Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 24,611 Bytes
afd65d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
\chapter{Some topological constructions}
In this short chapter we briefly describe some common spaces and constructions
in topology that we haven't yet discussed.

\section{Spheres}
Recall that
\[ S^n = \left\{ (x_0, \dots, x_n)
	\mid x_0^2 + \dots + x_n^2 = 1 \right\} \subset \RR^{n+1} \]
is the surface of an $n$-sphere while
\[ D^{n+1} = \left\{ (x_0, \dots, x_n)
	\mid x_0^2 + \dots + x_n^2 \le 1 \right\} \subset \RR^{n+1} \]
is the corresponding \emph{closed ball}
(So for example, $D^2$ is a disk in a plane while $S^1$ is the unit circle.)
\begin{exercise}
	Show that the open ball $D^n \setminus S^{n-1}$
	is homeomorphic to $\RR^n$.
\end{exercise}

In particular, $S^0$ consists of two points,
while $D^1$ can be thought of as the interval $[-1,1]$.

\begin{center}
	\begin{asy}
		size(8cm);
		draw(dir(0)--dir(180), blue);
		dot(dir(0), red+4);
		dot(dir(180), red+4);
		label("$S^0$", dir(0), dir(90), red);
		label("$D^1$", dir(0)--dir(180), blue);
		add(shift(-4,0)*CC());
		unitsize(2cm);
		filldraw(unitcircle, lightblue+opacity(0.2), red);
		label("$D^2$", origin, blue);
		label("$S^1$", dir(45), dir(45), red);
	\end{asy}
\end{center}


\section{Quotient topology}
\prototype{$D^n / S^{n-1} = S^n$, or the torus.}

Given a space $X$, we can \emph{identify} some of the points together
by any equivalence relation $\sim$;
for an $x \in X$ we denote its equivalence class by $[x]$.
Geometrically, this is the space achieved by welding together points
equivalent under $\sim$.

Formally,
\begin{definition}
	Let $X$ be a topological space, and $\sim$ an equivalence relation
	on the points of $X$.
	Then $X / {\sim}$ is the space whose
	\begin{itemize}
		\ii Points are equivalence classes of $X$, and
		\ii $U \subseteq X / {\sim}$ is open if and only if
		$\left\{ x \in X \text{ such that } [x] \in U  \right\}$
		is open in $X$.
	\end{itemize}
\end{definition}
As far as I can tell, this definition is mostly useless for intuition,
so here are some examples.

\begin{example}[Interval modulo endpoints]
	Suppose we take $D^1 = [-1, 1]$
	and quotient by the equivalence relation which identifies
	the endpoints $-1$ and $1$.
	(Formally, $x \sim y \iff (x=y) \text{ or } \{x,y\} = \{-1,1\}$.)
	In that case, we simply recover $S^1$:
	\begin{center}
		\begin{asy}
			size(8cm);
			draw(dir(0)--dir(180), blue);
			dot("$-1$", dir(0), dir(90), red+4);
			dot("$-1$", dir(180), dir(90), red+4);
			label("$D^1$", dir(0)--dir(180), blue);
			add(shift(-4,0)*CC());
			unitsize(2cm);
			draw(unitcircle, blue);
			label("$S^1 \approx D^1 / {\sim}$", dir(45), dir(45), blue);
			dot("$-1 \sim 1$", dir(90), dir(90), red);
		\end{asy}
	\end{center}
	Observe that a small open neighborhood around $-1 \sim 1$ in the quotient space
	corresponds to two half-intervals at $-1$ and $1$ in the original space $D^1$.
	This should convince you the definition we gave is the right one.
\end{example}

\begin{example}[More quotient spaces]
	Convince yourself that:
	\begin{itemize}
		\ii Generalizing the previous example, $D^n$ modulo its boundary $S^{n-1}$ is $S^n$.
		\ii Given a square $ABCD$, suppose we identify segments $AB$ and $DC$ together.
		Then we get a cylinder. (Think elementary school, when you would tape
		up pieces of paper together to get cylinders.)
		\ii In the previous example, if we also identify $BC$ and $DA$ together,
		then we get a torus. (Imagine taking our cylinder and putting the two
		circles at the end together.)
		\ii Let $X = \RR$, and let $x \sim y$ if $y -x \in \ZZ$.
		Then $X / {\sim}$ is $S^1$ as well.
	\end{itemize}
\end{example}

