Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 208,006 Bytes
afd65d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 |
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Dualizing Complexes}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
In this chapter we discuss dualizing complexes in commutative algebra.
A reference is \cite{RD}.
\medskip\noindent
We begin with a discussion of
essential surjections and essential injections,
projective covers,
injective hulls,
duality for Artinian rings, and
study injective hulls of residue fields,
leading quickly to a proof of Matlis duality.
See Sections \ref{section-essential},
\ref{section-injective-modules},
\ref{section-projective-cover},
\ref{section-injective-hull},
\ref{section-artinian}, and
\ref{section-hull-residue-field} and
Proposition \ref{proposition-matlis}.
\medskip\noindent
This is followed by three sections discussing local cohomology in
great generality, see Sections \ref{section-bad-local-cohomology},
\ref{section-local-cohomology}, and \ref{section-local-cohomology-noetherian}.
We apply some of this to a discussion of depth in
Section \ref{section-depth}. In another application we show how,
given a finitely generated ideal $I$ of a ring $A$, the
``$I$-complete'' and ``$I$-torsion'' objects
of the derived category of $A$ are equivalent, see
Section \ref{section-torsion-and-complete}.
To learn more about local cohomology, for example the finiteness
theorem (which relies on local duality -- see below) please visit
Local Cohomology, Section \ref{local-cohomology-section-introduction}.
\medskip\noindent
The bulk of this chapter is devoted to duality for a ring map and
dualizing complexes. See
Sections \ref{section-trivial},
\ref{section-base-change-trivial-duality},
\ref{section-dualizing},
\ref{section-dualizing-local},
\ref{section-dimension-function},
\ref{section-local-duality},
\ref{section-dualizing-module},
\ref{section-CM},
\ref{section-gorenstein},
\ref{section-ubiquity-dualizing}, and
\ref{section-formal-fibres}.
The key definition is that of a dualizing complex
$\omega_A^\bullet$ over a Noetherian ring $A$ as an object
$\omega_A^\bullet \in D^{+}(A)$ whose cohomology modules
$H^i(\omega_A^\bullet)$ are finite $A$-modules, which has
finite injective dimension, and is such that the map
$$
A \longrightarrow R\Hom_A(\omega_A^\bullet, \omega_A^\bullet)
$$
is a quasi-isomorphism. After establishing some elementary properties
of dualizing complexes, we show a dualizing complex gives rise to a
dimension function. Next, we prove Grothendieck's local duality theorem.
After briefly discussing dualizing modules and Cohen-Macaulay rings,
we introduce Gorenstein rings and we show many familiar Noetherian
rings have dualizing complexes. In a last section we apply the material
to show there is a good theory of Noetherian local rings whose formal fibres
are Gorenstein or local complete intersections.
\medskip\noindent
In the last few sections, we describe an algebraic construction of
the ``upper shriek functors'' used in algebraic geometry, for example
in the book \cite{RD}. This topic is continued in the chapter on
duality for schemes. See
Duality for Schemes, Section \ref{duality-section-introduction}.
\section{Essential surjections and injections}
\label{section-essential}
\noindent
We will mostly work in categories of modules, but we may as well make
the definition in general.
\begin{definition}
\label{definition-essential}
Let $\mathcal{A}$ be an abelian category.
\begin{enumerate}
\item An injection $A \subset B$ of $\mathcal{A}$ is {\it essential},
or we say that $B$ is an {\it essential extension of} $A$,
if every nonzero subobject $B' \subset B$ has nonzero intersection with $A$.
\item A surjection $f : A \to B$ of $\mathcal{A}$ is {\it essential}
if for every proper subobject $A' \subset A$ we have $f(A') \not = B$.
\end{enumerate}
\end{definition}
\noindent
Some lemmas about this notion.
\begin{lemma}
\label{lemma-essential}
Let $\mathcal{A}$ be an abelian category.
\begin{enumerate}
\item If $A \subset B$ and $B \subset C$ are essential extensions, then
$A \subset C$ is an essential extension.
\item If $A \subset B$ is an essential extension and $C \subset B$
is a subobject, then $A \cap C \subset C$ is an essential extension.
\item If $A \to B$ and $B \to C$ are essential surjections, then
$A \to C$ is an essential surjection.
\item Given an essential surjection $f : A \to B$ and a surjection
$A \to C$ with kernel $K$, the morphism $C \to B/f(K)$ is an essential
surjection.
\end{enumerate}
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\begin{lemma}
\label{lemma-union-essential-extensions}
Let $R$ be a ring. Let $M$ be an $R$-module. Let $E = \colim E_i$
be a filtered colimit of $R$-modules. Suppose given a compatible
system of essential injections $M \to E_i$ of $R$-modules.
Then $M \to E$ is an essential injection.
\end{lemma}
\begin{proof}
Immediate from the definitions and the fact that filtered
colimits are exact (Algebra, Lemma \ref{algebra-lemma-directed-colimit-exact}).
\end{proof}
\begin{lemma}
\label{lemma-essential-extension}
Let $R$ be a ring. Let $M \subset N$ be $R$-modules. The following
are equivalent
\begin{enumerate}
\item $M \subset N$ is an essential extension,
\item for all $x \in N$ nonzero there exists an $f \in R$ such that $fx \in M$
and $fx \not = 0$.
\end{enumerate}
\end{lemma}
\begin{proof}
Assume (1) and let $x \in N$ be a nonzero element. By (1) we have
$Rx \cap M \not = 0$. This implies (2).
\medskip\noindent
Assume (2). Let $N' \subset N$ be a nonzero submodule. Pick $x \in N'$
nonzero. By (2) we can find $f \in R$ with $fx \in M$ and $fx \not = 0$.
Thus $N' \cap M \not = 0$.
\end{proof}
\section{Injective modules}
\label{section-injective-modules}
\noindent
Some results about injective modules over rings.
\begin{lemma}
\label{lemma-product-injectives}
Let $R$ be a ring. Any product of injective $R$-modules is injective.
\end{lemma}
\begin{proof}
Special case of Homology, Lemma \ref{homology-lemma-product-injectives}.
\end{proof}
\begin{lemma}
\label{lemma-injective-flat}
Let $R \to S$ be a flat ring map. If $E$ is an injective $S$-module,
then $E$ is injective as an $R$-module.
\end{lemma}
\begin{proof}
This is true because $\Hom_R(M, E) = \Hom_S(M \otimes_R S, E)$
by Algebra, Lemma \ref{algebra-lemma-adjoint-tensor-restrict}
and the fact that tensoring with $S$ is exact.
\end{proof}
\begin{lemma}
\label{lemma-injective-epimorphism}
Let $R \to S$ be an epimorphism of rings. Let $E$ be an $S$-module.
If $E$ is injective as an $R$-module, then $E$ is an injective $S$-module.
\end{lemma}
\begin{proof}
This is true because $\Hom_R(N, E) = \Hom_S(N, E)$ for any $S$-module $N$,
see Algebra, Lemma \ref{algebra-lemma-epimorphism-modules}.
\end{proof}
\begin{lemma}
\label{lemma-hom-injective}
Let $R \to S$ be a ring map. If $E$ is an injective $R$-module,
then $\Hom_R(S, E)$ is an injective $S$-module.
\end{lemma}
\begin{proof}
This is true because $\Hom_S(N, \Hom_R(S, E)) = \Hom_R(N, E)$ by
Algebra, Lemma \ref{algebra-lemma-adjoint-hom-restrict}.
\end{proof}
\begin{lemma}
\label{lemma-essential-extensions-in-injective}
Let $R$ be a ring. Let $I$ be an injective $R$-module. Let $E \subset I$
be a submodule. The following are equivalent
\begin{enumerate}
\item $E$ is injective, and
\item for all $E \subset E' \subset I$ with $E \subset E'$ essential
we have $E = E'$.
\end{enumerate}
In particular, an $R$-module is injective if and only if every essential
extension is trivial.
\end{lemma}
\begin{proof}
The final assertion follows from the first and the fact that the
category of $R$-modules has enough injectives
(More on Algebra, Section \ref{more-algebra-section-injectives-modules}).
\medskip\noindent
Assume (1). Let $E \subset E' \subset I$ as in (2).
Then the map $\text{id}_E : E \to E$ can be extended
to a map $\alpha : E' \to E$. The kernel of $\alpha$ has to be
zero because it intersects $E$ trivially and $E'$ is an essential
extension. Hence $E = E'$.
\medskip\noindent
Assume (2). Let $M \subset N$ be $R$-modules and let $\varphi : M \to E$
be an $R$-module map. In order to prove (1) we have to show that
$\varphi$ extends to a morphism $N \to E$. Consider the set $\mathcal{S}$
of pairs
$(M', \varphi')$ where $M \subset M' \subset N$ and $\varphi' : M' \to E$
is an $R$-module map agreeing with $\varphi$ on $M$. We define an ordering
on $\mathcal{S}$ by the rule $(M', \varphi') \leq (M'', \varphi'')$
if and only if $M' \subset M''$ and $\varphi''|_{M'} = \varphi'$.
It is clear that we can take the maximum of a totally ordered subset
of $\mathcal{S}$. Hence by Zorn's lemma we may assume $(M, \varphi)$
is a maximal element.
\medskip\noindent
Choose an extension $\psi : N \to I$ of $\varphi$ composed
with the inclusion $E \to I$. This is possible as $I$ is injective.
If $\psi(N) \subset E$, then $\psi$ is the desired extension.
If $\psi(N)$ is not contained in $E$, then by (2) the inclusion
$E \subset E + \psi(N)$ is not essential. hence
we can find a nonzero submodule $K \subset E + \psi(N)$ meeting $E$ in $0$.
This means that $M' = \psi^{-1}(E + K)$ strictly contains $M$.
Thus we can extend $\varphi$ to $M'$ using
$$
M' \xrightarrow{\psi|_{M'}} E + K \to (E + K)/K = E
$$
This contradicts the maximality of $(M, \varphi)$.
\end{proof}
\begin{example}
\label{example-reduced-ring-injective}
Let $R$ be a reduced ring. Let $\mathfrak p \subset R$ be a minimal prime
so that $K = R_\mathfrak p$ is a field
(Algebra, Lemma \ref{algebra-lemma-minimal-prime-reduced-ring}).
Then $K$ is an injective $R$-module. Namely, we have
$\Hom_R(M, K) = \Hom_K(M_\mathfrak p, K)$ for any $R$-module
$M$. Since localization is an exact functor and taking duals is
an exact functor on $K$-vector spaces we conclude $\Hom_R(-, K)$
is an exact functor, i.e., $K$ is an injective $R$-module.
\end{example}
\begin{lemma}
\label{lemma-sum-injective-modules}
Let $R$ be a Noetherian ring. A direct sum of injective modules
is injective.
\end{lemma}
\begin{proof}
Let $E_i$ be a family of injective modules parametrized by a set $I$.
Set $E = \bigcup E_i$. To show that $E$ is injective we use
Injectives, Lemma \ref{injectives-lemma-criterion-baer}.
Thus let $\varphi : I \to E$ be a module map from an ideal of $R$
into $E$. As $I$ is a finite $R$-module (because $R$ is Noetherian)
we can find finitely many elements $i_1, \ldots, i_r \in I$
such that $\varphi$ maps into $\bigcup_{j = 1, \ldots, r} E_{i_j}$.
Then we can extend $\varphi$ into $\bigcup_{j = 1, \ldots, r} E_{i_j}$
using the injectivity of the modules $E_{i_j}$.
\end{proof}
\begin{lemma}
\label{lemma-localization-injective-modules}
Let $R$ be a Noetherian ring. Let $S \subset R$ be a multiplicative
subset. If $E$ is an injective $R$-module, then $S^{-1}E$ is an
injective $S^{-1}R$-module.
\end{lemma}
\begin{proof}
Since $R \to S^{-1}R$ is an epimorphism of rings, it suffices
to show that $S^{-1}E$ is injective as an $R$-module, see
Lemma \ref{lemma-injective-epimorphism}.
To show this we use Injectives, Lemma \ref{injectives-lemma-criterion-baer}.
Thus let $I \subset R$ be an ideal and let
$\varphi : I \to S^{-1} E$ be an $R$-module map.
As $I$ is a finitely presented $R$-module (because $R$ is Noetherian)
we can find an $f \in S$ and an $R$-module map $I \to E$
such that $f\varphi$ is the composition $I \to E \to S^{-1}E$
(Algebra, Lemma \ref{algebra-lemma-hom-from-finitely-presented}).
Then we can extend $I \to E$ to a homomorphism $R \to E$.
Then the composition
$$
R \to E \to S^{-1}E \xrightarrow{f^{-1}} S^{-1}E
$$
is the desired extension of $\varphi$ to $R$.
\end{proof}
\begin{lemma}
\label{lemma-injective-module-divide}
Let $R$ be a Noetherian ring. Let $I$ be an injective $R$-module.
\begin{enumerate}
\item Let $f \in R$. Then $E = \bigcup I[f^n] = I[f^\infty]$
is an injective submodule of $I$.
\item Let $J \subset R$ be an ideal. Then the $J$-power torsion
submodule $I[J^\infty]$ is an injective submodule of $I$.
\end{enumerate}
\end{lemma}
\begin{proof}
We will use Lemma \ref{lemma-essential-extensions-in-injective}
to prove (1).
Suppose that $E \subset E' \subset I$ and that $E'$ is an essential
extension of $E$. We will show that $E' = E$. If not, then we can
find $x \in E'$ and $x \not \in E$.
Let $J = \{ a \in R \mid ax \in E\}$. Since $R$ is Noetherian,
we may write $J = (g_1, \ldots, g_t)$ for some
$g_i \in R$. By definition $E$ is the set of elements of $I$ annihilated
by powers of $f$, so we may choose integers $n_i$ so that $f^{n_i}g_ix = 0$.
Set $n = \mathrm{max}\{ n_i \}$. Then $x' = f^n x$ is an element of $E'$
not in $E$ and is annihilated by $J$. Set $J' = \{ a \in R \mid ax' \in E \}$
so $J \subset J'$. Conversely, we have $a \in J'$ if and only if $ax' \in E$
if and only if $f^m a x' = 0$ for some $m \geq 0$. But then
$f^m a x' = f^{m + n} a x$ implies $ax \in E$, i.e., $a \in J$.
Hence $J = J'$. Thus $J = J' = \text{Ann}(x')$, so $Rx' \cap E = 0$.
Hence $E'$ is not an essential extension of $E$, a contradiction.
\medskip\noindent
To prove (2) write $J = (f_1, \ldots, f_t)$. Then
$I[J^\infty]$ is equal to
$$
(\ldots((I[f_1^\infty])[f_2^\infty])\ldots)[f_t^\infty]
$$
and the result follows from (1) and induction.
\end{proof}
\begin{lemma}
\label{lemma-injective-dimension-over-polynomial-ring}
Let $A$ be a Noetherian ring. Let $E$ be an injective $A$-module.
Then $E \otimes_A A[x]$ has injective-amplitude $[0, 1]$
as an object of $D(A[x])$. In particular, $E \otimes_A A[x]$
has finite injective dimension as an $A[x]$-module.
\end{lemma}
\begin{proof}
Let us write $E[x] = E \otimes_A A[x]$. Consider the short exact
sequence of $A[x]$-modules
$$
0 \to E[x] \to \Hom_A(A[x], E[x]) \to \Hom_A(A[x], E[x]) \to 0
$$
where the first map sends $p \in E[x]$ to $f \mapsto fp$ and the
second map sends $\varphi$ to $f \mapsto \varphi(xf) - x\varphi(f)$.
The second map is surjective because
$\Hom_A(A[x], E[x]) = \prod_{n \geq 0} E[x]$ as an abelian group and
the map sends $(e_n)$ to $(e_{n + 1} - xe_n)$ which is surjective.
As an $A$-module we have $E[x] \cong \bigoplus_{n \geq 0} E$
which is injective by Lemma \ref{lemma-sum-injective-modules}.
Hence the $A[x]$-module $\Hom_A(A[x], E[x])$ is injective by
Lemma \ref{lemma-hom-injective} and the proof is complete.
\end{proof}
\section{Projective covers}
\label{section-projective-cover}
\noindent
In this section we briefly discuss projective covers.
\begin{definition}
\label{definition-projective-cover}
Let $R$ be a ring. A surjection $P \to M$ of $R$-modules is said
to be a {\it projective cover}, or sometimes a {\it projective envelope},
if $P$ is a projective $R$-module and $P \to M$ is an essential
surjection.
\end{definition}
\noindent
Projective covers do not always exist. For example, if $k$ is a field
and $R = k[x]$ is the polynomial ring over $k$, then the module $M = R/(x)$
does not have a projective cover. Namely, for any surjection $f : P \to M$
with $P$ projective over $R$, the proper submodule $(x - 1)P$ surjects
onto $M$. Hence $f$ is not essential.
\begin{lemma}
\label{lemma-projective-cover-unique}
Let $R$ be a ring and let $M$ be an $R$-module. If a projective cover
of $M$ exists, then it is unique up to isomorphism.
\end{lemma}
\begin{proof}
Let $P \to M$ and $P' \to M$ be projective covers. Because $P$ is a
projective $R$-module and $P' \to M$ is surjective, we can find an
$R$-module map $\alpha : P \to P'$ compatible with the maps to $M$.
Since $P' \to M$ is essential, we see that $\alpha$ is surjective.
As $P'$ is a projective $R$-module we can choose a direct sum decomposition
$P = \Ker(\alpha) \oplus P'$. Since $P' \to M$ is surjective
and since $P \to M$ is essential we conclude that $\Ker(\alpha)$
is zero as desired.
\end{proof}
\noindent
Here is an example where projective covers exist.
\begin{lemma}
\label{lemma-projective-covers-local}
Let $(R, \mathfrak m, \kappa)$ be a local ring. Any finite $R$-module has
a projective cover.
\end{lemma}
\begin{proof}
Let $M$ be a finite $R$-module. Let $r = \dim_\kappa(M/\mathfrak m M)$.
Choose $x_1, \ldots, x_r \in M$ mapping to a basis of $M/\mathfrak m M$.
Consider the map $f : R^{\oplus r} \to M$. By Nakayama's lemma this is
a surjection (Algebra, Lemma \ref{algebra-lemma-NAK}). If
$N \subset R^{\oplus r}$ is a proper submodule, then
$N/\mathfrak m N \to \kappa^{\oplus r}$ is not surjective (by
Nakayama's lemma again) hence $N/\mathfrak m N \to M/\mathfrak m M$
is not surjective. Thus $f$ is an essential surjection.
\end{proof}
\section{Injective hulls}
\label{section-injective-hull}
\noindent
In this section we briefly discuss injective hulls.
\begin{definition}
\label{definition-injective-hull}
Let $R$ be a ring. A injection $M \to I$ of $R$-modules is said
to be an {\it injective hull} if $I$ is a injective $R$-module and
$M \to I$ is an essential injection.
\end{definition}
\noindent
Injective hulls always exist.
\begin{lemma}
\label{lemma-injective-hull}
Let $R$ be a ring. Any $R$-module has an injective hull.
\end{lemma}
\begin{proof}
Let $M$ be an $R$-module. By
More on Algebra, Section \ref{more-algebra-section-injectives-modules}
the category of $R$-modules has enough injectives.
Choose an injection $M \to I$ with $I$ an injective $R$-module.
Consider the set $\mathcal{S}$ of submodules $M \subset E \subset I$
such that $E$ is an essential extension of $M$. We order $\mathcal{S}$
by inclusion. If $\{E_\alpha\}$ is a totally ordered subset
of $\mathcal{S}$, then $\bigcup E_\alpha$ is an essential extension of $M$
too (Lemma \ref{lemma-union-essential-extensions}).
Thus we can apply Zorn's lemma and find a maximal element
$E \in \mathcal{S}$. We claim $M \subset E$ is an injective hull, i.e.,
$E$ is an injective $R$-module. This follows from
Lemma \ref{lemma-essential-extensions-in-injective}.
\end{proof}
\begin{lemma}
\label{lemma-injective-hull-unique}
Let $R$ be a ring. Let $M$, $N$ be $R$-modules and let $M \to E$
and $N \to E'$ be injective hulls. Then
\begin{enumerate}
\item for any $R$-module map $\varphi : M \to N$ there exists an
$R$-module map $\psi : E \to E'$ such that
$$
\xymatrix{
M \ar[r] \ar[d]_\varphi & E \ar[d]^\psi \\
N \ar[r] & E'
}
$$
commutes,
\item if $\varphi$ is injective, then $\psi$ is injective,
\item if $\varphi$ is an essential injection, then $\psi$ is an isomorphism,
\item if $\varphi$ is an isomorphism, then $\psi$ is an isomorphism,
\item if $M \to I$ is an embedding of $M$ into an injective $R$-module,
then there is an isomorphism $I \cong E \oplus I'$ compatible with
the embeddings of $M$,
\end{enumerate}
In particular, the injective hull $E$ of $M$ is unique up to isomorphism.
\end{lemma}
\begin{proof}
Part (1) follows from the fact that $E'$ is an injective $R$-module.
Part (2) follows as $\Ker(\psi) \cap M = 0$
and $E$ is an essential extension of $M$.
Assume $\varphi$ is an essential injection. Then
$E \cong \psi(E) \subset E'$ by (2) which implies
$E' = \psi(E) \oplus E''$ because $E$ is injective.
Since $E'$ is an essential extension of
$M$ (Lemma \ref{lemma-essential}) we get $E'' = 0$.
Part (4) is a special case of (3).
Assume $M \to I$ as in (5).
Choose a map $\alpha : E \to I$ extending the map $M \to I$.
Arguing as before we see that $\alpha$ is injective.
Thus as before $\alpha(E)$ splits off from $I$.
This proves (5).
\end{proof}
\begin{example}
\label{example-injective-hull-domain}
Let $R$ be a domain with fraction field $K$. Then $R \subset K$ is an
injective hull of $R$. Namely, by
Example \ref{example-reduced-ring-injective} we see that $K$ is an injective
$R$-module and by Lemma \ref{lemma-essential-extension} we see that
$R \subset K$ is an essential extension.
\end{example}
\begin{definition}
\label{definition-indecomposable}
An object $X$ of an additive category is called {\it indecomposable}
if it is nonzero and if $X = Y \oplus Z$, then either $Y = 0$ or $Z = 0$.
