Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 83,353 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 |
(* ========================================================================= *)
(* HOL basics *)
(* ========================================================================= *)
ARITH_RULE
`(a * x + b * y + a * y) EXP 3 + (b * x) EXP 3 +
(a * x + b * y + b * x) EXP 3 + (a * y) EXP 3 =
(a * x + a * y + b * x) EXP 3 + (b * y) EXP 3 +
(a * y + b * y + b * x) EXP 3 + (a * x) EXP 3`;;
(* ========================================================================= *)
(* Propositional logic *)
(* ========================================================================= *)
TAUT
`(~input_a ==> (internal <=> T)) /\
(~input_b ==> (output <=> internal)) /\
(input_a ==> (output <=> F)) /\
(input_b ==> (output <=> F))
==> (output <=> ~(input_a \/ input_b))`;;
TAUT
`(i1 /\ i2 <=> a) /\
(i1 /\ i3 <=> b) /\
(i2 /\ i3 <=> c) /\
(i1 /\ c <=> d) /\
(m /\ r <=> e) /\
(m /\ w <=> f) /\
(n /\ w <=> g) /\
(p /\ w <=> h) /\
(q /\ w <=> i) /\
(s /\ x <=> j) /\
(t /\ x <=> k) /\
(v /\ x <=> l) /\
(i1 \/ i2 <=> m) /\
(i1 \/ i3 <=> n) /\
(i1 \/ q <=> p) /\
(i2 \/ i3 <=> q) /\
(i3 \/ a <=> r) /\
(a \/ w <=> s) /\
(b \/ w <=> t) /\
(d \/ h <=> u) /\
(c \/ w <=> v) /\
(~e <=> w) /\
(~u <=> x) /\
(i \/ l <=> o1) /\
(g \/ k <=> o2) /\
(f \/ j <=> o3)
==> (o1 <=> ~i1) /\ (o2 <=> ~i2) /\ (o3 <=> ~i3)`;;
(* ========================================================================= *)
(* Abstractions and quantifiers *)
(* ========================================================================= *)
MESON[]
`((?x. !y. P(x) <=> P(y)) <=> ((?x. Q(x)) <=> (!y. Q(y)))) <=>
((?x. !y. Q(x) <=> Q(y)) <=> ((?x. P(x)) <=> (!y. P(y))))`;;
MESON[]
`(!x y z. P x y /\ P y z ==> P x z) /\
(!x y z. Q x y /\ Q y z ==> Q x z) /\
(!x y. P x y ==> P y x) /\
(!x y. P x y \/ Q x y)
==> (!x y. P x y) \/ (!x y. Q x y)`;;
let ewd1062 = MESON[]
`(!x. x <= x) /\
(!x y z. x <= y /\ y <= z ==> x <= z) /\
(!x y. f(x) <= y <=> x <= g(y))
==> (!x y. x <= y ==> f(x) <= f(y)) /\
(!x y. x <= y ==> g(x) <= g(y))`;;
let ewd1062 = MESON[]
`(!x. R x x) /\
(!x y z. R x y /\ R y z ==> R x z) /\
(!x y. R (f x) y <=> R x (g y))
==> (!x y. R x y ==> R (f x) (f y)) /\
(!x y. R x y ==> R (g x) (g y))`;;
MESON[] `(?!x. g(f x) = x) <=> (?!y. f(g y) = y)`;;
MESON [ADD_ASSOC; ADD_SYM] `m + (n + p) = n + (m + p)`;;
(* ========================================================================= *)
(* Tactics and tacticals *)
(* ========================================================================= *)
g `2 <= n /\ n <= 2 ==> f(2,2) + n < f(n,n) + 7`;;
e DISCH_TAC;;
b();;
e(CONV_TAC(REWRITE_CONV[LE_ANTISYM]));;
e(SIMP_TAC[]);;
e(ONCE_REWRITE_TAC[EQ_SYM_EQ]);;
e DISCH_TAC;;
e(ASM_REWRITE_TAC[]);;
e(CONV_TAC ARITH_RULE);;
let trivial = top_thm();;
g `2 <= n /\ n <= 2 ==> f(2,2) + n < f(n,n) + 7`;;
e(CONV_TAC(REWRITE_CONV[LE_ANTISYM]));;
e(SIMP_TAC[]);;
e(ONCE_REWRITE_TAC[EQ_SYM_EQ]);;
e DISCH_TAC;;
e(ASM_REWRITE_TAC[]);;
e(CONV_TAC ARITH_RULE);;
let trivial = top_thm();;
g `2 <= n /\ n <= 2 ==> f(2,2) + n < f(n,n) + 7`;;
e(CONV_TAC(REWRITE_CONV[LE_ANTISYM]) THEN
SIMP_TAC[] THEN ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN
DISCH_TAC THEN ASM_REWRITE_TAC[] THEN CONV_TAC ARITH_RULE);;
let trivial = top_thm();;
let trivial = prove
(`2 <= n /\ n <= 2 ==> f(2,2) + n < f(n,n) + 7`,
CONV_TAC(REWRITE_CONV[LE_ANTISYM]) THEN
SIMP_TAC[] THEN ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN
DISCH_TAC THEN ASM_REWRITE_TAC[] THEN CONV_TAC ARITH_RULE);;
let trivial = prove
(`!x y:real. &0 < x * y ==> (&0 < x <=> &0 < y)`,
REPEAT GEN_TAC THEN MP_TAC(SPECL [`--x`; `y:real`] REAL_LE_MUL) THEN
MP_TAC(SPECL [`x:real`; `--y`] REAL_LE_MUL) THEN REAL_ARITH_TAC);;
let trivial = prove
(`!x y:real. &0 < x * y ==> (&0 < x <=> &0 < y)`,
MATCH_MP_TAC REAL_WLOG_LE THEN CONJ_TAC THEN REPEAT GEN_TAC THEN
MP_TAC(SPECL [`--x`; `y:real`] REAL_LE_MUL) THEN REAL_ARITH_TAC);;
let SUM_OF_NUMBERS = prove
(`!n. nsum(1..n) (\i. i) = (n * (n + 1)) DIV 2`,
INDUCT_TAC THEN ASM_REWRITE_TAC[NSUM_CLAUSES_NUMSEG] THEN ARITH_TAC);;
let SUM_OF_SQUARES = prove
(`!n. nsum(1..n) (\i. i * i) = (n * (n + 1) * (2 * n + 1)) DIV 6`,
INDUCT_TAC THEN ASM_REWRITE_TAC[NSUM_CLAUSES_NUMSEG] THEN ARITH_TAC);;
let SUM_OF_CUBES = prove
(`!n. nsum(1..n) (\i. i*i*i) = (n * n * (n + 1) * (n + 1)) DIV 4`,
INDUCT_TAC THEN ASM_REWRITE_TAC[NSUM_CLAUSES_NUMSEG] THEN ARITH_TAC);;
(* ========================================================================= *)
(* HOL's number systems *)
(* ========================================================================= *)
REAL_ARITH `!x y:real. (abs(x) - abs(y)) <= abs(x - y)`;;
INT_ARITH
`!a b a' b' D:int.
(a pow 2 - D * b pow 2) * (a' pow 2 - D * b' pow 2) =
(a * a' + D * b * b') pow 2 - D * (a * b' + a' * b) pow 2`;;
REAL_ARITH
`!x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11:real.
x3 = abs(x2) - x1 /\
x4 = abs(x3) - x2 /\
x5 = abs(x4) - x3 /\
x6 = abs(x5) - x4 /\
x7 = abs(x6) - x5 /\
x8 = abs(x7) - x6 /\
x9 = abs(x8) - x7 /\
x10 = abs(x9) - x8 /\
x11 = abs(x10) - x9
==> x1 = x10 /\ x2 = x11`;;
REAL_ARITH `!x y:real. x < y ==> x < (x + y) / &2 /\ (x + y) / &2 < y`;;
REAL_ARITH
`((x1 pow 2 + x2 pow 2 + x3 pow 2 + x4 pow 2) pow 2) =
((&1 / &6) * ((x1 + x2) pow 4 + (x1 + x3) pow 4 + (x1 + x4) pow 4 +
(x2 + x3) pow 4 + (x2 + x4) pow 4 + (x3 + x4) pow 4) +
(&1 / &6) * ((x1 - x2) pow 4 + (x1 - x3) pow 4 + (x1 - x4) pow 4 +
(x2 - x3) pow 4 + (x2 - x4) pow 4 + (x3 - x4) pow 4))`;;
ARITH_RULE `x < 2 ==> 2 * x + 1 < 4`;;
(**** Fails
ARITH_RULE `~(2 * m + 1 = 2 * n)`;;
****)
ARITH_RULE `x < 2 EXP 30 ==> (429496730 * x) DIV (2 EXP 32) = x DIV 10`;;
(**** Fails
ARITH_RULE `x <= 2 EXP 30 ==> (429496730 * x) DIV (2 EXP 32) = x DIV 10`;;
****)
(**** Fails
ARITH_RULE `1 <= x /\ 1 <= y ==> 1 <= x * y`;;
****)
(**** Fails
REAL_ARITH `!x y:real. x = y ==> x * y = y pow 2`;;
****)
prioritize_real();;
REAL_RING
`s = (a + b + c) / &2
==> s * (s - b) * (s - c) + s * (s - c) * (s - a) +
s * (s - a) * (s - b) - (s - a) * (s - b) * (s - c) =
a * b * c`;;
REAL_RING `a pow 2 = &2 /\ x pow 2 + a * x + &1 = &0 ==> x pow 4 + &1 = &0`;;
REAL_RING
`(a * x pow 2 + b * x + c = &0) /\
(a * y pow 2 + b * y + c = &0) /\
~(x = y)
==> (a * x * y = c) /\ (a * (x + y) + b = &0)`;;
REAL_RING
`p = (&3 * a1 - a2 pow 2) / &3 /\
q = (&9 * a1 * a2 - &27 * a0 - &2 * a2 pow 3) / &27 /\
x = z + a2 / &3 /\
x * w = w pow 2 - p / &3
==> (z pow 3 + a2 * z pow 2 + a1 * z + a0 = &0 <=>
if p = &0 then x pow 3 = q
else (w pow 3) pow 2 - q * (w pow 3) - p pow 3 / &27 = &0)`;;
REAL_FIELD `&0 < x ==> &1 / x - &1 / (&1 + x) = &1 / (x * (&1 + x))`;;
REAL_FIELD
`s pow 2 = b pow 2 - &4 * a * c
==> (a * x pow 2 + b * x + c = &0 <=>
if a = &0 then
if b = &0 then
if c = &0 then T else F
else x = --c / b
else x = (--b + s) / (&2 * a) \/ x = (--b + --s) / (&2 * a))`;;
(**** This needs an external SDP solver to assist with proof
needs "Examples/sos.ml";;
SOS_RULE `1 <= x /\ 1 <= y ==> 1 <= x * y`;;
REAL_SOS
`!a1 a2 a3 a4:real.
&0 <= a1 /\ &0 <= a2 /\ &0 <= a3 /\ &0 <= a4
==> a1 pow 2 +
((a1 + a2) / &2) pow 2 +
((a1 + a2 + a3) / &3) pow 2 +
((a1 + a2 + a3 + a4) / &4) pow 2
<= &4 * (a1 pow 2 + a2 pow 2 + a3 pow 2 + a4 pow 2)`;;
REAL_SOS
`!a b c:real.
a >= &0 /\ b >= &0 /\ c >= &0
==> &3 / &2 * (b + c) * (a + c) * (a + b) <=
a * (a + c) * (a + b) +
b * (b + c) * (a + b) +
c * (b + c) * (a + c)`;;
SOS_CONV `&2 * x pow 4 + &2 * x pow 3 * y - x pow 2 * y pow 2 + &5 * y pow 4`;;
PURE_SOS
`x pow 4 + &2 * x pow 2 * z + x pow 2 - &2 * x * y * z +
&2 * y pow 2 * z pow 2 + &2 * y * z pow 2 + &2 * z pow 2 - &2 * x +
&2 * y * z + &1 >= &0`;;
*****)
needs "Examples/cooper.ml";;
COOPER_RULE `ODD n ==> 2 * n DIV 2 < n`;;
COOPER_RULE `!n. n >= 8 ==> ?a b. n = 3 * a + 5 * b`;;
needs "Rqe/make.ml";;
REAL_QELIM_CONV `!x. &0 <= x ==> ?y. y pow 2 = x`;;
(* ========================================================================= *)
(* Inductive definitions *)
(* ========================================================================= *)
(* ------------------------------------------------------------------------- *)
(* Bug puzzle. *)
(* ------------------------------------------------------------------------- *)
prioritize_real();;
let move = new_definition
`move ((ax,ay),(bx,by),(cx,cy)) ((ax',ay'),(bx',by'),(cx',cy')) <=>
(?a. ax' = ax + a * (cx - bx) /\ ay' = ay + a * (cy - by) /\
bx' = bx /\ by' = by /\ cx' = cx /\ cy' = cy) \/
(?b. bx' = bx + b * (ax - cx) /\ by' = by + b * (ay - cy) /\
ax' = ax /\ ay' = ay /\ cx' = cx /\ cy' = cy) \/
(?c. ax' = ax /\ ay' = ay /\ bx' = bx /\ by' = by /\
cx' = cx + c * (bx - ax) /\ cy' = cy + c * (by - ay))`;;
let reachable_RULES,reachable_INDUCT,reachable_CASES =
new_inductive_definition
`(!p. reachable p p) /\
(!p q r. move p q /\ reachable q r ==> reachable p r)`;;
let oriented_area = new_definition
`oriented_area ((ax,ay),(bx,by),(cx,cy)) =
((bx - ax) * (cy - ay) - (cx - ax) * (by - ay)) / &2`;;
let MOVE_INVARIANT = prove
(`!p p'. move p p' ==> oriented_area p = oriented_area p'`,
REWRITE_TAC[FORALL_PAIR_THM; move; oriented_area] THEN CONV_TAC REAL_RING);;
let REACHABLE_INVARIANT = prove
(`!p p'. reachable p p' ==> oriented_area p = oriented_area p'`,
MATCH_MP_TAC reachable_INDUCT THEN MESON_TAC[MOVE_INVARIANT]);;
let IMPOSSIBILITY_B = prove
(`~(reachable ((&0,&0),(&3,&0),(&0,&3)) ((&1,&2),(&2,&5),(-- &2,&3)) \/
reachable ((&0,&0),(&3,&0),(&0,&3)) ((&1,&2),(-- &2,&3),(&2,&5)) \/
reachable ((&0,&0),(&3,&0),(&0,&3)) ((&2,&5),(&1,&2),(-- &2,&3)) \/
reachable ((&0,&0),(&3,&0),(&0,&3)) ((&2,&5),(-- &2,&3),(&1,&2)) \/
reachable ((&0,&0),(&3,&0),(&0,&3)) ((-- &2,&3),(&1,&2),(&2,&5)) \/
reachable ((&0,&0),(&3,&0),(&0,&3)) ((-- &2,&3),(&2,&5),(&1,&2)))`,
STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP REACHABLE_INVARIANT) THEN
REWRITE_TAC[oriented_area] THEN REAL_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Verification of a simple concurrent program. *)
(* ------------------------------------------------------------------------- *)
let init = new_definition
`init (x,y,pc1,pc2,sem) <=>
pc1 = 10 /\ pc2 = 10 /\ x = 0 /\ y = 0 /\ sem = 1`;;
let trans = new_definition
`trans (x,y,pc1,pc2,sem) (x',y',pc1',pc2',sem') <=>
pc1 = 10 /\ sem > 0 /\ pc1' = 20 /\ sem' = sem - 1 /\
(x',y',pc2') = (x,y,pc2) \/
pc2 = 10 /\ sem > 0 /\ pc2' = 20 /\ sem' = sem - 1 /\
(x',y',pc1') = (x,y,pc1) \/
pc1 = 20 /\ pc1' = 30 /\ x' = x + 1 /\
(y',pc2',sem') = (y,pc2,sem) \/
pc2 = 20 /\ pc2' = 30 /\ y' = y + 1 /\ x' = x /\
pc1' = pc1 /\ sem' = sem \/
pc1 = 30 /\ pc1' = 10 /\ sem' = sem + 1 /\
(x',y',pc2') = (x,y,pc2) \/
pc2 = 30 /\ pc2' = 10 /\ sem' = sem + 1 /\
(x',y',pc1') = (x,y,pc1)`;;
let mutex = new_definition
`mutex (x,y,pc1,pc2,sem) <=> pc1 = 10 \/ pc2 = 10`;;
let indinv = new_definition
`indinv (x:num,y:num,pc1,pc2,sem) <=>
sem + (if pc1 = 10 then 0 else 1) + (if pc2 = 10 then 0 else 1) = 1`;;
needs "Library/rstc.ml";;
let INDUCTIVE_INVARIANT = prove
(`!init invariant transition P.
