Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 18,016 Bytes
afd65d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
\chapter{Cardinals}
An ordinal measures a total ordering.
However, it does not do a fantastic job at measuring size.
For example, there is a bijection between the elements of $\omega$ and $\omega+1$:
\[
	\begin{array}{rccccccc}
		\omega+1 = & \{ & \omega & 0 & 1 & 2 & \dots & \} \\
		\omega = & \{ & 0 & 1 & 2 & 3 & \dots & \}.
	\end{array}
\]
In fact, as you likely already know,
there is even a bijection between $\omega$ and $\omega^2$:
\[
	\begin{array}{l|cccccc}
		+ & 0 & 1 & 2 & 3 & 4 & \dots \\ \hline
		0 & 0 & 1 & 3 & 6 & 10 & \dots \\
		\omega & 2 & 4 & 7 & 11 & \dots & \\
		\omega \cdot 2 & 5 & 8 & 12 & \dots & & \\
		\omega \cdot 3 & 9 & 13 & \dots & & & \\
		\omega \cdot 4 & 14 & \dots & & & &
	\end{array}
\]
So ordinals do not do a good job of keeping track of size.
For this, we turn to the notion of a cardinal number.

\section{Equinumerous sets and cardinals}
\begin{definition}
	Two sets $A$ and $B$ are \vocab{equinumerous}, written $A \approx B$,
	if there is a bijection between them.
\end{definition}

\begin{definition}
	A \vocab{cardinal} is an ordinal $\kappa$ such that
	for no $\alpha < \kappa$ do we have $\alpha \approx \kappa$.
\end{definition}
\begin{example}[Examples of cardinals]
	Every finite number is a cardinal.
	Moreover, $\omega$ is a cardinal.
	However, $\omega+1$, $\omega^2$, $\omega^{2015}$ are not,
	because they are countable.
\end{example}
\begin{example}[$\omega^\omega$ is countable]
	Even $\omega^\omega$ is not a cardinal,
	since it is a countable union
	\[ \omega^\omega = \bigcup_n \omega^n \]
	and each $\omega^n$ is countable.
\end{example}
\begin{ques}
	Why must an infinite cardinal be a limit ordinal?
\end{ques}

\begin{remark}
	There is something fishy about the definition of a cardinal:
	it relies on an \emph{external} function $f$.
	That is, to verify $\kappa$ is a cardinal I can't just look at $\kappa$ itself;
	I need to examine the entire universe $V$ to make sure
	there does not exist a bijection $f : \kappa \to \alpha$ for $\alpha < \kappa$.
	For now this is no issue, but later in model theory
	this will lead to some highly counterintuitive behavior.
\end{remark}

\section{Cardinalities}
Now that we have defined a cardinal, we can discuss the size
of a set by linking it to a cardinal.

\begin{definition}
	The \vocab{cardinality} of a set $X$
	is the \emph{least} ordinal $\kappa$ such that $X \approx \kappa$.
	We denote it by $\left\lvert X \right\rvert$.
\end{definition}
\begin{ques}
	Why must $\left\lvert X \right\rvert$ be a cardinal?
\end{ques}
\begin{remark}
	One needs the well-ordering theorem (equivalently, choice)
	in order to establish that such an ordinal $\kappa$ actually exists.
\end{remark}
Since cardinals are ordinals, it makes sense to ask whether $\kappa_1 \le \kappa_2$,
and so on.
Our usual intuition works well here.
\begin{proposition}[Restatement of cardinality properties]
	Let $X$ and $Y$ be sets.
	\begin{enumerate}[(i)]
		\ii $X \approx Y$ if and only $\left\lvert X \right\rvert = \left\lvert Y \right\rvert$,
		if and only if there's a bijection from $X$ to $Y$.
		\ii $\left\lvert X \right\rvert \le \left\lvert Y \right\rvert$
		if and only if there is an injective map $X \injto Y$.
	\end{enumerate}
\end{proposition}
Diligent readers are invited to try and prove this.

\section{Aleph numbers}
\prototype{$\aleph_0 = \omega$, and $\aleph_1$ is the first uncountable ordinal.}
First, let us check that cardinals can get arbitrarily large:
\begin{proposition}
	We have $\left\lvert X \right\rvert < \left\lvert \PP(X) \right\rvert$ for every set $X$.
\end{proposition}
\begin{proof}
	There is an injective map $X \injto \PP(X)$
	but there is no injective map $\PP(X) \injto X$ by \Cref{lem:cantor_diag}.
\end{proof}

Thus we can define:
\begin{definition}
	For a cardinal $\kappa$, we define $\kappa^+$ to be the least cardinal above $\kappa$,
	called the \vocab{successor cardinal}.
\end{definition}
This $\kappa^+$ exists and has $\kappa^+ \le \left\lvert \PP(\kappa) \right\rvert$.