One special case that we did above:
\begin{definition}
	Let $A \subseteq X$.
	Consider the equivalence relation which identifies
	all the points of $A$ with each other
	while leaving all remaining points inequivalent.
	(In other words, $x \sim y$ if $x=y$ or $x,y \in A$.)
	Then the resulting quotient space is denoted $X/A$.
\end{definition}

So in this notation, \[ D^n / S^{n-1} = S^n. \]

\begin{abuse}
	Note that I'm deliberately being sloppy, and saying
	``$D^n / S^{n-1} = S^n$'' or ``$D^n / S^{n-1}$ \emph{is} $S^n$'',
	when I really ought to say ``$D^n / S^{n-1}$ is homeomorphic to $S^n$''.
	This is a general theme in mathematics:
	objects which are homoeomorphic/isomorphic/etc.\ are generally
	not carefully distinguished from each other.
\end{abuse}

\section{Product topology}
\prototype{$\RR \times \RR$ is $\RR^2$, $S^1 \times S^1$ is the torus.}

\begin{definition}
	Given topological spaces $X$ and $Y$,
	the \vocab{product topology} on $X \times Y$ is the space whose
	\begin{itemize}
		\ii Points are pairs $(x,y)$ with $x \in X$, $y \in Y$, and
		\ii Topology is given as follows: the \emph{basis} of
		the topology for $X \times Y$ is $U \times V$,
		for $U \subseteq X$ open and $V \subseteq Y$ open.
	\end{itemize}
\end{definition}

\begin{remark}
	It is not hard to show that, in fact,
	one need only consider basis elements for $U$ and $V$.
	That is to say,
	\[ \left\{ U \times V \mid
		U,V \text{ basis elements for } X,Y \right\} \]
	is also a basis for $X \times Y$.

	We really do need to fiddle with the basis:
	in $\RR \times \RR$, an open unit disk better be open,
	despite not being of the form $U \times V$.
\end{remark}

This does exactly what you think it would.
\begin{example}[The unit square]
	Let $X = [0,1]$ and consider $X \times X$.
	We of course expect this to be the unit square.
	Pictured below is an open set of $X \times X$ in the basis.
	\begin{center}
		\begin{asy}
		size(6cm);
		filldraw(unitsquare, opacity(0.2)+lightblue, black);

		pair B = (0,1);
		pair A = (1,0);
		fill(box(0.3*A+0.2*B,0.6*A+0.7*B), lightred+opacity(0.5));
		label("$U \times V$", (0.45,0.45), brown);

		draw(0.3*A--(0.3*A+B), heavygreen+dashed+1);
		draw(0.6*A--(0.6*A+B), heavygreen+dashed+1);
		draw(0.2*B--(0.2*B+A), heavycyan+dashed+1);
		draw(0.7*B--(0.7*B+A), heavycyan+dashed+1);

		draw( 0.3*A--0.6*A, heavygreen+2 );
		opendot( 0.3*A,  heavygreen+2);
		opendot( 0.6*A, heavygreen+2);
		label("$U$", 0.45*A, dir(-90), heavygreen);
		draw( 0.2*B--0.7*B, heavycyan+2 );
		opendot( 0.2*B, heavycyan+2);
		opendot( 0.7*B, heavycyan+2);
		label("$V$", 0.45*B, dir(180), heavycyan);
		\end{asy}
	\end{center}
\end{example}
\begin{exercise}
	Convince yourself this basis gives the same topology
	as the product metric on $X \times X$.
	So this is the ``right'' definition.
\end{exercise}

\begin{example}[More product spaces]
	\listhack
	\begin{enumerate}[(a)]
		\ii $\RR \times \RR$ is the Euclidean plane.
		\ii $S^1 \times [0,1]$ is a cylinder.
		\ii $S^1 \times S^1$ is a torus! (Why?)
	\end{enumerate}
\end{example}

\section{Disjoint union and wedge sum}
\prototype{$S^1 \vee S^1$ is the figure eight.}