\end{definition}
\begin{lemma}
\label{lemma-indecomposable-injective}
Let $R$ be a ring. Let $E$ be an indecomposable injective $R$-module.
Then
\begin{enumerate}
\item $E$ is the injective hull of any nonzero submodule of $E$,
\item the intersection of any two nonzero submodules of $E$ is nonzero,
\item $\text{End}_R(E, E)$ is a noncommutative local ring with maximal
ideal those $\varphi : E \to E$ whose kernel is nonzero, and
\item the set of zerodivisors on $E$ is a prime ideal $\mathfrak p$ of $R$
and $E$ is an injective $R_\mathfrak p$-module.
\end{enumerate}
\end{lemma}
\begin{proof}
Part (1) follows from Lemma \ref{lemma-injective-hull-unique}.
Part (2) follows from part (1) and the definition of injective hulls.
\medskip\noindent
Proof of (3). Set $A = \text{End}_R(E, E)$ and
$I = \{\varphi \in A \mid \Ker(f) \not = 0\}$.
The statement means that $I$ is a two sided ideal and
that any $\varphi \in A$, $\varphi \not \in I$ is invertible.
Suppose $\varphi$ and $\psi$ are not injective.
Then $\Ker(\varphi) \cap \Ker(\psi)$ is nonzero
by (2). Hence $\varphi + \psi \in I$. It follows that $I$
is a two sided ideal. If $\varphi \in A$, $\varphi \not \in I$,
then $E \cong \varphi(E) \subset E$ is an injective submodule,
hence $E = \varphi(E)$ because $E$ is indecomposable.
\medskip\noindent
Proof of (4). Consider the ring map $R \to A$ and let $\mathfrak p \subset R$
be the inverse image of the maximal ideal $I$. Then it is clear
that $\mathfrak p$ is a prime ideal and that $R \to A$ extends to
$R_\mathfrak p \to A$. Thus $E$ is an $R_\mathfrak p$-module.
It follows from Lemma \ref{lemma-injective-epimorphism} that $E$ is injective
as an $R_\mathfrak p$-module.
\end{proof}
\begin{lemma}
\label{lemma-injective-hull-indecomposable}
Let $\mathfrak p \subset R$ be a prime of a ring $R$.
Let $E$ be the injective hull of $R/\mathfrak p$. Then
\begin{enumerate}
\item $E$ is indecomposable,
\item $E$ is the injective hull of $\kappa(\mathfrak p)$,
\item $E$ is the injective hull of $\kappa(\mathfrak p)$
over the ring $R_\mathfrak p$.
\end{enumerate}
\end{lemma}
\begin{proof}
By Lemma \ref{lemma-essential-extension} the inclusion
$R/\mathfrak p \subset \kappa(\mathfrak p)$ is an essential
extension. Then Lemma \ref{lemma-injective-hull-unique}
shows (2) holds. For $f \in R$, $f \not \in \mathfrak p$
the map $f : \kappa(\mathfrak p) \to \kappa(\mathfrak p)$ is an isomorphism
hence the map $f : E \to E$ is an isomorphism,
see Lemma \ref{lemma-injective-hull-unique}.
Thus $E$ is an $R_\mathfrak p$-module. It is injective
as an $R_\mathfrak p$-module by Lemma \ref{lemma-injective-epimorphism}.
Finally, let $E' \subset E$ be a nonzero injective $R$-submodule.
Then $J = (R/\mathfrak p) \cap E'$ is nonzero. After shrinking $E'$
we may assume that $E'$ is the injective hull of $J$ (see
Lemma \ref{lemma-injective-hull-unique} for example).
Observe that $R/\mathfrak p$ is an essential extension of $J$ for example by
Lemma \ref{lemma-essential-extension}. Hence $E' \to E$
is an isomorphism by Lemma \ref{lemma-injective-hull-unique} part (3).
Hence $E$ is indecomposable.
\end{proof}
\begin{lemma}
\label{lemma-indecomposable-injective-noetherian}
Let $R$ be a Noetherian ring. Let $E$ be an indecomposable injective
$R$-module. Then there exists a prime ideal $\mathfrak p$ of $R$ such that
$E$ is the injective hull of $\kappa(\mathfrak p)$.
\end{lemma}
\begin{proof}
Let $\mathfrak p$ be the prime ideal found in
Lemma \ref{lemma-indecomposable-injective}.
Say $\mathfrak p = (f_1, \ldots, f_r)$.
Pick a nonzero element $x \in \bigcap \Ker(f_i : E \to E)$,
see Lemma \ref{lemma-indecomposable-injective}.
Then $(R_\mathfrak p)x$ is a module isomorphic to $\kappa(\mathfrak p)$
inside $E$. We conclude by Lemma \ref{lemma-indecomposable-injective}.
\end{proof}
\begin{proposition}[Structure of injective modules over Noetherian rings]
\label{proposition-structure-injectives-noetherian}
Let $R$ be a Noetherian ring.
Every injective module is a direct sum of indecomposable injective modules.
Every indecomposable injective module is the injective hull of
the residue field at a prime.
\end{proposition}
\begin{proof}
The second statement is Lemma \ref{lemma-indecomposable-injective-noetherian}.
For the first statement, let $I$ be an injective $R$-module.
We will use transfinite recursion to construct $I_\alpha \subset I$
for ordinals $\alpha$ which are direct sums of indecomposable injective
$R$-modules $E_{\beta + 1}$ for $\beta < \alpha$.
For $\alpha = 0$ we let $I_0 = 0$. Suppose given an ordinal $\alpha$
such that $I_\alpha$ has been constructed. Then $I_\alpha$ is an
injective $R$-module by Lemma \ref{lemma-sum-injective-modules}.
Hence $I \cong I_\alpha \oplus I'$. If $I' = 0$ we are done.
If not, then $I'$ has an associated prime by
Algebra, Lemma \ref{algebra-lemma-ass-zero}.
Thus $I'$ contains a copy of $R/\mathfrak p$ for some prime $\mathfrak p$.
Hence $I'$ contains an indecomposable submodule $E$ by
Lemmas \ref{lemma-injective-hull-unique} and
\ref{lemma-injective-hull-indecomposable}. Set
$I_{\alpha + 1} = I_\alpha \oplus E_\alpha$.
If $\alpha$ is a limit ordinal and $I_\beta$ has been constructed
for $\beta < \alpha$, then we set
$I_\alpha = \bigcup_{\beta < \alpha} I_\beta$.
Observe that $I_\alpha = \bigoplus_{\beta < \alpha} E_{\beta + 1}$.
This concludes the proof.
\end{proof}
\section{Duality over Artinian local rings}
\label{section-artinian}
\noindent
Let $(R, \mathfrak m, \kappa)$ be an artinian local ring.
Recall that this implies $R$ is Noetherian and that $R$ has finite
length as an $R$-module. Moreover an $R$-module is finite if and
only if it has finite length. We will use these facts without
further mention in this section. Please see
Algebra, Sections \ref{algebra-section-length} and
\ref{algebra-section-artinian}
and
Algebra, Proposition \ref{algebra-proposition-dimension-zero-ring}
for more details.
\begin{lemma}
\label{lemma-finite}
Let $(R, \mathfrak m, \kappa)$ be an artinian local ring.
Let $E$ be an injective hull of $\kappa$. For every finite
$R$-module $M$ we have
$$
\text{length}_R(M) = \text{length}_R(\Hom_R(M, E))
$$
In particular, the injective hull $E$ of $\kappa$ is a finite $R$-module.
\end{lemma}
\begin{proof}
Because $E$ is an essential extension of $\kappa$ we have
$\kappa = E[\mathfrak m]$ where $E[\mathfrak m]$ is the
$\mathfrak m$-torsion in $E$ (notation as in More on Algebra, Section
\ref{more-algebra-section-torsion}).
Hence $\Hom_R(\kappa, E) \cong \kappa$ and the equality of lengths
holds for $M = \kappa$. We prove the displayed equality of the lemma
by induction on the length of $M$. If $M$ is nonzero there exists a surjection
$M \to \kappa$ with kernel $M'$. Since the functor $M \mapsto \Hom_R(M, E)$
is exact we obtain a short exact sequence
$$
0 \to \Hom_R(\kappa, E) \to \Hom_R(M, E) \to \Hom_R(M', E) \to 0.
$$
Additivity of length for this sequence and the sequence
$0 \to M' \to M \to \kappa \to 0$ and the equality for $M'$ (induction
hypothesis) and $\kappa$ implies the equality for $M$.
The final statement of the lemma follows as $E = \Hom_R(R, E)$.
\end{proof}
\begin{lemma}
\label{lemma-evaluate}
Let $(R, \mathfrak m, \kappa)$ be an artinian local ring.
Let $E$ be an injective hull of $\kappa$.
For any finite $R$-module $M$ the evaluation map
$$
M \longrightarrow \Hom_R(\Hom_R(M, E), E)
$$
is an isomorphism. In particular $R = \Hom_R(E, E)$.
\end{lemma}
\begin{proof}
Observe that the displayed arrow is injective. Namely, if $x \in M$ is
a nonzero element, then there is a nonzero map $Rx \to \kappa$ which
we can extend to a map $\varphi : M \to E$ that doesn't vanish on $x$.
Since the source and target of the arrow have the same length by
Lemma \ref{lemma-finite}
we conclude it is an isomorphism. The final statement follows
on taking $M = R$.
\end{proof}
\noindent
To state the next lemma, denote $\text{Mod}^{fg}_R$ the category of finite
$R$-modules over a ring $R$.
\begin{lemma}
\label{lemma-duality}
Let $(R, \mathfrak m, \kappa)$ be an artinian local ring.
Let $E$ be an injective hull of $\kappa$.
The functor $D(-) = \Hom_R(-, E)$ induces an exact anti-equivalence
$\text{Mod}^{fg}_R \to \text{Mod}^{fg}_R$ and
$D \circ D \cong \text{id}$.
\end{lemma}
\begin{proof}
We have seen that $D \circ D = \text{id}$ on $\text{Mod}^{fg}_R$
in Lemma \ref{lemma-evaluate}. It follows immediately that
$D$ is an anti-equivalence.
\end{proof}
\begin{lemma}
\label{lemma-duality-torsion-cotorsion}
Assumptions and notation as in Lemma \ref{lemma-duality}.
Let $I \subset R$ be an ideal and $M$ a finite $R$-module.
Then
$$
D(M[I]) = D(M)/ID(M) \quad\text{and}\quad D(M/IM) = D(M)[I]
$$
\end{lemma}
\begin{proof}
Say $I = (f_1, \ldots, f_t)$. Consider the map
$$
M^{\oplus t} \xrightarrow{f_1, \ldots, f_t} M
$$
with cokernel $M/IM$. Applying the exact functor $D$ we conclude that
$D(M/IM)$ is $D(M)[I]$. The other case is proved in the same way.
\end{proof}
\section{Injective hull of the residue field}
\label{section-hull-residue-field}
\noindent
Most of our results will be for Noetherian local rings in this section.
\begin{lemma}
\label{lemma-quotient}
Let $R \to S$ be a surjective map of local rings with kernel $I$.
Let $E$ be the injective hull of the residue field of $R$ over $R$.
Then $E[I]$ is the injective hull of the residue field of $S$ over $S$.
\end{lemma}
\begin{proof}
Observe that $E[I] = \Hom_R(S, E)$ as $S = R/I$. Hence $E[I]$ is an injective
$S$-module by Lemma \ref{lemma-hom-injective}. Since $E$ is an essential
extension of $\kappa = R/\mathfrak m_R$ it follows that $E[I]$ is an
essential extension of $\kappa$ as well. The result follows.
\end{proof}
\begin{lemma}
\label{lemma-torsion-submodule-sum-injective-hulls}
Let $(R, \mathfrak m, \kappa)$ be a local ring.
Let $E$ be the injective hull of $\kappa$.
Let $M$ be a $\mathfrak m$-power torsion $R$-module
with $n = \dim_\kappa(M[\mathfrak m]) < \infty$.
Then $M$ is isomorphic to a submodule of $E^{\oplus n}$.
\end{lemma}
\begin{proof}
Observe that $E^{\oplus n}$ is the injective hull of
$\kappa^{\oplus n} = M[\mathfrak m]$. Thus there is an $R$-module map
$M \to E^{\oplus n}$ which is injective on $M[\mathfrak m]$.
Since $M$ is $\mathfrak m$-power torsion the inclusion
$M[\mathfrak m] \subset M$ is an essential extension
(for example by Lemma \ref{lemma-essential-extension})
we conclude that the kernel of $M \to E^{\oplus n}$ is zero.
\end{proof}
\begin{lemma}
\label{lemma-union-artinian}
Let $(R, \mathfrak m, \kappa)$ be a Noetherian local ring.
Let $E$ be an injective hull of $\kappa$ over $R$.
Let $E_n$ be an injective hull of $\kappa$ over $R/\mathfrak m^n$.
Then $E = \bigcup E_n$ and $E_n = E[\mathfrak m^n]$.
\end{lemma}
\begin{proof}
We have $E_n = E[\mathfrak m^n]$ by Lemma \ref{lemma-quotient}.
We have $E = \bigcup E_n$ because $\bigcup E_n = E[\mathfrak m^\infty]$
is an injective $R$-submodule which contains $\kappa$, see
Lemma \ref{lemma-injective-module-divide}.
\end{proof}
\noindent
The following lemma tells us the injective hull of the residue
field of a Noetherian local ring only depends on the completion.
\begin{lemma}
\label{lemma-compare}
Let $R \to S$ be a flat local homomorphism of local Noetherian rings
such that $R/\mathfrak m_R \cong S/\mathfrak m_R S$.
Then the injective hull of the residue field
of $R$ is the injective hull of the residue field of $S$.
\end{lemma}
\begin{proof}
Note that $\mathfrak m_RS = \mathfrak m_S$ as the quotient by the former
is a field. Set $\kappa = R/\mathfrak m_R = S/\mathfrak m_S$.
Let $E_R$ be the injective hull of $\kappa$ over $R$.
Let $E_S$ be the injective hull of $\kappa$ over $S$.
Observe that $E_S$ is an injective $R$-module by
Lemma \ref{lemma-injective-flat}.
Choose an extension $E_R \to E_S$ of the identification of
residue fields. This map is an isomorphism by
Lemma \ref{lemma-union-artinian}
because $R \to S$ induces an isomorphism
$R/\mathfrak m_R^n \to S/\mathfrak m_S^n$ for all $n$.
\end{proof}
\begin{lemma}
\label{lemma-endos}
Let $(R, \mathfrak m, \kappa)$ be a Noetherian local ring.
Let $E$ be an injective hull of $\kappa$ over $R$. Then
$\Hom_R(E, E)$ is canonically isomorphic to the completion of $R$.
\end{lemma}
\begin{proof}
Write $E = \bigcup E_n$ with $E_n = E[\mathfrak m^n]$ as in
Lemma \ref{lemma-union-artinian}. Any endomorphism of $E$
preserves this filtration. Hence
$$
\Hom_R(E, E) = \lim \Hom_R(E_n, E_n)
$$
The lemma follows as
$\Hom_R(E_n, E_n) = \Hom_{R/\mathfrak m^n}(E_n, E_n) = R/\mathfrak m^n$
by Lemma \ref{lemma-evaluate}.
\end{proof}
\begin{lemma}
\label{lemma-injective-hull-has-dcc}
Let $(R, \mathfrak m, \kappa)$ be a Noetherian local ring.
Let $E$ be an injective hull of $\kappa$ over $R$. Then
$E$ satisfies the descending chain condition.
\end{lemma}
\begin{proof}
If $E \supset M_1 \supset M_2 \supset \ldots$ is a sequence of submodules, then
$$
\Hom_R(E, E) \to \Hom_R(M_1, E) \to \Hom_R(M_2, E) \to \ldots
$$
is a sequence of surjections. By Lemma \ref{lemma-endos} each of these is a
module over the completion $R^\wedge = \Hom_R(E, E)$.
Since $R^\wedge$ is Noetherian
(Algebra, Lemma \ref{algebra-lemma-completion-Noetherian-Noetherian})
the sequence stabilizes: $\Hom_R(M_n, E) = \Hom_R(M_{n + 1}, E) = \ldots$.
Since $E$ is injective, this can only happen if $\Hom_R(M_n/M_{n + 1}, E)$
is zero. However, if $M_n/M_{n + 1}$ is nonzero, then it contains a
nonzero element annihilated by $\mathfrak m$, because $E$ is
$\mathfrak m$-power torsion by Lemma \ref{lemma-union-artinian}.
In this case $M_n/M_{n + 1}$ has a nonzero map into $E$, contradicting
the assumed vanishing. This finishes the proof.
\end{proof}
\begin{lemma}
\label{lemma-describe-categories}
Let $(R, \mathfrak m, \kappa)$ be a Noetherian local ring.
Let $E$ be an injective hull of $\kappa$.
\begin{enumerate}
\item For an $R$-module $M$ the following are equivalent:
\begin{enumerate}
\item $M$ satisfies the ascending chain condition,
\item $M$ is a finite $R$-module, and
\item there exist $n, m$ and an exact sequence
$R^{\oplus m} \to R^{\oplus n} \to M \to 0$.
\end{enumerate}
\item For an $R$-module $M$ the following are equivalent:
\begin{enumerate}
\item $M$ satisfies the descending chain condition,
\item $M$ is $\mathfrak m$-power torsion and
$\dim_\kappa(M[\mathfrak m]) < \infty$, and
\item there exist $n, m$ and an exact sequence
$0 \to M \to E^{\oplus n} \to E^{\oplus m}$.
\end{enumerate}
\end{enumerate}
\end{lemma}
\begin{proof}
We omit the proof of (1).
\medskip\noindent
Let $M$ be an $R$-module with the descending chain condition. Let $x \in M$.
Then $\mathfrak m^n x$ is a descending chain of submodules, hence stabilizes.
Thus $\mathfrak m^nx = \mathfrak m^{n + 1}x$ for some $n$. By Nakayama's lemma
(Algebra, Lemma \ref{algebra-lemma-NAK}) this implies $\mathfrak m^n x = 0$,
i.e., $x$ is $\mathfrak m$-power torsion. Since $M[\mathfrak m]$ is a vector
space over $\kappa$ it has to be finite dimensional in order to have the
descending chain condition.
\medskip\noindent
Assume that $M$ is $\mathfrak m$-power torsion and has a finite dimensional
$\mathfrak m$-torsion submodule $M[\mathfrak m]$. By
Lemma \ref{lemma-torsion-submodule-sum-injective-hulls}
we see that $M$ is a submodule of $E^{\oplus n}$ for some $n$.
Consider the quotient $N = E^{\oplus n}/M$. By
Lemma \ref{lemma-injective-hull-has-dcc} the module $E$ has the
descending chain condition hence so do $E^{\oplus n}$ and $N$.
Therefore $N$ satisfies (2)(a) which implies $N$ satisfies
(2)(b) by the second paragraph of the proof. Thus by
Lemma \ref{lemma-torsion-submodule-sum-injective-hulls}
again we see that $N$ is a submodule of $E^{\oplus m}$ for some $m$.
Thus we have a short exact sequence
$0 \to M \to E^{\oplus n} \to E^{\oplus m}$.
\medskip\noindent
Assume we have a short exact sequence
$0 \to M \to E^{\oplus n} \to E^{\oplus m}$.
Since $E$ satisfies the descending chain condition by
Lemma \ref{lemma-injective-hull-has-dcc}
so does $M$.
\end{proof}
\begin{proposition}[Matlis duality]
\label{proposition-matlis}
Let $(R, \mathfrak m, \kappa)$ be a complete local Noetherian ring.
Let $E$ be an injective hull of $\kappa$ over $R$. The functor
$D(-) = \Hom_R(-, E)$ induces an anti-equivalence
$$
\left\{
\begin{matrix}
R\text{-modules with the} \\
\text{descending chain condition}
\end{matrix}
\right\}
\longleftrightarrow
\left\{
\begin{matrix}
R\text{-modules with the} \\
\text{ascending chain condition}
\end{matrix}
\right\}
$$
and we have $D \circ D = \text{id}$ on either side of the equivalence.
\end{proposition}
\begin{proof}
By Lemma \ref{lemma-endos} we have $R = \Hom_R(E, E) = D(E)$.
Of course we have $E = \Hom_R(R, E) = D(R)$. Since $E$ is injective
the functor $D$ is exact. The result now follows immediately from the
description of the categories in
Lemma \ref{lemma-describe-categories}.
\end{proof}
\begin{remark}
\label{remark-matlis}
Let $(R, \mathfrak m, \kappa)$ be a Noetherian local ring.
Let $E$ be an injective hull of $\kappa$ over $R$. Here is an
addendum to Matlis duality: If $N$ is an $\mathfrak m$-power torsion module
and $M = \Hom_R(N, E)$ is a finite module over the completion of $R$,
then $N$ satisfies the descending chain condition. Namely, for any
submodules $N'' \subset N' \subset N$ with $N'' \not = N'$, we can
find an embedding $\kappa \subset N''/N'$ and hence a nonzero
map $N' \to E$ annihilating $N''$ which we can extend to a map $N \to E$
annihilating $N''$. Thus $N \supset N' \mapsto M' = \Hom_R(N/N', E) \subset M$
is an inclusion preserving map from submodules of $N$ to submodules
of $M$, whence the conclusion.
\end{remark}
\section{Deriving torsion}
\label{section-bad-local-cohomology}
\noindent
Let $A$ be a ring and let $I \subset A$ be a finitely generated ideal
(if $I$ is not finitely generated perhaps a different definition
should be used). Let $Z = V(I) \subset \Spec(A)$. Recall that the
category $I^\infty\text{-torsion}$ of $I$-power torsion modules
only depends on the closed subset $Z$ and not on the choice of the
finitely generated ideal $I$ such that $Z = V(I)$, see
More on Algebra, Lemma \ref{more-algebra-lemma-local-cohomology-closed}.
In this section we will consider the functor
$$
H^0_{I} : \text{Mod}_A \longrightarrow I^\infty\text{-torsion},\quad
M \longmapsto M[I^\infty] = \bigcup M[I^n]
$$
which sends $M$ to the submodule of $I$-power torsion.