Next, we claim that:
\begin{exercise}
	Show that if $A$ is a set of cardinals, then $\cup A$ is a cardinal.
\end{exercise}

Thus by transfinite induction we obtain that:
\begin{definition}
	For any $\alpha \in \On$, we define the \vocab{aleph numbers} as
	\begin{align*}
		\aleph_0 &= \omega \\
		\aleph_{\alpha+1} &= \left( \aleph_\alpha \right)^+ \\
		\aleph_{\lambda} &= \bigcup_{\alpha < \lambda} \aleph_\alpha.
	\end{align*}
\end{definition}

Thus we have the sequence of cardinals
\[
	0 < 1 < 2 < \dots < \aleph_0 < \aleph_1 < \dots < \aleph_\omega < \aleph_{\omega+1} < \dots.
\]
By definition, $\aleph_0$ is the cardinality of the natural numbers,
$\aleph_1$ is the first uncountable ordinal, \dots.

We claim the aleph numbers constitute all the cardinals:
\begin{lemma}[Aleph numbers constitute all infinite cardinals]
	If $\kappa$ is a cardinal then
	either $\kappa$ is finite (i.e.\ $\kappa \in \omega$) or
	$\kappa = \aleph_\alpha$ for some $\alpha \in \On$.
\end{lemma}
\begin{proof}
	Assume $\kappa$ is infinite, and take $\alpha$ minimal with $\aleph_\alpha \ge \kappa$.
	Suppose for contradiction that we have $\aleph_\alpha > \kappa$.
	We may assume $\alpha > 0$, since the case $\alpha = 0$ is trivial.

	If $\alpha = \ol\alpha + 1$ is a successor, then
	\[ \aleph_{\ol\alpha} < \kappa < \aleph_{\alpha}
		= (\aleph_{\ol\alpha})^+ \]
	which contradicts the definition of the successor cardinal.

	If $\alpha = \lambda$ is a limit ordinal, then $\aleph_\lambda$ is the
	supremum $\bigcup_{\gamma < \lambda} \aleph_\gamma$.
	So there must be some $\gamma < \lambda$ with $\aleph_\gamma > \kappa$,
	which contradicts the minimality of $\alpha$.
\end{proof}

\begin{definition}
	An infinite cardinal which is not a successor cardinal
	is called a \vocab{limit cardinal}.
	It is exactly those cardinals of the form $\aleph_\lambda$,
	for $\lambda$ a limit ordinal, plus $\aleph_0$.
\end{definition}


\section{Cardinal arithmetic}
\prototype{$\aleph_0 \cdot \aleph_0 = \aleph_0 + \aleph_0 = \aleph_0$}
Recall the way we set up ordinal arithmetic.
Note that in particular, $\omega + \omega > \omega$ and $\omega^2 > \omega$.
Since cardinals count size, this property is undesirable, and
we want to have
\begin{align*}
	\aleph_0 + \aleph_0 &= \aleph_0 \\
	\aleph_0 \cdot \aleph_0 &= \aleph_0
\end{align*}
because $\omega + \omega$ and $\omega \cdot \omega$ are countable.
In the case of cardinals, we simply ``ignore order''.

The definition of cardinal arithmetic is as expected:
\begin{definition}[Cardinal arithmetic]
	Given cardinals $\kappa$ and $\mu$, define
	\[ \kappa + \mu
		\defeq
		\left\lvert
		\left( \left\{ 0 \right\} \times \kappa \right)
		\cup
		\left( \left\{ 1 \right\} \times \mu \right)
		\right\rvert
	\]
	and
	\[
		\kappa \cdot \mu
		\defeq
		\left\lvert \mu \times \kappa \right\rvert
		.
	\]
\end{definition}


\begin{ques}
	Check this agrees with what you learned in pre-school
	for finite cardinals.
\end{ques}

\begin{abuse}
	This is a slight abuse of notation since we are using
	the same symbols as for ordinal arithmetic,
	even though the results are different ($\omega \cdot \omega = \omega^2$
	but $\aleph_0 \cdot \aleph_0 = \aleph_0$).
	In general, I'll make it abundantly clear whether I am talking
	about cardinal arithmetic or ordinal arithmetic.
\end{abuse}
To help combat this confusion, we use separate symbols for ordinals and cardinals.
Specifically, $\omega$ will always refer to $\{0,1,\dots\}$ viewed as an ordinal;
$\aleph_0$ will always refer to the same set viewed as a cardinal.
More generally,
\begin{definition}
	Let $\omega_\alpha = \aleph_\alpha$ viewed as an ordinal.
\end{definition}

