = &0`;;

let LEMMA_3 = VEC3_RULE `!u:real^3. vec 0 dot u = &0`;;

let LEMMA_4 = VEC3_RULE `!u:real^3. u dot vec 0 = &0`;;

let LEMMA_5 = VEC3_RULE `!x. x cross x = vec 0`;;

let LEMMA_6 = VEC3_RULE
 `!u. ~(u = vec 0)
      ==> ~(u cross basis 1 = vec 0) \/
          ~(u cross basis 2 = vec 0) \/
          ~(u cross basis 3 = vec 0)`;;

let LEMMA_7 = VEC3_RULE
 `!u v w. (u cross v = vec 0) ==> (u dot (v cross w) = &0)`;;

let NORMAL_EXISTS = prove
 (`!u v:real^3. ?w. ~(w = vec 0) /\ orthogonal u w /\ orthogonal v w`,
  REPEAT GEN_TAC THEN MAP_EVERY ASM_CASES_TAC
   [`u:real^3 = vec 0`; `v:real^3 = vec 0`; `u cross v = vec 0`] THEN
  ASM_REWRITE_TAC[orthogonal] THEN
  ASM_MESON_TAC[LEMMA_0; LEMMA_1; LEMMA_2; LEMMA_3; LEMMA_4;
                LEMMA_5; LEMMA_6; LEMMA_7]);;

(* ========================================================================= *)
(* Custom tactics                                                            *)
(* ========================================================================= *)

let points =
[((0, -1), (0, -1), (2, 0)); ((0, -1), (0, 0), (2, 0));
 ((0, -1), (0, 1), (2, 0)); ((0, -1), (2, 0), (0, -1));
 ((0, -1), (2, 0), (0, 0)); ((0, -1), (2, 0), (0, 1));
 ((0, 0), (0, -1), (2, 0)); ((0, 0), (0, 0), (2, 0));
 ((0, 0), (0, 1), (2, 0)); ((0, 0), (2, 0), (-2, 0));
 ((0, 0), (2, 0), (0, -1)); ((0, 0), (2, 0), (0, 0));
 ((0, 0), (2, 0), (0, 1)); ((0, 0), (2, 0), (2, 0));
 ((0, 1), (0, -1), (2, 0)); ((0, 1), (0, 0), (2, 0));
 ((0, 1), (0, 1), (2, 0)); ((0, 1), (2, 0), (0, -1));
 ((0, 1), (2, 0), (0, 0)); ((0, 1), (2, 0), (0, 1));
 ((2, 0), (-2, 0), (0, 0)); ((2, 0), (0, -1), (0, -1));
 ((2, 0), (0, -1), (0, 0)); ((2, 0), (0, -1), (0, 1));
 ((2, 0), (0, 0), (-2, 0)); ((2, 0), (0, 0), (0, -1));
 ((2, 0), (0, 0), (0, 0)); ((2, 0), (0, 0), (0, 1));
 ((2, 0), (0, 0), (2, 0)); ((2, 0), (0, 1), (0, -1));
 ((2, 0), (0, 1), (0, 0)); ((2, 0), (0, 1), (0, 1));
 ((2, 0), (2, 0), (0, 0))];;

let ortho =
  let mult (x1,y1) (x2,y2) = (x1 * x2 + 2 * y1 * y2,x1 * y2 + y1 * x2)
  and add (x1,y1) (x2,y2) = (x1 + x2,y1 + y2) in
  let dot (x1,y1,z1) (x2,y2,z2) =
    end_itlist add [mult x1 x2; mult y1 y2; mult z1 z2] in
  fun (v1,v2) -> dot v1 v2 = (0,0);;

let opairs = filter ortho (allpairs (fun a b -> a,b) points points);;

let otrips = filter (fun (a,b,c) -> ortho(a,b) && ortho(a,c))
                    (allpairs (fun a (b,c) -> a,b,c) points opairs);;

let hol_of_value =
  let tm0 = `&0` and tm1 = `&2` and tm2 = `-- &2`
  and tm3 = `sqrt(&2)` and tm4 = `--sqrt(&2)` in
  function 0,0 -> tm0 | 2,0 -> tm1 | -2,0 -> tm2 | 0,1 -> tm3 | 0,-1 -> tm4;;