The disjoint union of two spaces is geometrically exactly
what it sounds like: you just imagine the two spaces side by side.
For completeness, here is the formal definition.
\begin{definition}
	Let $X$ and $Y$ be two topological spaces.
	The \vocab{disjoint union}, denoted $X \amalg Y$, is defined by
	\begin{itemize}
		\ii The points are the disjoint union $X \amalg Y$, and
		\ii A subset $U \subseteq X \amalg Y$ is open if
		and only if $U \cap X$ and $U \cap Y$ are open.
	\end{itemize}
\end{definition}
\begin{exercise}
	Show that the disjoint union of two nonempty spaces is disconnected.
\end{exercise}

More interesting is the wedge sum, where two topological spaces $X$
and $Y$ are fused together only at a single base point.
\begin{definition}
	Let $X$ and $Y$ be topological spaces, and $x_0 \in X$ and $y_0 \in Y$
	be points.
	We define the equivalence relation $\sim$ by declaring $x_0 \sim y_0$ only.
	Then the \vocab{wedge sum} of two spaces is defined as
	\[ X \vee Y = (X \amalg Y) / {\sim}. \]
\end{definition}

\begin{example}
	[$S^1 \vee S^1$ is a figure eight]
	Let $X = S^1$ and $Y = S^1$,
	and let $x_0 \in X$ and $y_0 \in Y$ be any points.
	Then $X \vee Y$ is a ``figure eight'': it is two
	circles fused together at one point.
	\begin{center}
		\begin{asy}
			size(3cm);
			draw(shift(-1,0)*unitcircle);
			draw(shift(1,0)*unitcircle);
			dotfactor *= 1.4;
			dot(origin);
		\end{asy}
	\end{center}
\end{example}
\begin{abuse}
	We often don't mention $x_0$ and $y_0$ when they are understood
	(or irrelevant).  For example, from now on we will just
	write $S^1 \vee S^1$ for a figure eight.
\end{abuse}

\begin{remark}
	Annoyingly, in \LaTeX\ \verb+\wedge+ gives $\wedge$ instead
	of $\vee$ (which is \verb+\vee+).
	So this really should be called the ``vee product'', but too late.
\end{remark}


\section{CW complexes}
Using this construction, we can start building some spaces.
One common way to do so is using a so-called \vocab{CW complex}.
Intuitively, a CW complex is built as follows:
\begin{itemize}
	\ii Start with a set of points $X^0$.
	\ii Define $X^1$ by taking some line segments (copies of $D^1$)
	and fusing the endpoints (copies of $S^0$) onto $X^0$.
	\ii Define $X^2$ by taking copies of $D^2$ (a disk)
	and welding its boundary (a copy of $S^1$) onto $X^1$.
	\ii Repeat inductively up until a finite stage $n$;
	we say $X$ is \vocab{$n$-dimensional}.
\end{itemize}
The resulting space $X$ is the CW-complex.
The set $X^k$ is called the \vocab{$k$-skeleton} of $X$.
Each $D^k$ is called a \vocab{$k$-cell}; it is customary to
denote it by $e_\alpha^k$ where $\alpha$ is some index.
We say that $X$ is \vocab{finite} if only finitely many cells were used.
\begin{abuse}
	Technically, most sources (like \cite{ref:hatcher}) allow one to
	construct infinite-dimensional CW complexes.
	We will not encounter any such spaces in the Napkin.
\end{abuse}

\begin{example}
	[$D^2$ with $2+2+1$ and $1+1+1$ cells]
	\listhack
	\begin{enumerate}[(a)]
	\ii First, we start with $X^0$ having two points $e_a^0$ and $e_b^0$.
	Then, we join them with two $1$-cells $D^1$ (green),
	call them $e_c^1$ and $e_d^1$.
	The endpoints of each $1$-cell (the copy of $S^0$) get identified
	with distinct points of $X^0$; hence $X^1 \cong S^1$.
	Finally, we take a single $2$-cell $e^2$ (yellow) and weld it in,
	with its boundary fitting into the copy of $S^1$ that we just drew.
	This gives the figure on the left.

