Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 13,721 Bytes
afd65d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 |
\chapter{Excision and relative homology}
We have already seen how to use the Mayer-Vietoris sequence:
we started with a sequence
\[ \dots \to H_n(U \cap V) \to H_n(U) \oplus H_n(V) \to H_n(U+V) \to H_{n-1}(U \cap V) \to \dots \]
and its reduced version,
then appealed to the geometric fact that $H_n(U+V) \cong H_n(X)$.
This allowed us to algebraically make computations on $H_n(X)$.
In this chapter, we turn our attention to the long exact
sequence associated to the chain complex
\[ 0 \to C_n(A) \injto C_n(X) \surjto C_n(X,A) \to 0. \]
The setup will look a lot like the previous two chapters,
except in addition to $H_n : \catname{hTop} \to \catname{Grp}$
we will have a functor $H_n : \catname{hPairTop} \to \catname{Grp}$
which takes a pair $(X,A)$ to $H_n(X,A)$.
Then, we state (again without proof) the key geometric result,
and use this to make deductions.
\section{The long exact sequences}
Recall \Cref{thm:long_exact_rel}, which says that the sequences
\[ \dots \to H_n(A) \to H_n(X) \to H_n(X,A) \to H_{n-1}(A) \to \dots. \]
and
\[ \dots \to \wt H_n(A) \to \wt H_n(X) \to H_n(X,A) \to \wt H_{n-1}(A) \to \dots \]
are long exact.
By \Cref{prob:triple_long_exact} we even have a long exact sequence
\[
\dots
\to H_n(B,A)
\to H_n(X,A)
\to H_n(X,B)
\to H_{n-1}(B,A)
\to \dots.
\]
for $A \subseteq B \subseteq X$.
An application of the second long exact sequence above gives:
\begin{lemma}
[Homology relative to contractible spaces]
\label{lem:rel_contractible}
Let $X$ be a topological space,
and let $A \subseteq X$ be contractible.
For all $n$, \[ H_n(X, A) \cong \wt H_n(X). \]
\end{lemma}
\begin{proof}
Since $A$ is contractible, we have $\wt H_n(A) = 0$ for every $n$.
For each $n$ there's a segment of the long exact sequence given by
\[ \dots \to \underbrace{\wt H_n(A)}_{=0} \to \wt H_n(X) \to H_n(X,A)
\to \underbrace{\wt H_{n-1}(A)}_{=0} \to \dots. \]
So since $0 \to \wt H_n(X) \to H_n(X,A) \to 0$ is exact,
this means $H_n(X,A) \cong \wt H_n(X)$.
\end{proof}
In particular, the theorem applies if $A$ is a single point.
The case $A = \varnothing$ is also worth noting.
We compile these results into a lemma:
\begin{lemma}
[Relative homology generalizes absolute homology]
Let $X$ be any space, and $\ast \in X$ a point. Then for all $n$,
\[
H_n(X, \{\ast\}) \cong \wt H_n(X)
\qquad\text{and}\qquad
H_n(X, \varnothing) = H_n(X).
\]
\end{lemma}
\section{The category of pairs}
Since we now have an $H_n(X,A)$ instead of just $H_n(X)$,
a natural next step is to create a suitable category of \emph{pairs}
and give ourselves the same functorial setup as before.
\begin{definition}
Let $\varnothing \neq A \subseteq X$ and $\varnothing \neq B \subseteq X$
be subspaces, and consider a map $f : X \to Y$.
If $f\im(A) \subseteq B$ we write
\[ f : (X,A) \to (Y,B). \]
We say $f$ is a \vocab{map of pairs},
between the pairs $(X,A)$ and $(Y,B)$.
\end{definition}
\begin{definition}
We say that $f,g : (X,A) \to (Y,B)$ are \vocab{pair-homotopic} if they
are ``homotopic through maps of pairs''.
More formally, a \vocab{pair-homotopy}
$f, g : (X,A) \to (Y,B)$ is a map $F : [0,1] \times X \to Y$,
which we'll write as $F_t(X)$, such that
$F$ is a homotopy of the maps $f,g : X \to Y$
and each $F_t$ is itself a map of pairs.
\end{definition}
Thus, we naturally arrive at two categories:
\begin{itemize}
\ii $\catname{PairTop}$, the category of \emph{pairs} of
topological spaces, and
\ii $\catname{hPairTop}$, the same category except
with maps only equivalent up to homotopy.
