Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 18,016 Bytes
afd65d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 |
\chapter{Cardinals}
An ordinal measures a total ordering.
However, it does not do a fantastic job at measuring size.
For example, there is a bijection between the elements of $\omega$ and $\omega+1$:
\[
\begin{array}{rccccccc}
\omega+1 = & \{ & \omega & 0 & 1 & 2 & \dots & \} \\
\omega = & \{ & 0 & 1 & 2 & 3 & \dots & \}.
\end{array}
\]
In fact, as you likely already know,
there is even a bijection between $\omega$ and $\omega^2$:
\[
\begin{array}{l|cccccc}
+ & 0 & 1 & 2 & 3 & 4 & \dots \\ \hline
0 & 0 & 1 & 3 & 6 & 10 & \dots \\
\omega & 2 & 4 & 7 & 11 & \dots & \\
\omega \cdot 2 & 5 & 8 & 12 & \dots & & \\
\omega \cdot 3 & 9 & 13 & \dots & & & \\
\omega \cdot 4 & 14 & \dots & & & &
\end{array}
\]
So ordinals do not do a good job of keeping track of size.
For this, we turn to the notion of a cardinal number.
\section{Equinumerous sets and cardinals}
\begin{definition}
Two sets $A$ and $B$ are \vocab{equinumerous}, written $A \approx B$,
if there is a bijection between them.
\end{definition}
\begin{definition}
A \vocab{cardinal} is an ordinal $\kappa$ such that
for no $\alpha < \kappa$ do we have $\alpha \approx \kappa$.
\end{definition}
\begin{example}[Examples of cardinals]
Every finite number is a cardinal.
Moreover, $\omega$ is a cardinal.
However, $\omega+1$, $\omega^2$, $\omega^{2015}$ are not,
because they are countable.
\end{example}
\begin{example}[$\omega^\omega$ is countable]
Even $\omega^\omega$ is not a cardinal,
since it is a countable union
\[ \omega^\omega = \bigcup_n \omega^n \]
and each $\omega^n$ is countable.
\end{example}
\begin{ques}
Why must an infinite cardinal be a limit ordinal?
\end{ques}
\begin{remark}
There is something fishy about the definition of a cardinal:
it relies on an \emph{external} function $f$.
That is, to verify $\kappa$ is a cardinal I can't just look at $\kappa$ itself;
I need to examine the entire universe $V$ to make sure
there does not exist a bijection $f : \kappa \to \alpha$ for $\alpha < \kappa$.
For now this is no issue, but later in model theory
this will lead to some highly counterintuitive behavior.
\end{remark}
\section{Cardinalities}
Now that we have defined a cardinal, we can discuss the size
of a set by linking it to a cardinal.
\begin{definition}
The \vocab{cardinality} of a set $X$
is the \emph{least} ordinal $\kappa$ such that $X \approx \kappa$.
We denote it by $\left\lvert X \right\rvert$.
\end{definition}
\begin{ques}
Why must $\left\lvert X \right\rvert$ be a cardinal?
\end{ques}
\begin{remark}
One needs the well-ordering theorem (equivalently, choice)
in order to establish that such an ordinal $\kappa$ actually exists.
\end{remark}
Since cardinals are ordinals, it makes sense to ask whether $\kappa_1 \le \kappa_2$,
and so on.
Our usual intuition works well here.
\begin{proposition}[Restatement of cardinality properties]
Let $X$ and $Y$ be sets.
\begin{enumerate}[(i)]
\ii $X \approx Y$ if and only $\left\lvert X \right\rvert = \left\lvert Y \right\rvert$,
if and only if there's a bijection from $X$ to $Y$.
\ii $\left\lvert X \right\rvert \le \left\lvert Y \right\rvert$
if and only if there is an injective map $X \injto Y$.
\end{enumerate}
\end{proposition}
Diligent readers are invited to try and prove this.
\section{Aleph numbers}
\prototype{$\aleph_0 = \omega$, and $\aleph_1$ is the first uncountable ordinal.}
First, let us check that cardinals can get arbitrarily large:
\begin{proposition}
We have $\left\lvert X \right\rvert < \left\lvert \PP(X) \right\rvert$ for every set $X$.
\end{proposition}
\begin{proof}
There is an injective map $X \injto \PP(X)$
but there is no injective map $\PP(X) \injto X$ by \Cref{lem:cantor_diag}.