	\ii In fact, one can do this using just $1+1+1=3$ cells.
	Start with $X^0$ having a single point $e^0$.
	Then, use a single $1$-cell $e^1$, fusing its two endpoints
	into the single point of $X^0$.
	Then, one can fit in a copy of $S^1$ as before,
	giving $D^2$ as on the right.
	\end{enumerate}
	\begin{center}
		\begin{asy}
			size(4cm);
			filldraw(unitcircle, opacity(0.2)+yellow, heavygreen);
			dotfactor *= 1.4;
			dot(dir(90), blue);
			dot(dir(-90), blue);
			label("$e_a^0$", dir(90), dir(90), blue);
			label("$e_b^0$", dir(-90), dir(-90), blue);
			label("$e_c^1$", dir(0), dir(0), heavygreen);
			label("$e_d^1$", dir(180), dir(180), heavygreen);
			label("$e^2$", origin, origin);
		\end{asy}
		\qquad
		\begin{asy}
			size(4cm);
			filldraw(unitcircle, opacity(0.2)+yellow, heavygreen);
			dotfactor *= 1.4;
			dot(dir(90), blue);
			label("$e^0$", dir(90), dir(90), blue);
			label("$e^1$", dir(-90), dir(-90), heavygreen);
			label("$e^2$", origin, origin);
		\end{asy}
	\end{center}
\end{example}

\begin{example}
	[$S^n$ as a CW complex]
	\listhack
	\begin{enumerate}[(a)]
		\ii One can obtain $S^n$ (for $n \ge 1$) with just two cells.
		Namely, take a single point $e^0$ for $X^0$, and to obtain $S^n$
		take $D^n$ and weld its entire boundary into $e^0$.

		We already saw this example in the beginning with $n=2$,
		when we saw that the sphere $S^2$ was the result when we fuse
		the boundary of a disk $D^2$ together.

		\ii Alternatively, one can do a ``hemisphere'' construction,
		by constructing $S^n$ inductively using two cells in each dimension.
		So $S^0$ consists of two points, then $S^1$ is obtained
		by joining these two points by two segments ($1$-cells),
		and $S^2$ is obtained by gluing two hemispheres (each a $2$-cell)
		with $S^1$ as its equator.
	\end{enumerate}
\end{example}

\begin{definition}
	Formally, for each $k$-cell $e^k_\alpha$ we want to add to $X^k$,
	we take its boundary $S^{k-1}_\alpha$ and weld it onto
	$X^{k-1}$ via an \vocab{attaching map} $S^{k-1}_\alpha \to X^{k-1}$.
	Then
	\[ X^k = X^{k-1} \amalg \left(\coprod_\alpha e^k_\alpha\right) / {\sim} \]
	where $\sim$ identifies each boundary point of $e^k_\alpha$
	with its image in $X^{k-1}$.
\end{definition}


\section{The torus, Klein bottle, $\RP^n$, $\CP^n$}
\label{sec:top_spaces}
We now present four of the most important examples of CW complexes.

\subsection{The torus}
The \vocab{torus} can be formed by taking
a square and identifying the opposite edges in the same direction:
if you walk off the right edge, you re-appear at the corresponding
point in on the left edge.
(Think \emph{Asteroids} from Atari!)

\begin{center}
	\begin{asy}
		size(2cm);
		fill(unitsquare, yellow+opacity(0.2));
		pair C = (0,0);
		pair B = (1,0);
		pair A = (1,1);
		pair D = (0,1);
		draw(A--B, red, MidArrow);
		draw(B--C, blue, MidArrow);
		draw(D--C, red, MidArrow);
		draw(A--D, blue, MidArrow);
	\end{asy}
\end{center}

Thus the torus is $(\RR/\ZZ)^2 \cong S^1 \times S^1$.

Note that all four corners get identified together to a single point.  One
can realize the torus in $3$-space by treating the square as a sheet of paper,
taping together the left and right (red) edges to form a cylinder,
then bending the cylinder and fusing the top and bottom (blue) edges
to form the torus.
\begin{center}
	\includegraphics[width=0.8\textwidth]{media/Projection_color_torus.jpg}
	\\ \scriptsize Image from \cite{img:torus}
\end{center}