let hol_of_point =
  let ptm = `vector:(real)list->real^3` in
  fun (x,y,z) -> mk_comb(ptm,mk_flist(map hol_of_value [x;y;z]));;

let SQRT_2_POW = prove
 (`sqrt(&2) pow 2 = &2`,
  SIMP_TAC[SQRT_POW_2; REAL_POS]);;

let PROVE_NONTRIVIAL =
  let ptm = `~(x :real^3 = vec 0)` and xtm = `x:real^3` in
  fun x -> prove(vsubst [hol_of_point x,xtm] ptm,
                 GEN_REWRITE_TAC RAND_CONV [VECTOR_ZERO] THEN
                 MP_TAC SQRT_2_POW THEN CONV_TAC REAL_RING);;

let PROVE_ORTHOGONAL =
  let ptm = `orthogonal:real^3->real^3->bool` in
  fun (x,y) ->
   prove(list_mk_comb(ptm,[hol_of_point x;hol_of_point y]),
         ONCE_REWRITE_TAC[ORTHOGONAL_VECTOR] THEN
         MP_TAC SQRT_2_POW THEN CONV_TAC REAL_RING);;

let ppoint = let p = `P:real^3->bool` in fun v -> mk_comb(p,hol_of_point v);;

let DEDUCE_POINT_TAC pts =
  FIRST_X_ASSUM MATCH_MP_TAC THEN
  MAP_EVERY EXISTS_TAC (map hol_of_point pts) THEN
  ASM_REWRITE_TAC[];;

let rec KOCHEN_SPECKER_TAC set_0 set_1 =
  if intersect set_0 set_1 <> [] then
    let p = ppoint(hd(intersect set_0 set_1)) in
    let th1 = ASSUME(mk_neg p) and th2 = ASSUME p in
    ACCEPT_TAC(EQ_MP (EQF_INTRO th1) th2)
  else
    let prf_1 = filter (fun (a,b) -> mem a set_0) opairs
    and prf_0 = filter (fun (a,b,c) -> mem a set_1 && mem b set_1) otrips in
    let new_1 = map snd prf_1 and new_0 = map (fun (a,b,c) -> c) prf_0 in
    let set_0' = union new_0 set_0 and set_1' = union new_1 set_1 in
    let del_0 = subtract set_0' set_0 and del_1 = subtract set_1' set_1 in
    if del_0 <> [] || del_1 <> [] then
       let prv_0 x =
         let a,b,_ = find (fun (a,b,c) -> c = x) prf_0 in DEDUCE_POINT_TAC [a;b]
       and prv_1 x =
         let a,_ = find (fun (a,c) -> c = x) prf_1 in DEDUCE_POINT_TAC [a] in
      let newuns = list_mk_conj
        (map ppoint del_1 @ map (mk_neg o ppoint) del_0)
      and tacs = map prv_1 del_1 @ map prv_0 del_0 in
      SUBGOAL_THEN newuns STRIP_ASSUME_TAC THENL
       [REPEAT CONJ_TAC THENL tacs; ALL_TAC] THEN
      KOCHEN_SPECKER_TAC set_0' set_1'
    else
      let v = find (fun i -> not(mem i set_0) && not(mem i set_1)) points in
      ASM_CASES_TAC (ppoint v) THENL
       [KOCHEN_SPECKER_TAC set_0 (v::set_1);
        KOCHEN_SPECKER_TAC (v::set_0) set_1];;

let KOCHEN_SPECKER_LEMMA = prove
 (`!P. (!x y:real^3. ~(x = vec 0) /\ ~(y = vec 0) /\ orthogonal x y /\
                     ~(P x) ==> P y) /\
       (!x y z. ~(x = vec 0) /\ ~(y = vec 0) /\ ~(z = vec 0) /\
                orthogonal x y /\ orthogonal x z /\ orthogonal y z /\
                P x /\ P y ==> ~(P z))
       ==> F`,
  REPEAT STRIP_TAC THEN
  MAP_EVERY (ASSUME_TAC o PROVE_NONTRIVIAL) points THEN
  MAP_EVERY (ASSUME_TAC o PROVE_ORTHOGONAL) opairs THEN
  KOCHEN_SPECKER_TAC [] []);;