\end{itemize}
\begin{definition}
As before, we say pairs $(X,A)$ and $(Y,B)$ are
\vocab{pair-homotopy equivalent}
if they are isomorphic in $\catname{hPairTop}$.
An isomorphism of $\catname{hPairTop}$ is a
\vocab{pair-homotopy equivalence}.
\end{definition}
We can do the same song and dance as before with the prism operator to obtain:
\begin{lemma}[Induced maps of relative homology]
We have a functor
\[ H_n : \catname{hPairTop} \to \catname{Grp}. \]
\end{lemma}
That is, if $f : (X,A) \to (Y,B)$ then we obtain an induced map
\[ f_\ast : H_n(X,A) \to H_n(Y,B). \]
and if two such $f$ and $g$ are pair-homotopic
then $f_\ast = g_\ast$.
Now, we want an analog of contractible spaces for our pairs:
i.e.\ pairs of spaces $(X,A)$ such that $H_n(X,A) = 0$.
The correct definition is:
\begin{definition}
Let $A \subseteq X$.
We say that $A$ is a \vocab{deformation retract} of $X$
if there is a map of pairs $r : (X, A) \to (A, A)$
which is a pair homotopy equivalence.
\end{definition}
\begin{example}
[Examples of deformation retracts]
\listhack
\begin{enumerate}[(a)]
\ii If a single point $p$ is a deformation retract of a space $X$,
then $X$ is contractible, since the retraction $r : X \to \{\ast\}$
(when viewed as a map $X \to X$)
is homotopic to the identity map $\id_X : X \to X$.
\ii The punctured disk $D^2 \setminus \{0\}$
deformation retracts onto its boundary $S^1$.
\ii More generally, $D^{n} \setminus \{0\}$
deformation retracts onto its boundary $S^{n-1}$.
\ii Similarly, $\RR^n \setminus \{0\}$
deformation retracts onto a sphere $S^{n-1}$.
\end{enumerate}
\end{example}
Of course in this situation we have that
\[ H_n(X,A) \cong H_n(A,A) = 0. \]
\begin{exercise}
Show that if $A \subseteq V \subseteq X$,
and $A$ is a deformation retract of $V$,
then $H_n(X,A) \cong H_n(X,V)$ for all $n$.
(Use \Cref{prob:triple_long_exact}. Solution in next section.)
\end{exercise}
\section{Excision}
Now for the key geometric result, which is the analog of
\Cref{thm:open_cover_homology} for our relative homology groups.
\begin{theorem}
[Excision]
Let $Z \subseteq A \subseteq X$ be subspaces such that
the closure of $Z$ is contained in the interior of $A$.
Then the inclusion $\iota (X \setminus Z, A \setminus Z) \injto (X,A)$
(viewed as a map of pairs) induces an isomorphism of
relative homology groups
\[ H_n(X \setminus Z, A \setminus Z) \cong H_n(X,A). \]
\end{theorem}
This means we can \emph{excise} (delete) a subset $Z$ of $A$ in computing
the relative homology groups $H_n(X,A)$.
This should intuitively make sense:
since we are ``modding out by points in $A$'',
the internals of the point $A$ should not matter so much.
The main application of excision is to decide
when $H_n(X,A) \cong \wt H_n(X/A)$.
Answer:
\begin{theorem}
[Relative homology $\implies$ quotient space]
\label{thm:good_pair}
Let $X$ be a space and $A$ be a subspace such that
$A$ is a deformation retract of some open set $V \subseteq X$.
Then the quotient map $q : X \to X/A$ induces an isomorphism
\[ H_n(X,A) \cong H_n(X/A, A/A) \cong \wt H_n(X/A). \]
\end{theorem}
\begin{proof}
By hypothesis, we can consider the following maps of pairs:
\begin{align*}
r & : (V,A) \to (A,A) \\
q & : (X,A) \to (X/A, A/A) \\
\widehat q &: (X-A, V-A) \to (X/A-A/A, V/A-A/A).
\end{align*}
Moreover, $r$ is a pair-homotopy equivalence.
Considering the long exact sequence of a triple
(which was \Cref{prob:triple_long_exact})
we have a diagram
\begin{center}
\begin{tikzcd}[row sep=huge]
H_n(V,A) \ar[r] \ar[d, "\cong"', "r"]
& H_n(X,A) \ar["f", r]
& H_n(X, V) \ar[r]
& H_{n-1}(V,A) \ar[d, "\cong"', "r"] \\
\underbrace{H_n(A,A)}_{=0} & & & \underbrace{H_{n-1}(A,A)}_{=0}
\end{tikzcd}
\end{center}
where the isomorphisms arise since $r$ is a pair-homotopy equivalence.