\medskip\noindent
Let $A$ be a ring and let $I$ be a finitely generated ideal.
Note that $I^\infty\text{-torsion}$ is a Grothendieck
abelian category (direct sums exist, filtered colimits are
exact, and $\bigoplus A/I^n$ is a generator by
More on Algebra, Lemma \ref{more-algebra-lemma-I-power-torsion-presentation}).
Hence the derived category $D(I^\infty\text{-torsion})$ exists, see
Injectives, Remark \ref{injectives-remark-existence-D}.
Our functor $H^0_I$ is left exact and has a derived extension
which we will denote
$$
R\Gamma_I : D(A) \longrightarrow D(I^\infty\text{-torsion}).
$$
{\bf Warning:} this functor does not deserve the name
local cohomology unless the ring $A$ is Noetherian.
The functors $H^0_I$, $R\Gamma_I$, and the satellites $H^p_I$
only depend on the closed subset $Z \subset \Spec(A)$ and not
on the choice of the finitely generated ideal $I$ such that
$V(I) = Z$. However, we insist on using the subscript $I$ for
the functors above as the notation $R\Gamma_Z$ is going
to be used for a different functor, see
(\ref{equation-local-cohomology}), which
agrees with the functor $R\Gamma_I$ only (as far as we know)
in case $A$ is Noetherian
(see Lemma \ref{lemma-local-cohomology-noetherian}).
\begin{lemma}
\label{lemma-adjoint}
Let $A$ be a ring and let $I \subset A$ be a finitely generated ideal.
The functor $R\Gamma_I$ is right adjoint to the functor
$D(I^\infty\text{-torsion}) \to D(A)$.
\end{lemma}
\begin{proof}
This follows from the fact that taking $I$-power torsion submodules
is the right adjoint to the inclusion functor
$I^\infty\text{-torsion} \to \text{Mod}_A$. See
Derived Categories, Lemma \ref{derived-lemma-derived-adjoint-functors}.
\end{proof}
\begin{lemma}
\label{lemma-local-cohomology-ext}
Let $A$ be a ring and let $I \subset A$ be a finitely generated ideal.
For any object $K$ of $D(A)$ we have
$$
R\Gamma_I(K) = \text{hocolim}\ R\Hom_A(A/I^n, K)
$$
in $D(A)$ and
$$
R^q\Gamma_I(K) = \colim_n \Ext_A^q(A/I^n, K)
$$
as modules for all $q \in \mathbf{Z}$.
\end{lemma}
\begin{proof}
Let $J^\bullet$ be a K-injective complex representing $K$. Then
$$
R\Gamma_I(K) = J^\bullet[I^\infty] = \colim J^\bullet[I^n] =
\colim \Hom_A(A/I^n, J^\bullet)
$$
where the first equality is the definition of $R\Gamma_I(K)$.
By Derived Categories, Lemma \ref{derived-lemma-colim-hocolim}
we obtain the first displayed equality in the statement of the lemma.
The second displayed equality in the statement of the lemma then
follows because $H^q(\Hom_A(A/I^n, J^\bullet)) = \Ext^q_A(A/I^n, K)$
and because filtered colimits are exact in the category of abelian
groups.
\end{proof}
\begin{lemma}
\label{lemma-bad-local-cohomology-vanishes}
Let $A$ be a ring and let $I \subset A$ be a finitely generated ideal.
Let $K^\bullet$ be a complex of $A$-modules such that
$f : K^\bullet \to K^\bullet$ is an isomorphism for some
$f \in I$, i.e., $K^\bullet$ is a complex of $A_f$-modules. Then
$R\Gamma_I(K^\bullet) = 0$.
\end{lemma}
\begin{proof}
Namely, in this case the cohomology modules of $R\Gamma_I(K^\bullet)$
are both $f$-power torsion and $f$ acts by automorphisms. Hence the
cohomology modules are zero and hence the object is zero.
\end{proof}
\noindent
Let $A$ be a ring and $I \subset A$ a finitely generated ideal.
By More on Algebra, Lemma \ref{more-algebra-lemma-I-power-torsion}
the category of $I$-power torsion modules is a Serre subcategory
of the category of all $A$-modules, hence there is a functor
\begin{equation}
\label{equation-compare-torsion}
D(I^\infty\text{-torsion}) \to D_{I^\infty\text{-torsion}}(A)
\end{equation}
see Derived Categories, Section \ref{derived-section-triangulated-sub}.
\begin{lemma}
\label{lemma-not-equal}
Let $A$ be a ring and let $I$ be a finitely generated ideal.
Let $M$ and $N$ be $I$-power torsion modules.
\begin{enumerate}
\item $\Hom_{D(A)}(M, N) = \Hom_{D({I^\infty\text{-torsion}})}(M, N)$,
\item $\Ext^1_{D(A)}(M, N) =
\Ext^1_{D({I^\infty\text{-torsion}})}(M, N)$,
\item $\Ext^2_{D({I^\infty\text{-torsion}})}(M, N) \to
\Ext^2_{D(A)}(M, N)$ is not surjective in general,
\item (\ref{equation-compare-torsion}) is not an equivalence in general.
\end{enumerate}
\end{lemma}
\begin{proof}
Parts (1) and (2) follow immediately from the fact that $I$-power torsion
forms a Serre subcategory of $\text{Mod}_A$. Part (4) follows from
part (3).
\medskip\noindent
For part (3) let $A$ be a ring with an element $f \in A$ such that
$A[f]$ contains a nonzero element $x$ annihilated by $f$ and
$A$ contains elements $x_n$ with $f^nx_n = x$. Such a ring $A$
exists because we can take
$$
A = \mathbf{Z}[f, x, x_n]/(fx, f^nx_n - x)
$$
Given $A$ set $I = (f)$. Then the exact sequence
$$
0 \to A[f] \to A \xrightarrow{f} A \to A/fA \to 0
$$
defines an element in $\Ext^2_A(A/fA, A[f])$. We claim this
element does not come from an element of
$\Ext^2_{D(f^\infty\text{-torsion})}(A/fA, A[f])$.
Namely, if it did, then there would be an exact sequence
$$
0 \to A[f] \to M \to N \to A/fA \to 0
$$
where $M$ and $N$ are $f$-power torsion modules defining the same
$2$ extension class. Since $A \to A$ is a complex of free modules
and since the $2$ extension classes are the same
we would be able to find a map
$$
\xymatrix{
0 \ar[r] &
A[f] \ar[r] \ar[d] &
A \ar[r] \ar[d]_\varphi &
A \ar[r] \ar[d]_\psi &
A/fA \ar[r] \ar[d] & 0 \\
0 \ar[r] &
A[f] \ar[r] &
M \ar[r] &
N \ar[r] &
A/fA \ar[r] & 0
}
$$
(some details omitted). Then we could replace $M$ by the image of
$\varphi$ and $N$ by the image of $\psi$. Then $M$ would be a cyclic
module, hence $f^n M = 0$ for some $n$. Considering $\varphi(x_{n + 1})$
we get a contradiction with the fact that $f^{n + 1}x_n = x$ is
nonzero in $A[f]$.
\end{proof}
\section{Local cohomology}
\label{section-local-cohomology}
\noindent
Let $A$ be a ring and let $I \subset A$ be a finitely generated ideal.
Set $Z = V(I) \subset \Spec(A)$. We will construct a functor
\begin{equation}
\label{equation-local-cohomology}
R\Gamma_Z : D(A) \longrightarrow D_{I^\infty\text{-torsion}}(A).
\end{equation}
which is right adjoint to the inclusion functor. For notation
see Section \ref{section-bad-local-cohomology}. The cohomology
modules of $R\Gamma_Z(K)$ are the {\it local cohomology groups
of $K$ with respect to $Z$}.
By Lemma \ref{lemma-not-equal} this functor will in general {\bf not} be
equal to $R\Gamma_I( - )$ even viewed as functors into $D(A)$.
In Section \ref{section-local-cohomology-noetherian}
we will show that if $A$ is Noetherian, then the two agree.
\medskip\noindent
We will continue the discussion of local cohomology in
the chapter on local cohomology, see
Local Cohomology, Section \ref{local-cohomology-section-introduction}.
For example, there we will show that $R\Gamma_Z$ computes cohomology
with support in $Z$ for the associated complex of quasi-coherent sheaves
on $\Spec(A)$. See Local Cohomology, Lemma
\ref{local-cohomology-lemma-local-cohomology-is-local-cohomology}.
\begin{lemma}
\label{lemma-local-cohomology-adjoint}
Let $A$ be a ring and let $I \subset A$ be a finitely generated ideal.
There exists a right adjoint $R\Gamma_Z$ (\ref{equation-local-cohomology})
to the inclusion functor $D_{I^\infty\text{-torsion}}(A) \to D(A)$.
In fact, if $I$ is generated by $f_1, \ldots, f_r \in A$, then we have
$$
R\Gamma_Z(K) =
(A \to \prod\nolimits_{i_0} A_{f_{i_0}} \to
\prod\nolimits_{i_0 < i_1} A_{f_{i_0}f_{i_1}}
\to \ldots \to A_{f_1\ldots f_r}) \otimes_A^\mathbf{L} K
$$
functorially in $K \in D(A)$.
\end{lemma}
\begin{proof}
Say $I = (f_1, \ldots, f_r)$ is an ideal.
Let $K^\bullet$ be a complex of $A$-modules.
There is a canonical map of complexes
$$
(A \to \prod\nolimits_{i_0} A_{f_{i_0}} \to
\prod\nolimits_{i_0 < i_1} A_{f_{i_0}f_{i_1}} \to
\ldots \to A_{f_1\ldots f_r}) \longrightarrow A.
$$
from the extended {\v C}ech complex to $A$.
Tensoring with $K^\bullet$, taking associated total complex,
we get a map
$$
\text{Tot}\left(
K^\bullet \otimes_A
(A \to \prod\nolimits_{i_0} A_{f_{i_0}} \to
\prod\nolimits_{i_0 < i_1} A_{f_{i_0}f_{i_1}} \to
\ldots \to A_{f_1\ldots f_r})\right)
\longrightarrow
K^\bullet
$$
in $D(A)$. We claim the cohomology modules of the complex on the left are
$I$-power torsion, i.e., the LHS is an object of
$D_{I^\infty\text{-torsion}}(A)$. Namely, we have
$$
(A \to \prod\nolimits_{i_0} A_{f_{i_0}} \to
\prod\nolimits_{i_0 < i_1} A_{f_{i_0}f_{i_1}} \to
\ldots \to A_{f_1\ldots f_r}) = \colim K(A, f_1^n, \ldots, f_r^n)
$$
by More on Algebra, Lemma
\ref{more-algebra-lemma-extended-alternating-Cech-is-colimit-koszul}.
Moreover, multiplication by $f_i^n$ on the complex
$K(A, f_1^n, \ldots, f_r^n)$ is homotopic to zero by
More on Algebra, Lemma \ref{more-algebra-lemma-homotopy-koszul}.
Since
$$
H^q\left( LHS \right) =
\colim H^q(\text{Tot}(K^\bullet \otimes_A K(A, f_1^n, \ldots, f_r^n)))
$$
we obtain our claim. On the other hand, if $K^\bullet$ is an
object of $D_{I^\infty\text{-torsion}}(A)$, then the complexes
$K^\bullet \otimes_A A_{f_{i_0} \ldots f_{i_p}}$ have vanishing
cohomology. Hence in this case the map $LHS \to K^\bullet$
is an isomorphism in $D(A)$. The construction
$$
R\Gamma_Z(K^\bullet) =
\text{Tot}\left(
K^\bullet \otimes_A
(A \to \prod\nolimits_{i_0} A_{f_{i_0}} \to
\prod\nolimits_{i_0 < i_1} A_{f_{i_0}f_{i_1}} \to
\ldots \to A_{f_1\ldots f_r})\right)
$$
is functorial in $K^\bullet$ and defines an exact functor
$D(A) \to D_{I^\infty\text{-torsion}}(A)$ between
triangulated categories. It follows formally from the
existence of the natural transformation $R\Gamma_Z \to \text{id}$
given above and the fact that this evaluates to an isomorphism
on $K^\bullet$ in the subcategory, that $R\Gamma_Z$ is the desired
right adjoint.
\end{proof}
\begin{lemma}
\label{lemma-local-cohomology-and-restriction}
Let $A \to B$ be a ring homomorphism and let $I \subset A$
be a finitely generated ideal. Set $J = IB$. Set $Z = V(I)$
and $Y = V(J)$. Then
$$
R\Gamma_Z(M_A) = R\Gamma_Y(M)_A
$$
functorially in $M \in D(B)$. Here $(-)_A$ denotes the restriction
functors $D(B) \to D(A)$ and
$D_{J^\infty\text{-torsion}}(B) \to D_{I^\infty\text{-torsion}}(A)$.
\end{lemma}
\begin{proof}
This follows from uniqueness of adjoint functors as both
$R\Gamma_Z((-)_A)$ and $R\Gamma_Y(-)_A$
are right adjoint to the functor $D_{I^\infty\text{-torsion}}(A) \to D(B)$,
$K \mapsto K \otimes_A^\mathbf{L} B$.
Alternatively, one can use the description of $R\Gamma_Z$ and $R\Gamma_Y$
in terms of alternating {\v C}ech complexes
(Lemma \ref{lemma-local-cohomology-adjoint}).
Namely, if $I = (f_1, \ldots, f_r)$ then $J$ is generated by the images
$g_1, \ldots, g_r \in B$ of $f_1, \ldots, f_r$.
Then the statement of the lemma follows from the existence of
a canonical isomorphism
\begin{align*}
& M_A \otimes_A (A \to \prod\nolimits_{i_0} A_{f_{i_0}} \to
\prod\nolimits_{i_0 < i_1} A_{f_{i_0}f_{i_1}}
\to \ldots \to A_{f_1\ldots f_r}) \\
& =
M \otimes_B (B \to \prod\nolimits_{i_0} B_{g_{i_0}} \to
\prod\nolimits_{i_0 < i_1} B_{g_{i_0}g_{i_1}}
\to \ldots \to B_{g_1\ldots g_r})
\end{align*}
for any $B$-module $M$.
\end{proof}
\begin{lemma}
\label{lemma-torsion-change-rings}
Let $A \to B$ be a ring homomorphism and let $I \subset A$
be a finitely generated ideal. Set $J = IB$. Let $Z = V(I)$ and $Y = V(J)$.
Then
$$
R\Gamma_Z(K) \otimes_A^\mathbf{L} B = R\Gamma_Y(K \otimes_A^\mathbf{L} B)
$$
functorially in $K \in D(A)$.
\end{lemma}
\begin{proof}
Write $I = (f_1, \ldots, f_r)$. Then $J$ is generated by the images
$g_1, \ldots, g_r \in B$ of $f_1, \ldots, f_r$. Then we have
$$
(A \to \prod A_{f_{i_0}} \to \ldots \to A_{f_1\ldots f_r}) \otimes_A B =
(B \to \prod B_{g_{i_0}} \to \ldots \to B_{g_1\ldots g_r})
$$
as complexes of $B$-modules. Represent $K$ by a K-flat complex $K^\bullet$
of $A$-modules. Since the total complexes associated to
$$
K^\bullet \otimes_A
(A \to \prod A_{f_{i_0}} \to \ldots \to A_{f_1\ldots f_r}) \otimes_A B
$$
and
$$
K^\bullet \otimes_A B \otimes_B
(B \to \prod B_{g_{i_0}} \to \ldots \to B_{g_1\ldots g_r})
$$
represent the left and right hand side of the displayed formula of the
lemma (see Lemma \ref{lemma-local-cohomology-adjoint}) we conclude.
\end{proof}
\begin{lemma}
\label{lemma-local-cohomology-vanishes}
Let $A$ be a ring and let $I \subset A$ be a finitely generated ideal.
Let $K^\bullet$ be a complex of $A$-modules such that
$f : K^\bullet \to K^\bullet$ is an isomorphism for some
$f \in I$, i.e., $K^\bullet$ is a complex of $A_f$-modules. Then
$R\Gamma_Z(K^\bullet) = 0$.
\end{lemma}
\begin{proof}
Namely, in this case the cohomology modules of $R\Gamma_Z(K^\bullet)$
are both $f$-power torsion and $f$ acts by automorphisms. Hence the
cohomology modules are zero and hence the object is zero.
\end{proof}
\begin{lemma}
\label{lemma-torsion-tensor-product}
Let $A$ be a ring and let $I \subset A$ be a finitely generated ideal.
For $K, L \in D(A)$ we have
$$
R\Gamma_Z(K \otimes_A^\mathbf{L} L) =
K \otimes_A^\mathbf{L} R\Gamma_Z(L) =
R\Gamma_Z(K) \otimes_A^\mathbf{L} L =
R\Gamma_Z(K) \otimes_A^\mathbf{L} R\Gamma_Z(L)
$$
If $K$ or $L$ is in $D_{I^\infty\text{-torsion}}(A)$ then so is
$K \otimes_A^\mathbf{L} L$.
\end{lemma}
\begin{proof}
By Lemma \ref{lemma-local-cohomology-adjoint} we know that
$R\Gamma_Z$ is given by $C \otimes^\mathbf{L} -$ for some $C \in D(A)$.
Hence, for $K, L \in D(A)$ general we have
$$
R\Gamma_Z(K \otimes_A^\mathbf{L} L) =
K \otimes^\mathbf{L} L \otimes_A^\mathbf{L} C =
K \otimes_A^\mathbf{L} R\Gamma_Z(L)
$$
The other equalities follow formally from this one. This also implies
the last statement of the lemma.
\end{proof}
\begin{lemma}
\label{lemma-local-cohomology-ss}
Let $A$ be a ring and let $I, J \subset A$ be finitely generated
ideals. Set $Z = V(I)$ and $Y = V(J)$. Then $Z \cap Y = V(I + J)$
and $R\Gamma_Y \circ R\Gamma_Z = R\Gamma_{Y \cap Z}$ as functors
$D(A) \to D_{(I + J)^\infty\text{-torsion}}(A)$. For $K \in D^+(A)$
there is a spectral sequence
$$
E_2^{p, q} = H^p_Y(H^q_Z(K)) \Rightarrow H^{p + q}_{Y \cap Z}(K)
$$
as in Derived Categories, Lemma
\ref{derived-lemma-grothendieck-spectral-sequence}.
\end{lemma}
\begin{proof}
There is a bit of abuse of notation in the lemma as strictly
speaking we cannot compose $R\Gamma_Y$ and $R\Gamma_Z$. The
meaning of the statement is simply that we are composing
$R\Gamma_Z$ with the inclusion $D_{I^\infty\text{-torsion}}(A) \to D(A)$
and then with $R\Gamma_Y$. Then the equality
$R\Gamma_Y \circ R\Gamma_Z = R\Gamma_{Y \cap Z}$
follows from the fact that
$$
D_{I^\infty\text{-torsion}}(A) \to D(A) \xrightarrow{R\Gamma_Y}
D_{(I + J)^\infty\text{-torsion}}(A)
$$
is right adjoint to the inclusion
$D_{(I + J)^\infty\text{-torsion}}(A) \to D_{I^\infty\text{-torsion}}(A)$.
Alternatively one can prove the formula using
Lemma \ref{lemma-local-cohomology-adjoint}
and the fact that the tensor product of
extended {\v C}ech complexes on $f_1, \ldots, f_r$ and
$g_1, \ldots, g_m$ is the extended {\v C}ech complex on
$f_1, \ldots, f_n. g_1, \ldots, g_m$.
The final assertion follows from this and the cited lemma.
\end{proof}
\noindent
The following lemma is the analogue of
More on Algebra, Lemma
\ref{more-algebra-lemma-restriction-derived-complete-equivalence}
for complexes with torsion cohomologies.
\begin{lemma}
\label{lemma-torsion-flat-change-rings}
Let $A \to B$ be a flat ring map and let $I \subset A$ be a finitely
generated ideal such that $A/I = B/IB$. Then base change and
restriction induce quasi-inverse equivalences
$D_{I^\infty\text{-torsion}}(A) = D_{(IB)^\infty\text{-torsion}}(B)$.
\end{lemma}
\begin{proof}
More precisely the functors are $K \mapsto K \otimes_A^\mathbf{L} B$
for $K$ in $D_{I^\infty\text{-torsion}}(A)$ and $M \mapsto M_A$
for $M$ in $D_{(IB)^\infty\text{-torsion}}(B)$. The reason this works
is that $H^i(K \otimes_A^\mathbf{L} B) = H^i(K) \otimes_A B = H^i(K)$.
The first equality holds as $A \to B$ is flat and the second by
More on Algebra, Lemma \ref{more-algebra-lemma-neighbourhood-isomorphism}.
\end{proof}
\noindent
The following lemma was shown for $\Hom$ and $\Ext^1$ of modules in
More on Algebra, Lemmas \ref{more-algebra-lemma-neighbourhood-equivalence} and
\ref{more-algebra-lemma-neighbourhood-extensions}.
\begin{lemma}
\label{lemma-neighbourhood-extensions}
Let $A \to B$ be a flat ring map and let $I \subset A$ be a
finitely generated ideal such that $A/I \to B/IB$ is an isomorphism.
For $K \in D_{I^\infty\text{-torsion}}(A)$ and $L \in D(A)$
the map
$$
R\Hom_A(K, L) \longrightarrow R\Hom_B(K \otimes_A B, L \otimes_A B)
$$
is a quasi-isomorphism. In particular, if $M$, $N$ are $A$-modules and
$M$ is $I$-power torsion, then the canonical map
$$
\Ext^i_A(M, N)
\longrightarrow
\Ext^i_B(M \otimes_A B, N \otimes_A B)
$$
is an isomorphism for all $i$.
\end{lemma}
\begin{proof}
Let $Z = V(I) \subset \Spec(A)$ and $Y = V(IB) \subset \Spec(B)$.
Since the cohomology modules of $K$ are $I$ power torsion, the
canonical map $R\Gamma_Z(L) \to L$ induces an isomorphism
$$
R\Hom_A(K, R\Gamma_Z(L)) \to R\Hom_A(K, L)
$$
in $D(A)$. Similarly, the cohomology modules of $K \otimes_A B$ are
$IB$ power torsion and we have an isomorphism
$$
R\Hom_B(K \otimes_A B, R\Gamma_Y(L \otimes_A B)) \to
R\Hom_B(K \otimes_A B, L \otimes_A B)
$$
in $D(B)$.