let NONTRIVIAL_CROSS = prove
 (`!x y. orthogonal x y /\ ~(x = vec 0) /\ ~(y = vec 0)
         ==> ~(x cross y = vec 0)`,
  REWRITE_TAC[GSYM DOT_EQ_0] THEN VEC3_TAC);;

let KOCHEN_SPECKER_PARADOX = prove
 (`~(?spin:real^3->num.
        !x y z. ~(x = vec 0) /\ ~(y = vec 0) /\ ~(z = vec 0) /\
                orthogonal x y /\ orthogonal x z /\ orthogonal y z
                ==> (spin x = 0) /\ (spin y = 1) /\ (spin z = 1) \/
                    (spin x = 1) /\ (spin y = 0) /\ (spin z = 1) \/
                    (spin x = 1) /\ (spin y = 1) /\ (spin z = 0))`,
  REPEAT STRIP_TAC THEN
  MP_TAC(SPEC `\x:real^3. spin(x) = 1` KOCHEN_SPECKER_LEMMA) THEN
  ASM_REWRITE_TAC[] THEN CONJ_TAC THEN
  POP_ASSUM MP_TAC THEN REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN
  DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN
  ASM_MESON_TAC[ARITH_RULE `~(1 = 0)`; NONTRIVIAL_CROSS; ORTHOGONAL_CROSS]);;

(* ========================================================================= *)
(* Defining new types                                                        *)
(* ========================================================================= *)

let direction_tybij = new_type_definition "direction" ("mk_dir","dest_dir")
 (MESON[LEMMA_0] `?x:real^3. ~(x = vec 0)`);;

parse_as_infix("||",(11,"right"));;
parse_as_infix("_|_",(11,"right"));;

let perpdir = new_definition
 `x _|_ y <=> orthogonal (dest_dir x) (dest_dir y)`;;

let pardir = new_definition
 `x || y <=> (dest_dir x) cross (dest_dir y) = vec 0`;;

let DIRECTION_CLAUSES = prove
 (`((!x. P(dest_dir x)) <=> (!x. ~(x = vec 0) ==> P x)) /\
   ((?x. P(dest_dir x)) <=> (?x. ~(x = vec 0) /\ P x))`,
  MESON_TAC[direction_tybij]);;

let [PARDIR_REFL; PARDIR_SYM; PARDIR_TRANS] = (CONJUNCTS o prove)
 (`(!x. x || x) /\
   (!x y. x || y <=> y || x) /\
   (!x y z. x || y /\ y || z ==> x || z)`,
  REWRITE_TAC[pardir; DIRECTION_CLAUSES] THEN VEC3_TAC);;

let DIRECTION_AXIOM_1 = prove
 (`!p p'. ~(p || p') ==> ?l. p _|_ l /\ p' _|_ l /\
                             !l'. p _|_ l' /\ p' _|_ l' ==> l' || l`,
  REWRITE_TAC[perpdir; pardir; DIRECTION_CLAUSES] THEN REPEAT STRIP_TAC THEN
  MP_TAC(SPECL [`p:real^3`; `p':real^3`] NORMAL_EXISTS) THEN
  MATCH_MP_TAC MONO_EXISTS THEN
  POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN VEC3_TAC);;

let DIRECTION_AXIOM_2 = prove
 (`!l l'. ?p. p _|_ l /\ p _|_ l'`,
  REWRITE_TAC[perpdir; DIRECTION_CLAUSES] THEN
  MESON_TAC[NORMAL_EXISTS; ORTHOGONAL_SYM]);;

let DIRECTION_AXIOM_3 = prove
 (`?p p' p''.
        ~(p || p') /\ ~(p' || p'') /\ ~(p || p'') /\
        ~(?l. p _|_ l /\ p' _|_ l /\ p'' _|_ l)`,
  REWRITE_TAC[perpdir; pardir; DIRECTION_CLAUSES] THEN
  MAP_EVERY (fun t -> EXISTS_TAC t THEN REWRITE_TAC[LEMMA_0])
   [`basis 1 :real^3`; `basis 2 : real^3`; `basis 3 :real^3`] THEN
  VEC3_TAC);;

let CROSS_0 = VEC3_RULE `x cross vec 0 = vec 0 /\ vec 0 cross x = vec 0`;;