However, as we've seen already we have that $\aleph_0 \cdot \aleph_0 = \aleph_0$.
In fact, this holds even more generally:

\begin{theorem}[Infinite cardinals squared]
	Let $\kappa$ be an infinite cardinal.
	Then $\kappa \cdot \kappa = \kappa$.
\end{theorem}
\begin{proof}
	Obviously $\kappa \cdot \kappa \ge \kappa$,
	so we want to show $\kappa \cdot \kappa \le \kappa$.

	The idea is to try to repeat the same proof
	that we had for $\aleph_0 \cdot \aleph_0 = \aleph_0$,
	so we re-iterate it here. We took the ``square'' of
	elements of $\aleph_0$, and then
	\emph{re-ordered} it according to the diagonal:
	\[
	\begin{array}{l|cccccc}
		  & 0 & 1 & 2 & 3 & 4 & \dots \\ \hline
		0 & 0 & 1 & 3 & 6 & 10 & \dots \\
		1 & 2 & 4 & 7 & 11 & \dots & \\
		2 & 5 & 8 & 12 & \dots & & \\
		3 & 9 & 13 & \dots & & & \\
		4 & 14 & \dots & & & &
	\end{array}
	\]
	We'd like to copy this idea for a general $\kappa$;
	however, since addition is less well-behaved for infinite ordinals
	it will be more convenient to use $\max\{\alpha,\beta\}$
	rather than $\alpha+\beta$.
	Specifically, we put the ordering $<_{\text{max}}$
	on $\kappa \times \kappa$ as follows:
	for $(\alpha_1, \beta_1)$ and $(\alpha_2, \beta_2)$ in $\kappa \times \kappa$
	we declare $(\alpha_1, \beta_1) <_{\text{max}} (\alpha_2, \beta_2)$ if
	\begin{itemize}
		\ii $\max \left\{ \alpha_1, \beta_1 \right\} < \max \left\{ \alpha_2, \beta_2 \right\}$ or
		\ii $\max \left\{ \alpha_1, \beta_1 \right\} = \max \left\{ \alpha_2, \beta_2 \right\}$ and $(\alpha_1, \beta_1)$
		is lexicographically earlier than $(\alpha_2, \beta_2)$.
	\end{itemize}
	This alternate ordering (which deliberately avoids referring
	to the addition) looks like:
	\[
	\begin{array}{l|cccccc}
		  & 0 & 1 & 2 & 3 & 4 & \dots \\ \hline
		0 & 0 & 1 & 4 & 9 & 16 & \dots \\
		1 & 2 & 3 & 5 & 10 & 17 & \dots \\
		2 & 6 & 7 & 8 & 11 & 18 & \dots \\
		3 & 12 & 13 & 14 & 15 & 19 & \dots \\
		4 & 20 & 21 & 22 & 23 & 24 & \dots \\
		\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \\
	\end{array}
	\]

	Now we proceed by transfinite induction on $\kappa$.
	The base case is $\kappa = \aleph_0$, done above.
	Now, $<_{\text{max}}$ is a well-ordering of $\kappa \times \kappa$,
	so we know it is in order-preserving bijection with some ordinal $\gamma$.
	Our goal is to show that $\left\lvert \gamma \right\rvert \le \kappa$.
	To do so, it suffices to prove that for any $\ol\gamma \in \gamma$,
	we have $\left\lvert \ol\gamma \right\rvert < \kappa$.

	Suppose $\ol\gamma$ corresponds to the point $(\alpha, \beta) \in \kappa \times \kappa$
	under this bijection.
	If $\alpha$ and $\beta$ are both finite
	then certainly $\ol\gamma$ is finite too.
	Otherwise, let $\ol\kappa = \max \{\alpha, \beta\} < \kappa$;
	then the number of points below $\ol\gamma$ is at most
	\[
		\left\lvert \alpha \right\rvert \cdot \left\lvert \beta \right\rvert
		\le \ol\kappa \cdot \ol\kappa
		= \ol\kappa
	\]
	by the inductive hypothesis.
	So $\left\lvert \ol\gamma \right\rvert \le \ol\kappa < \kappa$ as desired.
\end{proof}