(!s. init s ==> invariant s) /\
(!s s'. invariant s /\ transition s s' ==> invariant s') /\
(!s. invariant s ==> P s)
==> !s s':A. init s /\ RTC transition s s' ==> P s'`,
REPEAT GEN_TAC THEN MP_TAC(ISPECL
[`transition:A->A->bool`;
`\s s':A. invariant s ==> invariant s'`] RTC_INDUCT) THEN
MESON_TAC[]);;
let MUTEX = prove
(`!s s'. init s /\ RTC trans s s' ==> mutex s'`,
MATCH_MP_TAC INDUCTIVE_INVARIANT THEN EXISTS_TAC `indinv` THEN
REWRITE_TAC[init; trans; indinv; mutex; FORALL_PAIR_THM; PAIR_EQ] THEN
ARITH_TAC);;
(* ========================================================================= *)
(* Wellfounded induction *)
(* ========================================================================= *)
let NSQRT_2 = prove
(`!p q. p * p = 2 * q * q ==> q = 0`,
MATCH_MP_TAC num_WF THEN REWRITE_TAC[RIGHT_IMP_FORALL_THM] THEN
REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o AP_TERM `EVEN`) THEN
REWRITE_TAC[EVEN_MULT; ARITH] THEN REWRITE_TAC[EVEN_EXISTS] THEN
DISCH_THEN(X_CHOOSE_THEN `m:num` SUBST_ALL_TAC) THEN
FIRST_X_ASSUM(MP_TAC o SPECL [`q:num`; `m:num`]) THEN
ASM_REWRITE_TAC[ARITH_RULE
`q < 2 * m ==> q * q = 2 * m * m ==> m = 0 <=>
(2 * m) * 2 * m = 2 * q * q ==> 2 * m <= q`] THEN
ASM_MESON_TAC[LE_MULT2; MULT_EQ_0; ARITH_RULE `2 * x <= x <=> x = 0`]);;
(* ========================================================================= *)
(* Changing proof style *)
(* ========================================================================= *)
let fix ts = MAP_EVERY X_GEN_TAC ts;;
let assume lab t =
DISCH_THEN(fun th -> if concl th = t then LABEL_TAC lab th
else failwith "assume");;
let we're finished tac = tac;;
let suffices_to_prove q tac = SUBGOAL_THEN q (fun th -> MP_TAC th THEN tac);;
let note(lab,t) tac =
SUBGOAL_THEN t MP_TAC THENL [tac; ALL_TAC] THEN
DISCH_THEN(fun th -> LABEL_TAC lab th);;
let have t = note("",t);;
let cases (lab,t) tac =
SUBGOAL_THEN t MP_TAC THENL [tac; ALL_TAC] THEN
DISCH_THEN(REPEAT_TCL DISJ_CASES_THEN (LABEL_TAC lab));;
let consider (x,lab,t) tac =
let tm = mk_exists(x,t) in
SUBGOAL_THEN tm (X_CHOOSE_THEN x (LABEL_TAC lab)) THENL [tac; ALL_TAC];;
let trivial = MESON_TAC[];;
let algebra = CONV_TAC NUM_RING;;
let arithmetic = ARITH_TAC;;
let by labs tac = MAP_EVERY (fun l -> USE_THEN l MP_TAC) labs THEN tac;;
let using ths tac = MAP_EVERY MP_TAC ths THEN tac;;
let so constr arg tac = constr arg (FIRST_ASSUM MP_TAC THEN tac);;
let NSQRT_2 = prove
(`!p q. p * p = 2 * q * q ==> q = 0`,
suffices_to_prove
`!p. (!m. m < p ==> (!q. m * m = 2 * q * q ==> q = 0))
==> (!q. p * p = 2 * q * q ==> q = 0)`
(MATCH_ACCEPT_TAC num_WF) THEN
fix [`p:num`] THEN
assume("A") `!m. m < p ==> !q. m * m = 2 * q * q ==> q = 0` THEN
fix [`q:num`] THEN
assume("B") `p * p = 2 * q * q` THEN
so have `EVEN(p * p) <=> EVEN(2 * q * q)` (trivial) THEN
so have `EVEN(p)` (using [ARITH; EVEN_MULT] trivial) THEN
so consider (`m:num`,"C",`p = 2 * m`) (using [EVEN_EXISTS] trivial) THEN
cases ("D",`q < p \/ p <= q`) (arithmetic) THENL
[so have `q * q = 2 * m * m ==> m = 0` (by ["A"] trivial) THEN
so we're finished (by ["B"; "C"] algebra);
so have `p * p <= q * q` (using [LE_MULT2] trivial) THEN
so have `q * q = 0` (by ["B"] arithmetic) THEN
so we're finished (algebra)]);;
(* ========================================================================= *)
(* Recursive definitions *)
(* ========================================================================= *)
let fib = define
`fib n = if n = 0 \/ n = 1 then 1 else fib(n - 1) + fib(n - 2)`;;
let fib2 = define
`(fib2 0 = 1) /\
(fib2 1 = 1) /\
(fib2 (n + 2) = fib2(n) + fib2(n + 1))`;;
let halve = define `halve (2 * n) = n`;;
let unknown = define `unknown n = unknown(n + 1)`;;
define
`!n. collatz(n) = if n <= 1 then n
else if EVEN(n) then collatz(n DIV 2)
else collatz(3 * n + 1)`;;
let fusc_def = define
`(fusc (2 * n) = if n = 0 then 0 else fusc(n)) /\
(fusc (2 * n + 1) = if n = 0 then 1 else fusc(n) + fusc(n + 1))`;;
let fusc = prove
(`fusc 0 = 0 /\
fusc 1 = 1 /\
fusc (2 * n) = fusc(n) /\
fusc (2 * n + 1) = fusc(n) + fusc(n + 1)`,
REWRITE_TAC[fusc_def] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
MP_TAC(INST [`0`,`n:num`] fusc_def) THEN ARITH_TAC);;
let binom = define
`(!n. binom(n,0) = 1) /\
(!k. binom(0,SUC(k)) = 0) /\
(!n k. binom(SUC(n),SUC(k)) = binom(n,SUC(k)) + binom(n,k))`;;
let BINOM_LT = prove
(`!n k. n < k ==> (binom(n,k) = 0)`,
INDUCT_TAC THEN INDUCT_TAC THEN REWRITE_TAC[binom; ARITH; LT_SUC; LT] THEN
ASM_SIMP_TAC[ARITH_RULE `n < k ==> n < SUC(k)`; ARITH]);;
let BINOM_REFL = prove
(`!n. binom(n,n) = 1`,
INDUCT_TAC THEN ASM_SIMP_TAC[binom; BINOM_LT; LT; ARITH]);;
let BINOM_FACT = prove
(`!n k. FACT n * FACT k * binom(n+k,k) = FACT(n + k)`,
INDUCT_TAC THEN REWRITE_TAC[FACT; ADD_CLAUSES; MULT_CLAUSES; BINOM_REFL] THEN
INDUCT_TAC THEN REWRITE_TAC[ADD_CLAUSES; FACT; MULT_CLAUSES; binom] THEN
FIRST_X_ASSUM(MP_TAC o SPEC `SUC k`) THEN POP_ASSUM MP_TAC THEN
REWRITE_TAC[ADD_CLAUSES; FACT; binom] THEN CONV_TAC NUM_RING);;
let BINOMIAL_THEOREM = prove
(`!n. (x + y) EXP n = nsum(0..n) (\k. binom(n,k) * x EXP k * y EXP (n - k))`,
INDUCT_TAC THEN ASM_REWRITE_TAC[EXP] THEN
REWRITE_TAC[NSUM_SING_NUMSEG; binom; SUB_REFL; EXP; MULT_CLAUSES] THEN
SIMP_TAC[NSUM_CLAUSES_LEFT; ADD1; ARITH_RULE `0 <= n + 1`; NSUM_OFFSET] THEN
ASM_REWRITE_TAC[EXP; binom; GSYM ADD1; GSYM NSUM_LMUL] THEN
REWRITE_TAC[RIGHT_ADD_DISTRIB; NSUM_ADD_NUMSEG; MULT_CLAUSES; SUB_0] THEN
MATCH_MP_TAC(ARITH_RULE `a = e /\ b = c + d ==> a + b = c + d + e`) THEN
CONJ_TAC THENL [REWRITE_TAC[MULT_AC; SUB_SUC]; REWRITE_TAC[GSYM EXP]] THEN
SIMP_TAC[ADD1; SYM(REWRITE_CONV[NSUM_OFFSET]`nsum(m+1..n+1) (\i. f i)`)] THEN
REWRITE_TAC[NSUM_CLAUSES_NUMSEG; GSYM ADD1; LE_SUC; LE_0] THEN
SIMP_TAC[NSUM_CLAUSES_LEFT; LE_0] THEN
SIMP_TAC[BINOM_LT; LT; MULT_CLAUSES; ADD_CLAUSES; SUB_0; EXP; binom] THEN
SIMP_TAC[ARITH; ARITH_RULE `k <= n ==> SUC n - k = SUC(n - k)`; EXP] THEN
REWRITE_TAC[MULT_AC]);;
(* ========================================================================= *)
(* Sets and functions *)
(* ========================================================================= *)
let SURJECTIVE_IFF_RIGHT_INVERSE = prove
(`(!y. ?x. g x = y) <=> (?f. g o f = I)`,
REWRITE_TAC[FUN_EQ_THM; o_DEF; I_DEF] THEN MESON_TAC[]);;
let INJECTIVE_IFF_LEFT_INVERSE = prove
(`(!x y. f x = f y ==> x = y) <=> (?g. g o f = I)`,
let lemma = MESON[]
`(!x x'. f x = f x' ==> x = x') <=> (!y:B. ?u:A. !x. f x = y ==> u = x)` in
REWRITE_TAC[lemma; FUN_EQ_THM; o_DEF; I_DEF] THEN MESON_TAC[]);;
let cantor = new_definition
`cantor(x,y) = ((x + y) EXP 2 + 3 * x + y) DIV 2`;;
(**** Needs external SDP solver
needs "Examples/sos.ml";;
let CANTOR_LEMMA = prove
(`cantor(x,y) = cantor(x',y') ==> x + y = x' + y'`,
REWRITE_TAC[cantor] THEN CONV_TAC SOS_RULE);;
****)
let CANTOR_LEMMA_LEMMA = prove
(`x + y < x' + y' ==> cantor(x,y) < cantor(x',y')`,
REWRITE_TAC[ARITH_RULE `x + y < z <=> x + y + 1 <= z`] THEN DISCH_TAC THEN
REWRITE_TAC[cantor; ARITH_RULE `3 * x + y = (x + y) + 2 * x`] THEN
MATCH_MP_TAC(ARITH_RULE `x + 2 <= y ==> x DIV 2 < y DIV 2`) THEN
MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `(x + y + 1) EXP 2 + (x + y + 1)` THEN
CONJ_TAC THENL [ARITH_TAC; ALL_TAC] THEN
MATCH_MP_TAC(ARITH_RULE `a:num <= b /\ c <= d ==> a + c <= b + d + e`) THEN
ASM_SIMP_TAC[EXP_2; LE_MULT2]);;
let CANTOR_LEMMA = prove
(`cantor(x,y) = cantor(x',y') ==> x + y = x' + y'`,
MESON_TAC[LT_CASES; LT_REFL; CANTOR_LEMMA_LEMMA]);;
let CANTOR_INJ = prove
(`!w z. cantor w = cantor z ==> w = z`,
REWRITE_TAC[FORALL_PAIR_THM; PAIR_EQ] THEN REPEAT GEN_TAC THEN
DISCH_THEN(fun th -> MP_TAC th THEN ASSUME_TAC(MATCH_MP CANTOR_LEMMA th)) THEN
ASM_REWRITE_TAC[cantor; ARITH_RULE `3 * x + y = (x + y) + 2 * x`] THEN
REWRITE_TAC[ARITH_RULE `(a + b + 2 * x) DIV 2 = (a + b) DIV 2 + x`] THEN
POP_ASSUM MP_TAC THEN ARITH_TAC);;
let CANTOR_THM = prove
(`~(?f:(A->bool)->A. (!x y. f(x) = f(y) ==> x = y))`,
REWRITE_TAC[INJECTIVE_IFF_LEFT_INVERSE; FUN_EQ_THM; I_DEF; o_DEF] THEN
STRIP_TAC THEN FIRST_ASSUM(MP_TAC o SPEC `\x:A. ~(g x x)`) THEN
MESON_TAC[]);;
(* ========================================================================= *)
(* Inductive datatypes *)
(* ========================================================================= *)
let line_INDUCT,line_RECURSION = define_type
"line = Line_1 | Line_2 | Line_3 | Line_4 |
Line_5 | Line_6 | Line_7";;
let point_INDUCT,point_RECURSION = define_type
"point = Point_1 | Point_2 | Point_3 | Point_4 |
Point_5 | Point_6 | Point_7";;
let fano_incidence =
[1,1; 1,2; 1,3; 2,1; 2,4; 2,5; 3,1; 3,6; 3,7; 4,2; 4,4;
4,6; 5,2; 5,5; 5,7; 6,3; 6,4; 6,7; 7,3; 7,5; 7,6];;
let fano_point i = mk_const("Point_"^string_of_int i,[]);;
let fano_line i = mk_const("Line_"^string_of_int i,[]);;
let p = `p:point` and l = `l:line` ;;
let fano_clause (i,j) = mk_conj(mk_eq(p,fano_point i),mk_eq(l,fano_line j));;
parse_as_infix("ON",(11,"right"));;
let ON = new_definition
(mk_eq(`((ON):point->line->bool) p l`,
list_mk_disj(map fano_clause fano_incidence)));;
let ON_CLAUSES = prove
(list_mk_conj(allpairs
(fun i j -> mk_eq(mk_comb(mk_comb(`(ON)`,fano_point i),fano_line j),
if mem (i,j) fano_incidence then `T` else `F`))
(1--7) (1--7)),
REWRITE_TAC[ON; distinctness "line"; distinctness "point"]);;
let FORALL_POINT = prove
(`(!p. P p) <=> P Point_1 /\ P Point_2 /\ P Point_3 /\ P Point_4 /\
P Point_5 /\ P Point_6 /\ P Point_7`,
EQ_TAC THENL [SIMP_TAC[]; REWRITE_TAC[point_INDUCT]]);;
