Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 28,291 Bytes
afd65d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 |
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Brauer groups}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
A reference is the lectures by Serre in the Seminaire Cartan, see
\cite{Serre-Cartan}. Serre in turn refers to
\cite{Deuring} and \cite{ANT}. We changed some of the proofs, in particular
we used a fun argument of Rieffel to prove Wedderburn's theorem.
Very likely this change is not an improvement and we strongly
encourage the reader to read the original exposition by Serre.
\section{Noncommutative algebras}
\label{section-algebras}
\noindent
Let $k$ be a field. In this chapter an {\it algebra} $A$ over $k$ is
a possibly noncommutative ring $A$ together with a ring map
$k \to A$ such that $k$ maps into the center of $A$ and such that
$1$ maps to an identity element of $A$. An {\it $A$-module} is a right
$A$-module such that the identity of $A$ acts as the identity.
\begin{definition}
\label{definition-finite}
Let $A$ be a $k$-algebra. We say $A$ is {\it finite} if $\dim_k(A) < \infty$.
In this case we write $[A : k] = \dim_k(A)$.
\end{definition}
\begin{definition}
\label{definition-skew-field}
A {\it skew field} is a possibly noncommutative ring with an identity
element $1$, with $1 \not = 0$, in which every nonzero element
has a multiplicative inverse.
\end{definition}
\noindent
A skew field is a $k$-algebra for some $k$ (e.g., for the prime field
contained in it). We will use below that any module over a skew field
is free because a maximal linearly independent set of vectors forms a
basis and exists by Zorn's lemma.
\begin{definition}
\label{definition-simple}
Let $A$ be a $k$-algebra.
We say an $A$-module $M$ is {\it simple} if it is nonzero and
the only $A$-submodules are $0$ and $M$.
We say $A$ is {\it simple} if the only two-sided ideals of $A$ are
$0$ and $A$.
\end{definition}
\begin{definition}
\label{definition-central}
A $k$-algebra $A$ is {\it central} if the center of $A$ is the image of
$k \to A$.
\end{definition}
\begin{definition}
\label{definition-opposite}
Given a $k$-algebra $A$ we denote $A^{op}$ the $k$-algebra we get by
reversing the order of multiplication in $A$. This is called the
{\it opposite algebra}.
\end{definition}
\section{Wedderburn's theorem}
\label{section-wedderburn}
\noindent
The following cute argument can be found in a paper of Rieffel, see
\cite{Rieffel}. The proof could not be simpler (quote from
Carl Faith's review).
\begin{lemma}
\label{lemma-rieffel}
Let $A$ be a possibly noncommutative ring with $1$ which contains no
nontrivial two-sided ideal. Let $M$ be a nonzero right ideal in $A$,
and view $M$ as a right $A$-module. Then $A$ coincides with the
bicommutant of $M$.
\end{lemma}
\begin{proof}
Let $A' = \text{End}_A(M)$, so $M$ is a left $A'$-module.
Set $A'' = \text{End}_{A'}(M)$ (the bicommutant of $M$).
We view $A''$ as an algebra so that $M$ is a right $A''$-module\footnote{This
means that given $a'' \in A''$ and $m \in M$ we have a product
$m a'' \in M$. In particular, the multiplication in $A''$
is the opposite of what you'd get if you wrote elements of $A''$
as endomorphisms acting on the left.}.
Let $R : A \to A''$ be the natural homomorphism such that
$mR(a) = ma$. Then $R$ is injective, since $R(1) = \text{id}_M$
and $A$ contains no nontrivial two-sided ideal. We claim that $R(M)$
is a right ideal in $A''$. Namely, $R(m)a'' = R(ma'')$ for $a'' \in A''$
and $m$ in $M$, because {\it left} multiplication of $M$ by any element $n$
of $M$ represents an element of $A'$, and so
$(nm)a'' = n(ma'')$ for all $n$ in $M$.
Finally, the product ideal $AM$ is a two-sided ideal, and so
$A = AM$. Thus $R(A) = R(A)R(M)$, so that $R(A)$ is a right ideal in $A''$.
But $R(A)$ contains the identity element of $A''$, and so $R(A) = A''$.