From this it follows that cardinal addition and multiplication is really boring:
\begin{theorem}[Infinite cardinal arithmetic is trivial]
	Given cardinals $\kappa$ and $\mu$,
	one of which is infinite, we have
	\[ \kappa \cdot \mu = \kappa + \mu
	= \max\left\{ \kappa, \mu \right\}.\]
\end{theorem}
\begin{proof}
	The point is that both of these are less than the square of the maximum.
	Writing out the details:
	\begin{align*}
		\max \left\{ \kappa, \mu \right\}
		&\le \kappa + \mu \\
		&\le \kappa \cdot \mu \\
		&\le \max \left\{ \kappa, \mu \right\}
			\cdot \max \left\{ \kappa, \mu  \right\} \\
		&= \max\left\{ \kappa, \mu \right\}. \qedhere
	\end{align*}
\end{proof}




\section{Cardinal exponentiation}
\prototype{$2^\kappa = \left\lvert \PP(\kappa) \right\rvert$.}
\begin{definition}
	Suppose $\kappa$ and $\lambda$ are cardinals.
	Then
	\[ \kappa^\lambda
		\defeq \left\lvert \mathscr F(\lambda, \kappa) \right\rvert.
	\]
	Here $\mathscr F(A,B)$ is the set of functions from $A$ to $B$.
\end{definition}

\begin{abuse}
	As before, we are using the same notation for
	both cardinal and ordinal arithmetic. Sorry!
\end{abuse}

In particular, $2^\kappa = \left\lvert \PP(\kappa) \right\rvert > \kappa$,
and so from now on we can use the notation $2^\kappa$ freely.
(Note that this is totally different from ordinal arithmetic;
there we had $2^\omega = \bigcup_{n\in\omega} 2^n = \omega$.
In cardinal arithmetic $2^{\aleph_0} > \aleph_0$.)

I have unfortunately not told you what $2^{\aleph_0}$ equals.
A natural conjecture is that $2^{\aleph_0} = \aleph_1$; this is called the
\vocab{Continuum Hypothesis}.
It turns out that this is \emph{undecidable} -- it is not possible
to prove or disprove this from the $\ZFC$ axioms.

\section{Cofinality}
\prototype{$\aleph_0$, $\aleph_1$, \dots\ are all regular, but $\aleph_\omega$ has cofinality $\omega$.}

\begin{definition}
	Let $\lambda$ be an ordinal (usually a limit ordinal),
	and $\alpha$ another ordinal.
	A map $f : \alpha \to \lambda$ of ordinals is called \vocab{cofinal}
	if for every $\ol\lambda < \lambda$, there is some $\ol\alpha \in \alpha$
	such that $f(\ol\alpha) \ge \ol\lambda$.
	In other words, the map reaches arbitrarily high into $\lambda$.
\end{definition}
\begin{example}
	[Example of a cofinal map]
	\listhack
	\begin{enumerate}[(a)]
		\ii The map $\omega \to \omega^\omega$ by $n \mapsto \omega^n$ is cofinal.
		\ii For any ordinal $\alpha$, the identity map $\alpha \to \alpha$ is cofinal.
	\end{enumerate}
\end{example}

\begin{definition}
	Let $\lambda$ be a limit ordinal.
	The \vocab{cofinality} of $\lambda$, denoted $\cof(\lambda)$,
	is the smallest ordinal $\alpha$ such that there is a cofinal map
	$\alpha \to \lambda$.
\end{definition}
\begin{ques}
	Why must $\alpha$ be an infinite cardinal?
\end{ques}

Usually, we are interested in taking the cofinality of a cardinal $\kappa$.

Pictorially, you can imagine standing at the bottom of the universe and looking
up the chain of ordinals to $\kappa$.
You have a machine gun and are firing bullets upwards, and you want to get arbitrarily
high but less than $\kappa$.
The cofinality is then the number of bullets you need to do this.