let FORALL_LINE = prove
(`(!p. P p) <=> P Line_1 /\ P Line_2 /\ P Line_3 /\ P Line_4 /\
P Line_5 /\ P Line_6 /\ P Line_7`,
EQ_TAC THENL [SIMP_TAC[]; REWRITE_TAC[line_INDUCT]]);;
let EXISTS_POINT = prove
(`(?p. P p) <=> P Point_1 \/ P Point_2 \/ P Point_3 \/ P Point_4 \/
P Point_5 \/ P Point_6 \/ P Point_7`,
MATCH_MP_TAC(TAUT `(~p <=> ~q) ==> (p <=> q)`) THEN
REWRITE_TAC[DE_MORGAN_THM; NOT_EXISTS_THM; FORALL_POINT]);;
let EXISTS_LINE = prove
(`(?p. P p) <=> P Line_1 \/ P Line_2 \/ P Line_3 \/ P Line_4 \/
P Line_5 \/ P Line_6 \/ P Line_7`,
MATCH_MP_TAC(TAUT `(~p <=> ~q) ==> (p <=> q)`) THEN
REWRITE_TAC[DE_MORGAN_THM; NOT_EXISTS_THM; FORALL_LINE]);;
let FANO_TAC =
GEN_REWRITE_TAC DEPTH_CONV
[FORALL_POINT; EXISTS_LINE; EXISTS_POINT; FORALL_LINE] THEN
GEN_REWRITE_TAC DEPTH_CONV
(basic_rewrites() @
[ON_CLAUSES; distinctness "point"; distinctness "line"]);;
let FANO_RULE tm = prove(tm,FANO_TAC);;
let AXIOM_1 = FANO_RULE
`!p p'. ~(p = p') ==> ?l. p ON l /\ p' ON l /\
!l'. p ON l' /\ p' ON l' ==> l' = l`;;
let AXIOM_2 = FANO_RULE
`!l l'. ?p. p ON l /\ p ON l'`;;
let AXIOM_3 = FANO_RULE
`?p p' p''. ~(p = p') /\ ~(p' = p'') /\ ~(p = p'') /\
~(?l. p ON l /\ p' ON l /\ p'' ON l)`;;
let AXIOM_4 = FANO_RULE
`!l. ?p p' p''. ~(p = p') /\ ~(p' = p'') /\ ~(p = p'') /\
p ON l /\ p' ON l /\ p'' ON l`;;
(* ========================================================================= *)
(* Semantics of programming languages *)
(* ========================================================================= *)
let string_INDUCT,string_RECURSION =
define_type "string = String (int list)";;
let expression_INDUCT,expression_RECURSION = define_type
"expression = Literal num
| Variable string
| Plus expression expression
| Times expression expression";;
let command_INDUCT,command_RECURSION = define_type
"command = Assign string expression
| Sequence command command
| If expression command command
| While expression command";;
parse_as_infix(";;",(18,"right"));;
parse_as_infix(":=",(20,"right"));;
override_interface(";;",`Sequence`);;
override_interface(":=",`Assign`);;
overload_interface("+",`Plus`);;
overload_interface("*",`Times`);;
let value = define
`(value (Literal n) s = n) /\
(value (Variable x) s = s(x)) /\
(value (e1 + e2) s = value e1 s + value e2 s) /\
(value (e1 * e2) s = value e1 s * value e2 s)`;;
let sem_RULES,sem_INDUCT,sem_CASES = new_inductive_definition
`(!x e s s'. s'(x) = value e s /\ (!y. ~(y = x) ==> s'(y) = s(y))
==> sem (x := e) s s') /\
(!c1 c2 s s' s''. sem(c1) s s' /\ sem(c2) s' s'' ==> sem(c1 ;; c2) s s'') /\
(!e c1 c2 s s'. ~(value e s = 0) /\ sem(c1) s s' ==> sem(If e c1 c2) s s') /\
(!e c1 c2 s s'. value e s = 0 /\ sem(c2) s s' ==> sem(If e c1 c2) s s') /\
(!e c s. value e s = 0 ==> sem(While e c) s s) /\
(!e c s s' s''. ~(value e s = 0) /\ sem(c) s s' /\ sem(While e c) s' s''
==> sem(While e c) s s'')`;;
(**** Fails
define
`sem(While e c) s s' <=> if value e s = 0 then (s' = s)
else ?s''. sem c s s'' /\ sem(While e c) s'' s'`;;
****)
let DETERMINISM = prove
(`!c s s' s''. sem c s s' /\ sem c s s'' ==> (s' = s'')`,
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
MATCH_MP_TAC sem_INDUCT THEN REPEAT CONJ_TAC THEN REPEAT GEN_TAC THEN
DISCH_TAC THEN ONCE_REWRITE_TAC[sem_CASES] THEN
REWRITE_TAC[distinctness "command"; injectivity "command"] THEN
REWRITE_TAC[FUN_EQ_THM] THEN ASM_MESON_TAC[]);;
let wlp = new_definition
`wlp c q s <=> !s'. sem c s s' ==> q s'`;;
let terminates = new_definition
`terminates c s <=> ?s'. sem c s s'`;;
let wp = new_definition
`wp c q s <=> terminates c s /\ wlp c q s`;;
let WP_TOTAL = prove
(`!c. (wp c EMPTY = EMPTY)`,
REWRITE_TAC[FUN_EQ_THM; wp; wlp; terminates; EMPTY] THEN MESON_TAC[]);;
let WP_MONOTONIC = prove
(`q SUBSET r ==> wp c q SUBSET wp c r`,
REWRITE_TAC[SUBSET; IN; wp; wlp; terminates] THEN MESON_TAC[]);;
let WP_DISJUNCTIVE = prove
(`(wp c p) UNION (wp c q) = wp c (p UNION q)`,
REWRITE_TAC[FUN_EQ_THM; IN; wp; wlp; IN_ELIM_THM; UNION; terminates] THEN
MESON_TAC[DETERMINISM]);;
let WP_SEQ = prove
(`!c1 c2 q. wp (c1 ;; c2) = wp c1 o wp c2`,
REWRITE_TAC[wp; wlp; terminates; FUN_EQ_THM; o_THM] THEN REPEAT GEN_TAC THEN
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [sem_CASES] THEN
REWRITE_TAC[injectivity "command"; distinctness "command"] THEN
MESON_TAC[DETERMINISM]);;
let correct = new_definition
`correct p c q <=> p SUBSET (wp c q)`;;
let CORRECT_PRESTRENGTH = prove
(`!p p' c q. p SUBSET p' /\ correct p' c q ==> correct p c q`,
REWRITE_TAC[correct; SUBSET_TRANS]);;
let CORRECT_POSTWEAK = prove
(`!p c q q'. correct p c q' /\ q' SUBSET q ==> correct p c q`,
REWRITE_TAC[correct] THEN MESON_TAC[WP_MONOTONIC; SUBSET_TRANS]);;
let CORRECT_SEQ = prove
(`!p q r c1 c2.
correct p c1 r /\ correct r c2 q ==> correct p (c1 ;; c2) q`,
REWRITE_TAC[correct; WP_SEQ; o_THM] THEN
MESON_TAC[WP_MONOTONIC; SUBSET_TRANS]);;
(* ------------------------------------------------------------------------- *)
(* Need a fresh HOL session here; now doing shallow embedding. *)
(* ------------------------------------------------------------------------- *)
let assign = new_definition
`Assign (f:S->S) (q:S->bool) = q o f`;;
parse_as_infix(";;",(18,"right"));;
let sequence = new_definition
`(c1:(S->bool)->(S->bool)) ;; (c2:(S->bool)->(S->bool)) = c1 o c2`;;
let if_def = new_definition
`If e (c:(S->bool)->(S->bool)) q = {s | if e s then c q s else q s}`;;
let ite_def = new_definition
`Ite e (c1:(S->bool)->(S->bool)) c2 q =
{s | if e s then c1 q s else c2 q s}`;;
let while_RULES,while_INDUCT,while_CASES = new_inductive_definition
`!q s. If e (c ;; while e c) q s ==> while e c q s`;;
let while_def = new_definition
`While e c q =
{s | !w. (!s:S. (if e(s) then c w s else q s) ==> w s) ==> w s}`;;
let monotonic = new_definition
`monotonic c <=> !q q'. q SUBSET q' ==> (c q) SUBSET (c q')`;;
let MONOTONIC_ASSIGN = prove
(`monotonic (Assign f)`,
SIMP_TAC[monotonic; assign; SUBSET; o_THM; IN]);;
let MONOTONIC_IF = prove
(`monotonic c ==> monotonic (If e c)`,
REWRITE_TAC[monotonic; if_def] THEN SET_TAC[]);;
let MONOTONIC_ITE = prove
(`monotonic c1 /\ monotonic c2 ==> monotonic (Ite e c1 c2)`,
REWRITE_TAC[monotonic; ite_def] THEN SET_TAC[]);;
let MONOTONIC_SEQ = prove
(`monotonic c1 /\ monotonic c2 ==> monotonic (c1 ;; c2)`,
REWRITE_TAC[monotonic; sequence; o_THM] THEN SET_TAC[]);;
let MONOTONIC_WHILE = prove
(`monotonic c ==> monotonic(While e c)`,
REWRITE_TAC[monotonic; while_def] THEN SET_TAC[]);;
let WHILE_THM = prove
(`!e c q:S->bool.
monotonic c
==> (!s. If e (c ;; While e c) q s ==> While e c q s) /\
(!w'. (!s. If e (c ;; (\q. w')) q s ==> w' s)
==> (!a. While e c q a ==> w' a)) /\
(!s. While e c q s <=> If e (c ;; While e c) q s)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN
(MP_TAC o GEN_ALL o DISCH_ALL o derive_nonschematic_inductive_relations)
`!s:S. (if e s then c w s else q s) ==> w s` THEN
REWRITE_TAC[if_def; sequence; o_THM; IN_ELIM_THM; IMP_IMP] THEN
DISCH_THEN MATCH_MP_TAC THEN
REWRITE_TAC[FUN_EQ_THM; while_def; IN_ELIM_THM] THEN
POP_ASSUM MP_TAC THEN REWRITE_TAC[monotonic] THEN SET_TAC[]);;
let WHILE_FIX = prove
(`!e c. monotonic c ==> (While e c = If e (c ;; While e c))`,
REWRITE_TAC[FUN_EQ_THM] THEN MESON_TAC[WHILE_THM]);;
let correct = new_definition
`correct p c q <=> p SUBSET (c q)`;;
let CORRECT_PRESTRENGTH = prove
(`!p p' c q. p SUBSET p' /\ correct p' c q ==> correct p c q`,
REWRITE_TAC[correct; SUBSET_TRANS]);;
let CORRECT_POSTWEAK = prove
(`!p c q q'. monotonic c /\ correct p c q' /\ q' SUBSET q ==> correct p c q`,
REWRITE_TAC[correct; monotonic] THEN SET_TAC[]);;
let CORRECT_ASSIGN = prove
(`!p f q. (p SUBSET (q o f)) ==> correct p (Assign f) q`,
REWRITE_TAC[correct; assign]);;
let CORRECT_SEQ = prove
(`!p q r c1 c2.
monotonic c1 /\ correct p c1 r /\ correct r c2 q
==> correct p (c1 ;; c2) q`,
REWRITE_TAC[correct; sequence; monotonic; o_THM] THEN SET_TAC[]);;
let CORRECT_ITE = prove
(`!p e c1 c2 q.
correct (p INTER e) c1 q /\ correct (p INTER (UNIV DIFF e)) c2 q
==> correct p (Ite e c1 c2) q`,
REWRITE_TAC[correct; ite_def] THEN SET_TAC[]);;
let CORRECT_IF = prove
(`!p e c q.
correct (p INTER e) c q /\ p INTER (UNIV DIFF e) SUBSET q
==> correct p (If e c) q`,
REWRITE_TAC[correct; if_def] THEN SET_TAC[]);;
let CORRECT_WHILE = prove
(`!(<<) p c q e invariant.
monotonic c /\
WF(<<) /\
p SUBSET invariant /\
(UNIV DIFF e) INTER invariant SUBSET q /\
(!X:S. correct (invariant INTER e INTER (\s. X = s)) c
(invariant INTER (\s. s << X)))
==> correct p (While e c) q`,
REWRITE_TAC[correct; SUBSET; IN_INTER; IN_UNIV; IN_DIFF; IN] THEN
REPEAT GEN_TAC THEN STRIP_TAC THEN
SUBGOAL_THEN `!s:S. invariant s ==> While e c q s` MP_TAC THENL
[ALL_TAC; ASM_MESON_TAC[]] THEN
FIRST_ASSUM(MATCH_MP_TAC o REWRITE_RULE[WF_IND]) THEN
X_GEN_TAC `s:S` THEN REPEAT DISCH_TAC THEN
FIRST_ASSUM(fun th -> ONCE_REWRITE_TAC[MATCH_MP WHILE_FIX th]) THEN
REWRITE_TAC[if_def; sequence; o_THM; IN_ELIM_THM] THEN
COND_CASES_TAC THENL [ALL_TAC; ASM_MESON_TAC[]] THEN
FIRST_X_ASSUM(MP_TAC o SPECL [`s:S`; `s:S`]) THEN ASM_REWRITE_TAC[] THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [monotonic]) THEN
REWRITE_TAC[SUBSET; IN; RIGHT_IMP_FORALL_THM] THEN
DISCH_THEN MATCH_MP_TAC THEN ASM_SIMP_TAC[INTER; IN_ELIM_THM; IN]);;
let assert_def = new_definition
`assert (p:S->bool) (q:S->bool) = q`;;
let variant_def = new_definition
`variant ((<<):S->S->bool) (q:S->bool) = q`;;
let CORRECT_SEQ_VC = prove
(`!p q r c1 c2.