\end{proof}
\begin{lemma}
\label{lemma-simple-module}
Let $A$ be a $k$-algebra. If $A$ is finite, then
\begin{enumerate}
\item $A$ has a simple module,
\item any nonzero module contains a simple submodule,
\item a simple module over $A$ has finite dimension over $k$, and
\item if $M$ is a simple $A$-module, then $\text{End}_A(M)$ is a
skew field.
\end{enumerate}
\end{lemma}
\begin{proof}
Of course (1) follows from (2) since $A$ is a nonzero $A$-module.
For (2), any submodule of minimal (finite) dimension as a $k$-vector
space will be simple. There exists a finite dimensional one
because a cyclic submodule is one. If $M$ is simple, then
$mA \subset M$ is a sub-module, hence we see (3). Any nonzero element
of $\text{End}_A(M)$ is an isomorphism, hence (4) holds.
\end{proof}
\begin{theorem}
\label{theorem-wedderburn}
\begin{slogan}
Simple finite algebras over a field are matrix algebras over a skew field.
\end{slogan}
Let $A$ be a simple finite $k$-algebra. Then $A$ is a matrix algebra over
a finite $k$-algebra $K$ which is a skew field.
\end{theorem}
\begin{proof}
We may choose a simple submodule $M \subset A$ and then
the $k$-algebra $K = \text{End}_A(M)$ is a skew field, see
Lemma \ref{lemma-simple-module}.
By
Lemma \ref{lemma-rieffel}
we see that $A = \text{End}_K(M)$. Since $K$ is a skew field and
$M$ is finitely generated (since $\dim_k(M) < \infty$) we see that
$M$ is finite free as a left $K$-module. It follows immediately that
$A \cong \text{Mat}(n \times n, K^{op})$.
\end{proof}
\section{Lemmas on algebras}
\label{section-lemmas}
\noindent
Let $A$ be a $k$-algebra. Let $B \subset A$ be a subalgebra.
The {\it centralizer of $B$ in $A$} is the subalgebra
$$
C = \{y \in A \mid xy = yx \text{ for all }x \in B\}.
$$
It is a $k$-algebra.
\begin{lemma}
\label{lemma-centralizer}
Let $A$, $A'$ be $k$-algebras. Let $B \subset A$, $B' \subset A'$ be
subalgebras with centralizers $C$, $C'$. Then the centralizer of
$B \otimes_k B'$ in $A \otimes_k A'$ is $C \otimes_k C'$.
\end{lemma}
\begin{proof}
Denote $C'' \subset A \otimes_k A'$ the centralizer of $B \otimes_k B'$.
It is clear that $C \otimes_k C' \subset C''$. Conversely, every element
of $C''$ commutes with $B \otimes 1$ hence is contained in $C \otimes_k A'$.
Similarly $C'' \subset A \otimes_k C'$. Thus
$C'' \subset C \otimes_k A' \cap A \otimes_k C' = C \otimes_k C'$.
\end{proof}
\begin{lemma}
\label{lemma-center-csa}
Let $A$ be a finite simple $k$-algebra. Then the center $k'$ of $A$
is a finite field extension of $k$.
\end{lemma}
\begin{proof}
Write $A = \text{Mat}(n \times n, K)$ for some skew field $K$ finite
over $k$, see
Theorem \ref{theorem-wedderburn}.
By
Lemma \ref{lemma-centralizer}
the center of $A$ is $k \otimes_k k'$ where $k' \subset K$ is the
center of $K$. Since the center of a skew field is a field, we win.
\end{proof}
\begin{lemma}
\label{lemma-generate-two-sided-sub}
Let $V$ be a $k$ vector space. Let $K$ be a central $k$-algebra
which is a skew field. Let $W \subset V \otimes_k K$ be a two-sided
$K$-sub vector space. Then $W$ is generated as a left $K$-vector
space by $W \cap (V \otimes 1)$.
\end{lemma}
\begin{proof}
Let $V' \subset V$ be the $k$-sub vector space generated by $v \in V$
such that $v \otimes 1 \in W$. Then $V' \otimes_k K \subset W$ and
we have
$$
W/(V' \otimes_k K) \subset (V/V') \otimes_k K.
$$
If $\overline{v} \in V/V'$ is a nonzero vector such that
$\overline{v} \otimes 1$ is contained in $W/(V' \otimes_k K)$,
then we see that $v \otimes 1 \in W$ where $v \in V$ lifts $\overline{v}$.