The torus can be realized as a CW complex with
\begin{itemize}
	\ii A $0$-skeleton consisting of a single point,
	\ii A $1$-skeleton consisting of two $1$-cells $e^1_a$, $e^1_b$, and
	\begin{center}
		\begin{asy}
			unitsize(1cm);
			draw(shift(-1,0)*unitcircle, blue, MidArrow);
			draw(shift(1,0)*rotate(180)*unitcircle, red, MidArrow);
			label("$e^1_a$", 2*dir(180), dir(180), blue);
			label("$e^1_b$", 2*dir(0), dir(0), red);
			dotfactor *= 1.4;
			dot("$e^0$", origin, dir(0));
		\end{asy}
	\end{center}
	\ii A $2$-skeleton with a single $2$-cell $e^2$,
	whose circumference is divided into four parts,
	and welded onto the $1$-skeleton ``via $aba\inv b \inv$''.
	This means: wrap a quarter of the circumference around $e^1_a$,
	then another quarter around $e^1_b$,
	then the third quarter around $e^1_a$ but in the opposite direction,
	and the fourth quarter around $e^1_b$ again in the opposite direction as before.
	\begin{center}
		\begin{asy}
			size(3cm);
			fill(unitcircle, yellow+opacity(0.2));
			defaultpen(linewidth(1));
			draw(arc(origin, 1, 45, 135), blue, MidArrow);
			draw(arc(origin, 1, 315, 225), blue, MidArrow);
			draw(arc(origin, 1, 135, 225), red, MidArrow);
			draw(arc(origin, 1, 45, -45), red, MidArrow);
			label("$e^2$", origin, origin);
		\end{asy}
	\end{center}
\end{itemize}
We say that $aba\inv b\inv$ is the \vocab{attaching word};
this shorthand will be convenient later on.

\subsection{The Klein bottle}
The \vocab{Klein bottle} is defined similarly to
the torus, except one pair of edges is identified in the opposite manner,
as shown.

\begin{center}
	\begin{asy}
		size(2cm);
		fill(unitsquare, yellow+opacity(0.2));
		pair C = (0,0);
		pair B = (1,0);
		pair A = (1,1);
		pair D = (0,1);
		draw(A--B, red, MidArrow);
		draw(C--B, blue, MidArrow);
		draw(D--C, red, MidArrow);
		draw(A--D, blue, MidArrow);
	\end{asy}
\end{center}

Unlike the torus one cannot realize this in $3$-space
without self-intersecting. One can tape together the red edges
as before to get a cylinder, but to then fuse the resulting blue
circles in opposite directions is not possible in 3D.
Nevertheless, we often draw a picture in 3-dimensional space
in which we tacitly allow the cylinder to intersect itself.

\begin{center}
	\begin{minipage}[c]{0.5\textwidth}
	\includegraphics[width=\textwidth]{media/klein-fold.png}
	\end{minipage}
	\quad
	\begin{minipage}[c]{0.3\textwidth}
	\includegraphics[width=\textwidth]{media/KleinBottle-01.png}
	\end{minipage}
	\par \scriptsize Image from \cite{img:kleinfold,img:kleinbottle}
\end{center}


Like the torus, the Klein bottle is realized as a CW complex with
\begin{itemize}
	\ii One $0$-cell,
	\ii Two $1$-cells $e^1_a$ and $e^1_b$, and
	\ii A single $2$-cell attached this time via the word $abab\inv$.
\end{itemize}

\subsection{Real projective space}
Let's start with $n=2$.
The space $\RP^2$ is obtained if we reverse both directions of
the square from before, as shown.

\begin{center}
	\begin{asy}
		size(2cm);
		fill(unitsquare, yellow+opacity(0.2));
		pair C = (0,0);
		pair B = (1,0);
		pair A = (1,1);
		pair D = (0,1);
		draw(B--A, red, MidArrow);
		draw(C--B, blue, MidArrow);
		draw(D--C, red, MidArrow);
		draw(A--D, blue, MidArrow);
	\end{asy}
\end{center}

However, once we do this the fact that the original
polygon is a square is kind of irrelevant;
we can combine a red and blue edge to get the single purple edge.
Equivalently, one can think of this as a circle with half
its circumference identified with the other half:

\begin{center}
	\begin{asy}
		size(3cm);
		dotfactor *= 2;
		fill(unitcircle, opacity(0.2)+yellow);
		draw(dir(-90)..dir(0)..dir(90), purple, MidArrow);
		draw(dir(90)..dir(180)..dir(-90), purple, MidArrow);
		dot(dir(90));
		dot(dir(-90));
		label("$\mathbb{RP}^2$", origin, origin);
	\end{asy}
	\qquad
	\begin{asy}
		size(3cm);
		dotfactor *= 2;
		draw(dir(-90)..dir(0)..dir(90));
		draw(dir(90)..dir(180)..dir(-90), dashed);
		fill(unitcircle, yellow+opacity(0.2));
		dot(dir(90));
		opendot(dir(-90));
		label("$\mathbb{RP}^2$", origin, origin);
	\end{asy}
\end{center}