monotonic c1 /\ correct p c1 r /\ correct r c2 q
==> correct p (c1 ;; assert r ;; c2) q`,
REWRITE_TAC[correct; sequence; monotonic; assert_def; o_THM] THEN SET_TAC[]);;
let CORRECT_WHILE_VC = prove
(`!(<<) p c q e invariant.
monotonic c /\
WF(<<) /\
p SUBSET invariant /\
(UNIV DIFF e) INTER invariant SUBSET q /\
(!X:S. correct (invariant INTER e INTER (\s. X = s)) c
(invariant INTER (\s. s << X)))
==> correct p (While e (assert invariant ;; variant(<<) ;; c)) q`,
REPEAT STRIP_TAC THEN
REWRITE_TAC[sequence; variant_def; assert_def; o_DEF; ETA_AX] THEN
ASM_MESON_TAC[CORRECT_WHILE]);;
let MONOTONIC_ASSERT = prove
(`monotonic (assert p)`,
REWRITE_TAC[assert_def; monotonic]);;
let MONOTONIC_VARIANT = prove
(`monotonic (variant p)`,
REWRITE_TAC[variant_def; monotonic]);;
let MONO_TAC =
REPEAT(MATCH_MP_TAC MONOTONIC_WHILE ORELSE
(MAP_FIRST MATCH_MP_TAC
[MONOTONIC_SEQ; MONOTONIC_IF; MONOTONIC_ITE] THEN CONJ_TAC)) THEN
MAP_FIRST MATCH_ACCEPT_TAC
[MONOTONIC_ASSIGN; MONOTONIC_ASSERT; MONOTONIC_VARIANT];;
let VC_TAC =
FIRST
[MATCH_MP_TAC CORRECT_SEQ_VC THEN CONJ_TAC THENL [MONO_TAC; CONJ_TAC];
MATCH_MP_TAC CORRECT_ITE THEN CONJ_TAC;
MATCH_MP_TAC CORRECT_IF THEN CONJ_TAC;
MATCH_MP_TAC CORRECT_WHILE_VC THEN REPEAT CONJ_TAC THENL
[MONO_TAC; TRY(MATCH_ACCEPT_TAC WF_MEASURE); ALL_TAC; ALL_TAC;
REWRITE_TAC[FORALL_PAIR_THM; MEASURE] THEN REPEAT GEN_TAC];
MATCH_MP_TAC CORRECT_ASSIGN];;
needs "Library/prime.ml";;
(* ------------------------------------------------------------------------- *)
(* x = m, y = n; *)
(* while (!(x == 0 || y == 0)) *)
(* { if (x < y) y = y - x; *)
(* else x = x - y; *)
(* } *)
(* if (x == 0) x = y; *)
(* ------------------------------------------------------------------------- *)
g `correct
(\(m,n,x,y). T)
(Assign (\(m,n,x,y). m,n,m,n) ;; // x,y := m,n
assert (\(m,n,x,y). x = m /\ y = n) ;;
While (\(m,n,x,y). ~(x = 0 \/ y = 0))
(assert (\(m,n,x,y). gcd(x,y) = gcd(m,n)) ;;
variant(MEASURE(\(m,n,x,y). x + y)) ;;
Ite (\(m,n,x,y). x < y)
(Assign (\(m,n,x,y). m,n,x,y - x))
(Assign (\(m,n,x,y). m,n,x - y,y))) ;;
assert (\(m,n,x,y). (x = 0 \/ y = 0) /\ gcd(x,y) = gcd(m,n)) ;;
If (\(m,n,x,y). x = 0) (Assign (\(m,n,x,y). (m,n,y,y))))
(\(m,n,x,y). gcd(m,n) = x)`;;
e(REPEAT VC_TAC);;
b();;
e(REPEAT VC_TAC THEN REWRITE_TAC[SUBSET; FORALL_PAIR_THM] THEN
MAP_EVERY X_GEN_TAC [`m:num`; `n:num`; `x:num`; `y:num`] THEN
REWRITE_TAC[IN; INTER; UNIV; DIFF; o_DEF; IN_ELIM_THM; PAIR_EQ] THEN
CONV_TAC(TOP_DEPTH_CONV GEN_BETA_CONV) THEN SIMP_TAC[]);;
e(SIMP_TAC[GCD_SUB; LT_IMP_LE]);;
e ARITH_TAC;;
e(SIMP_TAC[GCD_SUB; NOT_LT] THEN ARITH_TAC);;
e(MESON_TAC[GCD_0]);;
e(MESON_TAC[GCD_0; GCD_SYM]);;
parse_as_infix("refines",(12,"right"));;
let refines = new_definition
`c2 refines c1 <=> !q. c1(q) SUBSET c2(q)`;;
let REFINES_REFL = prove
(`!c. c refines c`,
REWRITE_TAC[refines; SUBSET_REFL]);;
let REFINES_TRANS = prove
(`!c1 c2 c3. c3 refines c2 /\ c2 refines c1 ==> c3 refines c1`,
REWRITE_TAC[refines] THEN MESON_TAC[SUBSET_TRANS]);;
let REFINES_CORRECT = prove
(`correct p c1 q /\ c2 refines c1 ==> correct p c2 q`,
REWRITE_TAC[correct; refines] THEN MESON_TAC[SUBSET_TRANS]);;
let REFINES_WHILE = prove
(`c' refines c ==> While e c' refines While e c`,
REWRITE_TAC[refines; while_def; SUBSET; IN_ELIM_THM; IN] THEN MESON_TAC[]);;
let specification = new_definition
`specification(p,q) r = if q SUBSET r then p else {}`;;
let REFINES_SPECIFICATION = prove
(`c refines specification(p,q) ==> correct p c q`,
REWRITE_TAC[specification; correct; refines] THEN
MESON_TAC[SUBSET_REFL; SUBSET_EMPTY]);;
(* ========================================================================= *)
(* Number theory *)
(* ========================================================================= *)
needs "Library/prime.ml";;
needs "Library/pocklington.ml";;
needs "Library/binomial.ml";;
prioritize_num();;
let FERMAT_PRIME_CONV n =
let tm = subst [mk_small_numeral n,`x:num`] `prime(2 EXP (2 EXP x) + 1)` in
(RAND_CONV NUM_REDUCE_CONV THENC PRIME_CONV) tm;;
FERMAT_PRIME_CONV 0;;
FERMAT_PRIME_CONV 1;;
FERMAT_PRIME_CONV 2;;
FERMAT_PRIME_CONV 3;;
FERMAT_PRIME_CONV 4;;
FERMAT_PRIME_CONV 5;;
FERMAT_PRIME_CONV 6;;
FERMAT_PRIME_CONV 7;;
FERMAT_PRIME_CONV 8;;
let CONG_TRIVIAL = prove
(`!x y. n divides x /\ n divides y ==> (x == y) (mod n)`,
MESON_TAC[CONG_0; CONG_SYM; CONG_TRANS]);;
let LITTLE_CHECK_CONV tm =
EQT_ELIM((RATOR_CONV(LAND_CONV NUM_EXP_CONV) THENC CONG_CONV) tm);;
LITTLE_CHECK_CONV `(9 EXP 8 == 9) (mod 3)`;;
LITTLE_CHECK_CONV `(9 EXP 3 == 9) (mod 3)`;;
LITTLE_CHECK_CONV `(10 EXP 7 == 10) (mod 7)`;;
LITTLE_CHECK_CONV `(2 EXP 7 == 2) (mod 7)`;;
LITTLE_CHECK_CONV `(777 EXP 13 == 777) (mod 13)`;;
let DIVIDES_FACT_PRIME = prove
(`!p. prime p ==> !n. p divides (FACT n) <=> p <= n`,
GEN_TAC THEN DISCH_TAC THEN INDUCT_TAC THEN REWRITE_TAC[FACT; LE] THENL
[ASM_MESON_TAC[DIVIDES_ONE; PRIME_0; PRIME_1];
ASM_MESON_TAC[PRIME_DIVPROD_EQ; DIVIDES_LE; NOT_SUC; DIVIDES_REFL;
ARITH_RULE `~(p <= n) /\ p <= SUC n ==> p = SUC n`]]);;
let DIVIDES_BINOM_PRIME = prove
(`!n p. prime p /\ 0 < n /\ n < p ==> p divides binom(p,n)`,
REPEAT STRIP_TAC THEN
MP_TAC(AP_TERM `(divides) p` (SPECL [`p - n`; `n:num`] BINOM_FACT)) THEN
ASM_SIMP_TAC[DIVIDES_FACT_PRIME; PRIME_DIVPROD_EQ; SUB_ADD; LT_IMP_LE] THEN
ASM_REWRITE_TAC[GSYM NOT_LT; LT_REFL] THEN
ASM_SIMP_TAC[ARITH_RULE `0 < n /\ n < p ==> p - n < p`]);;
let DIVIDES_NSUM = prove
(`!m n. (!i. m <= i /\ i <= n ==> p divides f(i)) ==> p divides nsum(m..n) f`,
GEN_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[NSUM_CLAUSES_NUMSEG] THEN
ASM_MESON_TAC[LE; LE_TRANS; DIVIDES_0; DIVIDES_ADD; LE_REFL]);;
let FLT_LEMMA = prove
(`!p a b. prime p ==> ((a + b) EXP p == a EXP p + b EXP p) (mod p)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[BINOMIAL_THEOREM] THEN
SUBGOAL_THEN `1 <= p /\ 0 < p` STRIP_ASSUME_TAC THENL
[FIRST_ASSUM(MP_TAC o MATCH_MP PRIME_IMP_NZ) THEN ARITH_TAC; ALL_TAC] THEN
ASM_SIMP_TAC[NSUM_CLAUSES_LEFT; LE_0; ARITH; NSUM_CLAUSES_RIGHT] THEN
REWRITE_TAC[SUB_0; SUB_REFL; EXP; binom; BINOM_REFL; MULT_CLAUSES] THEN
GEN_REWRITE_TAC LAND_CONV [ARITH_RULE `a + b = (b + 0) + a`] THEN
REPEAT(MATCH_MP_TAC CONG_ADD THEN REWRITE_TAC[CONG_REFL]) THEN
REWRITE_TAC[CONG_0] THEN MATCH_MP_TAC DIVIDES_NSUM THEN
ASM_MESON_TAC[DIVIDES_RMUL; DIVIDES_BINOM_PRIME; ARITH_RULE
`0 < p /\ 1 <= i /\ i <= p - 1 ==> 0 < i /\ i < p`]);;
let FERMAT_LITTLE = prove
(`!p a. prime p ==> (a EXP p == a) (mod p)`,
GEN_TAC THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN DISCH_TAC THEN
INDUCT_TAC THENL
[ASM_MESON_TAC[EXP_EQ_0; CONG_REFL; PRIME_0];
ASM_MESON_TAC[ADD1; FLT_LEMMA; EXP_ONE; CONG_ADD; CONG_TRANS; CONG_REFL]]);;
let FERMAT_LITTLE_COPRIME = prove
(`!p a. prime p /\ coprime(a,p) ==> (a EXP (p - 1) == 1) (mod p)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC CONG_MULT_LCANCEL THEN
EXISTS_TAC `a:num` THEN ASM_REWRITE_TAC[GSYM(CONJUNCT2 EXP)] THEN
ASM_SIMP_TAC[PRIME_IMP_NZ; ARITH_RULE `~(p = 0) ==> SUC(p - 1) = p`] THEN
ASM_SIMP_TAC[FERMAT_LITTLE; MULT_CLAUSES]);;
let FERMAT_LITTLE_VARIANT = prove
(`!p a. prime p ==> (a EXP (1 + m * (p - 1)) == a) (mod p)`,
REPEAT STRIP_TAC THEN
FIRST_ASSUM(DISJ_CASES_TAC o SPEC `a:num` o MATCH_MP PRIME_COPRIME_STRONG)
THENL [ASM_MESON_TAC[CONG_TRIVIAL; ADD_AC; ADD1; DIVIDES_REXP_SUC];
ALL_TAC] THEN
GEN_REWRITE_TAC LAND_CONV [ARITH_RULE `a = a * 1`] THEN
REWRITE_TAC[EXP_ADD; EXP_1] THEN MATCH_MP_TAC CONG_MULT THEN
REWRITE_TAC[GSYM EXP_EXP; CONG_REFL] THEN
ASM_MESON_TAC[COPRIME_SYM; COPRIME_EXP; PHI_PRIME; FERMAT_LITTLE_COPRIME]);;
let RSA = prove
(`prime p /\ prime q /\ ~(p = q) /\
(d * e == 1) (mod ((p - 1) * (q - 1))) /\
plaintext < p * q /\ (ciphertext = (plaintext EXP e) MOD (p * q))
==> (plaintext = (ciphertext EXP d) MOD (p * q))`,
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
ASM_SIMP_TAC[MOD_EXP_MOD; MULT_EQ_0; PRIME_IMP_NZ; EXP_EXP] THEN
SUBGOAL_THEN `(plaintext == plaintext EXP (e * d)) (mod (p * q))` MP_TAC THENL
[ALL_TAC; ASM_SIMP_TAC[CONG; MULT_EQ_0; PRIME_IMP_NZ; MOD_LT]] THEN
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [MULT_SYM] THEN
FIRST_X_ASSUM(DISJ_CASES_TAC o GEN_REWRITE_RULE I [CONG_TO_1]) THENL
[ASM_MESON_TAC[MULT_EQ_1; ARITH_RULE `p - 1 = 1 <=> p = 2`]; ALL_TAC] THEN
MATCH_MP_TAC CONG_CHINESE THEN ASM_SIMP_TAC[DISTINCT_PRIME_COPRIME] THEN
ASM_MESON_TAC[FERMAT_LITTLE_VARIANT; MULT_AC; CONG_SYM]);;
(* ========================================================================= *)
(* Real analysis *)
(* ========================================================================= *)
needs "Library/analysis.ml";;
needs "Library/transc.ml";;
let cheb = define
`(!x. cheb 0 x = &1) /\
(!x. cheb 1 x = x) /\
(!n x. cheb (n + 2) x = &2 * x * cheb (n + 1) x - cheb n x)`;;
let CHEB_INDUCT = prove
(`!P. P 0 /\ P 1 /\ (!n. P n /\ P(n + 1) ==> P(n + 2)) ==> !n. P n`,
GEN_TAC THEN STRIP_TAC THEN
SUBGOAL_THEN `!n. P n /\ P(n + 1)` (fun th -> MESON_TAC[th]) THEN
INDUCT_TAC THEN ASM_SIMP_TAC[ADD1; GSYM ADD_ASSOC] THEN
ASM_SIMP_TAC[ARITH]);;
let CHEB_COS = prove
(`!n x. cheb n (cos x) = cos(&n * x)`,
MATCH_MP_TAC CHEB_INDUCT THEN
REWRITE_TAC[cheb; REAL_MUL_LZERO; REAL_MUL_LID; COS_0] THEN
REPEAT STRIP_TAC THEN
ASM_REWRITE_TAC[GSYM REAL_OF_NUM_ADD; REAL_MUL_LID; REAL_ADD_RDISTRIB] THEN
REWRITE_TAC[COS_ADD; COS_DOUBLE; SIN_DOUBLE] THEN
MP_TAC(SPEC `x:real` SIN_CIRCLE) THEN CONV_TAC REAL_RING);;
let CHEB_RIPPLE = prove
(`!x. abs(x) <= &1 ==> abs(cheb n x) <= &1`,
REWRITE_TAC[GSYM REAL_BOUNDS_LE] THEN
MESON_TAC[CHEB_COS; ACS_COS; COS_BOUNDS]);;