let DIRECTION_AXIOM_4_WEAK = prove
 (`!l. ?p p'. ~(p || p') /\ p _|_ l /\ p' _|_ l`,
  REWRITE_TAC[DIRECTION_CLAUSES; pardir; perpdir] THEN REPEAT STRIP_TAC THEN
  SUBGOAL_THEN
   `orthogonal (l cross basis 1) l /\ orthogonal (l cross basis 2) l /\
    ~((l cross basis 1) cross (l cross basis 2) = vec 0) \/
    orthogonal (l cross basis 1) l /\ orthogonal (l cross basis 3) l /\
    ~((l cross basis 1) cross (l cross basis 3) = vec 0) \/
    orthogonal (l cross basis 2) l /\ orthogonal (l cross basis 3) l /\
    ~((l cross basis 2) cross (l cross basis 3) = vec 0)`
  MP_TAC THENL [POP_ASSUM MP_TAC THEN VEC3_TAC; MESON_TAC[CROSS_0]]);;

let ORTHOGONAL_COMBINE = prove
 (`!x a b. a _|_ x /\ b _|_ x /\ ~(a || b)
           ==> ?c. c _|_ x /\ ~(a || c) /\ ~(b || c)`,
  REWRITE_TAC[DIRECTION_CLAUSES; pardir; perpdir] THEN
  REPEAT STRIP_TAC THEN EXISTS_TAC `a + b:real^3` THEN
  POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN VEC3_TAC);;

let DIRECTION_AXIOM_4 = prove
 (`!l. ?p p' p''. ~(p || p') /\ ~(p' || p'') /\ ~(p || p'') /\
                  p _|_ l /\ p' _|_ l /\ p'' _|_ l`,
  MESON_TAC[DIRECTION_AXIOM_4_WEAK; ORTHOGONAL_COMBINE]);;

let line_tybij = define_quotient_type "line" ("mk_line","dest_line") `(||)`;;

let PERPDIR_WELLDEF = prove
 (`!x y x' y'. x || x' /\ y || y' ==> (x _|_ y <=> x' _|_ y')`,
  REWRITE_TAC[perpdir; pardir; DIRECTION_CLAUSES] THEN VEC3_TAC);;

let perpl,perpl_th =
  lift_function (snd line_tybij) (PARDIR_REFL,PARDIR_TRANS)
                "perpl" PERPDIR_WELLDEF;;

let line_lift_thm = lift_theorem line_tybij
 (PARDIR_REFL,PARDIR_SYM,PARDIR_TRANS) [perpl_th];;

let LINE_AXIOM_1 = line_lift_thm DIRECTION_AXIOM_1;;
let LINE_AXIOM_2 = line_lift_thm DIRECTION_AXIOM_2;;
let LINE_AXIOM_3 = line_lift_thm DIRECTION_AXIOM_3;;
let LINE_AXIOM_4 = line_lift_thm DIRECTION_AXIOM_4;;

let point_tybij = new_type_definition "point" ("mk_point","dest_point")
 (prove(`?x:line. T`,REWRITE_TAC[]));;

parse_as_infix("on",(11,"right"));;

let on = new_definition `p on l <=> perpl (dest_point p) l`;;

let POINT_CLAUSES = prove
 (`((p = p') <=> (dest_point p = dest_point p')) /\
   ((!p. P (dest_point p)) <=> (!l. P l)) /\
   ((?p. P (dest_point p)) <=> (?l. P l))`,
  MESON_TAC[point_tybij]);;

let POINT_TAC th = REWRITE_TAC[on; POINT_CLAUSES] THEN ACCEPT_TAC th;;

let AXIOM_1 = prove
 (`!p p'. ~(p = p') ==> ?l. p on l /\ p' on l /\
          !l'. p on l' /\ p' on l' ==> (l' = l)`,
  POINT_TAC LINE_AXIOM_1);;

let AXIOM_2 = prove
 (`!l l'. ?p. p on l /\ p on l'`,
  POINT_TAC LINE_AXIOM_2);;

let AXIOM_3 = prove
 (`?p p' p''. ~(p = p') /\ ~(p' = p'') /\ ~(p = p'') /\
    ~(?l. p on l /\ p' on l /\ p'' on l)`,
  POINT_TAC LINE_AXIOM_3);;

let AXIOM_4 = prove
 (`!l. ?p p' p''. ~(p = p') /\ ~(p' = p'') /\ ~(p = p'') /\
    p on l /\ p' on l /\ p'' on l`,
  POINT_TAC LINE_AXIOM_4);;