So $f$ is an isomorphism.
Similarly the map
\[ g : H_n(X/A, A/A) \to H_n(X/A, V/A) \]
is an isomorphism.
Now, consider the commutative diagram
\begin{center}
\begin{tikzcd}[sep=huge]
H_n(X,A) \ar[r, "f"] \ar[d, "q_\ast"']
& H_n(X,V)
& H_n(X-A, V-A) \ar[l, "\text{Excise}"'] \ar[d, "\widehat{q}_\ast", "\cong"']
\\
H_n(X/A,A/A) \ar[r, "g"']
& H_n(X/A,V/A)
& \ar["\text{Excise}"', l] H_n(X/A-A/A, V/A-A/A)
\end{tikzcd}
\end{center}
and observe that the rightmost arrow $\widehat{q}_\ast$ is an isomorphism,
because outside of $A$ the map $\widehat q$ is the identity.
We know $f$ and $g$ are isomorphisms,
as are the two arrows marked with ``Excise'' (by excision).
From this we conclude that $q_\ast$ is an isomorphism.
Of course we already know that homology relative to a point
is just the relative homology groups
(this is the important case of \Cref{lem:rel_contractible}).
\end{proof}
\section{Some applications}
One nice application of excision is to compute $\wt H_n(X \vee Y)$.
\begin{theorem}[Homology of wedge sums]
Let $X$ and $Y$ be spaces with basepoints $x_0 \in X$ and $y_0 \in Y$,
and assuming each point is a deformation retract of some open neighborhood.
Then for every $n$ we have
\[
\wt H_n(X \vee Y)
= \wt H_n(X) \oplus \wt H_n(Y).
\]
\end{theorem}
\begin{proof}
Apply \Cref{thm:good_pair} with the subset $\{x_0, y_0\}$ of $X \amalg Y$,
\begin{align*}
\wt H_n (X \vee Y)
\cong \wt H_n( (X \amalg Y) / \{x_0, y_0\} )
&\cong H_n(X \amalg Y, \{x_0,y_0\}) \\
&\cong H_n(X, \{x_0\}) \oplus H_n(Y, \{y_0\}) \\
&\cong\wt H_n(X) \oplus \wt H_n(Y). \qedhere
\end{align*}
\end{proof}
Another application is to give a second method
of computing $H_n(S^m)$.
To do this, we will prove that
\[ \wt H_n(S^m) \cong \wt H_{n-1}(S^{m-1}) \]
for any $n,m > 1$.
However,
\begin{itemize}
\ii $\wt H_0(S^n)$ is $\ZZ$ for $n=0$ and $0$ otherwise.
\ii $\wt H_n(S^0)$ is $\ZZ$ for $m=0$ and $0$ otherwise.
\end{itemize}
So by induction on $\min \{m,n\}$ we directly obtain that
\[
\wt H_n(S^m) \cong
\begin{cases}
\ZZ & m=n \\
0 & \text{otherwise}
\end{cases}
\]
which is what we wanted.
To prove the claim, let's consider the exact sequence
formed by the pair $X = D^2$ and $A = S^1$.
\begin{example}[The long exact sequence for $(X,A) = (D^2, S^1)$]
Consider $D^2$ (which is contractible) with boundary $S^1$.
Clearly $S^1$ is a deformation retraction of $D^2 \setminus \{0\}$,
and if we fuse all points on the boundary together we get $D^2 / S^1 \cong S^2$.
So we have a long exact sequence
\begin{center}
\begin{tikzcd}
\wt H_2(S^1) \ar[r] & \underbrace{\wt H_2(D^2)}_{=0} \ar[r] & \wt H_2(S^2) \ar[lld] \\
\wt H_1(S^1) \ar[r] & \underbrace{\wt H_1(D^2)}_{=0} \ar[r] & \wt H_1(S^2) \ar[lld] \\
\wt H_0(S^1) \ar[r] & \underbrace{\wt H_0(D^2)}_{=0} \ar[r] & \underbrace{\wt H_0(S^2)}_{=0}
\end{tikzcd}
\end{center}
From this diagram we read that
\[
\dots, \quad
\wt H_3(S^2) = \wt H_2(S^1), \quad
\wt H_2(S^2) = \wt H_1(S^1), \quad
\wt H_1(S^2) = \wt H_0(S^1).