The resulting space should be familiar to those of you who do
projective (Euclidean) geometry.
Indeed, there are several possible geometric interpretations:
\begin{itemize}
	\ii One can think of $\RP^2$ as the set of lines through the
	origin in $\RR^3$, with each line being a point in $\RP^2$.

	Of course, we can identify each line with a point on the unit sphere $S^2$,
	except for the property that two antipodal points actually
	correspond to the same line, so that $\RP^2$ can be almost thought
	of as ``half a sphere''. Flattening it gives the picture above.

	\ii Imagine $\RR^2$, except augmented with ``points at infinity''.
	This means that we add some points ``infinitely far away'',
	one for each possible direction of a line.
	Thus in $\RP^2$, any two lines indeed intersect
	(at a Euclidean point if they are not parallel, and at a point
	at infinity if they do).

	This gives an interpretation of $\RP^2$,
	where the boundary represents the \emph{line at infinity}
	through all of the points at infinity.
	Here we have used the fact that $\RR^2$
	and interior of $D^2$ are homeomorphic.
\end{itemize}
\begin{exercise}
	Observe that these formulations are equivalent
	by considering the plane $z=1$ in $\RR^3$,
	and intersecting each line in the first formulation with this plane.
\end{exercise}

We can also express $\RP^2$ using coordinates:
it is the set of triples $(x : y : z)$ of real numbers not all zero
up to scaling, meaning that
\[ (x : y : z) = (\lambda x : \lambda y : \lambda z) \]
for any $\lambda \neq 0$.
Using the ``lines through the origin in $\RR^3$'' interpretation
makes it clear why this coordinate system gives the right space.
The points at infinity are those with $z = 0$,
and any point with $z \neq 0$ gives a Cartesian point since
\[ (x : y : z) = \left( \frac xz : \frac yz : 1 \right) \]
hence we can think of it as the Cartesian point $(\frac xz, \frac yz)$.

In this way we can actually define \vocab{real-projective $n$-space},
$\RP^n$ for any $n$, as either
\begin{enumerate}[(i)]
	\ii The set of lines through the origin in $\RR^{n+1}$,
	\ii Using $n+1$ coordinates as above, or
	\ii As $\RR^n$ augmented with points at infinity,
	which themselves form a copy of $\RP^{n-1}$.
\end{enumerate}

As a possibly helpful example, we give all three pictures of $\RP^1$.
\begin{example}
	[Real projective $1$-Space]
	$\RP^1$ can be thought of as $S^1$ modulo the relation
	the antipodal points are identified.
	Projecting onto a tangent line, we see that we get
	a copy of $\RR$ plus a single point at infinity, corresponding
	to the parallel line (drawn in cyan below).
	\begin{center}
		\begin{asy}
			size(7cm);
			filldraw(unitcircle, lightblue+opacity(0.2), heavyblue+opacity(0.4));
			label("$S^1$", dir(225), dir(225), lightblue);
			dot("$\vec 0$", origin, dir(45));
			pair X1 = (-2.1,1);
			pair X2 = (1.9,1);
			draw(X1--X2, heavyred, Arrows);
			dot("$0$", (0,1), dir(90), heavyred);
			dot("$1$", (1,1), dir(90), heavyred);
			pair P = extension( (0,1), (1,1), dir(250), dir(70) );
			dot("$0.36$", P, dir(90), heavyred);
			label("$\mathbb R$", X2, dir(105), heavyred);

			path L(pair A, pair B, real a=0.6, real b=a)
				{ return (a*(A-B)+A)--(b*(B-A)+B); }
			draw(L(dir(130),-dir(130),0.2,0.2), gray);
			draw(L(dir(250),-dir(250),0.2,0.2), gray);
			draw(L(dir(-20),-dir(-20),0.2,0.2), gray);
			draw(L(dir(0), -dir(0), 0.4,0.4), heavycyan+1);
		\end{asy}
	\end{center}