This contradicts our construction of $V'$. Hence we may replace
$V$ by $V/V'$ and $W$ by $W/(V' \otimes_k K)$ and it suffices to prove
that $W \cap (V \otimes 1)$ is nonzero if $W$ is nonzero.
\medskip\noindent
To see this let $w \in W$ be a nonzero element which can be written
as $w = \sum_{i = 1, \ldots, n} v_i \otimes k_i$ with $n$ minimal.
We may right multiply with $k_1^{-1}$ and assume that $k_1 = 1$.
If $n = 1$, then we win because $v_1 \otimes 1 \in W$.
If $n > 1$, then we see that for any $c \in K$
$$
c w - w c = \sum\nolimits_{i = 2, \ldots, n} v_i \otimes (c k_i - k_i c) \in W
$$
and hence $c k_i - k_i c = 0$ by minimality of $n$.
This implies that $k_i$ is in the center of $K$ which is $k$ by
assumption. Hence $w = (v_1 + \sum k_i v_i) \otimes 1$ contradicting
the minimality of $n$.
\end{proof}
\begin{lemma}
\label{lemma-generate-two-sided-ideal}
Let $A$ be a $k$-algebra. Let $K$ be a central $k$-algebra
which is a skew field. Then any two-sided ideal $I \subset A \otimes_k K$
is of the form $J \otimes_k K$ for some two-sided ideal $J \subset A$.
In particular, if $A$ is simple, then so is $A \otimes_k K$.
\end{lemma}
\begin{proof}
Set $J = \{a \in A \mid a \otimes 1 \in I\}$. This is a two-sided ideal
of $A$. And $I = J \otimes_k K$ by
Lemma \ref{lemma-generate-two-sided-sub}.
\end{proof}
\begin{lemma}
\label{lemma-matrix-algebras}
Let $R$ be a possibly noncommutative ring. Let $n \geq 1$ be an integer.
Let $R_n = \text{Mat}(n \times n, R)$.
\begin{enumerate}
\item The functors $M \mapsto M^{\oplus n}$ and
$N \mapsto Ne_{11}$ define quasi-inverse equivalences of categories
$\text{Mod}_R \leftrightarrow \text{Mod}_{R_n}$.
\item A two-sided ideal of $R_n$ is of the form $IR_n$ for some
two-sided ideal $I$ of $R$.
\item The center of $R_n$ is equal to the center of $R$.
\end{enumerate}
\end{lemma}
\begin{proof}
Part (1) proves itself. If $J \subset R_n$ is a two-sided ideal, then
$J = \bigoplus e_{ii}Je_{jj}$ and all of the summands $e_{ii}Je_{jj}$ are
equal to each other and are a two-sided ideal $I$ of $R$. This proves (2).
Part (3) is clear.
\end{proof}
\begin{lemma}
\label{lemma-simple-module-unique}
Let $A$ be a finite simple $k$-algebra.
\begin{enumerate}
\item There exists exactly one simple $A$-module $M$ up to isomorphism.
\item Any finite $A$-module is a direct sum of copies of a simple module.
\item Two finite $A$-modules are isomorphic if and only if they
have the same dimension over $k$.
\item If $A = \text{Mat}(n \times n, K)$ with $K$ a finite skew field
extension of $k$, then $M = K^{\oplus n}$ is a simple $A$-module and
$\text{End}_A(M) = K^{op}$.
\item If $M$ is a simple $A$-module, then $L = \text{End}_A(M)$
is a skew field finite over $k$ acting on the left on $M$, we have
$A = \text{End}_L(M)$, and the centers of $A$ and $L$ agree.
Also $[A : k] [L : k] = \dim_k(M)^2$.
\item For a finite $A$-module $N$ the algebra $B = \text{End}_A(N)$ is a
matrix algebra over the skew field $L$ of (5). Moreover $\text{End}_B(N) = A$.