We now observe that ``most'' of the time, the cofinality of a cardinal is itself.
Such a cardinal is called \vocab{regular}.
\begin{example}[$\aleph_0$ is regular]
	$\cof(\aleph_0) = \aleph_0$, because no finite subset of
	$\aleph_ 0 = \omega$ can reach arbitrarily high.
\end{example}
\begin{example}[$\aleph_1$ is regular]
	$\cof(\aleph_1) = \aleph_1$.
	Indeed, assume for contradiction that some countable
	set of ordinals $A = \{ \alpha_0, \alpha_1, \dots \} \subseteq \aleph_1$
	reaches arbitrarily high inside $\aleph_1$.
	Then $\Lambda = \cup A$ is a \emph{countable} ordinal,
	because it is a countable union of countable ordinals.
	In other words $\Lambda \in \aleph_1$.
	But $\Lambda$ is an upper bound for $A$, contradiction.
\end{example}
On the other hand, there \emph{are} cardinals which are not regular;
since these are the ``rare'' cases we call them \vocab{singular}.
\begin{example}[$\aleph_\omega$ is not regular]
	Notice that $\aleph_0 < \aleph_1 < \aleph_2 < \dots$ reaches
	arbitrarily high in $\aleph_\omega$, despite only having $\aleph_0$ terms.
	It follows that $\cof(\aleph_\omega) = \aleph_0$.
\end{example}

We now confirm a suspicion you may have:
\begin{theorem}
	[Successor cardinals are regular]
	If $\kappa = \ol\kappa^+$ is a successor cardinal,
	then it is regular.
\end{theorem}
\begin{proof}
	We copy the proof that $\aleph_1$ was regular.

	Assume for contradiction that for some $\mu \le \ol\kappa$,
	there are $\mu$ sets reaching arbitrarily high in $\kappa$ as a cardinal.
	Observe that each of these sets must have cardinality at most $\ol\kappa$.
	We take the union of all $\mu$ sets, which gives an ordinal $\Lambda$
	serving as an upper bound.

	The number of elements in the union is at most
	\[ \#\text{sets} \cdot \#\text{elms}
		\le \mu \cdot \ol\kappa = \ol\kappa \]
	and hence $\left\lvert \Lambda \right\rvert \le \ol\kappa < \kappa$.
\end{proof}

\section{Inaccessible cardinals}
So, what about limit cardinals?
It seems to be that most of them are singular: if $\aleph_\lambda \ne \aleph_0$ is a limit ordinal,
then the sequence $\{\aleph_\alpha\}_{\alpha \in \lambda}$ (of length $\lambda$) is certainly cofinal.

\begin{example}[Beth fixed point]
	Consider the monstrous cardinal
	\[ \kappa = \aleph_{\aleph_{\aleph_{\ddots}}}. \]
	This might look frighteningly huge, as $\kappa = \aleph_\kappa$,
	but its cofinality is $\omega$ as it is the limit of the sequence
	\[ \aleph_0, \aleph_{\aleph_0}, \aleph_{\aleph_{\aleph_0}}, \dots \]
\end{example}

More generally, one can in fact prove that
\[ \cof(\aleph_\lambda) = \cof(\lambda). \]
But it is actually conceivable that $\lambda$ is so large
that $\left\lvert \lambda \right\rvert = \left\lvert \aleph_\lambda \right\rvert$.

A regular limit cardinal other than $\aleph_0$ has a special name: it is \vocab{weakly inaccessible}.
Such cardinals are so large that it is impossible to prove or disprove their existence in $\ZFC$.
It is the first of many so-called ``large cardinals''.

An infinite cardinal $\kappa$ is a strong limit cardinal if
\[ \forall \ol\kappa < \kappa \quad 2^{\ol\kappa} < \kappa \]
for any cardinal $\ol\kappa$.  For example, $\aleph_0$ is a strong limit cardinal.
\begin{ques}
	Why must strong limit cardinals actually be limit cardinals?
	(This is offensively easy.)
\end{ques}
A regular strong limit cardinal other than $\aleph_0$
is called \vocab{strongly inaccessible}.

\section\problemhead
\begin{problem}
	Compute $\left\lvert V_\omega \right\rvert$.
	\begin{hint}
		$\sup_{k \in \omega} \left\lvert V_k \right\rvert$.
	\end{hint}
\end{problem}

\begin{problem}
	Prove that for any limit ordinal $\alpha$, $\cof(\alpha)$ is a \emph{regular} cardinal.
	\begin{hint}
		Rearrange the cofinal maps to be nondecreasing.
	\end{hint}
\end{problem}

\begin{sproblem}
	[Strongly inaccessible cardinals]
	\label{prob:strongly_inaccessible}
	Show that for any strongly inaccessible $\kappa$,
	we have $\left\lvert V_\kappa \right\rvert = \kappa$.
\end{sproblem}

\begin{problem}
	[K\"onig's theorem]
	Show that \[ \kappa^{\cof(\kappa)} > \kappa \] for every infinite cardinal $\kappa$.
\end{problem}