By Lemma \ref{lemma-torsion-change-rings} we have
$R\Gamma_Z(L) \otimes_A B = R\Gamma_Y(L \otimes_A B)$.
Hence it suffices to show that the map
$$
R\Hom_A(K, R\Gamma_Z(L)) \to R\Hom_B(K \otimes_A B, R\Gamma_Z(L) \otimes_A B)
$$
is a quasi-isomorphism. This follows from
Lemma \ref{lemma-torsion-flat-change-rings}.
\end{proof}
\section{Local cohomology for Noetherian rings}
\label{section-local-cohomology-noetherian}
\noindent
Let $A$ be a ring and let $I \subset A$ be a finitely generated ideal.
Set $Z = V(I) \subset \Spec(A)$. Recall that (\ref{equation-compare-torsion})
is the functor
$$
D(I^\infty\text{-torsion}) \to D_{I^\infty\text{-torsion}}(A)
$$
In fact, there is a natural transformation of functors
\begin{equation}
\label{equation-compare-torsion-functors}
(\ref{equation-compare-torsion}) \circ R\Gamma_I(-)
\longrightarrow
R\Gamma_Z(-)
\end{equation}
Namely, given a complex of $A$-modules $K^\bullet$ the canonical map
$R\Gamma_I(K^\bullet) \to K^\bullet$ in $D(A)$ factors (uniquely)
through $R\Gamma_Z(K^\bullet)$ as $R\Gamma_I(K^\bullet)$ has
$I$-power torsion cohomology modules (see Lemma \ref{lemma-adjoint}).
In general this map is not an isomorphism (we've seen this in
Lemma \ref{lemma-not-equal}).
\begin{lemma}
\label{lemma-local-cohomology-noetherian}
Let $A$ be a Noetherian ring and let $I \subset A$ be an ideal.
\begin{enumerate}
\item the adjunction $R\Gamma_I(K) \to K$ is an isomorphism
for $K \in D_{I^\infty\text{-torsion}}(A)$,
\item the functor
(\ref{equation-compare-torsion})
$D(I^\infty\text{-torsion}) \to D_{I^\infty\text{-torsion}}(A)$
is an equivalence,
\item the transformation of functors
(\ref{equation-compare-torsion-functors}) is an isomorphism,
in other words $R\Gamma_I(K) = R\Gamma_Z(K)$ for $K \in D(A)$.
\end{enumerate}
\end{lemma}
\begin{proof}
A formal argument, which we omit, shows that it suffices to prove (1).
\medskip\noindent
Let $M$ be an $I$-power torsion $A$-module. Choose an embedding
$M \to J$ into an injective $A$-module. Then $J[I^\infty]$ is
an injective $A$-module, see Lemma \ref{lemma-injective-module-divide},
and we obtain an embedding $M \to J[I^\infty]$.
Thus every $I$-power torsion module has an injective resolution
$M \to J^\bullet$ with $J^n$ also $I$-power torsion. It follows
that $R\Gamma_I(M) = M$ (this is not a triviality and this is not
true in general if $A$ is not Noetherian). Next, suppose that
$K \in D_{I^\infty\text{-torsion}}^+(A)$. Then the spectral sequence
$$
R^q\Gamma_I(H^p(K)) \Rightarrow R^{p + q}\Gamma_I(K)
$$
(Derived Categories, Lemma \ref{derived-lemma-two-ss-complex-functor})
converges and above we have seen that only the terms with $q = 0$
are nonzero. Thus we see that $R\Gamma_I(K) \to K$ is an isomorphism.
\medskip\noindent
Suppose $K$ is an arbitrary object of $D_{I^\infty\text{-torsion}}(A)$.
We have
$$
R^q\Gamma_I(K) = \colim \Ext^q_A(A/I^n, K)
$$
by Lemma \ref{lemma-local-cohomology-ext}. Choose $f_1, \ldots, f_r \in A$
generating $I$. Let $K_n^\bullet = K(A, f_1^n, \ldots, f_r^n)$ be the
Koszul complex with terms in degrees $-r, \ldots, 0$. Since the
pro-objects $\{A/I^n\}$ and $\{K_n^\bullet\}$ in $D(A)$ are the same by
More on Algebra, Lemma \ref{more-algebra-lemma-sequence-Koszul-complexes},
we see that
$$
R^q\Gamma_I(K) = \colim \Ext^q_A(K_n^\bullet, K)
$$
Pick any complex $K^\bullet$ of $A$-modules representing $K$.
Since $K_n^\bullet$ is a finite complex of finite free modules we see
that
$$
\Ext^q_A(K_n, K) =
H^q(\text{Tot}((K_n^\bullet)^\vee \otimes_A K^\bullet))
$$
where $(K_n^\bullet)^\vee$ is the dual of the complex $K_n^\bullet$.
See More on Algebra, Lemma \ref{more-algebra-lemma-RHom-out-of-projective}.
As $(K_n^\bullet)^\vee$ is a complex of finite free $A$-modules sitting
in degrees $0, \ldots, r$ we see that the terms of the complex
$\text{Tot}((K_n^\bullet)^\vee \otimes_A K^\bullet)$ are the
same as the terms of the complex
$\text{Tot}((K_n^\bullet)^\vee \otimes_A \tau_{\geq q - r - 2} K^\bullet)$
in degrees $q - 1$ and higher. Hence we see that
$$
\Ext^q_A(K_n, K) = \text{Ext}^q_A(K_n, \tau_{\geq q - r - 2}K)
$$
for all $n$. It follows that
$$
R^q\Gamma_I(K) = R^q\Gamma_I(\tau_{\geq q - r - 2}K) =
H^q(\tau_{\geq q - r - 2}K) = H^q(K)
$$
Thus we see that the map $R\Gamma_I(K) \to K$ is an isomorphism.
\end{proof}
\begin{lemma}
\label{lemma-compute-local-cohomology-noetherian}
Let $A$ be a Noetherian ring and let $I = (f_1, \ldots, f_r)$ be an ideal
of $A$. Set $Z = V(I) \subset \Spec(A)$. There are canonical isomorphisms
$$
R\Gamma_I(A) \to
(A \to \prod\nolimits_{i_0} A_{f_{i_0}} \to
\prod\nolimits_{i_0 < i_1} A_{f_{i_0}f_{i_1}} \to
\ldots \to A_{f_1\ldots f_r}) \to R\Gamma_Z(A)
$$
in $D(A)$. If $M$ is an $A$-module, then we have similarly
$$
R\Gamma_I(M) \cong
(M \to \prod\nolimits_{i_0} M_{f_{i_0}} \to
\prod\nolimits_{i_0 < i_1} M_{f_{i_0}f_{i_1}} \to
\ldots \to M_{f_1\ldots f_r}) \cong R\Gamma_Z(M)
$$
in $D(A)$.
\end{lemma}
\begin{proof}
This follows from Lemma \ref{lemma-local-cohomology-noetherian}
and the computation of the functor $R\Gamma_Z$ in
Lemma \ref{lemma-local-cohomology-adjoint}.
\end{proof}
\begin{lemma}
\label{lemma-local-cohomology-change-rings}
If $A \to B$ is a homomorphism of Noetherian rings and $I \subset A$
is an ideal, then in $D(B)$ we have
$$
R\Gamma_I(A) \otimes_A^\mathbf{L} B =
R\Gamma_Z(A) \otimes_A^\mathbf{L} B =
R\Gamma_Y(B) = R\Gamma_{IB}(B)
$$
where $Y = V(IB) \subset \Spec(B)$.
\end{lemma}
\begin{proof}
Combine Lemmas \ref{lemma-compute-local-cohomology-noetherian} and
\ref{lemma-torsion-change-rings}.
\end{proof}
\section{Depth}
\label{section-depth}
\noindent
In this section we revisit the notion of depth introduced in
Algebra, Section \ref{algebra-section-depth}.
\begin{lemma}
\label{lemma-depth}
Let $A$ be a Noetherian ring, let $I \subset A$ be an ideal, and
let $M$ be a finite $A$-module such that $IM \not = M$. Then
the following integers are equal:
\begin{enumerate}
\item $\text{depth}_I(M)$,
\item the smallest integer $i$ such that $\Ext_A^i(A/I, M)$
is nonzero, and
\item the smallest integer $i$ such that $H^i_I(M)$ is nonzero.
\end{enumerate}
Moreover, we have $\Ext^i_A(N, M) = 0$ for $i < \text{depth}_I(M)$
for any finite $A$-module $N$ annihilated by a power of $I$.
\end{lemma}
\begin{proof}
We prove the equality of (1) and (2) by induction on $\text{depth}_I(M)$
which is allowed by
Algebra, Lemma \ref{algebra-lemma-depth-finite-noetherian}.
\medskip\noindent
Base case. If $\text{depth}_I(M) = 0$, then $I$ is contained in the union
of the associated primes of $M$
(Algebra, Lemma \ref{algebra-lemma-ass-zero-divisors}).
By prime avoidance (Algebra, Lemma \ref{algebra-lemma-silly})
we see that $I \subset \mathfrak p$ for some associated prime $\mathfrak p$.
Hence $\Hom_A(A/I, M)$
is nonzero. Thus equality holds in this case.
\medskip\noindent
Assume that $\text{depth}_I(M) > 0$. Let $f \in I$ be a nonzerodivisor
on $M$ such that $\text{depth}_I(M/fM) = \text{depth}_I(M) - 1$.
Consider the short exact sequence
$$
0 \to M \to M \to M/fM \to 0
$$
and the associated long exact sequence for $\Ext^*_A(A/I, -)$.
Note that $\Ext^i_A(A/I, M)$ is a finite $A/I$-module
(Algebra, Lemmas \ref{algebra-lemma-ext-noetherian} and
\ref{algebra-lemma-annihilate-ext}). Hence we obtain
$$
\Hom_A(A/I, M/fM) = \Ext^1_A(A/I, M)
$$
and short exact sequences
$$
0 \to \Ext^i_A(A/I, M) \to \text{Ext}^i_A(A/I, M/fM) \to
\Ext^{i + 1}_A(A/I, M) \to 0
$$
Thus the equality of (1) and (2) by induction.
\medskip\noindent
Observe that $\text{depth}_I(M) = \text{depth}_{I^n}(M)$ for all $n \geq 1$
for example by Algebra, Lemma \ref{algebra-lemma-regular-sequence-powers}.
Hence by the equality of (1) and (2) we see that
$\Ext^i_A(A/I^n, M) = 0$ for all $n$ and $i < \text{depth}_I(M)$.
Let $N$ be a finite $A$-module annihilated by a power of $I$.
Then we can choose a short exact sequence
$$
0 \to N' \to (A/I^n)^{\oplus m} \to N \to 0
$$
for some $n, m \geq 0$. Then
$\Hom_A(N, M) \subset \Hom_A((A/I^n)^{\oplus m}, M)$
and
$\Ext^i_A(N, M) \subset \text{Ext}^{i - 1}_A(N', M)$
for $i < \text{depth}_I(M)$. Thus a simply induction argument
shows that the final statement of the lemma holds.
\medskip\noindent
Finally, we prove that (3) is equal to (1) and (2).
We have $H^p_I(M) = \colim \Ext^p_A(A/I^n, M)$ by
Lemma \ref{lemma-local-cohomology-ext}.
Thus we see that $H^i_I(M) = 0$ for $i < \text{depth}_I(M)$.
For $i = \text{depth}_I(M)$, using the vanishing of
$\Ext_A^{i - 1}(I/I^n, M)$ we see that the map
$\Ext_A^i(A/I, M) \to H_I^i(M)$ is injective which
proves nonvanishing in the correct degree.
\end{proof}
\begin{lemma}
\label{lemma-depth-in-ses}
Let $A$ be a Noetherian ring. Let $0 \to N' \to N \to N'' \to 0$
be a short exact sequence of finite $A$-modules.
Let $I \subset A$ be an ideal.
\begin{enumerate}
\item
$\text{depth}_I(N) \geq \min\{\text{depth}_I(N'), \text{depth}_I(N'')\}$
\item
$\text{depth}_I(N'') \geq \min\{\text{depth}_I(N), \text{depth}_I(N') - 1\}$
\item
$\text{depth}_I(N') \geq \min\{\text{depth}_I(N), \text{depth}_I(N'') + 1\}$
\end{enumerate}
\end{lemma}
\begin{proof}
Assume $IN \not = N$, $IN' \not = N'$, and $IN'' \not = N''$. Then we
can use the characterization of depth using the Ext groups
$\Ext^i(A/I, N)$, see Lemma \ref{lemma-depth},
and use the long exact cohomology sequence
$$
\begin{matrix}
0
\to \Hom_A(A/I, N')
\to \Hom_A(A/I, N)
\to \Hom_A(A/I, N'')
\\
\phantom{0\ }
\to \Ext^1_A(A/I, N')
\to \Ext^1_A(A/I, N)
\to \Ext^1_A(A/I, N'')
\to \ldots
\end{matrix}
$$
from Algebra, Lemma \ref{algebra-lemma-long-exact-seq-ext}.
This argument also works if $IN = N$
because in this case $\Ext^i_A(A/I, N) = 0$ for all $i$.
Similarly in case $IN' \not = N'$ and/or $IN'' \not = N''$.
\end{proof}
\begin{lemma}
\label{lemma-depth-drops-by-one}
Let $A$ be a Noetherian ring, let $I \subset A$ be an ideal, and
let $M$ a finite $A$-module with $IM \not = M$.
\begin{enumerate}
\item If $x \in I$ is a nonzerodivisor on $M$, then
$\text{depth}_I(M/xM) = \text{depth}_I(M) - 1$.
\item Any $M$-regular sequence $x_1, \ldots, x_r$ in $I$ can be extended to an
$M$-regular sequence in $I$ of length $\text{depth}_I(M)$.
\end{enumerate}
\end{lemma}
\begin{proof}
Part (2) is a formal consequence of part (1). Let $x \in I$ be as in (1).
By the short exact sequence $0 \to M \to M \to M/xM \to 0$ and
Lemma \ref{lemma-depth-in-ses} we see that
$\text{depth}_I(M/xM) \geq \text{depth}_I(M) - 1$.
On the other hand, if $x_1, \ldots, x_r \in I$
is a regular sequence for $M/xM$, then $x, x_1, \ldots, x_r$
is a regular sequence for $M$. Hence (1) holds.
\end{proof}
\begin{lemma}
\label{lemma-depth-CM}
Let $R$ be a Noetherian local ring. If $M$ is a finite Cohen-Macaulay
$R$-module and $I \subset R$ a nontrivial ideal. Then
$$
\text{depth}_I(M) = \dim(\text{Supp}(M)) - \dim(\text{Supp}(M/IM)).
$$
\end{lemma}
\begin{proof}
We will prove this by induction on $\text{depth}_I(M)$.
\medskip\noindent
If $\text{depth}_I(M) = 0$, then $I$ is contained in one
of the associated primes $\mathfrak p$ of $M$
(Algebra, Lemma \ref{algebra-lemma-ideal-nonzerodivisor}).
Then $\mathfrak p \in \text{Supp}(M/IM)$, hence
$\dim(\text{Supp}(M/IM)) \geq \dim(R/\mathfrak p) = \dim(\text{Supp}(M))$
where equality holds by
Algebra, Lemma \ref{algebra-lemma-CM-ass-minimal-support}.
Thus the lemma holds in this case.
\medskip\noindent
If $\text{depth}_I(M) > 0$, we pick $x \in I$ which is a
nonzerodivisor on $M$. Note that $(M/xM)/I(M/xM) = M/IM$.
On the other hand we have
$\text{depth}_I(M/xM) = \text{depth}_I(M) - 1$
by Lemma \ref{lemma-depth-drops-by-one}
and $\dim(\text{Supp}(M/xM)) = \dim(\text{Supp}(M)) - 1$
by Algebra, Lemma \ref{algebra-lemma-one-equation-module}.
Thus the result by induction hypothesis.
\end{proof}
\begin{lemma}
\label{lemma-depth-flat-CM}
Let $R \to S$ be a flat local ring homomorphism of Noetherian local
rings. Denote $\mathfrak m \subset R$ the maximal ideal.
Let $I \subset S$ be an ideal.
If $S/\mathfrak mS$ is Cohen-Macaulay, then
$$
\text{depth}_I(S) \geq \dim(S/\mathfrak mS) - \dim(S/\mathfrak mS + I)
$$
\end{lemma}
\begin{proof}
By Algebra, Lemma \ref{algebra-lemma-grothendieck-regular-sequence}
any sequence in $S$ which maps to a regular sequence in $S/\mathfrak mS$
is a regular sequence in $S$. Thus it suffices to prove the lemma
in case $R$ is a field. This is a special case of Lemma \ref{lemma-depth-CM}.
\end{proof}
\begin{lemma}
\label{lemma-divide-by-torsion}
Let $A$ be a ring and let $I \subset A$ be a finitely generated ideal.
Let $M$ be an $A$-module. Let $Z = V(I)$.
Then $H^0_I(M) = H^0_Z(M)$. Let $N$ be the common value and
set $M' = M/N$. Then
\begin{enumerate}
\item $H^0_I(M') = 0$ and $H^p_I(M) = H^p_I(M')$ and $H^p_I(N) = 0$
for all $p > 0$,
\item $H^0_Z(M') = 0$ and $H^p_Z(M) = H^p_Z(M')$ and $H^p_Z(N) = 0$
for all $p > 0$.
\end{enumerate}
\end{lemma}
\begin{proof}
By definition $H^0_I(M) = M[I^\infty]$ is $I$-power torsion.
By Lemma \ref{lemma-local-cohomology-adjoint} we see that
$$
H^0_Z(M) = \Ker(M \longrightarrow M_{f_1} \times \ldots \times M_{f_r})
$$
if $I = (f_1, \ldots, f_r)$. Thus $H^0_I(M) \subset H^0_Z(M)$ and
conversely, if $x \in H^0_Z(M)$, then it is annihilated by a $f_i^{e_i}$
for some $e_i \geq 1$ hence annihilated by some power of $I$.
This proves the first equality and moreover $N$ is $I$-power torsion.
By Lemma \ref{lemma-adjoint} we see that $R\Gamma_I(N) = N$.
By Lemma \ref{lemma-local-cohomology-adjoint} we see that $R\Gamma_Z(N) = N$.
This proves the higher vanishing of $H^p_I(N)$ and $H^p_Z(N)$ in (1) and (2).
The vanishing of $H^0_I(M')$ and $H^0_Z(M')$ follow from the preceding
remarks and the fact that $M'$ is $I$-power torsion free by
More on Algebra, Lemma \ref{more-algebra-lemma-divide-by-torsion}.
The equality of higher cohomologies for $M$ and $M'$ follow
immediately from the long exact cohomology sequence.
\end{proof}
\section{Torsion versus complete modules}
\label{section-torsion-and-complete}
\noindent
Let $A$ be a ring and let $I$ be a finitely generated ideal.
In this case we can consider the derived category
$D_{I^\infty\text{-torsion}}(A)$ of complexes
with $I$-power torsion cohomology modules
(Section \ref{section-local-cohomology})
and the derived category
$D_{comp}(A, I)$ of derived complete complexes
(More on Algebra, Section \ref{more-algebra-section-derived-completion}).
In this section we show these categories are equivalent.
A more general statement can be found in
\cite{Dwyer-Greenlees}.
\begin{lemma}
\label{lemma-complete-and-local}
\begin{slogan}
Results of this nature are sometimes referred to as Greenlees-May duality.
\end{slogan}
Let $A$ be a ring and let $I$ be a finitely generated ideal.
Let $R\Gamma_Z$ be as in Lemma \ref{lemma-local-cohomology-adjoint}.
Let ${\ }^\wedge$ denote derived completion as in
More on Algebra, Lemma \ref{more-algebra-lemma-derived-completion}.
For an object $K$ in $D(A)$ we have
$$
R\Gamma_Z(K^\wedge) = R\Gamma_Z(K)
\quad\text{and}\quad
(R\Gamma_Z(K))^\wedge = K^\wedge
$$
in $D(A)$.
\end{lemma}
\begin{proof}
Choose $f_1, \ldots, f_r \in A$ generating $I$. Recall that
$$
K^\wedge = R\Hom_A\left((A \to \prod A_{f_{i_0}}
\to \prod A_{f_{i_0i_1}} \to \ldots \to A_{f_1 \ldots f_r}), K\right)
$$
by More on Algebra, Lemma \ref{more-algebra-lemma-derived-completion}.
Hence the cone $C = \text{Cone}(K \to K^\wedge)$
is given by
$$
R\Hom_A\left((\prod A_{f_{i_0}}
\to \prod A_{f_{i_0i_1}} \to \ldots \to A_{f_1 \ldots f_r}), K\right)
$$
which can be represented by a complex endowed with a finite filtration
whose successive quotients are isomorphic to
$$
R\Hom_A(A_{f_{i_0} \ldots f_{i_p}}, K), \quad p > 0
$$
These complexes vanish on applying $R\Gamma_Z$, see
Lemma \ref{lemma-local-cohomology-vanishes}. Applying $R\Gamma_Z$
to the distinguished triangle $K \to K^\wedge \to C \to K[1]$
we see that the first formula of the lemma is correct.
\medskip\noindent
Recall that
$$
R\Gamma_Z(K) =
K \otimes^\mathbf{L} (A \to \prod A_{f_{i_0}}
\to \prod A_{f_{i_0i_1}} \to \ldots \to A_{f_1 \ldots f_r})
$$
by Lemma \ref{lemma-local-cohomology-adjoint}.
Hence the cone $C = \text{Cone}(R\Gamma_Z(K) \to K)$
can be represented by a complex endowed with a finite filtration
whose successive quotients are isomorphic to
$$
K \otimes_A A_{f_{i_0} \ldots f_{i_p}}, \quad p > 0
$$
These complexes vanish on applying ${\ }^\wedge$, see
More on Algebra, Lemma \ref{more-algebra-lemma-derived-completion-vanishes}.
Applying derived completion to the distinguished triangle
$R\Gamma_Z(K) \to K \to C \to R\Gamma_Z(K)[1]$
we see that the second formula of the lemma is correct.