\end{enumerate}
\end{lemma}
\begin{proof}
By
Theorem \ref{theorem-wedderburn}
we can write $A = \text{Mat}(n \times n, K)$ for some finite skew
field extension $K$ of $k$. By
Lemma \ref{lemma-matrix-algebras}
the category of modules over $A$ is equivalent to the category of
modules over $K$. Thus (1), (2), and (3) hold
because every module over $K$ is free. Part (4) holds
because the equivalence transforms the $K$-module $K$
to $M = K^{\oplus n}$. Using $M = K^{\oplus n}$ in (5)
we see that $L = K^{op}$. The statement about the center of $L = K^{op}$
follows from
Lemma \ref{lemma-matrix-algebras}.
The statement about $\text{End}_L(M)$ follows from the explicit form
of $M$. The formula of dimensions is clear.
Part (6) follows as $N$ is isomorphic to a direct sum of
copies of a simple module.
\end{proof}
\begin{lemma}
\label{lemma-tensor-simple}
Let $A$, $A'$ be two simple $k$-algebras one of which is finite and central
over $k$. Then $A \otimes_k A'$ is simple.
\end{lemma}
\begin{proof}
Suppose that $A'$ is finite and central over $k$.
Write $A' = \text{Mat}(n \times n, K')$, see
Theorem \ref{theorem-wedderburn}.
Then the center of $K'$ is $k$ and we conclude that
$A \otimes_k K'$ is simple by
Lemma \ref{lemma-generate-two-sided-ideal}.
Hence $A \otimes_k A' = \text{Mat}(n \times n, A \otimes_k K')$ is simple
by Lemma \ref{lemma-matrix-algebras}.
\end{proof}
\begin{lemma}
\label{lemma-tensor-central-simple}
The tensor product of finite central simple algebras over $k$ is finite,
central, and simple.
\end{lemma}
\begin{proof}
Combine Lemmas \ref{lemma-centralizer} and \ref{lemma-tensor-simple}.
\end{proof}
\begin{lemma}
\label{lemma-base-change}
Let $A$ be a finite central simple algebra over $k$.
Let $k'/k$ be a field extension. Then $A' = A \otimes_k k'$ is
a finite central simple algebra over $k'$.
\end{lemma}
\begin{proof}
Combine Lemmas \ref{lemma-centralizer} and \ref{lemma-tensor-simple}.
\end{proof}
\begin{lemma}
\label{lemma-inverse}
Let $A$ be a finite central simple algebra over $k$.
Then $A \otimes_k A^{op} \cong \text{Mat}(n \times n, k)$
where $n = [A : k]$.
\end{lemma}
\begin{proof}
By Lemma \ref{lemma-tensor-central-simple} the algebra $A \otimes_k A^{op}$
is simple. Hence the map
$$
A \otimes_k A^{op} \longrightarrow \text{End}_k(A),\quad
a \otimes a' \longmapsto (x \mapsto axa')
$$
is injective. Since both sides of the arrow have the same dimension
we win.
\end{proof}
\section{The Brauer group of a field}
\label{section-brauer}
\noindent
Let $k$ be a field. Consider two finite central simple algebras
$A$ and $B$ over $k$. We say $A$ and $B$ are {\it similar} if there
exist $n, m > 0$ such that
$\text{Mat}(n \times n, A) \cong \text{Mat}(m \times m, B)$
as $k$-algebras.
\begin{lemma}
\label{lemma-similar}
Similarity.
\begin{enumerate}
\item Similarity defines an equivalence relation on the set of isomorphism
classes of finite central simple algebras over $k$.
\item Every similarity class contains a unique (up to isomorphism)
finite central skew field extension of $k$.
\item If $A = \text{Mat}(n \times n, K)$ and $B = \text{Mat}(m \times m, K')$
for some finite central skew fields $K$, $K'$ over $k$
then $A$ and $B$ are similar if and only if $K \cong K'$ as $k$-algebras.
\end{enumerate}
\end{lemma}
\begin{proof}
Note that by Wedderburn's theorem (Theorem \ref{theorem-wedderburn})
we can always write a finite central simple algebra as a matrix
algebra over a finite central skew field. Hence it suffices to prove
the third assertion. To see this it suffices to show that if
$A = \text{Mat}(n \times n, K) \cong \text{Mat}(m \times m, K') = B$
then $K \cong K'$. To see this note that for a simple module $M$ of $A$
we have $\text{End}_A(M) = K^{op}$, see
Lemma \ref{lemma-simple-module-unique}.