	Thus, the points of $\RP^1$ have two forms:
	\begin{itemize}
		\ii $(x:1)$, which we think of as $x \in \RR$ (in dark red above), and
		\ii $(1:0)$, which we think of as $1/0 = \infty$,
		corresponding to the cyan line above.
	\end{itemize}
	So, we can literally write
	\[ \RP^1 = \RR \cup \{\infty\}. \]
	Note that $\RP^1$ is also the boundary of $\RP^2$.
	In fact, note also that topologically we have
	\[ \RP^1 \cong S^1 \]
	since it is the ``real line with endpoints fused together''.
	\begin{center}
		\begin{asy}
			size(2cm);
			draw(unitcircle, heavyred);
			dot("$\infty$", dir(90), dir(90), heavycyan);
			dot("$0$", dir(-90), dir(-90), heavyred);
		\end{asy}
	\end{center}
\end{example}

Since $\RP^n$ is just ``$\RR^n$ (or $D^n$) with $\RP^{n-1}$ as its boundary'',
we can construct $\RP^n$ as a CW complex inductively.
Note that $\RP^n$ thus consists of \textbf{one cell in each dimension}.

\begin{example}[$\RP^n$ as a cell complex]
	\listhack
	\begin{enumerate}[(a)]
		\ii $\RP^0$ is a single point.
		\ii $\RP^1 \cong S^1$ is a circle, which as a CW complex
		is a $0$-cell plus a $1$-cell.
		\ii $\RP^2$ can be formed by taking a $2$-cell
		and wrapping its perimeter twice around a copy of $\RP^1$.
	\end{enumerate}
\end{example}

\subsection{Complex projective space}
The \vocab{complex projective space} $\CP^n$ is
defined like $\RP^n$ with coordinates, i.e.\
\[ (z_0 : z_1 : \dots : z_n) \]
under scaling; this time $z_i$ are complex.
As before, $\CP^n$ can be thought of as $\CC^n$ augmented
with some points at infinity (corresponding to $\CP^{n-1}$).
\begin{example}
	[Complex projective space]
	\listhack
	\begin{enumerate}[(a)]
		\ii $\CP^0$ is a single point.
		\ii $\CP^1$ is $\CC$ plus a single point at infinity
		(``complex infinity'' if you will).
		That means as before we can think of $\CP^1$ as
		\[ \CP^1 = \CC \cup \{\infty\}. \]
		So, imagine taking the complex plane and then adding
		a single point to encompass the entire boundary.
		The result is just sphere $S^2$.
	\end{enumerate}
	Here is a picture of $\CP^1$ with its coordinate system,
	the \vocab{Riemann sphere}.
	\begin{center}
		\includegraphics[width=0.9\textwidth]{media/earth.pdf}
	\end{center}
\end{example}

\begin{remark}
	[For Euclidean geometers]
	You may recognize that while $\RP^2$ is the setting for projective geometry,
	inversion about a circle is done in $\CP^1$ instead.
	When one does an inversion sending generalized circles to generalized
	circles, there is only one point at infinity:
	this is why we work in $\CP^n$.
\end{remark}

Like $\RP^n$, $\CP^n$ is a CW complex, built inductively
by taking $\CC^n$ and welding its boundary onto $\CP^{n-1}$
The difference is that as topological spaces,
\[ \CC^n \cong \RR^{2n} \cong D^{2n}. \]
Thus, we attach the cells $D^0$, $D^2$, $D^4$ and so on
inductively to construct $\CP^n$.
Thus we see that
\begin{moral}
	$\CP^n$ consists of one cell in each \emph{even} dimension.
\end{moral}


\section\problemhead
\begin{problem}
	Show that a space $X$ is Hausdorff if and only if the diagonal
	$\{(x,x) \mid x \in X\}$ is closed in the product space $X \times X$.
\end{problem}
\begin{problem}
	Realize the following spaces as CW complexes:
	\begin{enumerate}[(a)]
		\ii M\"obius strip.
		\ii $\RR$.
		\ii $\RR^n$.
	\end{enumerate}
\end{problem}
\begin{dproblem}
	Show that a finite CW complex is compact.
	\begin{hint}
		Prove and use the fact that a quotients of compact spaces remain compact.
	\end{hint}
\end{dproblem}