\end{proof}
\noindent
The following result is a special case of a very general phenomenon
concerning admissible subcategories of a triangulated category.
\begin{proposition}
\label{proposition-torsion-complete}
\begin{reference}
This is a special case of \cite[Theorem 1.1]{Porta-Liran-Yekutieli}.
\end{reference}
Let $A$ be a ring and let $I \subset A$ be a finitely generated ideal.
The functors $R\Gamma_Z$ and ${\ }^\wedge$
define quasi-inverse equivalences of categories
$$
D_{I^\infty\text{-torsion}}(A) \leftrightarrow D_{comp}(A, I)
$$
\end{proposition}
\begin{proof}
Follows immediately from Lemma \ref{lemma-complete-and-local}.
\end{proof}
\noindent
The following addendum of the proposition above makes the
correspondence on morphisms more precise.
\begin{lemma}
\label{lemma-compare-RHom}
With notation as in Lemma \ref{lemma-complete-and-local}.
For objects $K, L$ in $D(A)$ there is a canonical isomorphism
$$
R\Hom_A(K^\wedge, L^\wedge) \longrightarrow R\Hom_A(R\Gamma_Z(K), R\Gamma_Z(L))
$$
in $D(A)$.
\end{lemma}
\begin{proof}
Say $I = (f_1, \ldots, f_r)$. Denote
$C = (A \to \prod A_{f_i} \to \ldots \to A_{f_1 \ldots f_r})$ the
alternating {\v C}ech complex. Then derived completion is given by
$R\Hom_A(C, -)$ (More on Algebra, Lemma
\ref{more-algebra-lemma-derived-completion}) and local cohomology by
$C \otimes^\mathbf{L} -$ (Lemma \ref{lemma-local-cohomology-adjoint}).
Combining the isomorphism
$$
R\Hom_A(K \otimes^\mathbf{L} C, L \otimes^\mathbf{L} C) =
R\Hom_A(K, R\Hom_A(C, L \otimes^\mathbf{L} C))
$$
(More on Algebra, Lemma \ref{more-algebra-lemma-internal-hom})
and the map
$$
L \to R\Hom_A(C, L \otimes^\mathbf{L} C)
$$
(More on Algebra, Lemma \ref{more-algebra-lemma-internal-hom-diagonal})
we obtain a map
$$
\gamma :
R\Hom_A(K, L)
\longrightarrow
R\Hom_A(K \otimes^\mathbf{L} C, L \otimes^\mathbf{L} C)
$$
On the other hand, the right hand side is derived complete as it is
equal to
$$
R\Hom_A(C, R\Hom_A(K, L \otimes^\mathbf{L} C)).
$$
Thus $\gamma$ factors through the derived completion of
$R\Hom_A(K, L)$ by the universal property of derived completion.
However, the derived completion goes inside the $R\Hom_A$ by
More on Algebra, Lemma \ref{more-algebra-lemma-completion-RHom}
and we obtain the desired map.
\medskip\noindent
To show that the map of the lemma is an isomorphism
we may assume that $K$ and $L$ are derived complete, i.e.,
$K = K^\wedge$ and $L = L^\wedge$. In this case we are
looking at the map
$$
\gamma : R\Hom_A(K, L) \longrightarrow R\Hom_A(R\Gamma_Z(K), R\Gamma_Z(L))
$$
By Proposition \ref{proposition-torsion-complete} we know that
the cohomology groups
of the left and the right hand side coincide. In other words,
we have to check that the map $\gamma$ sends a morphism
$\alpha : K \to L$ in $D(A)$ to the morphism
$R\Gamma_Z(\alpha) : R\Gamma_Z(K) \to R\Gamma_Z(L)$.
We omit the verification (hint: note that $R\Gamma_Z(\alpha)$
is just the map
$\alpha \otimes \text{id}_C :
K \otimes^\mathbf{L} C
\to
L \otimes^\mathbf{L} C$ which is almost the same as the
construction of the map in
More on Algebra, Lemma \ref{more-algebra-lemma-internal-hom-diagonal}).
\end{proof}
\begin{lemma}
\label{lemma-completion-local}
Let $I$ and $J$ be ideals in a Noetherian ring $A$. Let $M$ be a finite
$A$-module. Set $Z =V(J)$. Consider the derived $I$-adic completion
$R\Gamma_Z(M)^\wedge$ of local cohomology. Then
\begin{enumerate}
\item we have $R\Gamma_Z(M)^\wedge = R\lim R\Gamma_Z(M/I^nM)$, and
\item there are short exact sequences
$$
0 \to R^1\lim H^{i - 1}_Z(M/I^nM) \to H^i(R\Gamma_Z(M)^\wedge) \to
\lim H^i_Z(M/I^nM) \to 0
$$
\end{enumerate}
In particular $R\Gamma_Z(M)^\wedge$ has vanishing cohomology
in negative degrees.
\end{lemma}
\begin{proof}
Suppose that $J = (g_1, \ldots, g_m)$.
Then $R\Gamma_Z(M)$ is computed by the complex
$$
M \to \prod M_{g_{j_0}} \to \prod M_{g_{j_0}g_{j_1}} \to
\ldots \to M_{g_1g_2\ldots g_m}
$$
by Lemma \ref{lemma-local-cohomology-adjoint}.
By More on Algebra, Lemma
\ref{more-algebra-lemma-when-derived-completion-is-completion}
the derived $I$-adic completion of
this complex is given by the complex
$$
\lim M/I^nM \to \prod \lim (M/I^nM)_{g_{j_0}} \to
\ldots \to \lim (M/I^nM)_{g_1g_2\ldots g_m}
$$
of usual completions. Since $R\Gamma_Z(M/I^nM)$ is computed by
the complex $ M/I^nM \to \prod (M/I^nM)_{g_{j_0}} \to
\ldots \to (M/I^nM)_{g_1g_2\ldots g_m}$ and since the
transition maps between these complexes are surjective,
we conclude that (1) holds by
More on Algebra, Lemma \ref{more-algebra-lemma-compute-Rlim-modules}.
Part (2) then follows from More on Algebra, Lemma
\ref{more-algebra-lemma-break-long-exact-sequence-modules}.
\end{proof}
\begin{lemma}
\label{lemma-completion-local-H0}
With notation and hypotheses as in Lemma \ref{lemma-completion-local}
assume $A$ is $I$-adically complete. Then
$$
H^0(R\Gamma_Z(M)^\wedge) = \colim H^0_{V(J')}(M)
$$
where the filtered colimit is over $J' \subset J$ such that
$V(J') \cap V(I) = V(J) \cap V(I)$.
\end{lemma}
\begin{proof}
Since $M$ is a finite $A$-module, we have that $M$ is $I$-adically complete.
The proof of Lemma \ref{lemma-completion-local} shows that
$$
H^0(R\Gamma_Z(M)^\wedge) =
\Ker(M^\wedge \to \prod M_{g_j}^\wedge) =
\Ker(M \to \prod M_{g_j}^\wedge)
$$
where on the right hand side we have usual $I$-adic completion.
The kernel $K_j$ of $M_{g_j} \to M_{g_j}^\wedge$ is $\bigcap I^n M_{g_j}$.
By Algebra, Lemma \ref{algebra-lemma-intersection-powers-ideal-module}
for every $\mathfrak p \in V(IA_{g_j})$ we find an
$f \in A_{g_j}$, $f \not \in \mathfrak p$ such that $(K_j)_f = 0$.
\medskip\noindent
Let $s \in H^0(R\Gamma_Z(M)^\wedge)$.
By the above we may think of $s$ as an element of $M$.
The support $Z'$ of $s$ intersected with $D(g_j)$ is disjoint from
$D(g_j) \cap V(I)$ by the arguments above.
Thus $Z'$ is a closed subset of $\Spec(A)$ with $Z' \cap V(I) \subset V(J)$.
Then $Z' \cup V(J) = V(J')$ for some ideal $J' \subset J$ with
$V(J') \cap V(I) \subset V(J)$ and we have $s \in H^0_{V(J')}(M)$.
Conversely, any $s \in H^0_{V(J')}(M)$ with $J' \subset J$ and
$V(J') \cap V(I) \subset V(J)$ maps to zero in $M_{g_j}^\wedge$ for all $j$.
This proves the lemma.
\end{proof}
\section{Trivial duality for a ring map}
\label{section-trivial}
\noindent
Let $A \to B$ be a ring homomorphism. Consider the functor
$$
\Hom_A(B, -) : \text{Mod}_A \longrightarrow \text{Mod}_B,\quad
M \longmapsto \Hom_A(B, M)
$$
This functor is left exact and has a derived extension
$R\Hom(B, -) : D(A) \to D(B)$.
\begin{lemma}
\label{lemma-right-adjoint}
Let $A \to B$ be a ring homomorphism. The functor $R\Hom(B, -)$
constructed above is right adjoint to the restriction functor
$D(B) \to D(A)$.
\end{lemma}
\begin{proof}
This is a consequence of the fact that restriction and $\Hom_A(B, -)$ are
adjoint functors by Algebra, Lemma \ref{algebra-lemma-adjoint-hom-restrict}.
See Derived Categories, Lemma \ref{derived-lemma-derived-adjoint-functors}.
\end{proof}
\begin{lemma}
\label{lemma-composition-right-adjoints}
Let $A \to B \to C$ be ring maps. Then
$R\Hom(C, -) \circ R\Hom(B, -) : D(A) \to D(C)$
is the functor $R\Hom(C, -) : D(A) \to D(C)$.
\end{lemma}
\begin{proof}
Follows from uniqueness of right adjoints and Lemma \ref{lemma-right-adjoint}.
\end{proof}
\begin{lemma}
\label{lemma-RHom-ext}
Let $\varphi : A \to B$ be a ring homomorphism. For $K$ in $D(A)$ we have
$$
\varphi_*R\Hom(B, K) = R\Hom_A(B, K)
$$
where $\varphi_* : D(B) \to D(A)$ is restriction. In particular
$R^q\Hom(B, K) = \Ext_A^q(B, K)$.
\end{lemma}
\begin{proof}
Choose a K-injective complex $I^\bullet$ representing $K$.
Then $R\Hom(B, K)$ is represented by the complex $\Hom_A(B, I^\bullet)$
of $B$-modules. Since this complex, as a complex of $A$-modules,
represents $R\Hom_A(B, K)$ we see that the lemma is true.
\end{proof}
\noindent
Let $A$ be a Noetherian ring. We will denote
$$
D_{\textit{Coh}}(A) \subset D(A)
$$
the full subcategory consisting of those objects $K$ of $D(A)$
whose cohomology modules are all finite $A$-modules. This makes sense
by Derived Categories, Section \ref{derived-section-triangulated-sub}
because as $A$ is Noetherian, the subcategory of finite $A$-modules
is a Serre subcategory of $\text{Mod}_A$.
\begin{lemma}
\label{lemma-exact-support-coherent}
With notation as above, assume $A \to B$ is a finite ring map of
Noetherian rings. Then $R\Hom(B, -)$ maps
$D^+_{\textit{Coh}}(A)$ into $D^+_{\textit{Coh}}(B)$.
\end{lemma}
\begin{proof}
We have to show: if $K \in D^+(A)$ has finite cohomology modules, then the
complex $R\Hom(B, K)$ has finite cohomology modules too.
This follows for example from Lemma \ref{lemma-RHom-ext}
if we can show the ext modules $\Ext^i_A(B, K)$
are finite $A$-modules. Since $K$ is bounded below there is a
convergent spectral sequence
$$
\Ext^p_A(B, H^q(K)) \Rightarrow \text{Ext}^{p + q}_A(B, K)
$$
This finishes the proof as the modules $\Ext^p_A(B, H^q(K))$
are finite by
Algebra, Lemma \ref{algebra-lemma-ext-noetherian}.
\end{proof}
\begin{remark}
\label{remark-exact-support}
Let $A$ be a ring and let $I \subset A$ be an ideal. Set $B = A/I$.
In this case the functor $\Hom_A(B, -)$ is equal to the functor
$$
\text{Mod}_A \longrightarrow \text{Mod}_B,\quad M \longmapsto M[I]
$$
which sends $M$ to the submodule of $I$-torsion.
\end{remark}
\begin{situation}
\label{situation-resolution}
Let $R \to A$ be a ring map.
We will give an alternative construction of $R\Hom(A, -)$
which will stand us in good stead later in this chapter.
Namely, suppose we have a differential graded algebra $(E, d)$
over $R$ and a quasi-isomorphism $E \to A$ where we view $A$
as a differential graded algebra over $R$ with zero differential.
Then we have commutative diagrams
$$
\vcenter{
\xymatrix{
D(E, \text{d}) \ar[rd] & & D(A) \ar[ll] \ar[ld] \\
& D(R)
}
}
\quad\text{and}\quad
\vcenter{
\xymatrix{
D(E, \text{d}) \ar[rr]_{- \otimes_E^\mathbf{L} A} & & D(A) \\
& D(R) \ar[lu]^{- \otimes_R^\mathbf{L} E} \ar[ru]_{- \otimes_R^\mathbf{L} A}
}
}
$$
where the horizontal arrows are equivalences of categories
(Differential Graded Algebra, Lemma \ref{dga-lemma-qis-equivalence}).
It is clear that the first diagram commutes.
The second diagram commutes because the first one does
and our functors are their left adjoints
(Differential Graded Algebra, Example \ref{dga-example-map-hom-tensor})
or because we have $E \otimes^\mathbf{L}_E A = E \otimes_E A$
and we can use
Differential Graded Algebra, Lemma
\ref{dga-lemma-compose-tensor-functors-general}.
\end{situation}
\begin{lemma}
\label{lemma-RHom-dga}
In Situation \ref{situation-resolution} the functor $R\Hom(A, -)$
is equal to the composition of
$R\Hom(E, -) : D(R) \to D(E, \text{d})$
and the equivalence $- \otimes^\mathbf{L}_E A : D(E, \text{d}) \to D(A)$.
\end{lemma}
\begin{proof}
This is true because $R\Hom(E, -)$ is the right adjoint
to $- \otimes^\mathbf{L}_R E$, see
Differential Graded Algebra, Lemma \ref{dga-lemma-tensor-hom-adjoint}.
Hence this functor plays the same role as the functor
$R\Hom(A, -)$ for the map $R \to A$ (Lemma \ref{lemma-right-adjoint}),
whence these functors must correspond via the equivalence
$- \otimes^\mathbf{L}_E A : D(E, \text{d}) \to D(A)$.
\end{proof}
\begin{lemma}
\label{lemma-RHom-is-tensor}
In Situation \ref{situation-resolution} assume that
\begin{enumerate}
\item $E$ viewed as an object of $D(R)$ is compact, and
\item $N = \Hom^\bullet_R(E^\bullet, R)$ computes $R\Hom(E, R)$.
\end{enumerate}
Then $R\Hom(E, -) : D(R) \to D(E)$ is isomorphic to
$K \mapsto K \otimes_R^\mathbf{L} N$.
\end{lemma}
\begin{proof}
Special case of Differential Graded Algebra, Lemma
\ref{dga-lemma-RHom-is-tensor}.
\end{proof}
\begin{lemma}
\label{lemma-RHom-is-tensor-special}
In Situation \ref{situation-resolution} assume $A$ is a perfect $R$-module.
Then
$$
R\Hom(A, -) : D(R) \to D(A)
$$
is given by $K \mapsto K \otimes_R^\mathbf{L} M$
where $M = R\Hom(A, R) \in D(A)$.
\end{lemma}
\begin{proof}
We apply Divided Power Algebra, Lemma
\ref{dpa-lemma-tate-resoluton-pseudo-coherent-ring-map}
to choose a Tate resolution $(E, \text{d})$ of $A$ over $R$.
Note that $E^i = 0$ for $i > 0$, $E^0 = R[x_1, \ldots, x_n]$
is a polynomial algebra, and $E^i$ is a finite free $E^0$-module
for $i < 0$. It follows that $E$ viewed as a complex of $R$-modules
is a bounded above complex of free $R$-modules.
We check the assumptions of Lemma \ref{lemma-RHom-is-tensor}.
The first holds because $A$ is perfect
(hence compact by More on Algebra, Proposition
\ref{more-algebra-proposition-perfect-is-compact})
and the second by
More on Algebra, Lemma \ref{more-algebra-lemma-RHom-out-of-projective}.
From the lemma conclude that $K \mapsto R\Hom(E, K)$ is
isomorphic to $K \mapsto K \otimes_R^\mathbf{L} N$ for
some differential graded $E$-module $N$. Observe that
$$
(R \otimes_R E) \otimes_E^\mathbf{L} A = R \otimes_E E \otimes_E A
$$
in $D(A)$. Hence by Differential Graded Algebra, Lemma
\ref{dga-lemma-compose-tensor-functors-general-algebra}
we conclude that the composition of
$- \otimes_R^\mathbf{L} N$ and $- \otimes_R^\mathbf{L} A$
is of the form $- \otimes_R M$ for some $M \in D(A)$.
To finish the proof we apply Lemma \ref{lemma-RHom-dga}.
\end{proof}
\begin{lemma}
\label{lemma-compute-for-effective-Cartier-algebraic}
Let $R \to A$ be a surjective ring map whose kernel $I$
is an invertible $R$-module. The functor
$R\Hom(A, -) : D(R) \to D(A)$
is isomorphic to $K \mapsto K \otimes_R^\mathbf{L} N[-1]$
where $N$ is inverse of the invertible $A$-module $I \otimes_R A$.
\end{lemma}
\begin{proof}
Since $A$ has the finite projective resolution
$$
0 \to I \to R \to A \to 0
$$
we see that $A$ is a perfect $R$-module. By
Lemma \ref{lemma-RHom-is-tensor-special} it suffices
to prove that $R\Hom(A, R)$ is represented by $N[-1]$ in $D(A)$.
This means $R\Hom(A, R)$ has a unique nonzero
cohomology module, namely $N$ in degree $1$. As
$\text{Mod}_A \to \text{Mod}_R$ is fully faithful it suffice to prove
this after applying the restriction functor $i_* : D(A) \to D(R)$.
By Lemma \ref{lemma-RHom-ext} we have
$$
i_*R\Hom(A, R) = R\Hom_R(A, R)
$$
Using the finite projective resolution above we find that the latter
is represented by the complex $R \to I^{\otimes -1}$ with $R$
in degree $0$. The map $R \to I^{\otimes -1}$ is injective
and the cokernel is $N$.
\end{proof}
\section{Base change for trivial duality}
\label{section-base-change-trivial-duality}
\noindent
In this section we consider a cocartesian square of rings
$$
\xymatrix{
A \ar[r]_\alpha & A' \\
R \ar[u]^\varphi \ar[r]^\rho & R' \ar[u]_{\varphi'}
}
$$
In other words, we have $A' = A \otimes_R R'$. If $A$ and $R'$
are {\bf tor independent over} $R$ then there is a canonical base change map
\begin{equation}
\label{equation-base-change}
R\Hom(A, K) \otimes_A^\mathbf{L} A'
\longrightarrow
R\Hom(A', K \otimes_R^\mathbf{L} R')
\end{equation}
in $D(A')$ functorial for $K$ in $D(R)$. Namely, by the adjointness
of Lemma \ref{lemma-right-adjoint} such an arrow is the same thing as a map
$$
\varphi'_*\left(R\Hom(A, K) \otimes_A^\mathbf{L} A'\right)
\longrightarrow
K \otimes_R^\mathbf{L} R'
$$
in $D(R')$ where $\varphi'_* : D(A') \to D(R')$ is the restriction functor.
We may apply
More on Algebra, Lemma \ref{more-algebra-lemma-base-change-comparison}
to the left hand side to get that this is the same thing as a map
$$
\varphi_*(R\Hom(A, K)) \otimes_R^\mathbf{L} R'
\longrightarrow
K \otimes_R^\mathbf{L} R'
$$
in $D(R')$ where $\varphi_* : D(A) \to D(R)$ is the restriction functor.
For this we can choose $can \otimes^\mathbf{L} \text{id}_{R'}$
where $can : \varphi_*(R\Hom(A, K)) \to K$ is the
counit of the adjunction between $R\Hom(A, -)$ and $\varphi_*$.
\begin{lemma}
\label{lemma-check-base-change-is-iso}
In the situation above, the map (\ref{equation-base-change})
is an isomorphism if and only if the map
$$
R\Hom_R(A, K) \otimes_R^\mathbf{L} R'
\longrightarrow
R\Hom_R(A, K \otimes_R^\mathbf{L} R')
$$
of More on Algebra, Lemma
\ref{more-algebra-lemma-internal-hom-diagonal-better} is an isomorphism.
\end{lemma}
\begin{proof}
To see that the map is an isomorphism, it suffices to prove it
is an isomorphism after applying $\varphi'_*$.
Applying the functor $\varphi'_*$ to (\ref{equation-base-change})
and using that $A' = A \otimes_R^\mathbf{L} R'$
we obtain the base change map
$R\Hom_R(A, K) \otimes_R^\mathbf{L} R' \to
R\Hom_{R'}(A \otimes_R^\mathbf{L} R', K \otimes_R^\mathbf{L} R')$
for derived hom of
More on Algebra, Equation (\ref{more-algebra-equation-base-change-RHom}).
Unwinding the left and right hand side exactly as in the proof of
More on Algebra, Lemma \ref{more-algebra-lemma-base-change-RHom}
and in particular using
More on Algebra, Lemma \ref{more-algebra-lemma-upgrade-adjoint-tensor-RHom}
gives the desired result.
\end{proof}
\begin{lemma}
\label{lemma-flat-bc-surjection}
Let $R \to A$ and $R \to R'$ be ring maps and $A' = A \otimes_R R'$.
Assume
\begin{enumerate}
\item $A$ is pseudo-coherent as an $R$-module,
\item $R'$ has finite tor dimension as an $R$-module (for example
$R \to R'$ is flat),
\item $A$ and $R'$ are tor independent over $R$.
\end{enumerate}
Then (\ref{equation-base-change}) is an isomorphism for $K \in D^+(R)$.
\end{lemma}
\begin{proof}
Follows from Lemma \ref{lemma-check-base-change-is-iso} and
More on Algebra, Lemma
\ref{more-algebra-lemma-internal-hom-evaluate-tensor-isomorphism} part (4).