Hence $A \cong B$ implies $K^{op} \cong (K')^{op}$ and we win.
\end{proof}
\noindent
Given two finite central simple $k$-algebras $A$, $B$ the tensor
product $A \otimes_k B$ is another, see
Lemma \ref{lemma-tensor-central-simple}.
Moreover if $A$ is similar to $A'$, then $A \otimes_k B$ is similar
to $A' \otimes_k B$ because tensor products and taking matrix
algebras commute. Hence tensor product defines an operation on
equivalence classes of finite central simple algebras which is clearly
associative and commutative. Finally,
Lemma \ref{lemma-inverse}
shows that $A \otimes_k A^{op}$ is isomorphic to a matrix algebra, i.e.,
that $A \otimes_k A^{op}$ is in the similarity class of $k$.
Thus we obtain an abelian group.
\begin{definition}
\label{definition-brauer-group}
Let $k$ be a field. The {\it Brauer group} of $k$ is the abelian group
of similarity classes of finite central simple $k$-algebras defined
above. Notation $\text{Br}(k)$.
\end{definition}
\noindent
For any map of fields $k \to k'$ we obtain a group homomorphism
$$
\text{Br}(k) \longrightarrow \text{Br}(k'),\quad
A \longmapsto A \otimes_k k'
$$
see Lemma \ref{lemma-base-change}. In other words, $\text{Br}(-)$ is
a functor from the category of fields to the category of abelian groups.
Observe that the Brauer group
of a field is zero if and only if every finite central skew field
extension $k \subset K$ is trivial.
\begin{lemma}
\label{lemma-brauer-algebraically-closed}
The Brauer group of an algebraically closed field is zero.
\end{lemma}
\begin{proof}
Let $k \subset K$ be a finite central skew field extension.
For any element $x \in K$ the subring $k[x] \subset K$ is a
commutative finite integral $k$-sub algebra, hence a field, see
Algebra, Lemma \ref{algebra-lemma-integral-over-field}.
Since $k$ is algebraically closed we conclude that
$k[x] = k$. Since $x$ was arbitrary we conclude $k = K$.
\end{proof}
\begin{lemma}
\label{lemma-dimension-square}
Let $A$ be a finite central simple algebra over a field $k$.
Then $[A : k]$ is a square.
\end{lemma}
\begin{proof}
This is true because $A \otimes_k \overline{k}$ is a matrix
algebra over $\overline{k}$ by
Lemma \ref{lemma-brauer-algebraically-closed}.
\end{proof}
\section{Skolem-Noether}
\label{section-skolem-noether}
\begin{theorem}
\label{theorem-skolem-noether}
Let $A$ be a finite central simple $k$-algebra. Let $B$ be a simple
$k$-algebra. Let $f, g : B \to A$ be two $k$-algebra homomorphisms.
Then there exists an invertible element $x \in A$ such that
$f(b) = xg(b)x^{-1}$ for all $b \in B$.
\end{theorem}
\begin{proof}
Choose a simple $A$-module $M$. Set $L = \text{End}_A(M)$.
Then $L$ is a skew field with center $k$ which acts on the left on $M$, see
Lemmas \ref{lemma-simple-module} and \ref{lemma-simple-module-unique}.
Then $M$ has two $B \otimes_k L^{op}$-module structures defined by
$m \cdot_1 (b \otimes l) = lmf(b)$ and $m \cdot_2 (b \otimes l) = lmg(b)$.
The $k$-algebra $B \otimes_k L^{op}$ is simple by
Lemma \ref{lemma-tensor-simple}. Since $B$ is simple, the existence of a
$k$-algebra homomorphism $B \to A$ implies that $B$ is finite. Thus
$B \otimes_k L^{op}$ is finite simple and we conclude the two
$B \otimes_k L^{op}$-module structures on $M$
are isomorphic by Lemma \ref{lemma-simple-module-unique}.
Hence we find $\varphi : M \to M$ intertwining these operations.