let NUM_ADD2_CONV =
let add_tm = `(+):num->num->num`
and two_tm = `2` in
fun tm ->
let m = mk_numeral(dest_numeral tm -/ Int 2) in
let tm' = mk_comb(mk_comb(add_tm,m),two_tm) in
SYM(NUM_ADD_CONV tm');;
let CHEB_CONV =
let [pth0;pth1;pth2] = CONJUNCTS cheb in
let rec conv tm =
(GEN_REWRITE_CONV I [pth0; pth1] ORELSEC
(LAND_CONV NUM_ADD2_CONV THENC
GEN_REWRITE_CONV I [pth2] THENC
COMB2_CONV
(funpow 3 RAND_CONV ((LAND_CONV NUM_ADD_CONV) THENC conv))
conv THENC
REAL_POLY_CONV)) tm in
conv;;
CHEB_CONV `cheb 8 x`;;
let CHEB_2N1 = prove
(`!n x. ((x - &1) * (cheb (2 * n + 1) x - &1) =
(cheb (n + 1) x - cheb n x) pow 2) /\
(&2 * (x pow 2 - &1) * (cheb (2 * n + 2) x - &1) =
(cheb (n + 2) x - cheb n x) pow 2)`,
ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN GEN_TAC THEN
MATCH_MP_TAC CHEB_INDUCT THEN REWRITE_TAC[ARITH; cheb; CHEB_2; CHEB_3] THEN
REPEAT(CHANGED_TAC
(REWRITE_TAC[GSYM ADD_ASSOC; LEFT_ADD_DISTRIB; ARITH] THEN
REWRITE_TAC[ARITH_RULE `n + 5 = (n + 3) + 2`;
ARITH_RULE `n + 4 = (n + 2) + 2`;
ARITH_RULE `n + 3 = (n + 1) + 2`;
cheb])) THEN
CONV_TAC REAL_RING);;
let IVT_LEMMA1 = prove
(`!f. (!x. f contl x)
==> !x y. f(x) <= &0 /\ &0 <= f(y) ==> ?x. f(x) = &0`,
ASM_MESON_TAC[IVT; IVT2; REAL_LE_TOTAL]);;
let IVT_LEMMA2 = prove
(`!f. (!x. f contl x) /\ (?x. f(x) <= x) /\ (?y. y <= f(y)) ==> ?x. f(x) = x`,
REPEAT STRIP_TAC THEN MP_TAC(SPEC `\x. f x - x` IVT_LEMMA1) THEN
ASM_SIMP_TAC[CONT_SUB; CONT_X] THEN
SIMP_TAC[REAL_LE_SUB_LADD; REAL_LE_SUB_RADD; REAL_SUB_0; REAL_ADD_LID] THEN
ASM_MESON_TAC[]);;
let SARKOVSKII_TRIVIAL = prove
(`!f:real->real. (!x. f contl x) /\ (?x. f(f(f(x))) = x) ==> ?x. f(x) = x`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC IVT_LEMMA2 THEN ASM_REWRITE_TAC[] THEN
CONJ_TAC THEN MATCH_MP_TAC
(MESON[] `P x \/ P (f x) \/ P (f(f x)) ==> ?x:real. P x`) THEN
FIRST_ASSUM(UNDISCH_TAC o check is_eq o concl) THEN REAL_ARITH_TAC);;
(* ========================================================================= *)
(* Embedding of logics *)
(* ========================================================================= *)
let string_INDUCT,string_RECURSION = define_type
"string = String num";;
parse_as_infix("&&",(16,"right"));;
parse_as_infix("||",(15,"right"));;
parse_as_infix("-->",(14,"right"));;
parse_as_infix("<->",(13,"right"));;
parse_as_prefix "Not";;
parse_as_prefix "Box";;
parse_as_prefix "Diamond";;
let form_INDUCT,form_RECURSION = define_type
"form = False
| True
| Atom string
| Not form
| && form form
| || form form
| --> form form
| <-> form form
| Box form
| Diamond form";;
let holds = define
`(holds (W,R) V False w <=> F) /\
(holds (W,R) V True w <=> T) /\
(holds (W,R) V (Atom a) w <=> V a w) /\
(holds (W,R) V (Not p) w <=> ~(holds (W,R) V p w)) /\
(holds (W,R) V (p && q) w <=> holds (W,R) V p w /\ holds (W,R) V q w) /\
(holds (W,R) V (p || q) w <=> holds (W,R) V p w \/ holds (W,R) V q w) /\
(holds (W,R) V (p --> q) w <=> holds (W,R) V p w ==> holds (W,R) V q w) /\
(holds (W,R) V (p <-> q) w <=> holds (W,R) V p w <=> holds (W,R) V q w) /\
(holds (W,R) V (Box p) w <=>
!w'. w' IN W /\ R w w' ==> holds (W,R) V p w') /\
(holds (W,R) V (Diamond p) w <=>
?w'. w' IN W /\ R w w' /\ holds (W,R) V p w')`;;
let holds_in = new_definition
`holds_in (W,R) p = !V w. w IN W ==> holds (W,R) V p w`;;
parse_as_infix("|=",(11,"right"));;
let valid = new_definition
`L |= p <=> !f. L f ==> holds_in f p`;;
let S4 = new_definition
`S4(W,R) <=> ~(W = {}) /\ (!x y. R x y ==> x IN W /\ y IN W) /\
(!x. x IN W ==> R x x) /\
(!x y z. R x y /\ R y z ==> R x z)`;;
let LTL = new_definition
`LTL(W,R) <=> (W = UNIV) /\ !x y:num. R x y <=> x <= y`;;
let GL = new_definition
`GL(W,R) <=> ~(W = {}) /\ (!x y. R x y ==> x IN W /\ y IN W) /\
WF(\x y. R y x) /\ (!x y z:num. R x y /\ R y z ==> R x z)`;;
let MODAL_TAC =
REWRITE_TAC[valid; FORALL_PAIR_THM; holds_in; holds] THEN MESON_TAC[];;
let MODAL_RULE tm = prove(tm,MODAL_TAC);;
let TAUT_1 = MODAL_RULE `L |= Box True`;;
let TAUT_2 = MODAL_RULE `L |= Box(A --> B) --> Box A --> Box B`;;
let TAUT_3 = MODAL_RULE `L |= Diamond(A --> B) --> Box A --> Diamond B`;;
let TAUT_4 = MODAL_RULE `L |= Box(A --> B) --> Diamond A --> Diamond B`;;
let TAUT_5 = MODAL_RULE `L |= Box(A && B) --> Box A && Box B`;;
let TAUT_6 = MODAL_RULE `L |= Diamond(A || B) --> Diamond A || Diamond B`;;
let HOLDS_FORALL_LEMMA = prove
(`!W R P. (!A V. P(holds (W,R) V A)) <=> (!p:W->bool. P p)`,
REPEAT GEN_TAC THEN EQ_TAC THENL [DISCH_TAC THEN GEN_TAC; SIMP_TAC[]] THEN
POP_ASSUM(MP_TAC o SPECL [`Atom a`; `\a:string. (p:W->bool)`]) THEN
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [GSYM ETA_AX] THEN
REWRITE_TAC[holds] THEN REWRITE_TAC[ETA_AX]);;
let MODAL_SCHEMA_TAC =
REWRITE_TAC[holds_in; holds] THEN MP_TAC HOLDS_FORALL_LEMMA THEN
REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN
DISCH_THEN(fun th -> REWRITE_TAC[th]);;
let MODAL_REFL = prove
(`!W R. (!w:W. w IN W ==> R w w) <=> !A. holds_in (W,R) (Box A --> A)`,
MODAL_SCHEMA_TAC THEN MESON_TAC[]);;
let MODAL_TRANS = prove
(`!W R. (!w w' w'':W. w IN W /\ w' IN W /\ w'' IN W /\
R w w' /\ R w' w'' ==> R w w'') <=>
(!A. holds_in (W,R) (Box A --> Box(Box A)))`,
MODAL_SCHEMA_TAC THEN MESON_TAC[]);;
let MODAL_SERIAL = prove
(`!W R. (!w:W. w IN W ==> ?w'. w' IN W /\ R w w') <=>
(!A. holds_in (W,R) (Box A --> Diamond A))`,
MODAL_SCHEMA_TAC THEN MESON_TAC[]);;
let MODAL_SYM = prove
(`!W R. (!w w':W. w IN W /\ w' IN W /\ R w w' ==> R w' w) <=>
(!A. holds_in (W,R) (A --> Box(Diamond A)))`,
MODAL_SCHEMA_TAC THEN EQ_TAC THENL [MESON_TAC[]; REPEAT STRIP_TAC] THEN
FIRST_X_ASSUM(MP_TAC o SPECL [`\v:W. v = w`; `w:W`]) THEN ASM_MESON_TAC[]);;
let MODAL_WFTRANS = prove
(`!W R. (!x y z:W. x IN W /\ y IN W /\ z IN W /\ R x y /\ R y z ==> R x z) /\
WF(\x y. x IN W /\ y IN W /\ R y x) <=>
(!A. holds_in (W,R) (Box(Box A --> A) --> Box A))`,
MODAL_SCHEMA_TAC THEN REWRITE_TAC[WF_IND] THEN EQ_TAC THEN
STRIP_TAC THEN REPEAT CONJ_TAC THENL
[REPEAT GEN_TAC THEN REPEAT DISCH_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC;
X_GEN_TAC `w:W` THEN FIRST_X_ASSUM(MP_TAC o SPECL
[`\v:W. v IN W /\ R w v /\ !w''. w'' IN W /\ R v w'' ==> R w w''`; `w:W`]);
X_GEN_TAC `P:W->bool` THEN DISCH_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `\x:W. !w:W. x IN W /\ R w x ==> P x`) THEN
MATCH_MP_TAC MONO_FORALL] THEN
ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Need a fresh HOL session here: doing shallow embedding. *)
(* ------------------------------------------------------------------------- *)
parse_as_prefix "Not";;
parse_as_infix("&&",(16,"right"));;
parse_as_infix("||",(15,"right"));;
parse_as_infix("-->",(14,"right"));;
parse_as_infix("<->",(13,"right"));;
let false_def = define `False = \t:num. F`;;
let true_def = define `True = \t:num. T`;;
let not_def = define `Not p = \t:num. ~(p t)`;;
let and_def = define `p && q = \t:num. p t /\ q t`;;
let or_def = define `p || q = \t:num. p t \/ q t`;;
let imp_def = define `p --> q = \t:num. p t ==> q t`;;
let iff_def = define `p <-> q = \t:num. p t <=> q t`;;
let forever = define `forever p = \t:num. !t'. t <= t' ==> p t'`;;
let sometime = define `sometime p = \t:num. ?t'. t <= t' /\ p t'`;;
let next = define `next p = \t:num. p(t + 1)`;;
parse_as_infix("until",(17,"right"));;
let until = define
`p until q =
\t:num. ?t'. t <= t' /\ (!t''. t <= t'' /\ t'' < t' ==> p t'') /\ q t'`;;
(* ========================================================================= *)
(* HOL as a functional programming language *)
(* ========================================================================= *)
type ite = False | True | Atomic of int | Ite of ite*ite*ite;;
let rec norm e =
match e with
Ite(False,y,z) -> norm z
| Ite(True,y,z) -> norm y
| Ite(Atomic i,y,z) -> Ite(Atomic i,norm y,norm z)
| Ite(Ite(u,v,w),y,z) -> norm(Ite(u,Ite(v,y,z),Ite(w,y,z)))
| _ -> e;;
let ite_INDUCT,ite_RECURSION = define_type
"ite = False | True | Atomic num | Ite ite ite ite";;
let eth = prove_general_recursive_function_exists
`?norm. (norm False = False) /\
(norm True = True) /\
(!i. norm (Atomic i) = Atomic i) /\
(!y z. norm (Ite False y z) = norm z) /\
(!y z. norm (Ite True y z) = norm y) /\
(!i y z. norm (Ite (Atomic i) y z) =
Ite (Atomic i) (norm y) (norm z)) /\
(!u v w y z. norm (Ite (Ite u v w) y z) =
norm (Ite u (Ite v y z) (Ite w y z)))`;;
let sizeof = define
`(sizeof False = 1) /\
(sizeof True = 1) /\
(sizeof(Atomic i) = 1) /\
(sizeof(Ite x y z) = sizeof x * (1 + sizeof y + sizeof z))`;;
let eth' =
let th = prove
(hd(hyp eth),
EXISTS_TAC `MEASURE sizeof` THEN
REWRITE_TAC[WF_MEASURE; MEASURE_LE; MEASURE; sizeof] THEN ARITH_TAC) in
PROVE_HYP th eth;;
let norm = new_specification ["norm"] eth';;
let SIZEOF_INDUCT = REWRITE_RULE[WF_IND; MEASURE] (ISPEC`sizeof` WF_MEASURE);;
let SIZEOF_NZ = prove
(`!e. ~(sizeof e = 0)`,
MATCH_MP_TAC ite_INDUCT THEN SIMP_TAC[sizeof; ADD_EQ_0; MULT_EQ_0; ARITH]);;
let ITE_INDUCT = prove
(`!P. P False /\
P True /\
(!i. P(Atomic i)) /\
(!y z. P z ==> P(Ite False y z)) /\
(!y z. P y ==> P(Ite True y z)) /\
(!i y z. P y /\ P z ==> P (Ite (Atomic i) y z)) /\
(!u v w x y z. P(Ite u (Ite v y z) (Ite w y z))
==> P(Ite (Ite u v w) y z))
==> !e. P e`,
GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC SIZEOF_INDUCT THEN
MATCH_MP_TAC ite_INDUCT THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC ite_INDUCT THEN POP_ASSUM_LIST
(fun ths -> REPEAT STRIP_TAC THEN FIRST(mapfilter MATCH_MP_TAC ths)) THEN
REPEAT CONJ_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
POP_ASSUM_LIST(K ALL_TAC) THEN