(* ========================================================================= *)
(* Custom inference rules                                                    *)
(* ========================================================================= *)

let near_ring_axioms =
  `(!x. 0 + x = x) /\
   (!x. neg x + x = 0) /\
   (!x y z. (x + y) + z = x + y + z) /\
   (!x y z. (x * y) * z = x * y * z) /\
   (!x y z. (x + y) * z = (x * z) + (y * z))`;;

(**** Works eventually but takes a very long time
MESON[]
 `(!x. 0 + x = x) /\
  (!x. neg x + x = 0) /\
  (!x y z. (x + y) + z = x + y + z) /\
  (!x y z. (x * y) * z = x * y * z) /\
  (!x y z. (x + y) * z = (x * z) + (y * z))
  ==> !a. 0 * a = 0`;;
 ****)

let is_realvar w x = is_var x && not(mem x w);;

let rec real_strip w tm =
  if mem tm w then tm,[] else
  let l,r = dest_comb tm in
  let f,args = real_strip w l in f,args@[r];;

let weight lis (f,n) (g,m) =
  let i = index f lis and j = index g lis in
  i > j || i = j && n > m;;

let rec lexord ord l1 l2 =
  match (l1,l2) with
    (h1::t1,h2::t2) -> if ord h1 h2 then length t1 = length t2
                       else h1 = h2 && lexord ord t1 t2
  | _ -> false;;

let rec lpo_gt w s t =
  if is_realvar w t then not(s = t) && mem t (frees s)
  else if is_realvar w s || is_abs s || is_abs t then false else
  let f,fargs = real_strip w s and g,gargs = real_strip w t in
  exists (fun si -> lpo_ge w si t) fargs ||
        forall (lpo_gt w s) gargs &&
        (f = g && lexord (lpo_gt w) fargs gargs ||
         weight w (f,length fargs) (g,length gargs))
and lpo_ge w s t = (s = t) || lpo_gt w s t;;

let rec istriv w env x t =
  if is_realvar w t then t = x || defined env t && istriv w env x (apply env t)
  else if is_const t then false else
  let f,args = strip_comb t in
  exists (istriv w env x) args && failwith "cyclic";;

let rec unify w env tp =
  match tp with
   ((Var(_,_) as x),t) | (t,(Var(_,_) as x)) when not(mem x w) ->
        if defined env x then unify w env (apply env x,t)
        else if istriv w env x t then env else (x|->t) env
  | (Comb(f,x),Comb(g,y)) -> unify w (unify w env (x,y)) (f,g)
  | (s,t) -> if s = t then env else failwith "unify: not unifiable";;

let fullunify w (s,t) =
  let env = unify w undefined (s,t) in
  let th = map (fun (x,t) -> (t,x)) (graph env) in
  let rec subs t =
    let t' = vsubst th t in
    if t' = t then t else subs t' in
  map (fun (t,x) -> (subs t,x)) th;;

let rec listcases fn rfn lis acc =
  match lis with
    [] -> acc
  | h::t -> fn h (fun i h' -> rfn i (h'::map REFL t)) @
            listcases fn (fun i t' -> rfn i (REFL h::t')) t acc;;

let LIST_MK_COMB f ths = rev_itlist (fun s t -> MK_COMB(t,s)) ths (REFL f);;

let rec overlaps w th tm rfn =
  let l,r = dest_eq(concl th) in
  if not (is_comb tm) then [] else
  let f,args = strip_comb tm in
  listcases (overlaps w th) (fun i a -> rfn i (LIST_MK_COMB f a)) args
            (try [rfn (fullunify w (l,tm)) th] with Failure _ -> []);;

let crit1 w eq1 eq2 =
  let l1,r1 = dest_eq(concl eq1)
  and l2,r2 = dest_eq(concl eq2) in
  overlaps w eq1 l2 (fun i th -> TRANS (SYM(INST i th)) (INST i eq2));;