In particular $\varphi$ is in the commutant of $L$ which implies that
$\varphi$ is multiplication by some $x \in A$, see
Lemma \ref{lemma-simple-module-unique}. Working out the definitions we see
that $x$ is a solution to our problem.
\end{proof}
\begin{lemma}
\label{lemma-automorphism-inner}
Let $A$ be a finite central simple $k$-algebra. Any automorphism of $A$ is
inner. In particular, any automorphism of $\text{Mat}(n \times n, k)$
is inner.
\end{lemma}
\begin{proof}
Note that $A$ is a finite central simple algebra over the center
of $A$ which is a finite field extension of $k$, see
Lemma \ref{lemma-center-csa}.
Hence the Skolem-Noether theorem (Theorem \ref{theorem-skolem-noether})
applies.
\end{proof}
\section{The centralizer theorem}
\label{section-centralizer}
\begin{theorem}
\label{theorem-centralizer}
Let $A$ be a finite central simple algebra over $k$, and let
$B$ be a simple subalgebra of $A$. Then
\begin{enumerate}
\item the centralizer $C$ of $B$ in $A$ is simple,
\item $[A : k] = [B : k][C : k]$, and
\item the centralizer of $C$ in $A$ is $B$.
\end{enumerate}
\end{theorem}
\begin{proof}
Throughout this proof we use the results of
Lemma \ref{lemma-simple-module-unique} freely.
Choose a simple $A$-module $M$. Set $L = \text{End}_A(M)$.
Then $L$ is a skew field with center $k$ which acts on the left on $M$
and $A = \text{End}_L(M)$.
Then $M$ is a right $B \otimes_k L^{op}$-module and
$C = \text{End}_{B \otimes_k L^{op}}(M)$.
Since the algebra $B \otimes_k L^{op}$ is simple by
Lemma \ref{lemma-tensor-simple} we see that $C$ is simple (by
Lemma \ref{lemma-simple-module-unique} again).
\medskip\noindent
Write $B \otimes_k L^{op} = \text{Mat}(m \times m, K)$ for some
skew field $K$ finite over $k$. Then $C = \text{Mat}(n \times n, K^{op})$
if $M$ is isomorphic to a direct sum of $n$ copies of the simple
$B \otimes_k L^{op}$-module $K^{\oplus m}$ (the lemma again). Thus we have
$\dim_k(M) = nm [K : k]$, $[B : k] [L : k] = m^2 [K : k]$,
$[C : k] = n^2 [K : k]$, and $[A : k] [L : k] = \dim_k(M)^2$ (by
the lemma again). We conclude that (2) holds.
\medskip\noindent
Part (3) follows because of (2) applied to $C \subset A$ shows
that $[B : k] = [C' : k]$ where $C'$ is the centralizer of $C$ in $A$
(and the obvious fact that $B \subset C')$.
\end{proof}
\begin{lemma}
\label{lemma-when-tensor-is-equal}
Let $A$ be a finite central simple algebra over $k$, and let
$B$ be a simple subalgebra of $A$. If $B$ is a central
$k$-algebra, then $A = B \otimes_k C$ where $C$ is the (central simple)
centralizer of $B$ in $A$.
\end{lemma}
\begin{proof}
We have $\dim_k(A) = \dim_k(B \otimes_k C)$ by
Theorem \ref{theorem-centralizer}. By
Lemma \ref{lemma-tensor-simple}
the tensor product is simple. Hence the natural map
$B \otimes_k C \to A$ is injective hence an isomorphism.
\end{proof}
\begin{lemma}
\label{lemma-self-centralizing-subfield}
Let $A$ be a finite central simple algebra over $k$.
If $K \subset A$ is a subfield, then the following are equivalent
\begin{enumerate}
\item $[A : k] = [K : k]^2$,
\item $K$ is its own centralizer, and
\item $K$ is a maximal commutative subring.
\end{enumerate}
\end{lemma}
\begin{proof}
Theorem \ref{theorem-centralizer}
shows that (1) and (2) are equivalent.
It is clear that (3) and (2) are equivalent.
\end{proof}
\begin{lemma}
\label{lemma-maximal-subfield}
\begin{slogan}
The dimension of a finite central skew field is the square of the dimension
of any maximal subfield.