REWRITE_TAC[sizeof] THEN TRY ARITH_TAC THEN
REWRITE_TAC[LEFT_ADD_DISTRIB; RIGHT_ADD_DISTRIB; MULT_CLAUSES] THEN
REWRITE_TAC[MULT_AC; ADD_AC; LT_ADD_LCANCEL] THEN
REWRITE_TAC[ADD_ASSOC; LT_ADD_RCANCEL] THEN
MATCH_MP_TAC(ARITH_RULE `~(b = 0) /\ ~(c = 0) ==> a < (b + a) + c`) THEN
REWRITE_TAC[MULT_EQ_0; SIZEOF_NZ]);;
let normalized = define
`(normalized False <=> T) /\
(normalized True <=> T) /\
(normalized(Atomic a) <=> T) /\
(normalized(Ite False x y) <=> F) /\
(normalized(Ite True x y) <=> F) /\
(normalized(Ite (Atomic a) x y) <=> normalized x /\ normalized y) /\
(normalized(Ite (Ite u v w) x y) <=> F)`;;
let NORMALIZED_NORM = prove
(`!e. normalized(norm e)`,
MATCH_MP_TAC ITE_INDUCT THEN REWRITE_TAC[norm; normalized]);;
let NORMALIZED_INDUCT = prove
(`P False /\
P True /\
(!i. P (Atomic i)) /\
(!i x y. P x /\ P y ==> P (Ite (Atomic i) x y))
==> !e. normalized e ==> P e`,
STRIP_TAC THEN MATCH_MP_TAC ite_INDUCT THEN ASM_REWRITE_TAC[normalized] THEN
MATCH_MP_TAC ite_INDUCT THEN ASM_MESON_TAC[normalized]);;
let holds = define
`(holds v False <=> F) /\
(holds v True <=> T) /\
(holds v (Atomic i) <=> v(i)) /\
(holds v (Ite b x y) <=> if holds v b then holds v x else holds v y)`;;
let HOLDS_NORM = prove
(`!e v. holds v (norm e) <=> holds v e`,
MATCH_MP_TAC ITE_INDUCT THEN SIMP_TAC[holds; norm] THEN
REPEAT STRIP_TAC THEN CONV_TAC TAUT);;
let taut = define
`(taut (t,f) False <=> F) /\
(taut (t,f) True <=> T) /\
(taut (t,f) (Atomic i) <=> MEM i t) /\
(taut (t,f) (Ite (Atomic i) x y) <=>
if MEM i t then taut (t,f) x
else if MEM i f then taut (t,f) y
else taut (CONS i t,f) x /\ taut (t,CONS i f) y)`;;
let tautology = define `tautology e = taut([],[]) (norm e)`;;
let NORMALIZED_TAUT = prove
(`!e. normalized e
==> !f t. (!a. ~(MEM a t /\ MEM a f))
==> (taut (t,f) e <=>
!v. (!a. MEM a t ==> v(a)) /\ (!a. MEM a f ==> ~v(a))
==> holds v e)`,
MATCH_MP_TAC NORMALIZED_INDUCT THEN REWRITE_TAC[holds; taut] THEN
REWRITE_TAC[NOT_FORALL_THM] THEN REPEAT CONJ_TAC THENL
[REPEAT STRIP_TAC THEN EXISTS_TAC `\a:num. MEM a t` THEN ASM_MESON_TAC[];
REPEAT STRIP_TAC THEN EQ_TAC THENL
[ALL_TAC; DISCH_THEN MATCH_MP_TAC] THEN ASM_MESON_TAC[];
REPEAT STRIP_TAC THEN REPEAT(COND_CASES_TAC THEN ASM_SIMP_TAC[])] THEN
ASM_SIMP_TAC[MEM; RIGHT_OR_DISTRIB; LEFT_OR_DISTRIB;
MESON[] `(!a. ~(MEM a t /\ a = i)) <=> ~(MEM i t)`;
MESON[] `(!a. ~(a = i /\ MEM a f)) <=> ~(MEM i f)`] THEN
ASM_REWRITE_TAC[AND_FORALL_THM] THEN AP_TERM_TAC THEN ABS_TAC THEN
MESON_TAC[]);;
let TAUTOLOGY = prove
(`!e. tautology e <=> !v. holds v e`,
MESON_TAC[tautology; HOLDS_NORM; NORMALIZED_TAUT; MEM; NORMALIZED_NORM]);;
let HOLDS_BACK = prove
(`!v. (F <=> holds v False) /\
(T <=> holds v True) /\
(!i. v i <=> holds v (Atomic i)) /\
(!p. ~holds v p <=> holds v (Ite p False True)) /\
(!p q. (holds v p /\ holds v q) <=> holds v (Ite p q False)) /\
(!p q. (holds v p \/ holds v q) <=> holds v (Ite p True q)) /\
(!p q. (holds v p <=> holds v q) <=>
holds v (Ite p q (Ite q False True))) /\
(!p q. holds v p ==> holds v q <=> holds v (Ite p q True))`,
REWRITE_TAC[holds] THEN CONV_TAC TAUT);;
let COND_CONV = GEN_REWRITE_CONV I [COND_CLAUSES];;
let AND_CONV = GEN_REWRITE_CONV I [TAUT `(F /\ a <=> F) /\ (T /\ a <=> a)`];;
let OR_CONV = GEN_REWRITE_CONV I [TAUT `(F \/ a <=> a) /\ (T \/ a <=> T)`];;
let rec COMPUTE_DEPTH_CONV conv tm =
if is_cond tm then
(RATOR_CONV(LAND_CONV(COMPUTE_DEPTH_CONV conv)) THENC
COND_CONV THENC
COMPUTE_DEPTH_CONV conv) tm
else if is_conj tm then
(LAND_CONV (COMPUTE_DEPTH_CONV conv) THENC
AND_CONV THENC
COMPUTE_DEPTH_CONV conv) tm
else if is_disj tm then
(LAND_CONV (COMPUTE_DEPTH_CONV conv) THENC
OR_CONV THENC
COMPUTE_DEPTH_CONV conv) tm
else
(SUB_CONV (COMPUTE_DEPTH_CONV conv) THENC
TRY_CONV(conv THENC COMPUTE_DEPTH_CONV conv)) tm;;
g `!v. v 1 \/ v 2 \/ v 3 \/ v 4 \/ v 5 \/ v 6 \/
~v 1 \/ ~v 2 \/ ~v 3 \/ ~v 4 \/ ~v 5 \/ ~v 6`;;
e(MP_TAC HOLDS_BACK THEN MATCH_MP_TAC MONO_FORALL THEN
GEN_TAC THEN DISCH_THEN(fun th -> REWRITE_TAC[th]) THEN
SPEC_TAC(`v:num->bool`,`v:num->bool`) THEN
REWRITE_TAC[GSYM TAUTOLOGY; tautology]);;
time e (GEN_REWRITE_TAC COMPUTE_DEPTH_CONV [norm; taut; MEM; ARITH_EQ]);;
ignore(b()); time e (REWRITE_TAC[norm; taut; MEM; ARITH_EQ]);;
(* ========================================================================= *)
(* Vectors *)
(* ========================================================================= *)
needs "Multivariate/vectors.ml";;
needs "Examples/solovay.ml";;
g `orthogonal (A - B) (C - B)
==> norm(C - A) pow 2 = norm(B - A) pow 2 + norm(C - B) pow 2`;;
e SOLOVAY_VECTOR_TAC;;
e(CONV_TAC REAL_RING);;
g`!x y:real^N. x dot y <= norm x * norm y`;;
e SOLOVAY_VECTOR_TAC;;
(**** Needs external SDP solver
needs "Examples/sos.ml";;
e(CONV_TAC REAL_SOS);;
let EXAMPLE_0 = prove
(`!a x y:real^N. (y - x) dot (a - y) >= &0 ==> norm(y - a) <= norm(x - a)`,
SOLOVAY_VECTOR_TAC THEN CONV_TAC REAL_SOS);;
****)
needs "Rqe/make.ml";;
let EXAMPLE_10 = prove
(`!x:real^N y.
x dot y > &0
==> ?u. &0 < u /\
!v. &0 < v /\ v <= u ==> norm(v % y - x) < norm x`,
SOLOVAY_VECTOR_TAC THEN
W(fun (asl,w) -> MAP_EVERY (fun v -> SPEC_TAC(v,v)) (frees w)) THEN
CONV_TAC REAL_QELIM_CONV);;
let FORALL_3 = prove
(`(!i. 1 <= i /\ i <= 3 ==> P i) <=> P 1 /\ P 2 /\ P 3`,
MESON_TAC[ARITH_RULE `1 <= i /\ i <= 3 <=> (i = 1) \/ (i = 2) \/ (i = 3)`]);;
let SUM_3 = prove
(`!t. sum(1..3) t = t(1) + t(2) + t(3)`,
REWRITE_TAC[num_CONV `3`; num_CONV `2`; SUM_CLAUSES_NUMSEG] THEN
REWRITE_TAC[SUM_SING_NUMSEG; ARITH; REAL_ADD_ASSOC]);;
let VECTOR_3 = prove
(`(vector [x;y;z] :real^3)$1 = x /\
(vector [x;y;z] :real^3)$2 = y /\
(vector [x;y;z] :real^3)$3 = z`,
SIMP_TAC[vector; LAMBDA_BETA; DIMINDEX_3; LENGTH; ARITH] THEN
REWRITE_TAC[num_CONV `2`; num_CONV `1`; EL; HD; TL]);;
let DOT_VECTOR = prove
(`(vector [x1;y1;z1] :real^3) dot (vector [x2;y2;z2]) =
x1 * x2 + y1 * y2 + z1 * z2`,
REWRITE_TAC[dot; DIMINDEX_3; SUM_3; VECTOR_3]);;
let VECTOR_ZERO = prove
(`(vector [x;y;z] :real^3 = vec 0) <=> x = &0 /\ y = &0 /\ z = &0`,
SIMP_TAC[CART_EQ; DIMINDEX_3; FORALL_3; VEC_COMPONENT; VECTOR_3; ARITH]);;
let ORTHOGONAL_VECTOR = prove
(`orthogonal (vector [x1;y1;z1] :real^3) (vector [x2;y2;z2]) =
(x1 * x2 + y1 * y2 + z1 * z2 = &0)`,
REWRITE_TAC[orthogonal; DOT_VECTOR]);;
parse_as_infix("cross",(20,"right"));;
let cross = new_definition
`(a:real^3) cross (b:real^3) =
vector [a$2 * b$3 - a$3 * b$2;
a$3 * b$1 - a$1 * b$3;
a$1 * b$2 - a$2 * b$1] :real^3`;;
let VEC3_TAC =
SIMP_TAC[CART_EQ; LAMBDA_BETA; FORALL_3; SUM_3; DIMINDEX_3; VECTOR_3;
vector_add; vec; dot; cross; orthogonal; basis; ARITH] THEN
CONV_TAC REAL_RING;;
let VEC3_RULE tm = prove(tm,VEC3_TAC);;
let ORTHOGONAL_CROSS = VEC3_RULE
`!x y. orthogonal (x cross y) x /\ orthogonal (x cross y) y /\
orthogonal x (x cross y) /\ orthogonal y (x cross y)`;;
let LEMMA_0 = VEC3_RULE
`~(basis 1 :real^3 = vec 0) /\
~(basis 2 :real^3 = vec 0) /\
~(basis 3 :real^3 = vec 0)`;;
let LEMMA_1 = VEC3_RULE `!u v. u dot (u cross v) = &0`;;
let LEMMA_2 = VEC3_RULE `!u v. v dot (u cross v) = &0`;;
let LEMMA_3 = VEC3_RULE `!u:real^3. vec 0 dot u = &0`;;
let LEMMA_4 = VEC3_RULE `!u:real^3. u dot vec 0 = &0`;;
let LEMMA_5 = VEC3_RULE `!x. x cross x = vec 0`;;
let LEMMA_6 = VEC3_RULE
`!u. ~(u = vec 0)
==> ~(u cross basis 1 = vec 0) \/
~(u cross basis 2 = vec 0) \/
~(u cross basis 3 = vec 0)`;;
let LEMMA_7 = VEC3_RULE
`!u v w. (u cross v = vec 0) ==> (u dot (v cross w) = &0)`;;
let NORMAL_EXISTS = prove
(`!u v:real^3. ?w. ~(w = vec 0) /\ orthogonal u w /\ orthogonal v w`,
REPEAT GEN_TAC THEN MAP_EVERY ASM_CASES_TAC
[`u:real^3 = vec 0`; `v:real^3 = vec 0`; `u cross v = vec 0`] THEN
ASM_REWRITE_TAC[orthogonal] THEN
ASM_MESON_TAC[LEMMA_0; LEMMA_1; LEMMA_2; LEMMA_3; LEMMA_4;
LEMMA_5; LEMMA_6; LEMMA_7]);;
(* ========================================================================= *)
(* Custom tactics *)
(* ========================================================================= *)
let points =
[((0, -1), (0, -1), (2, 0)); ((0, -1), (0, 0), (2, 0));
((0, -1), (0, 1), (2, 0)); ((0, -1), (2, 0), (0, -1));
((0, -1), (2, 0), (0, 0)); ((0, -1), (2, 0), (0, 1));
((0, 0), (0, -1), (2, 0)); ((0, 0), (0, 0), (2, 0));
((0, 0), (0, 1), (2, 0)); ((0, 0), (2, 0), (-2, 0));
((0, 0), (2, 0), (0, -1)); ((0, 0), (2, 0), (0, 0));
((0, 0), (2, 0), (0, 1)); ((0, 0), (2, 0), (2, 0));
((0, 1), (0, -1), (2, 0)); ((0, 1), (0, 0), (2, 0));
((0, 1), (0, 1), (2, 0)); ((0, 1), (2, 0), (0, -1));
((0, 1), (2, 0), (0, 0)); ((0, 1), (2, 0), (0, 1));
((2, 0), (-2, 0), (0, 0)); ((2, 0), (0, -1), (0, -1));
((2, 0), (0, -1), (0, 0)); ((2, 0), (0, -1), (0, 1));
((2, 0), (0, 0), (-2, 0)); ((2, 0), (0, 0), (0, -1));
((2, 0), (0, 0), (0, 0)); ((2, 0), (0, 0), (0, 1));
((2, 0), (0, 0), (2, 0)); ((2, 0), (0, 1), (0, -1));
((2, 0), (0, 1), (0, 0)); ((2, 0), (0, 1), (0, 1));
((2, 0), (2, 0), (0, 0))];;
let ortho =
let mult (x1,y1) (x2,y2) = (x1 * x2 + 2 * y1 * y2,x1 * y2 + y1 * x2)
and add (x1,y1) (x2,y2) = (x1 + x2,y1 + y2) in
let dot (x1,y1,z1) (x2,y2,z2) =
end_itlist add [mult x1 x2; mult y1 y2; mult z1 z2] in
fun (v1,v2) -> dot v1 v2 = (0,0);;
let opairs = filter ortho (allpairs (fun a b -> a,b) points points);;
let otrips = filter (fun (a,b,c) -> ortho(a,b) && ortho(a,c))
(allpairs (fun a (b,c) -> a,b,c) points opairs);;
let hol_of_value =
let tm0 = `&0` and tm1 = `&2` and tm2 = `-- &2`
and tm3 = `sqrt(&2)` and tm4 = `--sqrt(&2)` in
function 0,0 -> tm0 | 2,0 -> tm1 | -2,0 -> tm2 | 0,1 -> tm3 | 0,-1 -> tm4;;
let hol_of_point =
let ptm = `vector:(real)list->real^3` in