\end{proof}
\begin{lemma}
\label{lemma-bc-surjection}
Let $R \to A$ and $R \to R'$ be ring maps and $A' = A \otimes_R R'$.
Assume
\begin{enumerate}
\item $A$ is perfect as an $R$-module,
\item $A$ and $R'$ are tor independent over $R$.
\end{enumerate}
Then (\ref{equation-base-change}) is an isomorphism for all $K \in D(R)$.
\end{lemma}
\begin{proof}
Follows from Lemma \ref{lemma-check-base-change-is-iso} and
More on Algebra, Lemma
\ref{more-algebra-lemma-internal-hom-evaluate-tensor-isomorphism} part (1).
\end{proof}
\section{Dualizing complexes}
\label{section-dualizing}
\noindent
In this section we define dualizing complexes for Noetherian rings.
\begin{definition}
\label{definition-dualizing}
Let $A$ be a Noetherian ring. A {\it dualizing complex} is a
complex of $A$-modules $\omega_A^\bullet$ such that
\begin{enumerate}
\item $\omega_A^\bullet$ has finite injective dimension,
\item $H^i(\omega_A^\bullet)$ is a finite $A$-module for all $i$, and
\item $A \to R\Hom_A(\omega_A^\bullet, \omega_A^\bullet)$
is a quasi-isomorphism.
\end{enumerate}
\end{definition}
\noindent
This definition takes some time getting used to. It is perhaps a good
idea to prove some of the following lemmas yourself without reading
the proofs.
\begin{lemma}
\label{lemma-finite-ext-into-bounded-injective}
Let $A$ be a Noetherian ring. Let $K, L \in D_{\textit{Coh}}(A)$
and assume $L$ has finite injective dimension. Then
$R\Hom_A(K, L)$ is in $D_{\textit{Coh}}(A)$.
\end{lemma}
\begin{proof}
Pick an integer $n$ and consider the distinguished triangle
$$
\tau_{\leq n}K \to K \to \tau_{\geq n + 1}K \to \tau_{\leq n}K[1]
$$
see Derived Categories, Remark
\ref{derived-remark-truncation-distinguished-triangle}.
Since $L$ has finite injective dimension we see
that $R\Hom_A(\tau_{\geq n + 1}K, L)$ has vanishing
cohomology in degrees $\geq c - n$ for some constant $c$.
Hence, given $i$, we see that
$\Ext^i_A(K, L) \to \Ext^i_A(\tau_{\leq n}K, L)$
is an isomorphism for some $n \gg - i$. By
Derived Categories of Schemes, Lemma \ref{perfect-lemma-coherent-internal-hom}
applied to $\tau_{\leq n}K$ and $L$
we see conclude that $\Ext^i_A(K, L)$ is
a finite $A$-module for all $i$. Hence $R\Hom_A(K, L)$
is indeed an object of $D_{\textit{Coh}}(A)$.
\end{proof}
\begin{lemma}
\label{lemma-dualizing}
Let $A$ be a Noetherian ring. If $\omega_A^\bullet$ is a dualizing
complex, then the functor
$$
D : K \longmapsto R\Hom_A(K, \omega_A^\bullet)
$$
is an anti-equivalence $D_{\textit{Coh}}(A) \to D_{\textit{Coh}}(A)$
which exchanges $D^+_{\textit{Coh}}(A)$ and $D^-_{\textit{Coh}}(A)$
and induces an anti-equivalence
$D^b_{\textit{Coh}}(A) \to D^b_{\textit{Coh}}(A)$.
Moreover $D \circ D$ is isomorphic to the identity functor.
\end{lemma}
\begin{proof}
Let $K$ be an object of $D_{\textit{Coh}}(A)$. From
Lemma \ref{lemma-finite-ext-into-bounded-injective}
we see $R\Hom_A(K, \omega_A^\bullet)$ is an object of $D_{\textit{Coh}}(A)$.
By More on Algebra, Lemma
\ref{more-algebra-lemma-internal-hom-evaluate-isomorphism-technical}
and the assumptions on the dualizing complex
we obtain a canonical isomorphism
$$
K = R\Hom_A(\omega_A^\bullet, \omega_A^\bullet) \otimes_A^\mathbf{L} K
\longrightarrow
R\Hom_A(R\Hom_A(K, \omega_A^\bullet), \omega_A^\bullet)
$$
Thus our functor has a quasi-inverse and the proof is complete.
\end{proof}
\noindent
Let $R$ be a ring. Recall that an object $L$ of $D(R)$ is
{\it invertible} if it is an invertible object for the
symmetric monoidal structure on $D(R)$ given by derived
tensor product. In
More on Algebra, Lemma \ref{more-algebra-lemma-invertible-derived}
we have seen this means $L$ is perfect, $L = \bigoplus H^n(L)[-n]$,
this is a finite sum, each $H^n(L)$ is finite projective,
and there is an open covering $\Spec(R) = \bigcup D(f_i)$ such that
$L \otimes_R R_{f_i} \cong R_{f_i}[-n_i]$ for some integers $n_i$.
\begin{lemma}
\label{lemma-equivalence-comes-from-invertible}
Let $A$ be a Noetherian ring. Let
$F : D^b_{\textit{Coh}}(A) \to D^b_{\textit{Coh}}(A)$ be an $A$-linear
equivalence of categories. Then $F(A)$ is an invertible object of $D(A)$.
\end{lemma}
\begin{proof}
Let $\mathfrak m \subset A$ be a maximal ideal with residue field $\kappa$.
Consider the object $F(\kappa)$. Since
$\kappa = \Hom_{D(A)}(\kappa, \kappa)$ we find that all
cohomology groups of $F(\kappa)$ are annihilated by $\mathfrak m$.
We also see that
$$
\Ext^i_A(\kappa, \kappa) = \text{Ext}^i_A(F(\kappa), F(\kappa))
= \Hom_{D(A)}(F(\kappa), F(\kappa)[i])
$$
is zero for $i < 0$. Say $H^a(F(\kappa)) \not = 0$ and
$H^b(F(\kappa)) \not = 0$ with $a$ minimal and $b$ maximal
(so in particular $a \leq b$). Then there is a nonzero map
$$
F(\kappa) \to H^b(F(\kappa))[-b] \to H^a(F(\kappa))[-b]
\to F(\kappa)[a - b]
$$
in $D(A)$ (nonzero because it induces a nonzero map on cohomology).
This proves that $b = a$. We conclude that $F(\kappa) = \kappa[-a]$.
\medskip\noindent
Let $G$ be a quasi-inverse to our functor $F$. Arguing as above
we find an integer $b$ such that $G(\kappa) = \kappa[-b]$.
On composing we find $a + b = 0$. Let $E$ be a finite $A$-module
wich is annihilated by a power of $\mathfrak m$. Arguing by
induction on the length of $E$ we find that $G(E) = E'[-b]$
for some finite $A$-module $E'$ annihilated by a power of
$\mathfrak m$. Then $E[-a] = F(E')$.
Next, we consider the groups
$$
\Ext^i_A(A, E') = \text{Ext}^i_A(F(A), F(E')) =
\Hom_{D(A)}(F(A), E[-a + i])
$$
The left hand side is nonzero if and only if $i = 0$ and then
we get $E'$. Applying this with $E = E' = \kappa$ and using Nakayama's
lemma this implies that $H^j(F(A))_\mathfrak m$ is zero for $j > a$ and
generated by $1$ element for $j = a$. On the other hand, if
$H^j(F(A))_\mathfrak m$ is not zero for some $j < a$, then
there is a map $F(A) \to E[-a + i]$ for some $i < 0$ and some
$E$ (More on Algebra, Lemma \ref{more-algebra-lemma-detect-cohomology})
which is a contradiction.
Thus we see that $F(A)_\mathfrak m = M[-a]$
for some $A_\mathfrak m$-module $M$ generated by $1$ element.
However, since
$$
A_\mathfrak m = \Hom_{D(A)}(A, A)_\mathfrak m =
\Hom_{D(A)}(F(A), F(A))_\mathfrak m = \Hom_{A_\mathfrak m}(M, M)
$$
we see that $M \cong A_\mathfrak m$. We conclude that there exists
an element $f \in A$, $f \not \in \mathfrak m$ such that
$F(A)_f$ is isomorphic to $A_f[-a]$. This finishes the proof.
\end{proof}
\begin{lemma}
\label{lemma-dualizing-unique}
Let $A$ be a Noetherian ring. If $\omega_A^\bullet$ and
$(\omega'_A)^\bullet$ are dualizing complexes, then
$(\omega'_A)^\bullet$ is quasi-isomorphic to
$\omega_A^\bullet \otimes_A^\mathbf{L} L$
for some invertible object $L$ of $D(A)$.
\end{lemma}
\begin{proof}
By Lemmas \ref{lemma-dualizing} and
\ref{lemma-equivalence-comes-from-invertible} the functor
$K \mapsto R\Hom_A(R\Hom_A(K, \omega_A^\bullet), (\omega_A')^\bullet)$
maps $A$ to an invertible object $L$. In other words, there is
an isomorphism
$$
L \longrightarrow R\Hom_A(\omega_A^\bullet, (\omega_A')^\bullet)
$$
Since $L$ has finite tor dimension, this means that we can apply
More on Algebra, Lemma
\ref{more-algebra-lemma-internal-hom-evaluate-isomorphism-technical}
to see that
$$
R\Hom_A(\omega_A^\bullet, (\omega'_A)^\bullet) \otimes_A^\mathbf{L} K
\longrightarrow
R\Hom_A(R\Hom_A(K, \omega_A^\bullet), (\omega_A')^\bullet)
$$
is an isomorphism for $K$ in $D^b_{\textit{Coh}}(A)$.
In particular, setting $K = \omega_A^\bullet$ finishes the proof.
\end{proof}
\begin{lemma}
\label{lemma-dualizing-localize}
Let $A$ be a Noetherian ring. Let $B = S^{-1}A$ be a localization.
If $\omega_A^\bullet$ is a dualizing
complex, then $\omega_A^\bullet \otimes_A B$ is a dualizing
complex for $B$.
\end{lemma}
\begin{proof}
Let $\omega_A^\bullet \to I^\bullet$ be a quasi-isomorphism
with $I^\bullet$ a bounded complex of injectives.
Then $S^{-1}I^\bullet$ is a bounded complex of injective
$B = S^{-1}A$-modules (Lemma \ref{lemma-localization-injective-modules})
representing $\omega_A^\bullet \otimes_A B$.
Thus $\omega_A^\bullet \otimes_A B$ has finite injective dimension.
Since $H^i(\omega_A^\bullet \otimes_A B) = H^i(\omega_A^\bullet) \otimes_A B$
by flatness of $A \to B$ we see that $\omega_A^\bullet \otimes_A B$
has finite cohomology modules. Finally, the map
$$
B \longrightarrow
R\Hom_A(\omega_A^\bullet \otimes_A B, \omega_A^\bullet \otimes_A B)
$$
is a quasi-isomorphism as formation of internal hom commutes with
flat base change in this case, see
More on Algebra, Lemma \ref{more-algebra-lemma-base-change-RHom}.
\end{proof}
\begin{lemma}
\label{lemma-dualizing-glue}
Let $A$ be a Noetherian ring. Let $f_1, \ldots, f_n \in A$
generate the unit ideal. If $\omega_A^\bullet$ is a complex
of $A$-modules such that $(\omega_A^\bullet)_{f_i}$ is a dualizing
complex for $A_{f_i}$ for all $i$, then $\omega_A^\bullet$ is a dualizing
complex for $A$.
\end{lemma}
\begin{proof}
Consider the double complex
$$
\prod\nolimits_{i_0} (\omega_A^\bullet)_{f_{i_0}}
\to
\prod\nolimits_{i_0 < i_1} (\omega_A^\bullet)_{f_{i_0}f_{i_1}}
\to \ldots
$$
The associated total complex is quasi-isomorphic to $\omega_A^\bullet$
for example by Descent, Remark \ref{descent-remark-standard-covering}
or by
Derived Categories of Schemes, Lemma
\ref{perfect-lemma-alternating-cech-complex-complex-computes-cohomology}.
By assumption the complexes $(\omega_A^\bullet)_{f_i}$ have
finite injective dimension as complexes of $A_{f_i}$-modules.
This implies that each of the complexes
$(\omega_A^\bullet)_{f_{i_0} \ldots f_{i_p}}$, $p > 0$ has
finite injective dimension over $A_{f_{i_0} \ldots f_{i_p}}$,
see Lemma \ref{lemma-localization-injective-modules}.
This in turn implies that each of the complexes
$(\omega_A^\bullet)_{f_{i_0} \ldots f_{i_p}}$, $p > 0$ has
finite injective dimension over $A$, see
Lemma \ref{lemma-injective-flat}. Hence $\omega_A^\bullet$
has finite injective dimension as a complex of $A$-modules
(as it can be represented by a complex endowed with
a finite filtration whose graded parts have finite injective
dimension). Since $H^n(\omega_A^\bullet)_{f_i}$ is a finite
$A_{f_i}$ module for each $i$ we see that $H^i(\omega_A^\bullet)$
is a finite $A$-module, see Algebra, Lemma \ref{algebra-lemma-cover}.
Finally, the (derived) base change of the map
$A \to R\Hom_A(\omega_A^\bullet, \omega_A^\bullet)$ to $A_{f_i}$
is the map
$A_{f_i} \to R\Hom_A((\omega_A^\bullet)_{f_i}, (\omega_A^\bullet)_{f_i})$ by
More on Algebra, Lemma \ref{more-algebra-lemma-base-change-RHom}.
Hence we deduce that
$A \to R\Hom_A(\omega_A^\bullet, \omega_A^\bullet)$
is an isomorphism and the proof is complete.
\end{proof}
\begin{lemma}
\label{lemma-dualizing-finite}
Let $A \to B$ be a finite ring map of Noetherian rings.
Let $\omega_A^\bullet$ be a dualizing complex.
Then $R\Hom(B, \omega_A^\bullet)$ is a dualizing complex for $B$.
\end{lemma}
\begin{proof}
Let $\omega_A^\bullet \to I^\bullet$ be a quasi-isomorphism
with $I^\bullet$ a bounded complex of injectives.
Then $\Hom_A(B, I^\bullet)$ is a bounded complex of injective
$B$-modules (Lemma \ref{lemma-hom-injective}) representing
$R\Hom(B, \omega_A^\bullet)$.
Thus $R\Hom(B, \omega_A^\bullet)$ has finite injective dimension.
By Lemma \ref{lemma-exact-support-coherent} it is an object of
$D_{\textit{Coh}}(B)$. Finally, we compute
$$
\Hom_{D(B)}(R\Hom(B, \omega_A^\bullet), R\Hom(B, \omega_A^\bullet)) =
\Hom_{D(A)}(R\Hom(B, \omega_A^\bullet), \omega_A^\bullet) = B
$$
and for $n \not = 0$ we compute
$$
\Hom_{D(B)}(R\Hom(B, \omega_A^\bullet), R\Hom(B, \omega_A^\bullet)[n]) =
\Hom_{D(A)}(R\Hom(B, \omega_A^\bullet), \omega_A^\bullet[n]) = 0
$$
which proves the last property of a dualizing complex.
In the displayed equations, the first
equality holds by Lemma \ref{lemma-right-adjoint}
and the second equality holds by Lemma \ref{lemma-dualizing}.
\end{proof}
\begin{lemma}
\label{lemma-dualizing-quotient}
Let $A \to B$ be a surjective homomorphism of Noetherian rings.
Let $\omega_A^\bullet$ be a dualizing complex.
Then $R\Hom(B, \omega_A^\bullet)$ is a dualizing complex for $B$.
\end{lemma}
\begin{proof}
Special case of Lemma \ref{lemma-dualizing-finite}.
\end{proof}
\begin{lemma}
\label{lemma-dualizing-polynomial-ring}
Let $A$ be a Noetherian ring. If $\omega_A^\bullet$ is a dualizing
complex, then $\omega_A^\bullet \otimes_A A[x]$ is a dualizing
complex for $A[x]$.
\end{lemma}
\begin{proof}
Set $B = A[x]$ and $\omega_B^\bullet = \omega_A^\bullet \otimes_A B$.
It follows from Lemma \ref{lemma-injective-dimension-over-polynomial-ring}
and More on Algebra, Lemma \ref{more-algebra-lemma-finite-injective-dimension}
that $\omega_B^\bullet$ has finite injective dimension.
Since $H^i(\omega_B^\bullet) = H^i(\omega_A^\bullet) \otimes_A B$
by flatness of $A \to B$ we see that $\omega_A^\bullet \otimes_A B$
has finite cohomology modules. Finally, the map
$$
B \longrightarrow R\Hom_B(\omega_B^\bullet, \omega_B^\bullet)
$$
is a quasi-isomorphism as formation of internal hom commutes with
flat base change in this case, see
More on Algebra, Lemma \ref{more-algebra-lemma-base-change-RHom}.
\end{proof}
\begin{proposition}
\label{proposition-dualizing-essentially-finite-type}
Let $A$ be a Noetherian ring which has a dualizing complex.
Then any $A$-algebra essentially of finite type over $A$
has a dualizing complex.
\end{proposition}
\begin{proof}
This follows from a combination of
Lemmas \ref{lemma-dualizing-localize},
\ref{lemma-dualizing-quotient}, and \ref{lemma-dualizing-polynomial-ring}.
\end{proof}
\begin{lemma}
\label{lemma-find-function}
Let $A$ be a Noetherian ring. Let $\omega_A^\bullet$ be a dualizing
complex. Let $\mathfrak m \subset A$ be a maximal ideal and set
$\kappa = A/\mathfrak m$. Then
$R\Hom_A(\kappa, \omega_A^\bullet) \cong \kappa[n]$ for some
$n \in \mathbf{Z}$.
\end{lemma}
\begin{proof}
This is true because $R\Hom_A(\kappa, \omega_A^\bullet)$ is a dualizing
complex over $\kappa$ (Lemma \ref{lemma-dualizing-quotient}),
because dualizing complexes over $\kappa$ are unique up to shifts
(Lemma \ref{lemma-dualizing-unique}), and because $\kappa$ is a
dualizing complex over $\kappa$.
\end{proof}
\section{Dualizing complexes over local rings}
\label{section-dualizing-local}
\noindent
In this section $(A, \mathfrak m, \kappa)$ will be a Noetherian local
ring endowed with a dualizing complex $\omega_A^\bullet$ such that
the integer $n$ of Lemma \ref{lemma-find-function} is zero.
More precisely, we assume that $R\Hom_A(\kappa, \omega_A^\bullet) = \kappa[0]$.
In this case we will say that the dualizing complex is {\it normalized}.
Observe that a normalized dualizing complex is unique up to
isomorphism and that any other dualizing complex for $A$ is isomorphic
to a shift of a normalized one (Lemma \ref{lemma-dualizing-unique}).
\begin{lemma}
\label{lemma-normalized-finite}
Let $(A, \mathfrak m, \kappa) \to (B, \mathfrak m', \kappa')$
be a finite local map of Noetherian local rings. Let $\omega_A^\bullet$
be a normalized dualizing complex. Then
$\omega_B^\bullet = R\Hom(B, \omega_A^\bullet)$ is a
normalized dualizing complex for $B$.
\end{lemma}
\begin{proof}
By Lemma \ref{lemma-dualizing-finite} the complex
$\omega_B^\bullet$ is dualizing for $B$. We have
$$
R\Hom_B(\kappa', \omega_B^\bullet) =
R\Hom_B(\kappa', R\Hom(B, \omega_A^\bullet)) =
R\Hom_A(\kappa', \omega_A^\bullet)
$$
by Lemma \ref{lemma-right-adjoint}. Since $\kappa'$ is isomorphic
to a finite direct sum of copies of $\kappa$ as an $A$-module
and since $\omega_A^\bullet$ is normalized, we
see that this complex only has cohomology placed in degree $0$.
Thus $\omega_B^\bullet$ is a normalized dualizing complex as well.
\end{proof}
\begin{lemma}
\label{lemma-normalized-quotient}
Let $(A, \mathfrak m, \kappa)$ be a Noetherian local
ring with normalized dualizing complex $\omega_A^\bullet$.
Let $A \to B$ be surjective. Then
$\omega_B^\bullet = R\Hom_A(B, \omega_A^\bullet)$ is a
normalized dualizing complex for $B$.
\end{lemma}
\begin{proof}
Special case of Lemma \ref{lemma-normalized-finite}.
\end{proof}
\begin{lemma}
\label{lemma-equivalence-finite-length}
Let $(A, \mathfrak m, \kappa)$ be a Noetherian local
ring. Let $F$ be an $A$-linear self-equivalence of the category of
finite length $A$-modules. Then $F$ is isomorphic to the identity functor.
\end{lemma}
\begin{proof}
Since $\kappa$ is the unique simple object of the category we have
$F(\kappa) \cong \kappa$. Since our category is abelian, we find that
$F$ is exact. Hence $F(E)$ has the same length as $E$ for all finite
length modules $E$.
Since $\Hom(E, \kappa) = \Hom(F(E), F(\kappa)) \cong \Hom(F(E), \kappa)$
we conclude from Nakayama's lemma that $E$ and $F(E)$ have the same
number of generators. Hence $F(A/\mathfrak m^n)$ is a cyclic $A$-module.
Pick a generator $e \in F(A/\mathfrak m^n)$.
Since $F$ is $A$-linear we conclude that $\mathfrak m^n e = 0$.
The map $A/\mathfrak m^n \to F(A/\mathfrak m^n)$ has to be
an isomorphism as the lengths are equal. Pick an element
$$
e \in \lim F(A/\mathfrak m^n)
$$
which maps to a generator for all $n$ (small argument omitted).
Then we obtain a system of isomorphisms
$A/\mathfrak m^n \to F(A/\mathfrak m^n)$ compatible with all
$A$-module maps $A/\mathfrak m^n \to A/\mathfrak m^{n'}$ (by $A$-linearity
of $F$ again). Since any finite length module is a cokernel
of a map between direct sums of cyclic modules, we obtain the isomorphism
of the lemma.
\end{proof}
\begin{lemma}
\label{lemma-dualizing-finite-length}
Let $(A, \mathfrak m, \kappa)$ be a Noetherian local
ring with normalized dualizing complex $\omega_A^\bullet$.