let fixvariables s th =
  let fvs = subtract (frees(concl th)) (freesl(hyp th)) in
  let gvs = map2 (fun v n -> mk_var(s^string_of_int n,type_of v))
                 fvs (1--length fvs) in
  INST (zip gvs fvs) th;;

let renamepair (th1,th2) = fixvariables "x" th1,fixvariables "y" th2;;

let critical_pairs w tha thb =
  let th1,th2 = renamepair (tha,thb) in crit1 w th1 th2 @ crit1 w th2 th1;;

let normalize_and_orient w eqs th =
  let th' = GEN_REWRITE_RULE TOP_DEPTH_CONV eqs th in
  let s',t' = dest_eq(concl th') in
  if lpo_ge w s' t' then th' else if lpo_ge w t' s' then SYM th'
  else failwith "Can't orient equation";;

let status(eqs,crs) eqs0 =
  if eqs = eqs0 && (length crs) mod 1000 <> 0 then () else
  (print_string(string_of_int(length eqs)^" equations and "^
                string_of_int(length crs)^" pending critical pairs");
   print_newline());;

let left_reducible eqs eq =
  can (CHANGED_CONV(GEN_REWRITE_CONV (LAND_CONV o ONCE_DEPTH_CONV) eqs))
      (concl eq);;

let rec complete w (eqs,crits) =
  match crits with
    (eq::ocrits) ->
        let trip =
          try let eq' = normalize_and_orient w eqs eq in
              let s',t' = dest_eq(concl eq') in
              if s' = t' then (eqs,ocrits) else
              let crits',eqs' = partition(left_reducible [eq']) eqs in
              let eqs'' = eq'::eqs' in
              eqs'',
              ocrits @ crits' @ itlist ((@) o critical_pairs w eq') eqs'' []
          with Failure _ ->
              if exists (can (normalize_and_orient w eqs)) ocrits
              then (eqs,ocrits@[eq])
              else failwith "complete: no orientable equations" in
        status trip eqs; complete w trip
  | [] -> eqs;;

let complete_equations wts eqs =
  let eqs' = map (normalize_and_orient wts []) eqs in
  complete wts ([],eqs');;

complete_equations [`1`; `( * ):num->num->num`; `i:num->num`]
  [SPEC_ALL(ASSUME `!a b. i(a) * a * b = b`)];;

complete_equations [`c:A`; `f:A->A`]
 (map SPEC_ALL (CONJUNCTS (ASSUME
   `((f(f(f(f(f c))))) = c:A) /\ (f(f(f c)) = c)`)));;

let eqs = map SPEC_ALL (CONJUNCTS (ASSUME
  `(!x. 1 * x = x) /\ (!x. i(x) * x = 1) /\
   (!x y z. (x * y) * z = x * y * z)`)) in
map concl (complete_equations [`1`; `( * ):num->num->num`; `i:num->num`] eqs);;

let COMPLETE_TAC w th =
  let eqs = map SPEC_ALL (CONJUNCTS(SPEC_ALL th)) in
  let eqs' = complete_equations w eqs in
  MAP_EVERY (ASSUME_TAC o GEN_ALL) eqs';;

g `(!x. 1 * x = x) /\
   (!x. i(x) * x = 1) /\
   (!x y z. (x * y) * z = x * y * z)
   ==> !x y. i(y) * i(i(i(x * i(y)))) * x = 1`;;

e (DISCH_THEN(COMPLETE_TAC [`1`; `( * ):num->num->num`; `i:num->num`]));;
e(ASM_REWRITE_TAC[]);;

g `(!x. 0 + x = x) /\
     (!x. neg x + x = 0) /\
     (!x y z. (x + y) + z = x + y + z) /\
     (!x y z. (x * y) * z = x * y * z) /\
     (!x y z. (x + y) * z = (x * z) + (y * z))
     ==> (neg 0  * (x * y + z + neg(neg(w + z))) + neg(neg b + neg a) =
          a + b)`;;

e (DISCH_THEN(COMPLETE_TAC
     [`0`; `(+):num->num->num`; `neg:num->num`; `( * ):num->num->num`]));;
e(ASM_REWRITE_TAC[]);;

(**** Could have done this instead
e (DISCH_THEN(COMPLETE_TAC
      [`0`; `(+):num->num->num`; `( * ):num->num->num`; `neg:num->num`]));;
****)