fun (x,y,z) -> mk_comb(ptm,mk_flist(map hol_of_value [x;y;z]));;
let SQRT_2_POW = prove
(`sqrt(&2) pow 2 = &2`,
SIMP_TAC[SQRT_POW_2; REAL_POS]);;
let PROVE_NONTRIVIAL =
let ptm = `~(x :real^3 = vec 0)` and xtm = `x:real^3` in
fun x -> prove(vsubst [hol_of_point x,xtm] ptm,
GEN_REWRITE_TAC RAND_CONV [VECTOR_ZERO] THEN
MP_TAC SQRT_2_POW THEN CONV_TAC REAL_RING);;
let PROVE_ORTHOGONAL =
let ptm = `orthogonal:real^3->real^3->bool` in
fun (x,y) ->
prove(list_mk_comb(ptm,[hol_of_point x;hol_of_point y]),
ONCE_REWRITE_TAC[ORTHOGONAL_VECTOR] THEN
MP_TAC SQRT_2_POW THEN CONV_TAC REAL_RING);;
let ppoint = let p = `P:real^3->bool` in fun v -> mk_comb(p,hol_of_point v);;
let DEDUCE_POINT_TAC pts =
FIRST_X_ASSUM MATCH_MP_TAC THEN
MAP_EVERY EXISTS_TAC (map hol_of_point pts) THEN
ASM_REWRITE_TAC[];;
let rec KOCHEN_SPECKER_TAC set_0 set_1 =
if intersect set_0 set_1 <> [] then
let p = ppoint(hd(intersect set_0 set_1)) in
let th1 = ASSUME(mk_neg p) and th2 = ASSUME p in
ACCEPT_TAC(EQ_MP (EQF_INTRO th1) th2)
else
let prf_1 = filter (fun (a,b) -> mem a set_0) opairs
and prf_0 = filter (fun (a,b,c) -> mem a set_1 && mem b set_1) otrips in
let new_1 = map snd prf_1 and new_0 = map (fun (a,b,c) -> c) prf_0 in
let set_0' = union new_0 set_0 and set_1' = union new_1 set_1 in
let del_0 = subtract set_0' set_0 and del_1 = subtract set_1' set_1 in
if del_0 <> [] || del_1 <> [] then
let prv_0 x =
let a,b,_ = find (fun (a,b,c) -> c = x) prf_0 in DEDUCE_POINT_TAC [a;b]
and prv_1 x =
let a,_ = find (fun (a,c) -> c = x) prf_1 in DEDUCE_POINT_TAC [a] in
let newuns = list_mk_conj
(map ppoint del_1 @ map (mk_neg o ppoint) del_0)
and tacs = map prv_1 del_1 @ map prv_0 del_0 in
SUBGOAL_THEN newuns STRIP_ASSUME_TAC THENL
[REPEAT CONJ_TAC THENL tacs; ALL_TAC] THEN
KOCHEN_SPECKER_TAC set_0' set_1'
else
let v = find (fun i -> not(mem i set_0) && not(mem i set_1)) points in
ASM_CASES_TAC (ppoint v) THENL
[KOCHEN_SPECKER_TAC set_0 (v::set_1);
KOCHEN_SPECKER_TAC (v::set_0) set_1];;
let KOCHEN_SPECKER_LEMMA = prove
(`!P. (!x y:real^3. ~(x = vec 0) /\ ~(y = vec 0) /\ orthogonal x y /\
~(P x) ==> P y) /\
(!x y z. ~(x = vec 0) /\ ~(y = vec 0) /\ ~(z = vec 0) /\
orthogonal x y /\ orthogonal x z /\ orthogonal y z /\
P x /\ P y ==> ~(P z))
==> F`,
REPEAT STRIP_TAC THEN
MAP_EVERY (ASSUME_TAC o PROVE_NONTRIVIAL) points THEN
MAP_EVERY (ASSUME_TAC o PROVE_ORTHOGONAL) opairs THEN
KOCHEN_SPECKER_TAC [] []);;
let NONTRIVIAL_CROSS = prove
(`!x y. orthogonal x y /\ ~(x = vec 0) /\ ~(y = vec 0)
==> ~(x cross y = vec 0)`,
REWRITE_TAC[GSYM DOT_EQ_0] THEN VEC3_TAC);;
let KOCHEN_SPECKER_PARADOX = prove
(`~(?spin:real^3->num.
!x y z. ~(x = vec 0) /\ ~(y = vec 0) /\ ~(z = vec 0) /\
orthogonal x y /\ orthogonal x z /\ orthogonal y z
==> (spin x = 0) /\ (spin y = 1) /\ (spin z = 1) \/
(spin x = 1) /\ (spin y = 0) /\ (spin z = 1) \/
(spin x = 1) /\ (spin y = 1) /\ (spin z = 0))`,
REPEAT STRIP_TAC THEN
MP_TAC(SPEC `\x:real^3. spin(x) = 1` KOCHEN_SPECKER_LEMMA) THEN
ASM_REWRITE_TAC[] THEN CONJ_TAC THEN
POP_ASSUM MP_TAC THEN REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN
DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN
ASM_MESON_TAC[ARITH_RULE `~(1 = 0)`; NONTRIVIAL_CROSS; ORTHOGONAL_CROSS]);;
(* ========================================================================= *)
(* Defining new types *)
(* ========================================================================= *)
let direction_tybij = new_type_definition "direction" ("mk_dir","dest_dir")
(MESON[LEMMA_0] `?x:real^3. ~(x = vec 0)`);;
parse_as_infix("||",(11,"right"));;
parse_as_infix("_|_",(11,"right"));;
let perpdir = new_definition
`x _|_ y <=> orthogonal (dest_dir x) (dest_dir y)`;;
let pardir = new_definition
`x || y <=> (dest_dir x) cross (dest_dir y) = vec 0`;;
let DIRECTION_CLAUSES = prove
(`((!x. P(dest_dir x)) <=> (!x. ~(x = vec 0) ==> P x)) /\
((?x. P(dest_dir x)) <=> (?x. ~(x = vec 0) /\ P x))`,
MESON_TAC[direction_tybij]);;
let [PARDIR_REFL; PARDIR_SYM; PARDIR_TRANS] = (CONJUNCTS o prove)
(`(!x. x || x) /\
(!x y. x || y <=> y || x) /\
(!x y z. x || y /\ y || z ==> x || z)`,
REWRITE_TAC[pardir; DIRECTION_CLAUSES] THEN VEC3_TAC);;
let DIRECTION_AXIOM_1 = prove
(`!p p'. ~(p || p') ==> ?l. p _|_ l /\ p' _|_ l /\
!l'. p _|_ l' /\ p' _|_ l' ==> l' || l`,
REWRITE_TAC[perpdir; pardir; DIRECTION_CLAUSES] THEN REPEAT STRIP_TAC THEN
MP_TAC(SPECL [`p:real^3`; `p':real^3`] NORMAL_EXISTS) THEN
MATCH_MP_TAC MONO_EXISTS THEN
POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN VEC3_TAC);;
let DIRECTION_AXIOM_2 = prove
(`!l l'. ?p. p _|_ l /\ p _|_ l'`,
REWRITE_TAC[perpdir; DIRECTION_CLAUSES] THEN
MESON_TAC[NORMAL_EXISTS; ORTHOGONAL_SYM]);;
let DIRECTION_AXIOM_3 = prove
(`?p p' p''.
~(p || p') /\ ~(p' || p'') /\ ~(p || p'') /\
~(?l. p _|_ l /\ p' _|_ l /\ p'' _|_ l)`,
REWRITE_TAC[perpdir; pardir; DIRECTION_CLAUSES] THEN
MAP_EVERY (fun t -> EXISTS_TAC t THEN REWRITE_TAC[LEMMA_0])
[`basis 1 :real^3`; `basis 2 : real^3`; `basis 3 :real^3`] THEN
VEC3_TAC);;
let CROSS_0 = VEC3_RULE `x cross vec 0 = vec 0 /\ vec 0 cross x = vec 0`;;
let DIRECTION_AXIOM_4_WEAK = prove
(`!l. ?p p'. ~(p || p') /\ p _|_ l /\ p' _|_ l`,
REWRITE_TAC[DIRECTION_CLAUSES; pardir; perpdir] THEN REPEAT STRIP_TAC THEN
SUBGOAL_THEN
`orthogonal (l cross basis 1) l /\ orthogonal (l cross basis 2) l /\
~((l cross basis 1) cross (l cross basis 2) = vec 0) \/
orthogonal (l cross basis 1) l /\ orthogonal (l cross basis 3) l /\
~((l cross basis 1) cross (l cross basis 3) = vec 0) \/
orthogonal (l cross basis 2) l /\ orthogonal (l cross basis 3) l /\
~((l cross basis 2) cross (l cross basis 3) = vec 0)`
MP_TAC THENL [POP_ASSUM MP_TAC THEN VEC3_TAC; MESON_TAC[CROSS_0]]);;
let ORTHOGONAL_COMBINE = prove
(`!x a b. a _|_ x /\ b _|_ x /\ ~(a || b)
==> ?c. c _|_ x /\ ~(a || c) /\ ~(b || c)`,
REWRITE_TAC[DIRECTION_CLAUSES; pardir; perpdir] THEN
REPEAT STRIP_TAC THEN EXISTS_TAC `a + b:real^3` THEN
POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN VEC3_TAC);;
let DIRECTION_AXIOM_4 = prove
(`!l. ?p p' p''. ~(p || p') /\ ~(p' || p'') /\ ~(p || p'') /\
p _|_ l /\ p' _|_ l /\ p'' _|_ l`,
MESON_TAC[DIRECTION_AXIOM_4_WEAK; ORTHOGONAL_COMBINE]);;
let line_tybij = define_quotient_type "line" ("mk_line","dest_line") `(||)`;;
let PERPDIR_WELLDEF = prove
(`!x y x' y'. x || x' /\ y || y' ==> (x _|_ y <=> x' _|_ y')`,
REWRITE_TAC[perpdir; pardir; DIRECTION_CLAUSES] THEN VEC3_TAC);;
let perpl,perpl_th =
lift_function (snd line_tybij) (PARDIR_REFL,PARDIR_TRANS)
"perpl" PERPDIR_WELLDEF;;
let line_lift_thm = lift_theorem line_tybij
(PARDIR_REFL,PARDIR_SYM,PARDIR_TRANS) [perpl_th];;
let LINE_AXIOM_1 = line_lift_thm DIRECTION_AXIOM_1;;
let LINE_AXIOM_2 = line_lift_thm DIRECTION_AXIOM_2;;
let LINE_AXIOM_3 = line_lift_thm DIRECTION_AXIOM_3;;
let LINE_AXIOM_4 = line_lift_thm DIRECTION_AXIOM_4;;
let point_tybij = new_type_definition "point" ("mk_point","dest_point")
(prove(`?x:line. T`,REWRITE_TAC[]));;
parse_as_infix("on",(11,"right"));;
let on = new_definition `p on l <=> perpl (dest_point p) l`;;
let POINT_CLAUSES = prove
(`((p = p') <=> (dest_point p = dest_point p')) /\
((!p. P (dest_point p)) <=> (!l. P l)) /\
((?p. P (dest_point p)) <=> (?l. P l))`,
MESON_TAC[point_tybij]);;
let POINT_TAC th = REWRITE_TAC[on; POINT_CLAUSES] THEN ACCEPT_TAC th;;
let AXIOM_1 = prove
(`!p p'. ~(p = p') ==> ?l. p on l /\ p' on l /\
!l'. p on l' /\ p' on l' ==> (l' = l)`,
POINT_TAC LINE_AXIOM_1);;
let AXIOM_2 = prove
(`!l l'. ?p. p on l /\ p on l'`,
POINT_TAC LINE_AXIOM_2);;
let AXIOM_3 = prove
(`?p p' p''. ~(p = p') /\ ~(p' = p'') /\ ~(p = p'') /\
~(?l. p on l /\ p' on l /\ p'' on l)`,
POINT_TAC LINE_AXIOM_3);;
let AXIOM_4 = prove
(`!l. ?p p' p''. ~(p = p') /\ ~(p' = p'') /\ ~(p = p'') /\
p on l /\ p' on l /\ p'' on l`,
POINT_TAC LINE_AXIOM_4);;
(* ========================================================================= *)
(* Custom inference rules *)
(* ========================================================================= *)
let near_ring_axioms =
`(!x. 0 + x = x) /\
(!x. neg x + x = 0) /\
(!x y z. (x + y) + z = x + y + z) /\
(!x y z. (x * y) * z = x * y * z) /\
(!x y z. (x + y) * z = (x * z) + (y * z))`;;
(**** Works eventually but takes a very long time
MESON[]
`(!x. 0 + x = x) /\
(!x. neg x + x = 0) /\
(!x y z. (x + y) + z = x + y + z) /\
(!x y z. (x * y) * z = x * y * z) /\
(!x y z. (x + y) * z = (x * z) + (y * z))
==> !a. 0 * a = 0`;;
****)
let is_realvar w x = is_var x && not(mem x w);;
let rec real_strip w tm =
if mem tm w then tm,[] else
let l,r = dest_comb tm in
let f,args = real_strip w l in f,args@[r];;
let weight lis (f,n) (g,m) =
let i = index f lis and j = index g lis in
i > j || i = j && n > m;;
let rec lexord ord l1 l2 =
match (l1,l2) with
(h1::t1,h2::t2) -> if ord h1 h2 then length t1 = length t2
else h1 = h2 && lexord ord t1 t2
| _ -> false;;
let rec lpo_gt w s t =
if is_realvar w t then not(s = t) && mem t (frees s)
else if is_realvar w s || is_abs s || is_abs t then false else
let f,fargs = real_strip w s and g,gargs = real_strip w t in
exists (fun si -> lpo_ge w si t) fargs ||
forall (lpo_gt w s) gargs &&
(f = g && lexord (lpo_gt w) fargs gargs ||
weight w (f,length fargs) (g,length gargs))
and lpo_ge w s t = (s = t) || lpo_gt w s t;;
let rec istriv w env x t =
if is_realvar w t then t = x || defined env t && istriv w env x (apply env t)
else if is_const t then false else
let f,args = strip_comb t in
exists (istriv w env x) args && failwith "cyclic";;
let rec unify w env tp =
match tp with