\end{proof}
Thus we can define:
\begin{definition}
For a cardinal $\kappa$, we define $\kappa^+$ to be the least cardinal above $\kappa$,
called the \vocab{successor cardinal}.
\end{definition}
This $\kappa^+$ exists and has $\kappa^+ \le \left\lvert \PP(\kappa) \right\rvert$.
Next, we claim that:
\begin{exercise}
Show that if $A$ is a set of cardinals, then $\cup A$ is a cardinal.
\end{exercise}
Thus by transfinite induction we obtain that:
\begin{definition}
For any $\alpha \in \On$, we define the \vocab{aleph numbers} as
\begin{align*}
\aleph_0 &= \omega \\
\aleph_{\alpha+1} &= \left( \aleph_\alpha \right)^+ \\
\aleph_{\lambda} &= \bigcup_{\alpha < \lambda} \aleph_\alpha.
\end{align*}
\end{definition}
Thus we have the sequence of cardinals
\[
0 < 1 < 2 < \dots < \aleph_0 < \aleph_1 < \dots < \aleph_\omega < \aleph_{\omega+1} < \dots.
\]
By definition, $\aleph_0$ is the cardinality of the natural numbers,
$\aleph_1$ is the first uncountable ordinal, \dots.
We claim the aleph numbers constitute all the cardinals:
\begin{lemma}[Aleph numbers constitute all infinite cardinals]
If $\kappa$ is a cardinal then
either $\kappa$ is finite (i.e.\ $\kappa \in \omega$) or
$\kappa = \aleph_\alpha$ for some $\alpha \in \On$.
\end{lemma}
\begin{proof}
Assume $\kappa$ is infinite, and take $\alpha$ minimal with $\aleph_\alpha \ge \kappa$.
Suppose for contradiction that we have $\aleph_\alpha > \kappa$.
We may assume $\alpha > 0$, since the case $\alpha = 0$ is trivial.
If $\alpha = \ol\alpha + 1$ is a successor, then
\[ \aleph_{\ol\alpha} < \kappa < \aleph_{\alpha}
= (\aleph_{\ol\alpha})^+ \]
which contradicts the definition of the successor cardinal.
If $\alpha = \lambda$ is a limit ordinal, then $\aleph_\lambda$ is the
supremum $\bigcup_{\gamma < \lambda} \aleph_\gamma$.
So there must be some $\gamma < \lambda$ with $\aleph_\gamma > \kappa$,
which contradicts the minimality of $\alpha$.
\end{proof}
\begin{definition}
An infinite cardinal which is not a successor cardinal
is called a \vocab{limit cardinal}.
It is exactly those cardinals of the form $\aleph_\lambda$,
for $\lambda$ a limit ordinal, plus $\aleph_0$.
\end{definition}
\section{Cardinal arithmetic}
\prototype{$\aleph_0 \cdot \aleph_0 = \aleph_0 + \aleph_0 = \aleph_0$}
Recall the way we set up ordinal arithmetic.
Note that in particular, $\omega + \omega > \omega$ and $\omega^2 > \omega$.
Since cardinals count size, this property is undesirable, and
we want to have
\begin{align*}
\aleph_0 + \aleph_0 &= \aleph_0 \\
\aleph_0 \cdot \aleph_0 &= \aleph_0
\end{align*}
because $\omega + \omega$ and $\omega \cdot \omega$ are countable.
In the case of cardinals, we simply ``ignore order''.
The definition of cardinal arithmetic is as expected:
\begin{definition}[Cardinal arithmetic]
Given cardinals $\kappa$ and $\mu$, define
\[ \kappa + \mu
\defeq
\left\lvert
\left( \left\{ 0 \right\} \times \kappa \right)
\cup
\left( \left\{ 1 \right\} \times \mu \right)
\right\rvert
\]
and
\[
\kappa \cdot \mu
\defeq
\left\lvert \mu \times \kappa \right\rvert
.
\]
\end{definition}
\begin{ques}
Check this agrees with what you learned in pre-school
for finite cardinals.
\end{ques}
\begin{abuse}
This is a slight abuse of notation since we are using
the same symbols as for ordinal arithmetic,
even though the results are different ($\omega \cdot \omega = \omega^2$
but $\aleph_0 \cdot \aleph_0 = \aleph_0$).
In general, I'll make it abundantly clear whether I am talking
about cardinal arithmetic or ordinal arithmetic.