(* ========================================================================= *)
(* Linking external tools                                                    *)
(* ========================================================================= *)

let maximas e =
  let filename = Filename.temp_file "maxima" ".out" in
  let s =
    "echo 'linel:10000; display2d:false;" ^ e ^
    ";' | maxima | grep '^(%o3)' | sed -e 's/^(%o3) //' >" ^
    filename in
  if Sys.command s <> 0 then failwith "maxima" else
  let fd = Pervasives.open_in filename in
  let data = input_line fd in
  close_in fd; Sys.remove filename; data;;

prioritize_real();;
let maxima_ops = ["+",`(+)`; "-",`(-)`; "*",`( * )`;  "/",`(/)`; "^",`(pow)`];;
let maxima_funs = ["sin",`sin`; "cos",`cos`];;

let mk_uneg = curry mk_comb `(--)`;;

let dest_uneg =
  let ntm = `(--)` in
  fun tm -> let op,t = dest_comb tm in
            if op = ntm then t else failwith "dest_uneg";;

let mk_pow = let f = mk_binop `(pow)` in fun x y -> f x (rand y);;
let mk_realvar = let real_ty = `:real` in fun x -> mk_var(x,real_ty);;

let rec string_of_hol tm =
  if is_ratconst tm then "("^string_of_num(rat_of_term tm)^")"
  else if is_numeral tm then string_of_num(dest_numeral tm)
  else if is_var tm then fst(dest_var tm)
  else if can dest_uneg tm then "-(" ^ string_of_hol(rand tm) ^ ")" else
  let lop,r = dest_comb tm in
  try let op,l = dest_comb lop in
      "("^string_of_hol l^" "^ rev_assoc op maxima_ops^" "^string_of_hol r^")"
  with Failure _ -> rev_assoc lop maxima_funs ^ "(" ^ string_of_hol r ^ ")";;

string_of_hol `(x + sin(-- &2 * x)) pow 2 - cos(x - &22 / &7)`;;

let lexe s = map (function Resword s -> s | Ident s -> s) (lex(explode s));;

let parse_bracketed prs inp =
  match prs inp with
    ast,")"::rst -> ast,rst
  | _ -> failwith "Closing bracket expected";;

let rec parse_ginfix op opup sof prs inp =
  match prs inp with
    e1,hop::rst when hop = op -> parse_ginfix op opup (opup sof e1) prs rst
  | e1,rest -> sof e1,rest;;

let parse_general_infix op =
  let opcon = if op = "^" then mk_pow else mk_binop (assoc op maxima_ops) in
  let constr = if op <> "^" && snd(get_infix_status op) = "right"
               then fun f e1 e2 -> f(opcon e1 e2)
               else fun f e1 e2 -> opcon(f e1) e2 in
  parse_ginfix op constr (fun x -> x);;

let rec parse_atomic_expression inp =
  match inp with
   [] -> failwith "expression expected"
  | "(" :: rest -> parse_bracketed parse_expression rest
  | s :: rest when forall isnum (explode s) ->
        term_of_rat(num_of_string s),rest
  | s :: "(" :: rest when forall isalnum (explode s) ->
        let e,rst = parse_bracketed parse_expression rest in
        mk_comb(assoc s maxima_funs,e),rst
  | s :: rest when forall isalnum (explode s) -> mk_realvar s,rest
and parse_exp inp = parse_general_infix "^" parse_atomic_expression inp
and parse_neg inp =
  match inp with
   | "-" :: rest -> let e,rst = parse_neg rest in mk_uneg e,rst
   | _ -> parse_exp inp
and parse_expression inp =
  itlist parse_general_infix (map fst maxima_ops) parse_neg inp;;

let hol_of_string = fst o parse_expression o lexe;;

hol_of_string "sin(x) - cos(-(- - 1 + x))";;

let FACTOR_CONV tm =
  let s = "factor("^string_of_hol tm^")" in
  let tm' = hol_of_string(maximas s) in
  REAL_RING(mk_eq(tm,tm'));;

FACTOR_CONV `&1234567890`;;

FACTOR_CONV `x pow 6 - &1`;;