\end{slogan}
Let $A$ be a finite central skew field over $k$.
Then every maximal subfield $K \subset A$ satisfies
$[A : k] = [K : k]^2$.
\end{lemma}
\begin{proof}
Special case of Lemma \ref{lemma-self-centralizing-subfield}.
\end{proof}
\section{Splitting fields}
\label{section-splitting}
\begin{definition}
\label{definition-splitting}
Let $A$ be a finite central simple $k$-algebra.
We say a field extension $k'/k$ {\it splits} $A$, or
$k'$ is a {\it splitting field} for $A$ if $A \otimes_k k'$ is
a matrix algebra over $k'$.
\end{definition}
\noindent
Another way to say this is that the class of $A$ maps to zero
under the map $\text{Br}(k) \to \text{Br}(k')$.
\begin{theorem}
\label{theorem-splitting}
Let $A$ be a finite central simple $k$-algebra.
Let $k'/k$ be a finite field extension.
The following are equivalent
\begin{enumerate}
\item $k'$ splits $A$, and
\item there exists a finite central simple algebra $B$ similar to $A$
such that $k' \subset B$ and $[B : k] = [k' : k]^2$.
\end{enumerate}
\end{theorem}
\begin{proof}
Assume (2). It suffices to show that $B \otimes_k k'$ is a matrix
algebra. We know that $B \otimes_k B^{op} \cong \text{End}_k(B)$.
Since $k'$ is the centralizer of $k'$ in $B^{op}$ by
Lemma \ref{lemma-self-centralizing-subfield}
we see that $B \otimes_k k'$ is the centralizer of $k \otimes k'$
in $B \otimes_k B^{op} = \text{End}_k(B)$. Of course this centralizer
is just $\text{End}_{k'}(B)$ where we view $B$ as a $k'$ vector space
via the embedding $k' \to B$. Thus the result.
\medskip\noindent
Assume (1). This means that we have an isomorphism
$A \otimes_k k' \cong \text{End}_{k'}(V)$ for some $k'$-vector space $V$.
Let $B$ be the commutant of $A$ in $\text{End}_k(V)$. Note that
$k'$ sits in $B$. By
Lemma \ref{lemma-when-tensor-is-equal}
the classes of $A$ and $B$ add up to zero in $\text{Br}(k)$.
From the dimension formula in
Theorem \ref{theorem-centralizer}
we see that
$$
[B : k] [A : k] =
\dim_k(V)^2 =
[k' : k]^2 \dim_{k'}(V)^2 =
[k' : k]^2 [A : k].
$$
Hence $[B : k] = [k' : k]^2$. Thus we have proved the result for the
opposite to the Brauer class of $A$. However, $k'$ splits the Brauer
class of $A$ if and only if it splits
the Brauer class of the opposite algebra, so we win anyway.
\end{proof}
\begin{lemma}
\label{lemma-maximal-subfield-splits}
A maximal subfield of a finite central skew field $K$ over $k$ is
a splitting field for $K$.
\end{lemma}
\begin{proof}
Combine Lemma \ref{lemma-maximal-subfield} with
Theorem \ref{theorem-splitting}.
\end{proof}
\begin{lemma}
\label{lemma-splitting-field-degree}
Consider a finite central skew field $K$ over $k$. Let $d^2 = [K : k]$.
For any finite splitting field $k'$ for $K$ the degree $[k' : k]$ is
divisible by $d$.
\end{lemma}
\begin{proof}
By Theorem \ref{theorem-splitting} there exists a finite central
simple algebra $B$ in the Brauer class of $K$ such that
$[B : k] = [k' : k]^2$. By
Lemma \ref{lemma-similar}
we see that $B = \text{Mat}(n \times n, K)$ for some $n$.
Then $[k' : k]^2 = n^2d^2$ whence the result.
\end{proof}
\begin{proposition}
\label{proposition-separable-splitting-field}
Consider a finite central skew field $K$ over $k$.
There exists a maximal subfield $k \subset k' \subset K$ which
is separable over $k$.
In particular, every Brauer class has a finite separable
spitting field.
\end{proposition}
\begin{proof}
Since every Brauer class is represented by a finite central skew
field over $k$, we see that the second statement follows from the
first by
Lemma \ref{lemma-maximal-subfield-splits}.