\end{abuse}
To help combat this confusion, we use separate symbols for ordinals and cardinals.
Specifically, $\omega$ will always refer to $\{0,1,\dots\}$ viewed as an ordinal;
$\aleph_0$ will always refer to the same set viewed as a cardinal.
More generally,
\begin{definition}
Let $\omega_\alpha = \aleph_\alpha$ viewed as an ordinal.
\end{definition}
However, as we've seen already we have that $\aleph_0 \cdot \aleph_0 = \aleph_0$.
In fact, this holds even more generally:
\begin{theorem}[Infinite cardinals squared]
Let $\kappa$ be an infinite cardinal.
Then $\kappa \cdot \kappa = \kappa$.
\end{theorem}
\begin{proof}
Obviously $\kappa \cdot \kappa \ge \kappa$,
so we want to show $\kappa \cdot \kappa \le \kappa$.
The idea is to try to repeat the same proof
that we had for $\aleph_0 \cdot \aleph_0 = \aleph_0$,
so we re-iterate it here. We took the ``square'' of
elements of $\aleph_0$, and then
\emph{re-ordered} it according to the diagonal:
\[
\begin{array}{l|cccccc}
& 0 & 1 & 2 & 3 & 4 & \dots \\ \hline
0 & 0 & 1 & 3 & 6 & 10 & \dots \\
1 & 2 & 4 & 7 & 11 & \dots & \\
2 & 5 & 8 & 12 & \dots & & \\
3 & 9 & 13 & \dots & & & \\
4 & 14 & \dots & & & &
\end{array}
\]
We'd like to copy this idea for a general $\kappa$;
however, since addition is less well-behaved for infinite ordinals
it will be more convenient to use $\max\{\alpha,\beta\}$
rather than $\alpha+\beta$.
Specifically, we put the ordering $<_{\text{max}}$
on $\kappa \times \kappa$ as follows:
for $(\alpha_1, \beta_1)$ and $(\alpha_2, \beta_2)$ in $\kappa \times \kappa$
we declare $(\alpha_1, \beta_1) <_{\text{max}} (\alpha_2, \beta_2)$ if
\begin{itemize}
\ii $\max \left\{ \alpha_1, \beta_1 \right\} < \max \left\{ \alpha_2, \beta_2 \right\}$ or
\ii $\max \left\{ \alpha_1, \beta_1 \right\} = \max \left\{ \alpha_2, \beta_2 \right\}$ and $(\alpha_1, \beta_1)$
is lexicographically earlier than $(\alpha_2, \beta_2)$.
\end{itemize}
This alternate ordering (which deliberately avoids referring
to the addition) looks like:
\[
\begin{array}{l|cccccc}
& 0 & 1 & 2 & 3 & 4 & \dots \\ \hline
0 & 0 & 1 & 4 & 9 & 16 & \dots \\
1 & 2 & 3 & 5 & 10 & 17 & \dots \\
2 & 6 & 7 & 8 & 11 & 18 & \dots \\
3 & 12 & 13 & 14 & 15 & 19 & \dots \\
4 & 20 & 21 & 22 & 23 & 24 & \dots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \\
\end{array}
\]
Now we proceed by transfinite induction on $\kappa$.
The base case is $\kappa = \aleph_0$, done above.
Now, $<_{\text{max}}$ is a well-ordering of $\kappa \times \kappa$,
so we know it is in order-preserving bijection with some ordinal $\gamma$.
Our goal is to show that $\left\lvert \gamma \right\rvert \le \kappa$.
To do so, it suffices to prove that for any $\ol\gamma \in \gamma$,
we have $\left\lvert \ol\gamma \right\rvert < \kappa$.
Suppose $\ol\gamma$ corresponds to the point $(\alpha, \beta) \in \kappa \times \kappa$
under this bijection.
If $\alpha$ and $\beta$ are both finite
then certainly $\ol\gamma$ is finite too.
Otherwise, let $\ol\kappa = \max \{\alpha, \beta\} < \kappa$;
then the number of points below $\ol\gamma$ is at most
\[
\left\lvert \alpha \right\rvert \cdot \left\lvert \beta \right\rvert
\le \ol\kappa \cdot \ol\kappa
= \ol\kappa
\]
by the inductive hypothesis.
So $\left\lvert \ol\gamma \right\rvert \le \ol\kappa < \kappa$ as desired.