Let $E$ be an injective hull of $\kappa$. Then there exists
a functorial isomorphism
$$
R\Hom_A(N, \omega_A^\bullet) = \Hom_A(N, E)[0]
$$
for $N$ running through the finite length $A$-modules.
\end{lemma}
\begin{proof}
By induction on the length of $N$ we see that $R\Hom_A(N, \omega_A^\bullet)$
is a module of finite length sitting in degree $0$. Thus
$R\Hom_A(-, \omega_A^\bullet)$ induces an anti-equivalence
on the category of finite length modules. Since the same is true
for $\Hom_A(-, E)$ by Proposition \ref{proposition-matlis} we see that
$$
N \longmapsto \Hom_A(R\Hom_A(N, \omega_A^\bullet), E)
$$
is an equivalence as in Lemma \ref{lemma-equivalence-finite-length}.
Hence it is isomorphic to the identity functor.
Since $\Hom_A(-, E)$ applied twice is the identity
(Proposition \ref{proposition-matlis}) we obtain
the statement of the lemma.
\end{proof}
\begin{lemma}
\label{lemma-sitting-in-degrees}
Let $(A, \mathfrak m, \kappa)$ be a Noetherian local ring with
normalized dualizing complex $\omega_A^\bullet$. Let $M$ be a finite
$A$-module and let $d = \dim(\text{Supp}(M))$. Then
\begin{enumerate}
\item if $\Ext^i_A(M, \omega_A^\bullet)$ is nonzero, then
$i \in \{-d, \ldots, 0\}$,
\item the dimension of the support of $\Ext^i_A(M, \omega_A^\bullet)$
is at most $-i$,
\item $\text{depth}(M)$ is the smallest integer $\delta \geq 0$ such that
$\Ext^{-\delta}_A(M, \omega_A^\bullet) \not = 0$.
\end{enumerate}
\end{lemma}
\begin{proof}
We prove this by induction on $d$. If $d = 0$, this follows from
Lemma \ref{lemma-dualizing-finite-length} and Matlis duality
(Proposition \ref{proposition-matlis}) which guarantees that
$\Hom_A(M, E)$ is nonzero if $M$ is nonzero.
\medskip\noindent
Assume the result holds for modules with support of dimension $< d$ and that
$M$ has depth $> 0$. Choose an $f \in \mathfrak m$ which is a nonzerodivisor
on $M$ and consider the short exact sequence
$$
0 \to M \to M \to M/fM \to 0
$$
Since $\dim(\text{Supp}(M/fM)) = d - 1$
(Algebra, Lemma \ref{algebra-lemma-one-equation-module}) we
may apply the induction hypothesis.
Writing
$E^i = \Ext^i_A(M, \omega_A^\bullet)$ and
$F^i = \Ext^i_A(M/fM, \omega_A^\bullet)$
we obtain a long exact sequence
$$
\ldots \to F^i \to E^i \xrightarrow{f} E^i \to F^{i + 1} \to \ldots
$$
By induction $E^i/fE^i = 0$ for
$i + 1 \not \in \{-\dim(\text{Supp}(M/fM)), \ldots, -\text{depth}(M/fM)\}$.
By Nakayama's lemma (Algebra, Lemma \ref{algebra-lemma-NAK})
and Algebra, Lemma \ref{algebra-lemma-depth-drops-by-one}
we conclude $E^i = 0$ for
$i \not \in \{-\dim(\text{Supp}(M)), \ldots, -\text{depth}(M)\}$.
Moreover, in the boundary case $i = - \text{depth}(M)$ we deduce that $E^i$
is nonzero as $F^{i + 1}$ is nonzero by induction.
Since $E^i/fE^i \subset F^{i + 1}$ we get
$$
\dim(\text{Supp}(F^{i + 1})) \geq \dim(\text{Supp}(E^i/fE^i))
\geq \dim(\text{Supp}(E^i)) - 1
$$
(see lemma used above) we also obtain the dimension estimate (2).
\medskip\noindent
If $M$ has depth $0$ and $d > 0$ we let $N = M[\mathfrak m^\infty]$ and set
$M' = M/N$ (compare with Lemma \ref{lemma-divide-by-torsion}).
Then $M'$ has depth $> 0$ and $\dim(\text{Supp}(M')) = d$.
Thus we know the result for $M'$ and since
$R\Hom_A(N, \omega_A^\bullet) = \Hom_A(N, E)$
(Lemma \ref{lemma-dualizing-finite-length})
the long exact cohomology sequence of $\Ext$'s implies the
result for $M$.
\end{proof}
\begin{remark}
\label{remark-vanishing-for-arbitrary-modules}
Let $(A, \mathfrak m)$ and $\omega_A^\bullet$ be as in
Lemma \ref{lemma-sitting-in-degrees}.
By More on Algebra, Lemma \ref{more-algebra-lemma-injective-amplitude}
we see that $\omega_A^\bullet$ has injective-amplitude in $[-d, 0]$
because part (3) of that lemma applies.
In particular, for any $A$-module $M$ (not necessarily finite) we have
$\Ext^i_A(M, \omega_A^\bullet) = 0$ for $i \not \in \{-d, \ldots, 0\}$.
\end{remark}
\begin{lemma}
\label{lemma-local-CM}
Let $(A, \mathfrak m, \kappa)$ be a Noetherian local ring
with normalized dualizing complex $\omega_A^\bullet$. Let $M$
be a finite $A$-module. The following are equivalent
\begin{enumerate}
\item $M$ is Cohen-Macaulay,
\item $\Ext^i_A(M, \omega_A^\bullet)$ is nonzero for a single $i$,
\item $\Ext^{-i}_A(M, \omega_A^\bullet)$ is zero for
$i \not = \dim(\text{Supp}(M))$.
\end{enumerate}
Denote $CM_d$ the category of finite Cohen-Macaulay $A$-modules
of depth $d$. Then $M \mapsto \Ext^{-d}_A(M, \omega_A^\bullet)$
defines an anti-auto-equivalence of $CM_d$.
\end{lemma}
\begin{proof}
We will use the results of Lemma \ref{lemma-sitting-in-degrees}
without further mention. Fix a finite module $M$.
If $M$ is Cohen-Macaulay, then only
$\Ext^{-d}_A(M, \omega_A^\bullet)$ can be nonzero,
hence (1) $\Rightarrow$ (3).
The implication (3) $\Rightarrow$ (2) is immediate.
Assume (2) and let $N = \Ext^{-\delta}_A(M, \omega_A^\bullet)$
be the nonzero $\Ext$ where $\delta = \text{depth}(M)$. Then, since
$$
M[0] = R\Hom_A(R\Hom_A(M, \omega_A^\bullet), \omega_A^\bullet) =
R\Hom_A(N[\delta], \omega_A^\bullet)
$$
(Lemma \ref{lemma-dualizing})
we conclude that $M = \Ext_A^{-\delta}(N, \omega_A^\bullet)$.
Thus $\delta \geq \dim(\text{Supp}(M))$. However,
since we also know that $\delta \leq \dim(\text{Supp}(M))$
(Algebra, Lemma \ref{algebra-lemma-bound-depth}) we conclude that $M$ is
Cohen-Macaulay.
\medskip\noindent
To prove the final statement, it suffices to show that
$N = \Ext^{-d}_A(M, \omega_A^\bullet)$ is in $CM_d$
for $M$ in $CM_d$. Above we have seen that
$M[0] = R\Hom_A(N[d], \omega_A^\bullet)$ and this proves the
desired result by the equivalence of (1) and (3).
\end{proof}
\begin{lemma}
\label{lemma-dualizing-artinian}
Let $(A, \mathfrak m, \kappa)$ be a Noetherian local
ring with normalized dualizing complex $\omega_A^\bullet$.
If $\dim(A) = 0$, then $\omega_A^\bullet \cong E[0]$
where $E$ is an injective hull of the residue field.
\end{lemma}
\begin{proof}
Immediate from Lemma \ref{lemma-dualizing-finite-length}.
\end{proof}
\begin{lemma}
\label{lemma-divide-by-finite-length-ideal}
Let $(A, \mathfrak m, \kappa)$ be a Noetherian local
ring with normalized dualizing complex. Let $I \subset \mathfrak m$ be an
ideal of finite length. Set $B = A/I$. Then there is a distinguished
triangle
$$
\omega_B^\bullet \to \omega_A^\bullet \to \Hom_A(I, E)[0] \to
\omega_B^\bullet[1]
$$
in $D(A)$ where $E$ is an injective hull of $\kappa$ and
$\omega_B^\bullet$ is a normalized dualizing complex for $B$.
\end{lemma}
\begin{proof}
Use the short exact sequence $0 \to I \to A \to B \to 0$
and Lemmas \ref{lemma-dualizing-finite-length} and
\ref{lemma-normalized-quotient}.
\end{proof}
\begin{lemma}
\label{lemma-divide-by-nonzerodivisor}
Let $(A, \mathfrak m, \kappa)$ be a Noetherian local
ring with normalized dualizing complex $\omega_A^\bullet$.
Let $f \in \mathfrak m$ be a
nonzerodivisor. Set $B = A/(f)$. Then there is a distinguished
triangle
$$
\omega_B^\bullet \to \omega_A^\bullet \to \omega_A^\bullet \to
\omega_B^\bullet[1]
$$
in $D(A)$ where $\omega_B^\bullet$ is a normalized dualizing complex
for $B$.
\end{lemma}
\begin{proof}
Use the short exact sequence $0 \to A \to A \to B \to 0$
and Lemma \ref{lemma-normalized-quotient}.
\end{proof}
\begin{lemma}
\label{lemma-nonvanishing-generically-local}
Let $(A, \mathfrak m, \kappa)$ be a Noetherian local ring with
normalized dualizing complex $\omega_A^\bullet$.
Let $\mathfrak p$ be a minimal prime of $A$ with
$\dim(A/\mathfrak p) = e$. Then
$H^i(\omega_A^\bullet)_\mathfrak p$ is nonzero
if and only if $i = -e$.
\end{lemma}
\begin{proof}
Since $A_\mathfrak p$ has dimension zero, there exists an integer
$n > 0$ such that $\mathfrak p^nA_\mathfrak p$ is zero.
Set $B = A/\mathfrak p^n$ and
$\omega_B^\bullet = R\Hom_A(B, \omega_A^\bullet)$.
Since $B_\mathfrak p = A_\mathfrak p$ we see that
$$
(\omega_B^\bullet)_\mathfrak p =
R\Hom_A(B, \omega_A^\bullet) \otimes_A^\mathbf{L} A_\mathfrak p =
R\Hom_{A_\mathfrak p}(B_\mathfrak p, (\omega_A^\bullet)_\mathfrak p) =
(\omega_A^\bullet)_\mathfrak p
$$
The second equality holds by
More on Algebra, Lemma \ref{more-algebra-lemma-base-change-RHom}.
By Lemma \ref{lemma-normalized-quotient} we may replace $A$ by $B$.
After doing so, we see that $\dim(A) = e$. Then we see that
$H^i(\omega_A^\bullet)_\mathfrak p$ can only be nonzero if $i = -e$
by Lemma \ref{lemma-sitting-in-degrees} parts (1) and (2).
On the other hand, since $(\omega_A^\bullet)_\mathfrak p$
is a dualizing complex for the nonzero ring $A_\mathfrak p$
(Lemma \ref{lemma-dualizing-localize})
we see that the remaining module has to be nonzero.
\end{proof}
\section{Dualizing complexes and dimension functions}
\label{section-dimension-function}
\noindent
Our results in the local setting have the following consequence:
a Noetherian ring which has a dualizing complex is a
universally catenary ring of finite dimension.
\begin{lemma}
\label{lemma-nonvanishing-generically}
Let $A$ be a Noetherian ring. Let $\mathfrak p$ be a minimal prime
of $A$. Then $H^i(\omega_A^\bullet)_\mathfrak p$ is nonzero
for exactly one $i$.
\end{lemma}
\begin{proof}
The complex $\omega_A^\bullet \otimes_A A_\mathfrak p$
is a dualizing complex for $A_\mathfrak p$
(Lemma \ref{lemma-dualizing-localize}).
The dimension of $A_\mathfrak p$ is zero as $\mathfrak p$
is minimal. Hence the result follows from
Lemma \ref{lemma-dualizing-artinian}.
\end{proof}
\noindent
Let $A$ be a Noetherian ring and let $\omega_A^\bullet$ be a dualizing
complex. Lemma \ref{lemma-find-function} allows us to define a function
$$
\delta = \delta_{\omega_A^\bullet} : \Spec(A) \longrightarrow \mathbf{Z}
$$
by mapping $\mathfrak p$ to the integer of Lemma \ref{lemma-find-function}
for the dualizing complex $(\omega_A^\bullet)_\mathfrak p$
over $A_\mathfrak p$ (Lemma \ref{lemma-dualizing-localize})
and the residue field $\kappa(\mathfrak p)$. To be precise, we define
$\delta(\mathfrak p)$ to be the unique integer such that
$$
(\omega_A^\bullet)_\mathfrak p[-\delta(\mathfrak p)]
$$
is a normalized dualizing complex over the Noetherian local ring
$A_\mathfrak p$.
\begin{lemma}
\label{lemma-quotient-function}
Let $A$ be a Noetherian ring and let $\omega_A^\bullet$ be a dualizing
complex. Let $A \to B$ be a surjective ring map and let
$\omega_B^\bullet = R\Hom(B, \omega_A^\bullet)$ be the dualizing
complex for $B$ of Lemma \ref{lemma-dualizing-quotient}. Then we have
$$
\delta_{\omega_B^\bullet} = \delta_{\omega_A^\bullet}|_{\Spec(B)}
$$
\end{lemma}
\begin{proof}
This follows from the definition of the functions and
Lemma \ref{lemma-normalized-quotient}.
\end{proof}
\begin{lemma}
\label{lemma-dimension-function}
Let $A$ be a Noetherian ring and let $\omega_A^\bullet$ be a dualizing
complex. The function $\delta = \delta_{\omega_A^\bullet}$
defined above is a dimension function
(Topology, Definition \ref{topology-definition-dimension-function}).
\end{lemma}
\begin{proof}
Let $\mathfrak p \subset \mathfrak q$ be an immediate specialization.
We have to show that $\delta(\mathfrak p) = \delta(\mathfrak q) + 1$.
We may replace $A$ by $A/\mathfrak p$, the complex $\omega_A^\bullet$ by
$\omega_{A/\mathfrak p}^\bullet = R\Hom(A/\mathfrak p, \omega_A^\bullet)$,
the prime $\mathfrak p$ by $(0)$, and the prime $\mathfrak q$
by $\mathfrak q/\mathfrak p$,
see Lemma \ref{lemma-quotient-function}. Thus we may assume that
$A$ is a domain, $\mathfrak p = (0)$, and $\mathfrak q$ is a prime
ideal of height $1$.
\medskip\noindent
Then $H^i(\omega_A^\bullet)_{(0)}$ is nonzero
for exactly one $i$, say $i_0$, by Lemma \ref{lemma-nonvanishing-generically}.
In fact $i_0 = -\delta((0))$ because
$(\omega_A^\bullet)_{(0)}[-\delta((0))]$
is a normalized dualizing complex over the field $A_{(0)}$.
\medskip\noindent
On the other hand $(\omega_A^\bullet)_\mathfrak q[-\delta(\mathfrak q)]$
is a normalized dualizing complex for $A_\mathfrak q$. By
Lemma \ref{lemma-nonvanishing-generically-local}
we see that
$$
H^e((\omega_A^\bullet)_\mathfrak q[-\delta(\mathfrak q)])_{(0)} =
H^{e - \delta(\mathfrak q)}(\omega_A^\bullet)_{(0)}
$$
is nonzero only for $e = -\dim(A_\mathfrak q) = -1$.
We conclude
$$
-\delta((0)) = -1 - \delta(\mathfrak q)
$$
as desired.
\end{proof}
\begin{lemma}
\label{lemma-universally-catenary}
Let $A$ be a Noetherian ring which has a dualizing
complex. Then $A$ is universally catenary of finite dimension.
\end{lemma}
\begin{proof}
Because $\Spec(A)$ has a dimension function by
Lemma \ref{lemma-dimension-function}
it is catenary, see
Topology, Lemma \ref{topology-lemma-dimension-function-catenary}.
Hence $A$ is catenary, see
Algebra, Lemma \ref{algebra-lemma-catenary}.
It follows from
Proposition \ref{proposition-dualizing-essentially-finite-type}
that $A$ is universally catenary.
\medskip\noindent
Because any dualizing complex $\omega_A^\bullet$ is
in $D^b_{\textit{Coh}}(A)$ the values of the function
$\delta_{\omega_A^\bullet}$ in minimal primes are bounded by
Lemma \ref{lemma-nonvanishing-generically}.
On the other hand, for a maximal ideal $\mathfrak m$ with
residue field $\kappa$ the integer $i = -\delta(\mathfrak m)$
is the unique integer such that
$\Ext_A^i(\kappa, \omega_A^\bullet)$ is nonzero
(Lemma \ref{lemma-find-function}).
Since $\omega_A^\bullet$ has finite injective dimension
these values are bounded too. Since the dimension of
$A$ is the maximal value of $\delta(\mathfrak p) - \delta(\mathfrak m)$
where $\mathfrak p \subset \mathfrak m$ are a pair
consisting of a minimal prime and a maximal prime we find that the
dimension of $\Spec(A)$ is bounded.
\end{proof}
\begin{lemma}
\label{lemma-depth-dualizing-module}
Let $(A, \mathfrak m, \kappa)$ be a Noetherian local ring with
normalized dualizing complex $\omega_A^\bullet$. Let $d = \dim(A)$
and $\omega_A = H^{-d}(\omega_A^\bullet)$. Then
\begin{enumerate}
\item the support of $\omega_A$ is the union of the irreducible components
of $\Spec(A)$ of dimension $d$,
\item $\omega_A$ satisfies $(S_2)$, see
Algebra, Definition \ref{algebra-definition-conditions}.
\end{enumerate}
\end{lemma}
\begin{proof}
We will use Lemma \ref{lemma-sitting-in-degrees} without further mention.
By Lemma \ref{lemma-nonvanishing-generically-local} the support
of $\omega_A$ contains the irreducible components of dimension $d$.
Let $\mathfrak p \subset A$ be a prime. By Lemma \ref{lemma-dimension-function}
the complex $(\omega_A^\bullet)_{\mathfrak p}[-\dim(A/\mathfrak p)]$
is a normalized dualizing complex for $A_\mathfrak p$. Hence if
$\dim(A/\mathfrak p) + \dim(A_\mathfrak p) < d$, then
$(\omega_A)_\mathfrak p = 0$.
This proves the support of $\omega_A$ is the union of the irreducible
components of dimension $d$, because the complement of this union
is exactly the primes $\mathfrak p$ of $A$ for which
$\dim(A/\mathfrak p) + \dim(A_\mathfrak p) < d$ as $A$ is catenary
(Lemma \ref{lemma-universally-catenary}).
On the other hand, if $\dim(A/\mathfrak p) + \dim(A_\mathfrak p) = d$, then
$$
(\omega_A)_\mathfrak p =
H^{-\dim(A_\mathfrak p)}\left(
(\omega_A^\bullet)_{\mathfrak p}[-\dim(A/\mathfrak p)] \right)
$$
Hence in order to prove $\omega_A$ has $(S_2)$ it suffices to show that
the depth of $\omega_A$ is at least $\min(\dim(A), 2)$.
We prove this by induction on $\dim(A)$. The case $\dim(A) = 0$ is
trivial.
\medskip\noindent
Assume $\text{depth}(A) > 0$. Choose a nonzerodivisor $f \in \mathfrak m$
and set $B = A/fA$. Then $\dim(B) = \dim(A) - 1$ and we may apply the
induction hypothesis to $B$. By Lemma \ref{lemma-divide-by-nonzerodivisor}
we see that multiplication by $f$ is injective on $\omega_A$ and we get
$\omega_A/f\omega_A \subset \omega_B$. This proves the depth of $\omega_A$
is at least $1$. If $\dim(A) > 1$, then $\dim(B) > 0$ and $\omega_B$
has depth $ > 0$. Hence $\omega_A$ has depth $> 1$ and we conclude in
this case.
\medskip\noindent
Assume $\dim(A) > 0$ and $\text{depth}(A) = 0$. Let
$I = A[\mathfrak m^\infty]$ and set $B = A/I$. Then $B$ has
depth $\geq 1$ and $\omega_A = \omega_B$ by
Lemma \ref{lemma-divide-by-finite-length-ideal}.
Since we proved the result for $\omega_B$ above the proof is done.
\end{proof}
\section{The local duality theorem}
\label{section-local-duality}
\noindent
The main result in this section is due to Grothendieck.
\begin{lemma}
\label{lemma-local-cohomology-of-dualizing}
Let $(A, \mathfrak m, \kappa)$ be a Noetherian local ring.
Let $\omega_A^\bullet$ be a normalized dualizing complex.
Let $Z = V(\mathfrak m) \subset \Spec(A)$.
Then $E = R^0\Gamma_Z(\omega_A^\bullet)$ is an injective hull of
$\kappa$ and $R\Gamma_Z(\omega_A^\bullet) = E[0]$.
\end{lemma}
\begin{proof}
By Lemma \ref{lemma-local-cohomology-noetherian} we have
$R\Gamma_{\mathfrak m} = R\Gamma_Z$. Thus
$$
R\Gamma_Z(\omega_A^\bullet) =
R\Gamma_{\mathfrak m}(\omega_A^\bullet) =
\text{hocolim}\ R\Hom_A(A/\mathfrak m^n, \omega_A^\bullet)
$$
by Lemma \ref{lemma-local-cohomology-ext}. Let $E'$ be an injective
hull of the residue field.
By Lemma \ref{lemma-dualizing-finite-length}
we can find isomorphisms
$$
R\Hom_A(A/\mathfrak m^n, \omega_A^\bullet) \cong \Hom_A(A/\mathfrak m^n, E')[0]
$$
compatible with transition maps. Since
$E' = \bigcup E'[\mathfrak m^n] = \colim \Hom_A(A/\mathfrak m^n, E')$
by Lemma \ref{lemma-union-artinian}
we conclude that $E \cong E'$ and that all other cohomology
groups of the complex $R\Gamma_Z(\omega_A^\bullet)$ are zero.