\]
\end{example}
More generally, the exact sequence for the pair $(X,A) = (D^m, S^{m-1})$
shows that $\wt H_n(S^m) \cong \wt H_{n-1}(S^{m-1})$,
which is the desired conclusion.
\section{Invariance of dimension}
Here is one last example of an application of excision.
\begin{definition}
Let $X$ be a space and $p \in X$ a point.
The $k$th \vocab{local homology group} of $p$ at $X$ is defined as
\[ H_k(X, X \setminus \{p\}). \]
\end{definition}
Note that for any open neighborhood $U$ of $p$, we have by excision that
\[ H_k(X, X \setminus \{p\}) \cong H_k(U, U \setminus \{p\}). \]
Thus this local homology group only depends on the space near $p$.
\begin{theorem}
[Invariance of dimension, Brouwer 1910]
Let $U \subseteq \RR^n$ and $V \subseteq \RR^m$ be nonempty open sets.
If $U$ and $V$ are homeomorphic, then $m = n$.
\end{theorem}
\begin{proof}
Consider a point $x \in U$ and its local homology groups. By excision,
\[ H_k(\RR^n, \RR^n \setminus \{x\}) \cong
H_k(U, U \setminus \{x\}). \]
But since $\RR^n \setminus \{x\}$ is homotopic to $S^{n-1}$,
the long exact sequence of \Cref{thm:long_exact_rel} tells us
that
\[
H_k(\RR^n, \RR^n \setminus \{x\})
\cong
\begin{cases}
\ZZ & k = n \\
0 & \text{otherwise}.
\end{cases}
\]
Analogously, given $y \in V$ we have
\[ H_k(\RR^m, \RR^m \setminus\{y\}) \cong H_k(V, V\setminus\{y\}). \]
If $U \cong V$, we thus
deduce that
\[ H_k(\RR^n, \RR^n\setminus\{x\}) \cong H_k(\RR^m, \RR^m\setminus\{y\}) \]
for all $k$. This of course can only happen if $m=n$.
\end{proof}
\section\problemhead
\begin{problem}
Let $X = S^1 \times S^1$ and $Y = S^1 \vee S^1 \vee S^2$.
Show that \[ H_n(X) \cong H_n(Y) \] for every integer $n$.
\end{problem}
\begin{problem}[Hatcher \S2.1 exercise 18]
Consider $\QQ \subset \RR$.
Compute $\wt H_1(\RR, \QQ)$.
\begin{hint}
Use \Cref{thm:long_exact_rel}.
\end{hint}
\begin{sol}
We have an exact sequence
\[
\underbrace{\wt H_1(\RR)}_{=0}
\to \wt H_1(\RR, \QQ) \to \wt H_0(\QQ) \to
\underbrace{\wt H_0(\RR)}_{=0}.
\]
Now, since $\QQ$ is path-disconnected
(i.e.\ no two of its points are path-connected)
it follows that $\wt H_0(\QQ)$ consists of
countably infinitely many copies of $\ZZ$.
\end{sol}
\end{problem}
\begin{sproblem}
What are the local homology groups of a topological $n$-manifold?
\end{sproblem}
\begin{problem}
Let \[ X = \{(x,y) \mid x \ge 0\} \subseteq \RR^2 \]
denote the half-plane.
What are the local homology groups of points in $X$?
% http://math.stackexchange.com/questions/350667/local-homology-group-a-homeomorphism-takes-the-boundary-to-the-boundary
\end{problem}
\begin{problem}
[Brouwer-Jordan separation theorem,
generalizing Jordan curve theorem]
\yod
Let $X \subseteq \RR^n$ be a subset
which is homeomorphic to $S^{n-1}$.
Prove that $\RR^n \setminus X$
has exactly two path-connected components.
\begin{hint}
For any $n$, prove by induction for $k=1,\dots,n-1$ that
(a) if $X$ is a subset of $S^n$ homeomorphic to $D^k$
then $\wt H_i(S^n \setminus X) = 0$;
(b) if $X$ is a subset of $S^n$ homeomorphic to $S^k$
then $\wt H_i(S^n \setminus X) = \ZZ$ for $i=n-k-1$
and $0$ otherwise.
\end{hint}
\begin{sol}
This is shown in detail in Section 2.B of Hatcher.
\end{sol}
\end{problem}
|