FACTOR_CONV `r * (r * x * (&1 - x)) * (&1 - r * x * (&1 - x)) - x`;;

let ANTIDERIV_CONV tm =
  let x,bod = dest_abs tm in
  let s = "integrate("^string_of_hol bod^","^fst(dest_var x)^")" in
  let tm' = mk_abs(x,hol_of_string(maximas s)) in
  let th1 = CONV_RULE (NUM_REDUCE_CONV THENC REAL_RAT_REDUCE_CONV)
                      (SPEC x (DIFF_CONV tm')) in
  let th2 = REAL_RING(mk_eq(lhand(concl th1),bod)) in
  GEN x (GEN_REWRITE_RULE LAND_CONV [th2] th1);;

ANTIDERIV_CONV `\x. (x + &5) pow 2 + &77 * x`;;

ANTIDERIV_CONV `\x. sin(x) + x pow 11`;;

(**** This one fails
ANTIDERIV_CONV `\x. sin(x) pow 3`;;
 ****)

let SIN_N_CLAUSES = prove
 (`(sin(&(NUMERAL(BIT0 n)) * x) =
    &2 * sin(&(NUMERAL n) * x) * cos(&(NUMERAL n) * x)) /\
   (sin(&(NUMERAL(BIT1 n)) * x) =
        sin(&(NUMERAL(BIT0 n)) * x) * cos(x) +
        sin(x) * cos(&(NUMERAL(BIT0 n)) * x)) /\
   (cos(&(NUMERAL(BIT0 n)) * x) =
        cos(&(NUMERAL n) * x) pow 2 - sin(&(NUMERAL n) * x) pow 2) /\
   (cos(&(NUMERAL(BIT1 n)) * x) =
        cos(&(NUMERAL(BIT0 n)) * x) * cos(x) -
        sin(x) * sin(&(NUMERAL(BIT0 n)) * x))`,
  REWRITE_TAC[REAL_MUL_2; REAL_POW_2] THEN
  REWRITE_TAC[NUMERAL; BIT0; BIT1] THEN
  REWRITE_TAC[ADD1; GSYM REAL_OF_NUM_ADD] THEN
  REWRITE_TAC[REAL_ADD_RDISTRIB; SIN_ADD; COS_ADD; REAL_MUL_LID] THEN
  CONV_TAC REAL_RING);;

let TRIG_IDENT_TAC x =
  REWRITE_TAC[SIN_N_CLAUSES; SIN_ADD; COS_ADD] THEN
  REWRITE_TAC[REAL_MUL_LZERO; SIN_0; COS_0; REAL_MUL_RZERO] THEN
  MP_TAC(SPEC x SIN_CIRCLE) THEN CONV_TAC REAL_RING;;

let ANTIDERIV_CONV tm =
  let x,bod = dest_abs tm in
  let s = "expand(integrate("^string_of_hol bod^","^fst(dest_var x)^"))" in
  let tm' = mk_abs(x,hol_of_string(maximas s)) in
  let th1 = CONV_RULE (NUM_REDUCE_CONV THENC REAL_RAT_REDUCE_CONV)
                      (SPEC x (DIFF_CONV tm')) in
  let th2 = prove(mk_eq(lhand(concl th1),bod),TRIG_IDENT_TAC x) in
  GEN x (GEN_REWRITE_RULE LAND_CONV [th2] th1);;

time ANTIDERIV_CONV `\x. sin(x) pow 3`;;

time ANTIDERIV_CONV `\x. sin(x) * sin(x) pow 5 * cos(x) pow 4 + cos(x)`;;

let FCT1_WEAK = prove
 (`(!x. (f diffl f'(x)) x) ==> !x. &0 <= x ==> defint(&0,x) f' (f x - f(&0))`,
  MESON_TAC[FTC1]);;

let INTEGRAL_CONV tm =
  let th1 = MATCH_MP FCT1_WEAK (ANTIDERIV_CONV tm) in
  (CONV_RULE REAL_RAT_REDUCE_CONV o
   REWRITE_RULE[SIN_0; COS_0; REAL_MUL_LZERO; REAL_MUL_RZERO] o
   CONV_RULE REAL_RAT_REDUCE_CONV o BETA_RULE) th1;;

INTEGRAL_CONV `\x. sin(x) pow 13`;;