\end{proof}
From this it follows that cardinal addition and multiplication is really boring:
\begin{theorem}[Infinite cardinal arithmetic is trivial]
Given cardinals $\kappa$ and $\mu$,
one of which is infinite, we have
\[ \kappa \cdot \mu = \kappa + \mu
= \max\left\{ \kappa, \mu \right\}.\]
\end{theorem}
\begin{proof}
The point is that both of these are less than the square of the maximum.
Writing out the details:
\begin{align*}
\max \left\{ \kappa, \mu \right\}
&\le \kappa + \mu \\
&\le \kappa \cdot \mu \\
&\le \max \left\{ \kappa, \mu \right\}
\cdot \max \left\{ \kappa, \mu \right\} \\
&= \max\left\{ \kappa, \mu \right\}. \qedhere
\end{align*}
\end{proof}
\section{Cardinal exponentiation}
\prototype{$2^\kappa = \left\lvert \PP(\kappa) \right\rvert$.}
\begin{definition}
Suppose $\kappa$ and $\lambda$ are cardinals.
Then
\[ \kappa^\lambda
\defeq \left\lvert \mathscr F(\lambda, \kappa) \right\rvert.
\]
Here $\mathscr F(A,B)$ is the set of functions from $A$ to $B$.
\end{definition}
\begin{abuse}
As before, we are using the same notation for
both cardinal and ordinal arithmetic. Sorry!
\end{abuse}
In particular, $2^\kappa = \left\lvert \PP(\kappa) \right\rvert > \kappa$,
and so from now on we can use the notation $2^\kappa$ freely.
(Note that this is totally different from ordinal arithmetic;
there we had $2^\omega = \bigcup_{n\in\omega} 2^n = \omega$.
In cardinal arithmetic $2^{\aleph_0} > \aleph_0$.)
I have unfortunately not told you what $2^{\aleph_0}$ equals.
A natural conjecture is that $2^{\aleph_0} = \aleph_1$; this is called the
\vocab{Continuum Hypothesis}.
It turns out that this is \emph{undecidable} -- it is not possible
to prove or disprove this from the $\ZFC$ axioms.
\section{Cofinality}
\prototype{$\aleph_0$, $\aleph_1$, \dots\ are all regular, but $\aleph_\omega$ has cofinality $\omega$.}
\begin{definition}
Let $\lambda$ be an ordinal (usually a limit ordinal),
and $\alpha$ another ordinal.
A map $f : \alpha \to \lambda$ of ordinals is called \vocab{cofinal}
if for every $\ol\lambda < \lambda$, there is some $\ol\alpha \in \alpha$
such that $f(\ol\alpha) \ge \ol\lambda$.
In other words, the map reaches arbitrarily high into $\lambda$.
\end{definition}
\begin{example}
[Example of a cofinal map]
\listhack
\begin{enumerate}[(a)]
\ii The map $\omega \to \omega^\omega$ by $n \mapsto \omega^n$ is cofinal.
\ii For any ordinal $\alpha$, the identity map $\alpha \to \alpha$ is cofinal.
\end{enumerate}
\end{example}
\begin{definition}
Let $\lambda$ be a limit ordinal.
The \vocab{cofinality} of $\lambda$, denoted $\cof(\lambda)$,
is the smallest ordinal $\alpha$ such that there is a cofinal map
$\alpha \to \lambda$.
\end{definition}
\begin{ques}
Why must $\alpha$ be an infinite cardinal?
\end{ques}
Usually, we are interested in taking the cofinality of a cardinal $\kappa$.
Pictorially, you can imagine standing at the bottom of the universe and looking
up the chain of ordinals to $\kappa$.
You have a machine gun and are firing bullets upwards, and you want to get arbitrarily
high but less than $\kappa$.
The cofinality is then the number of bullets you need to do this.
We now observe that ``most'' of the time, the cofinality of a cardinal is itself.
Such a cardinal is called \vocab{regular}.
\begin{example}[$\aleph_0$ is regular]
$\cof(\aleph_0) = \aleph_0$, because no finite subset of
$\aleph_ 0 = \omega$ can reach arbitrarily high.
\end{example}
\begin{example}[$\aleph_1$ is regular]
$\cof(\aleph_1) = \aleph_1$.
Indeed, assume for contradiction that some countable
set of ordinals $A = \{ \alpha_0, \alpha_1, \dots \} \subseteq \aleph_1$
reaches arbitrarily high inside $\aleph_1$.