\medskip\noindent
To prove the first statement, suppose that we are given a separable
subfield $k' \subset K$. Then the centralizer $K'$ of $k'$ in $K$
has center $k'$, and the problem reduces to finding a maximal
subfield of $K'$ separable over $k'$. Thus it suffices to prove, if
$k \not = K$, that we can find an element $x \in K$, $x \not \in k$
which is separable over $k$. This statement is clear in characteristic
zero. Hence we may assume that $k$ has characteristic $p > 0$. If the
ground field $k$ is finite then, the result is clear as well (because
extensions of finite fields are always separable). Thus we may assume
that $k$ is an infinite field of positive characteristic.
\medskip\noindent
To get a contradiction assume no element of $K$ is separable over $k$.
By the discussion in
Fields, Section \ref{fields-section-algebraic}
this means the minimal polynomial of any $x \in K$ is of the form
$T^q - a$ where $q$ is a power of $p$ and $a \in k$. Since it is
clear that every element of $K$ has a minimal polynomial of degree
$\leq \dim_k(K)$ we conclude that there exists a fixed $p$-power
$q$ such that $x^q \in k$ for all $x \in K$.
\medskip\noindent
Consider the map
$$
(-)^q : K \longrightarrow K
$$
and write it out in terms of a $k$-basis $\{a_1, \ldots, a_n\}$ of $K$
with $a_1 = 1$. So
$$
(\sum x_i a_i)^q = \sum f_i(x_1, \ldots, x_n)a_i.
$$
Since multiplication on $A$ is $k$-bilinear we see that each $f_i$
is a polynomial in $x_1, \ldots, x_n$ (details omitted).
The choice of $q$ above and the fact that $k$ is infinite shows that
$f_i$ is identically zero for $i \geq 2$. Hence we see that it remains
zero on extending $k$ to its algebraic closure $\overline{k}$. But the
algebra $A \otimes_k \overline{k}$ is a matrix algebra, which implies
there are some elements whose $q$th power is not central (e.g., $e_{11}$).
This is the desired contradiction.
\end{proof}
\noindent
The results above allow us to characterize finite central simple algebras
as follows.
\begin{lemma}
\label{lemma-finite-central-simple-algebra}
Let $k$ be a field. For a $k$-algebra $A$ the following are equivalent
\begin{enumerate}
\item $A$ is finite central simple $k$-algebra,
\item $A$ is a finite dimensional $k$-vector space, $k$ is the center of $A$,
and $A$ has no nontrivial two-sided ideal,
\item there exists $d \geq 1$ such that
$A \otimes_k \bar k \cong \text{Mat}(d \times d, \bar k)$,
\item there exists $d \geq 1$ such that
$A \otimes_k k^{sep} \cong \text{Mat}(d \times d, k^{sep})$,
\item there exist $d \geq 1$ and a finite Galois extension $k'/k$
such that
$A \otimes_k k' \cong \text{Mat}(d \times d, k')$,
\item there exist $n \geq 1$ and a finite central skew field $K$
over $k$ such that $A \cong \text{Mat}(n \times n, K)$.
\end{enumerate}
The integer $d$ is called the {\it degree} of $A$.
\end{lemma}
\begin{proof}
The equivalence of (1) and (2) is a consequence of the definitions, see
Section \ref{section-algebras}.
Assume (1). By
Proposition \ref{proposition-separable-splitting-field}
there exists a separable splitting field $k \subset k'$ for $A$.
Of course, then a Galois closure of $k'/k$ is a splitting field also.
Thus we see that (1) implies (5). It is clear that (5) $\Rightarrow$ (4)
$\Rightarrow$ (3). Assume (3). Then $A \otimes_k \overline{k}$
is a finite central simple $\overline{k}$-algebra for example by
Lemma \ref{lemma-matrix-algebras}.
This trivially implies that $A$ is a finite central simple $k$-algebra.
Finally, the equivalence of (1) and (6) is Wedderburn's theorem, see
Theorem \ref{theorem-wedderburn}.
\end{proof}
\input{chapters}
\bibliography{my}
\bibliographystyle{amsalpha}
\end{document}
|