((Var(_,_) as x),t) | (t,(Var(_,_) as x)) when not(mem x w) ->
if defined env x then unify w env (apply env x,t)
else if istriv w env x t then env else (x|->t) env
| (Comb(f,x),Comb(g,y)) -> unify w (unify w env (x,y)) (f,g)
| (s,t) -> if s = t then env else failwith "unify: not unifiable";;
let fullunify w (s,t) =
let env = unify w undefined (s,t) in
let th = map (fun (x,t) -> (t,x)) (graph env) in
let rec subs t =
let t' = vsubst th t in
if t' = t then t else subs t' in
map (fun (t,x) -> (subs t,x)) th;;
let rec listcases fn rfn lis acc =
match lis with
[] -> acc
| h::t -> fn h (fun i h' -> rfn i (h'::map REFL t)) @
listcases fn (fun i t' -> rfn i (REFL h::t')) t acc;;
let LIST_MK_COMB f ths = rev_itlist (fun s t -> MK_COMB(t,s)) ths (REFL f);;
let rec overlaps w th tm rfn =
let l,r = dest_eq(concl th) in
if not (is_comb tm) then [] else
let f,args = strip_comb tm in
listcases (overlaps w th) (fun i a -> rfn i (LIST_MK_COMB f a)) args
(try [rfn (fullunify w (l,tm)) th] with Failure _ -> []);;
let crit1 w eq1 eq2 =
let l1,r1 = dest_eq(concl eq1)
and l2,r2 = dest_eq(concl eq2) in
overlaps w eq1 l2 (fun i th -> TRANS (SYM(INST i th)) (INST i eq2));;
let fixvariables s th =
let fvs = subtract (frees(concl th)) (freesl(hyp th)) in
let gvs = map2 (fun v n -> mk_var(s^string_of_int n,type_of v))
fvs (1--length fvs) in
INST (zip gvs fvs) th;;
let renamepair (th1,th2) = fixvariables "x" th1,fixvariables "y" th2;;
let critical_pairs w tha thb =
let th1,th2 = renamepair (tha,thb) in crit1 w th1 th2 @ crit1 w th2 th1;;
let normalize_and_orient w eqs th =
let th' = GEN_REWRITE_RULE TOP_DEPTH_CONV eqs th in
let s',t' = dest_eq(concl th') in
if lpo_ge w s' t' then th' else if lpo_ge w t' s' then SYM th'
else failwith "Can't orient equation";;
let status(eqs,crs) eqs0 =
if eqs = eqs0 && (length crs) mod 1000 <> 0 then () else
(print_string(string_of_int(length eqs)^" equations and "^
string_of_int(length crs)^" pending critical pairs");
print_newline());;
let left_reducible eqs eq =
can (CHANGED_CONV(GEN_REWRITE_CONV (LAND_CONV o ONCE_DEPTH_CONV) eqs))
(concl eq);;
let rec complete w (eqs,crits) =
match crits with
(eq::ocrits) ->
let trip =
try let eq' = normalize_and_orient w eqs eq in
let s',t' = dest_eq(concl eq') in
if s' = t' then (eqs,ocrits) else
let crits',eqs' = partition(left_reducible [eq']) eqs in
let eqs'' = eq'::eqs' in
eqs'',
ocrits @ crits' @ itlist ((@) o critical_pairs w eq') eqs'' []
with Failure _ ->
if exists (can (normalize_and_orient w eqs)) ocrits
then (eqs,ocrits@[eq])
else failwith "complete: no orientable equations" in
status trip eqs; complete w trip
| [] -> eqs;;
let complete_equations wts eqs =
let eqs' = map (normalize_and_orient wts []) eqs in
complete wts ([],eqs');;
complete_equations [`1`; `( * ):num->num->num`; `i:num->num`]
[SPEC_ALL(ASSUME `!a b. i(a) * a * b = b`)];;
complete_equations [`c:A`; `f:A->A`]
(map SPEC_ALL (CONJUNCTS (ASSUME
`((f(f(f(f(f c))))) = c:A) /\ (f(f(f c)) = c)`)));;
let eqs = map SPEC_ALL (CONJUNCTS (ASSUME
`(!x. 1 * x = x) /\ (!x. i(x) * x = 1) /\
(!x y z. (x * y) * z = x * y * z)`)) in
map concl (complete_equations [`1`; `( * ):num->num->num`; `i:num->num`] eqs);;
let COMPLETE_TAC w th =
let eqs = map SPEC_ALL (CONJUNCTS(SPEC_ALL th)) in
let eqs' = complete_equations w eqs in
MAP_EVERY (ASSUME_TAC o GEN_ALL) eqs';;
g `(!x. 1 * x = x) /\
(!x. i(x) * x = 1) /\
(!x y z. (x * y) * z = x * y * z)
==> !x y. i(y) * i(i(i(x * i(y)))) * x = 1`;;
e (DISCH_THEN(COMPLETE_TAC [`1`; `( * ):num->num->num`; `i:num->num`]));;
e(ASM_REWRITE_TAC[]);;
g `(!x. 0 + x = x) /\
(!x. neg x + x = 0) /\
(!x y z. (x + y) + z = x + y + z) /\
(!x y z. (x * y) * z = x * y * z) /\
(!x y z. (x + y) * z = (x * z) + (y * z))
==> (neg 0 * (x * y + z + neg(neg(w + z))) + neg(neg b + neg a) =
a + b)`;;
e (DISCH_THEN(COMPLETE_TAC
[`0`; `(+):num->num->num`; `neg:num->num`; `( * ):num->num->num`]));;
e(ASM_REWRITE_TAC[]);;
(**** Could have done this instead
e (DISCH_THEN(COMPLETE_TAC
[`0`; `(+):num->num->num`; `( * ):num->num->num`; `neg:num->num`]));;
****)
(* ========================================================================= *)
(* Linking external tools *)
(* ========================================================================= *)
let maximas e =
let filename = Filename.temp_file "maxima" ".out" in
let s =
"echo 'linel:10000; display2d:false;" ^ e ^
";' | maxima | grep '^(%o3)' | sed -e 's/^(%o3) //' >" ^
filename in
if Sys.command s <> 0 then failwith "maxima" else
let fd = Pervasives.open_in filename in
let data = input_line fd in
close_in fd; Sys.remove filename; data;;
prioritize_real();;
let maxima_ops = ["+",`(+)`; "-",`(-)`; "*",`( * )`; "/",`(/)`; "^",`(pow)`];;
let maxima_funs = ["sin",`sin`; "cos",`cos`];;
let mk_uneg = curry mk_comb `(--)`;;
let dest_uneg =
let ntm = `(--)` in
fun tm -> let op,t = dest_comb tm in
if op = ntm then t else failwith "dest_uneg";;
let mk_pow = let f = mk_binop `(pow)` in fun x y -> f x (rand y);;
let mk_realvar = let real_ty = `:real` in fun x -> mk_var(x,real_ty);;
let rec string_of_hol tm =
if is_ratconst tm then "("^string_of_num(rat_of_term tm)^")"
else if is_numeral tm then string_of_num(dest_numeral tm)
else if is_var tm then fst(dest_var tm)
else if can dest_uneg tm then "-(" ^ string_of_hol(rand tm) ^ ")" else
let lop,r = dest_comb tm in
try let op,l = dest_comb lop in
"("^string_of_hol l^" "^ rev_assoc op maxima_ops^" "^string_of_hol r^")"
with Failure _ -> rev_assoc lop maxima_funs ^ "(" ^ string_of_hol r ^ ")";;
string_of_hol `(x + sin(-- &2 * x)) pow 2 - cos(x - &22 / &7)`;;
let lexe s = map (function Resword s -> s | Ident s -> s) (lex(explode s));;
let parse_bracketed prs inp =
match prs inp with
ast,")"::rst -> ast,rst
| _ -> failwith "Closing bracket expected";;
let rec parse_ginfix op opup sof prs inp =
match prs inp with
e1,hop::rst when hop = op -> parse_ginfix op opup (opup sof e1) prs rst
| e1,rest -> sof e1,rest;;
let parse_general_infix op =
let opcon = if op = "^" then mk_pow else mk_binop (assoc op maxima_ops) in
let constr = if op <> "^" && snd(get_infix_status op) = "right"
then fun f e1 e2 -> f(opcon e1 e2)
else fun f e1 e2 -> opcon(f e1) e2 in
parse_ginfix op constr (fun x -> x);;
let rec parse_atomic_expression inp =
match inp with
[] -> failwith "expression expected"
| "(" :: rest -> parse_bracketed parse_expression rest
| s :: rest when forall isnum (explode s) ->
term_of_rat(num_of_string s),rest
| s :: "(" :: rest when forall isalnum (explode s) ->
let e,rst = parse_bracketed parse_expression rest in
mk_comb(assoc s maxima_funs,e),rst
| s :: rest when forall isalnum (explode s) -> mk_realvar s,rest
and parse_exp inp = parse_general_infix "^" parse_atomic_expression inp
and parse_neg inp =
match inp with
| "-" :: rest -> let e,rst = parse_neg rest in mk_uneg e,rst
| _ -> parse_exp inp
and parse_expression inp =
itlist parse_general_infix (map fst maxima_ops) parse_neg inp;;
let hol_of_string = fst o parse_expression o lexe;;
hol_of_string "sin(x) - cos(-(- - 1 + x))";;
let FACTOR_CONV tm =
let s = "factor("^string_of_hol tm^")" in
let tm' = hol_of_string(maximas s) in
REAL_RING(mk_eq(tm,tm'));;
FACTOR_CONV `&1234567890`;;
FACTOR_CONV `x pow 6 - &1`;;
FACTOR_CONV `r * (r * x * (&1 - x)) * (&1 - r * x * (&1 - x)) - x`;;
let ANTIDERIV_CONV tm =
let x,bod = dest_abs tm in
let s = "integrate("^string_of_hol bod^","^fst(dest_var x)^")" in
let tm' = mk_abs(x,hol_of_string(maximas s)) in
let th1 = CONV_RULE (NUM_REDUCE_CONV THENC REAL_RAT_REDUCE_CONV)
(SPEC x (DIFF_CONV tm')) in
let th2 = REAL_RING(mk_eq(lhand(concl th1),bod)) in
GEN x (GEN_REWRITE_RULE LAND_CONV [th2] th1);;
ANTIDERIV_CONV `\x. (x + &5) pow 2 + &77 * x`;;
ANTIDERIV_CONV `\x. sin(x) + x pow 11`;;
(**** This one fails
ANTIDERIV_CONV `\x. sin(x) pow 3`;;
****)
let SIN_N_CLAUSES = prove
(`(sin(&(NUMERAL(BIT0 n)) * x) =
&2 * sin(&(NUMERAL n) * x) * cos(&(NUMERAL n) * x)) /\
(sin(&(NUMERAL(BIT1 n)) * x) =
sin(&(NUMERAL(BIT0 n)) * x) * cos(x) +
sin(x) * cos(&(NUMERAL(BIT0 n)) * x)) /\
(cos(&(NUMERAL(BIT0 n)) * x) =
cos(&(NUMERAL n) * x) pow 2 - sin(&(NUMERAL n) * x) pow 2) /\
(cos(&(NUMERAL(BIT1 n)) * x) =
cos(&(NUMERAL(BIT0 n)) * x) * cos(x) -
sin(x) * sin(&(NUMERAL(BIT0 n)) * x))`,
REWRITE_TAC[REAL_MUL_2; REAL_POW_2] THEN
REWRITE_TAC[NUMERAL; BIT0; BIT1] THEN
REWRITE_TAC[ADD1; GSYM REAL_OF_NUM_ADD] THEN
REWRITE_TAC[REAL_ADD_RDISTRIB; SIN_ADD; COS_ADD; REAL_MUL_LID] THEN
CONV_TAC REAL_RING);;
let TRIG_IDENT_TAC x =
REWRITE_TAC[SIN_N_CLAUSES; SIN_ADD; COS_ADD] THEN
REWRITE_TAC[REAL_MUL_LZERO; SIN_0; COS_0; REAL_MUL_RZERO] THEN
MP_TAC(SPEC x SIN_CIRCLE) THEN CONV_TAC REAL_RING;;
let ANTIDERIV_CONV tm =
let x,bod = dest_abs tm in
let s = "expand(integrate("^string_of_hol bod^","^fst(dest_var x)^"))" in
let tm' = mk_abs(x,hol_of_string(maximas s)) in
let th1 = CONV_RULE (NUM_REDUCE_CONV THENC REAL_RAT_REDUCE_CONV)
(SPEC x (DIFF_CONV tm')) in
let th2 = prove(mk_eq(lhand(concl th1),bod),TRIG_IDENT_TAC x) in
GEN x (GEN_REWRITE_RULE LAND_CONV [th2] th1);;
time ANTIDERIV_CONV `\x. sin(x) pow 3`;;
time ANTIDERIV_CONV `\x. sin(x) * sin(x) pow 5 * cos(x) pow 4 + cos(x)`;;
let FCT1_WEAK = prove
(`(!x. (f diffl f'(x)) x) ==> !x. &0 <= x ==> defint(&0,x) f' (f x - f(&0))`,
MESON_TAC[FTC1]);;
let INTEGRAL_CONV tm =
let th1 = MATCH_MP FCT1_WEAK (ANTIDERIV_CONV tm) in
(CONV_RULE REAL_RAT_REDUCE_CONV o
REWRITE_RULE[SIN_0; COS_0; REAL_MUL_LZERO; REAL_MUL_RZERO] o
CONV_RULE REAL_RAT_REDUCE_CONV o BETA_RULE) th1;;
INTEGRAL_CONV `\x. sin(x) pow 13`;;
|