Then $\Lambda = \cup A$ is a \emph{countable} ordinal,
because it is a countable union of countable ordinals.
In other words $\Lambda \in \aleph_1$.
But $\Lambda$ is an upper bound for $A$, contradiction.
\end{example}
On the other hand, there \emph{are} cardinals which are not regular;
since these are the ``rare'' cases we call them \vocab{singular}.
\begin{example}[$\aleph_\omega$ is not regular]
Notice that $\aleph_0 < \aleph_1 < \aleph_2 < \dots$ reaches
arbitrarily high in $\aleph_\omega$, despite only having $\aleph_0$ terms.
It follows that $\cof(\aleph_\omega) = \aleph_0$.
\end{example}
We now confirm a suspicion you may have:
\begin{theorem}
[Successor cardinals are regular]
If $\kappa = \ol\kappa^+$ is a successor cardinal,
then it is regular.
\end{theorem}
\begin{proof}
We copy the proof that $\aleph_1$ was regular.
Assume for contradiction that for some $\mu \le \ol\kappa$,
there are $\mu$ sets reaching arbitrarily high in $\kappa$ as a cardinal.
Observe that each of these sets must have cardinality at most $\ol\kappa$.
We take the union of all $\mu$ sets, which gives an ordinal $\Lambda$
serving as an upper bound.
The number of elements in the union is at most
\[ \#\text{sets} \cdot \#\text{elms}
\le \mu \cdot \ol\kappa = \ol\kappa \]
and hence $\left\lvert \Lambda \right\rvert \le \ol\kappa < \kappa$.
\end{proof}
\section{Inaccessible cardinals}
So, what about limit cardinals?
It seems to be that most of them are singular: if $\aleph_\lambda \ne \aleph_0$ is a limit ordinal,
then the sequence $\{\aleph_\alpha\}_{\alpha \in \lambda}$ (of length $\lambda$) is certainly cofinal.
\begin{example}[Beth fixed point]
Consider the monstrous cardinal
\[ \kappa = \aleph_{\aleph_{\aleph_{\ddots}}}. \]
This might look frighteningly huge, as $\kappa = \aleph_\kappa$,
but its cofinality is $\omega$ as it is the limit of the sequence
\[ \aleph_0, \aleph_{\aleph_0}, \aleph_{\aleph_{\aleph_0}}, \dots \]
\end{example}
More generally, one can in fact prove that
\[ \cof(\aleph_\lambda) = \cof(\lambda). \]
But it is actually conceivable that $\lambda$ is so large
that $\left\lvert \lambda \right\rvert = \left\lvert \aleph_\lambda \right\rvert$.
A regular limit cardinal other than $\aleph_0$ has a special name: it is \vocab{weakly inaccessible}.
Such cardinals are so large that it is impossible to prove or disprove their existence in $\ZFC$.
It is the first of many so-called ``large cardinals''.
An infinite cardinal $\kappa$ is a strong limit cardinal if
\[ \forall \ol\kappa < \kappa \quad 2^{\ol\kappa} < \kappa \]
for any cardinal $\ol\kappa$. For example, $\aleph_0$ is a strong limit cardinal.
\begin{ques}
Why must strong limit cardinals actually be limit cardinals?
(This is offensively easy.)
\end{ques}
A regular strong limit cardinal other than $\aleph_0$
is called \vocab{strongly inaccessible}.
\section\problemhead
\begin{problem}
Compute $\left\lvert V_\omega \right\rvert$.
\begin{hint}
$\sup_{k \in \omega} \left\lvert V_k \right\rvert$.
\end{hint}
\end{problem}
\begin{problem}
Prove that for any limit ordinal $\alpha$, $\cof(\alpha)$ is a \emph{regular} cardinal.
\begin{hint}
Rearrange the cofinal maps to be nondecreasing.
\end{hint}
\end{problem}
\begin{sproblem}
[Strongly inaccessible cardinals]
\label{prob:strongly_inaccessible}
Show that for any strongly inaccessible $\kappa$,
we have $\left\lvert V_\kappa \right\rvert = \kappa$.
\end{sproblem}
\begin{problem}
[K\"onig's theorem]
Show that \[ \kappa^{\cof(\kappa)} > \kappa \] for every infinite cardinal $\kappa$.
\end{problem}
|