\end{proof}
\begin{remark}
\label{remark-specific-injective-hull}
Let $(A, \mathfrak m, \kappa)$ be a Noetherian local ring
with a normalized dualizing complex $\omega_A^\bullet$.
By Lemma \ref{lemma-local-cohomology-of-dualizing}
above we see that $R\Gamma_Z(\omega_A^\bullet)$
is an injective hull of the residue field placed in degree $0$.
In fact, this gives a ``construction'' or ``realization''
of the injective hull which is slightly more canonical than
just picking any old injective hull. Namely, a normalized
dualizing complex is unique up to isomorphism, with group
of automorphisms the group of units of $A$, whereas an
injective hull of $\kappa$ is unique up to isomorphism, with
group of automorphisms the group of units of the completion
$A^\wedge$ of $A$ with respect to $\mathfrak m$.
\end{remark}
\noindent
Here is the main result of this section.
\begin{theorem}
\label{theorem-local-duality}
Let $(A, \mathfrak m, \kappa)$ be a Noetherian local ring.
Let $\omega_A^\bullet$ be a normalized dualizing complex.
Let $E$ be an injective hull of the residue field.
Let $Z = V(\mathfrak m) \subset \Spec(A)$.
Denote ${}^\wedge$ derived completion with respect to $\mathfrak m$.
Then
$$
R\Hom_A(K, \omega_A^\bullet)^\wedge \cong R\Hom_A(R\Gamma_Z(K), E[0])
$$
for $K$ in $D(A)$.
\end{theorem}
\begin{proof}
Observe that $E[0] \cong R\Gamma_Z(\omega_A^\bullet)$ by
Lemma \ref{lemma-local-cohomology-of-dualizing}.
By More on Algebra, Lemma \ref{more-algebra-lemma-completion-RHom}
completion on the left hand side goes inside.
Thus we have to prove
$$
R\Hom_A(K^\wedge, (\omega_A^\bullet)^\wedge)
=
R\Hom_A(R\Gamma_Z(K), R\Gamma_Z(\omega_A^\bullet))
$$
This follows from the equivalence between
$D_{comp}(A, \mathfrak m)$ and $D_{\mathfrak m^\infty\text{-torsion}}(A)$
given in Proposition \ref{proposition-torsion-complete}.
More precisely, it is a special case of Lemma \ref{lemma-compare-RHom}.
\end{proof}
\noindent
Here is a special case of the theorem above.
\begin{lemma}
\label{lemma-special-case-local-duality}
Let $(A, \mathfrak m, \kappa)$ be a Noetherian local ring.
Let $\omega_A^\bullet$ be a normalized dualizing complex.
Let $E$ be an injective hull of the residue field.
Let $K \in D_{\textit{Coh}}(A)$. Then
$$
\Ext^{-i}_A(K, \omega_A^\bullet)^\wedge =
\Hom_A(H^i_{\mathfrak m}(K), E)
$$
where ${}^\wedge$ denotes $\mathfrak m$-adic completion.
\end{lemma}
\begin{proof}
By Lemma \ref{lemma-dualizing} we see that $R\Hom_A(K, \omega_A^\bullet)$
is an object of $D_{\textit{Coh}}(A)$.
It follows that the cohomology modules of the derived completion
of $R\Hom_A(K, \omega_A^\bullet)$ are equal to the usual completions
$\Ext^i_A(K, \omega_A^\bullet)^\wedge$ by
More on Algebra, Lemma
\ref{more-algebra-lemma-derived-completion-pseudo-coherent}.
On the other hand, we have $R\Gamma_{\mathfrak m} = R\Gamma_Z$
for $Z = V(\mathfrak m)$ by Lemma \ref{lemma-local-cohomology-noetherian}.
Moreover, the functor $\Hom_A(-, E)$ is exact hence
factors through cohomology.
Hence the lemma is consequence of
Theorem \ref{theorem-local-duality}.
\end{proof}
\section{Dualizing modules}
\label{section-dualizing-module}
\noindent
If $(A, \mathfrak m, \kappa)$ is a Noetherian local ring and
$\omega_A^\bullet$ is a normalized dualizing complex, then
we say the module $\omega_A = H^{-\dim(A)}(\omega_A^\bullet)$, described
in Lemma \ref{lemma-depth-dualizing-module},
is a {\it dualizing module}
for $A$. This module is a canonical module of $A$.
It seems generally agreed upon to define a {\it canonical module}
for a Noetherian local ring $(A, \mathfrak m, \kappa)$ to be
a finite $A$-module $K$ such that
$$
\Hom_A(K, E) \cong H^{\dim(A)}_\mathfrak m(A)
$$
where $E$ is an injective hull of the residue field. A dualizing
module is canonical because
$$
\Hom_A(H^{\dim(A)}_\mathfrak m(A), E) = (\omega_A)^\wedge
$$
by Lemma \ref{lemma-special-case-local-duality}
and hence applying
$\Hom_A(-, E)$ we get
\begin{align*}
\Hom_A(\omega_A, E)
& =
\Hom_A((\omega_A)^\wedge, E) \\
& =
\Hom_A(\Hom_A(H^{\dim(A)}_\mathfrak m(A), E), E) \\
& = H^{\dim(A)}_\mathfrak m(A)
\end{align*}
the first equality because $E$ is $\mathfrak m$-power torsion, the
second by the above, and the third by Matlis duality
(Proposition \ref{proposition-matlis}).
The utility of the definition
of a canonical module given above lies in the fact that it makes sense
even if $A$ does not have a dualizing complex.
\section{Cohen-Macaulay rings}
\label{section-CM}
\noindent
Cohen-Macaulay modules and rings were studied in
Algebra, Sections \ref{algebra-section-CM} and \ref{algebra-section-CM-ring}.
\begin{lemma}
\label{lemma-depth-in-terms-dualizing-complex}
Let $(A, \mathfrak m, \kappa)$ be a Noetherian local ring with
normalized dualizing complex $\omega_A^\bullet$.
Then $\text{depth}(A)$ is equal to the smallest integer $\delta \geq 0$
such that $H^{-\delta}(\omega_A^\bullet) \not = 0$.
\end{lemma}
\begin{proof}
This follows immediately from
Lemma \ref{lemma-sitting-in-degrees}.
Here are two other ways to see that it is true.
\medskip\noindent
First alternative. By Nakayama's lemma we see that
$\delta$ is the smallest integer such that
$\Hom_A(H^{-\delta}(\omega_A^\bullet), \kappa) \not = 0$.
In other words, it is the smallest integer such that
$\Ext_A^{-\delta}(\omega_A^\bullet, \kappa)$
is nonzero. Using Lemma \ref{lemma-dualizing} and the fact that
$\omega_A^\bullet$ is normalized this is equal to the
smallest integer such that $\Ext_A^\delta(\kappa, A)$ is
nonzero. This is equal to the depth of $A$ by
Algebra, Lemma \ref{algebra-lemma-depth-ext}.
\medskip\noindent
Second alternative. By the local duality theorem
(in the form of Lemma \ref{lemma-special-case-local-duality})
$\delta$ is the smallest integer such that $H^\delta_\mathfrak m(A)$
is nonzero. This is equal to the depth of $A$ by
Lemma \ref{lemma-depth}.
\end{proof}
\begin{lemma}
\label{lemma-apply-CM}
Let $(A, \mathfrak m, \kappa)$ be a Noetherian local ring
with normalized dualizing complex $\omega_A^\bullet$
and dualizing module $\omega_A = H^{-\dim(A)}(\omega_A^\bullet)$.
The following are equivalent
\begin{enumerate}
\item $A$ is Cohen-Macaulay,
\item $\omega_A^\bullet$ is concentrated in a single degree, and
\item $\omega_A^\bullet = \omega_A[\dim(A)]$.
\end{enumerate}
In this case $\omega_A$ is a maximal Cohen-Macaulay module.
\end{lemma}
\begin{proof}
Follows immediately from Lemma \ref{lemma-local-CM}.
\end{proof}
\begin{lemma}
\label{lemma-has-dualizing-module-CM}
Let $A$ be a Noetherian ring. If there exists a finite $A$-module
$\omega_A$ such that $\omega_A[0]$ is a dualizing complex, then
$A$ is Cohen-Macaulay.
\end{lemma}
\begin{proof}
We may replace $A$ by the localization at a prime
(Lemma \ref{lemma-dualizing-localize} and
Algebra, Definition \ref{algebra-definition-ring-CM}).
In this case the result follows immediately from
Lemma \ref{lemma-apply-CM}.
\end{proof}
\begin{lemma}
\label{lemma-CM-open}
Let $A$ be a Noetherian ring with dualizing complex $\omega_A^\bullet$.
Let $M$ be a finite $A$-module. Then
$$
U = \{\mathfrak p \in \Spec(A) \mid M_\mathfrak p\text{ is Cohen-Macaulay}\}
$$
is an open subset of $\Spec(A)$ whose intersection with
$\text{Supp}(M)$ is dense.
\end{lemma}
\begin{proof}
If $\mathfrak p$ is a generic point of $\text{Supp}(M)$, then
$\text{depth}(M_\mathfrak p) = \dim(M_\mathfrak p) = 0$
and hence $\mathfrak p \in U$. This proves denseness.
If $\mathfrak p \in U$, then we see that
$$
R\Hom_A(M, \omega_A^\bullet)_\mathfrak p =
R\Hom_{A_\mathfrak p}(M_\mathfrak p, (\omega_A^\bullet)_\mathfrak p)
$$
has a unique nonzero cohomology module, say in degree $i_0$, by
Lemma \ref{lemma-local-CM}.
Since $R\Hom_A(M, \omega_A^\bullet)$
has only a finite number of nonzero cohomology modules $H^i$
and since each of these is a finite $A$-module, we can
find an $f \in A$, $f \not \in \mathfrak p$ such that
$(H^i)_f = 0$ for $i \not = i_0$. Then
$R\Hom_A(M, \omega_A^\bullet)_f$ has a unique nonzero cohomology
module and reversing the arguments just given we find
that $D(f) \subset U$.
\end{proof}
\begin{lemma}
\label{lemma-CM}
Let $A$ be a Noetherian ring. If $A$ has a dualizing complex
$\omega_A^\bullet$, then
$\{\mathfrak p \in \Spec(A) \mid A_\mathfrak p\text{ is Cohen-Macaulay}\}$
is a dense open subset of $\Spec(A)$.
\end{lemma}
\begin{proof}
Immediate consequence of Lemma \ref{lemma-CM-open} and the definitions.
\end{proof}
\section{Gorenstein rings}
\label{section-gorenstein}
\noindent
So far, the only explicit dualizing complex we've seen is $\kappa$ on $\kappa$
for a field $\kappa$, see proof of Lemma \ref{lemma-find-function}.
By Proposition \ref{proposition-dualizing-essentially-finite-type}
this means that any finite type algebra over a field has a dualizing
complex. However, it turns out that there are Noetherian (local) rings
which do not have a dualizing complex. Namely, we have seen that
a ring which has a dualizing complex is universally catenary
(Lemma \ref{lemma-universally-catenary})
but there are examples of
Noetherian local rings which are not catenary, see
Examples, Section \ref{examples-section-non-catenary-Noetherian-local}.
\medskip\noindent
Nonetheless many rings in algebraic geometry have dualizing complexes
simply because they are quotients of Gorenstein rings. This condition
is in fact both necessary and sufficient. That is: a Noetherian ring
has a dualizing complex if and only if it is a quotient of a finite
dimensional Gorenstein ring. This is Sharp's conjecture (\cite{Sharp})
which can be found as \cite[Corollary 1.4]{Kawasaki} in the literature.
Returning to our current topic, here is the definition of Gorenstein rings.
\begin{definition}
\label{definition-gorenstein}
Gorenstein rings.
\begin{enumerate}
\item Let $A$ be a Noetherian local ring. We say $A$ is {\it Gorenstein}
if $A[0]$ is a dualizing complex for $A$.
\item Let $A$ be a Noetherian ring. We say $A$ is {\it Gorenstein}
if $A_\mathfrak p$ is Gorenstein for every prime $\mathfrak p$ of $A$.
\end{enumerate}
\end{definition}
\noindent
This definition makes sense, because if $A[0]$ is a dualizing complex
for $A$, then $S^{-1}A[0]$ is a dualizing complex for $S^{-1}A$ by
Lemma \ref{lemma-dualizing-localize}.
We will see later that a finite dimensional Noetherian ring is Gorenstein
if it has finite injective dimension as a module over itself.
\begin{lemma}
\label{lemma-gorenstein-CM}
A Gorenstein ring is Cohen-Macaulay.
\end{lemma}
\begin{proof}
Follows from Lemma \ref{lemma-apply-CM}.
\end{proof}
\noindent
An example of a Gorenstein ring is a regular ring.
\begin{lemma}
\label{lemma-regular-gorenstein}
A regular local ring is Gorenstein.
A regular ring is Gorenstein.
\end{lemma}
\begin{proof}
Let $A$ be a regular ring of finite dimension $d$. Then $A$ has finite
global dimension $d$, see
Algebra, Lemma \ref{algebra-lemma-finite-gl-dim-finite-dim-regular}.
Hence $\Ext^{d + 1}_A(M, A) = 0$ for all $A$-modules $M$, see
Algebra, Lemma \ref{algebra-lemma-projective-dimension-ext}.
Thus $A$ has finite injective dimension as an $A$-module by
More on Algebra, Lemma \ref{more-algebra-lemma-injective-amplitude}.
It follows that $A[0]$ is a dualizing complex, hence $A$ is
Gorenstein by the remark following the definition.
\end{proof}
\begin{lemma}
\label{lemma-gorenstein}
Let $A$ be a Noetherian ring.
\begin{enumerate}
\item If $A$ has a dualizing complex $\omega_A^\bullet$, then
\begin{enumerate}
\item $A$ is Gorenstein $\Leftrightarrow$ $\omega_A^\bullet$ is an invertible
object of $D(A)$,
\item $A_\mathfrak p$ is Gorenstein $\Leftrightarrow$
$(\omega_A^\bullet)_\mathfrak p$ is an invertible object of
$D(A_\mathfrak p)$,
\item $\{\mathfrak p \in \Spec(A) \mid A_\mathfrak p\text{ is Gorenstein}\}$
is an open subset.
\end{enumerate}
\item If $A$ is Gorenstein, then $A$ has a dualizing complex if and
only if $A[0]$ is a dualizing complex.
\end{enumerate}
\end{lemma}
\begin{proof}
For invertible objects of $D(A)$, see
More on Algebra, Lemma \ref{more-algebra-lemma-invertible-derived}
and the discussion in Section \ref{section-dualizing}.
\medskip\noindent
By Lemma \ref{lemma-dualizing-localize} for every
$\mathfrak p$ the complex $(\omega_A^\bullet)_\mathfrak p$ is a
dualizing complex over $A_\mathfrak p$. By definition and uniqueness
of dualizing complexes (Lemma \ref{lemma-dualizing-unique})
we see that (1)(b) holds.
\medskip\noindent
To see (1)(c) assume that $A_\mathfrak p$ is Gorenstein.
Let $n_x$ be the unique integer such that
$H^{n_{x}}((\omega_A^\bullet)_\mathfrak p)$
is nonzero and isomorphic to $A_\mathfrak p$.
Since $\omega_A^\bullet$ is in $D^b_{\textit{Coh}}(A)$
there are finitely many nonzero finite $A$-modules
$H^i(\omega_A^\bullet)$. Thus there exists some
$f \in A$, $f \not \in \mathfrak p$
such that only $H^{n_x}((\omega_A^\bullet)_f)$
is nonzero and generated by $1$ element over $A_f$.
Since dualizing complexes are faithful (by definition)
we conclude that $A_f \cong H^{n_x}((\omega_A^\bullet)_f)$.
In this way we see that $A_\mathfrak q$ is Gorenstein
for every $\mathfrak q \in D(f)$. This proves that the set
in (1)(c) is open.
\medskip\noindent
Proof of (1)(a). The implication $\Leftarrow$ follows from (1)(b).
The implication $\Rightarrow$ follows from the discussion
in the previous paragraph, where we showed that if $A_\mathfrak p$
is Gorenstein, then for some $f \in A$, $f \not \in \mathfrak p$
the complex $(\omega_A^\bullet)_f$ has only one nonzero cohomology module
which is invertible.
\medskip\noindent
If $A[0]$ is a dualizing complex then $A$ is Gorenstein by
part (1). Conversely, we see that part (1) shows that
$\omega_A^\bullet$ is locally isomorphic to a shift of $A$.
Since being a dualizing complex is local
(Lemma \ref{lemma-dualizing-glue})
the result is clear.
\end{proof}
\begin{lemma}
\label{lemma-gorenstein-ext}
Let $(A, \mathfrak m, \kappa)$ be a Noetherian local ring.
Then $A$ is Gorenstein if and only if $\Ext^i_A(\kappa, A)$
is zero for $i \gg 0$.
\end{lemma}
\begin{proof}
Observe that $A[0]$ is a dualizing complex for $A$ if and only
if $A$ has finite injective dimension as an $A$-module
(follows immediately from Definition \ref{definition-dualizing}).
Thus the lemma follows from More on Algebra, Lemma
\ref{more-algebra-lemma-finite-injective-dimension-Noetherian-local}.
\end{proof}
\begin{lemma}
\label{lemma-gorenstein-divide-by-nonzerodivisor}
Let $(A, \mathfrak m, \kappa)$
be a Noetherian local ring. Let $f \in \mathfrak m$ be a
nonzerodivisor. Set $B = A/(f)$. Then $A$ is Gorenstein if and
only if $B$ is Gorenstein.
\end{lemma}
\begin{proof}
If $A$ is Gorenstein, then $B$ is Gorenstein by
Lemma \ref{lemma-divide-by-nonzerodivisor}.
Conversely, suppose that $B$ is Gorenstein. Then
$\Ext^i_B(\kappa, B)$ is zero for $i \gg 0$
(Lemma \ref{lemma-gorenstein-ext}).
Recall that $R\Hom(B, -) : D(A) \to D(B)$ is a right adjoint
to restriction (Lemma \ref{lemma-right-adjoint}).
Hence
$$
R\Hom_A(\kappa, A) = R\Hom_B(\kappa, R\Hom(B, A)) =
R\Hom_B(\kappa, B[1])
$$
The final equality by direct computation or by
Lemma \ref{lemma-compute-for-effective-Cartier-algebraic}.
Thus we see that $\Ext^i_A(\kappa, A)$ is zero for
$i \gg 0$ and $A$ is Gorenstein (Lemma \ref{lemma-gorenstein-ext}).
\end{proof}
\begin{lemma}
\label{lemma-gorenstein-lci}
If $A \to B$ is a local complete intersection homomorphism of rings and
$A$ is a Noetherian Gorenstein ring, then $B$ is a Gorenstein ring.
\end{lemma}
\begin{proof}
By More on Algebra, Definition
\ref{more-algebra-definition-local-complete-intersection}
we can write $B = A[x_1, \ldots, x_n]/I$
where $I$ is a Koszul-regular ideal. Observe that a polynomial
ring over a Gorenstein ring $A$ is Gorenstein: reduce to
$A$ local and then use Lemmas \ref{lemma-dualizing-polynomial-ring} and
\ref{lemma-gorenstein}.
A Koszul-regular ideal is by definition locally generated
by a Koszul-regular sequence, see More on Algebra, Section
\ref{more-algebra-section-ideals}.
Looking at local rings of $A[x_1, \ldots, x_n]$
we see it suffices to show: if $R$ is a Noetherian local
Gorenstein ring and $f_1, \ldots, f_c \in \mathfrak m_R$
is a Koszul regular sequence, then $R/(f_1, \ldots, f_c)$ is Gorenstein.
This follows from
Lemma \ref{lemma-gorenstein-divide-by-nonzerodivisor} and
the fact that a Koszul regular sequence in $R$ is just a
regular sequence (More on Algebra, Lemma
\ref{more-algebra-lemma-noetherian-finite-all-equivalent}).
\end{proof}
\begin{lemma}
\label{lemma-flat-under-gorenstein}
Let $A \to B$ be a flat local homomorphism of Noetherian local rings.
The following are equivalent
\begin{enumerate}
\item $B$ is Gorenstein, and
\item $A$ and $B/\mathfrak m_A B$ are Gorenstein.
\end{enumerate}
\end{lemma}
\begin{proof}
Below we will use without further mention that a local Gorenstein ring
has finite injective dimension as well as Lemma \ref{lemma-gorenstein-ext}.
By More on Algebra, Lemma
\ref{more-algebra-lemma-pseudo-coherence-and-base-change-ext}
we have
$$
\Ext^i_A(\kappa_A, A) \otimes_A B =
\Ext^i_B(B/\mathfrak m_A B, B)
$$
for all $i$.
\medskip\noindent
Assume (2). Using that
$R\Hom(B/\mathfrak m_A B, -) : D(B) \to D(B/\mathfrak m_A B)$ is a
right adjoint to restriction (Lemma \ref{lemma-right-adjoint}) we obtain
$$
R\Hom_B(\kappa_B, B) =
R\Hom_{B/\mathfrak m_A B}(\kappa_B, R\Hom(B/\mathfrak m_A B, B))
$$
The cohomology modules of $R\Hom(B/\mathfrak m_A B, B)$ are the modules
$\Ext^i_B(B/\mathfrak m_A B, B) =
\Ext^i_A(\kappa_A, A) \otimes_A B$.
Since $A$ is Gorenstein, we conclude only a finite number of these are nonzero
and each is isomorphic to a direct sum of copies of $B/\mathfrak m_A B$.
Hence since $B/\mathfrak m_A B$ is Gorenstein we conclude that
$R\Hom_B(B/\mathfrak m_B, B)$ has only a finite number of nonzero
cohomology modules. Hence $B$ is Gorenstein.
\medskip\noindent
Assume (1). Since $B$ has finite injective dimension,
$\Ext^i_B(B/\mathfrak m_A B, B)$ is $0$ for $i \gg 0$.
Since $A \to B$ is faithfully flat
we conclude that $\Ext^i_A(\kappa_A, A)$ is $0$
for $i \gg 0$. We conclude that $A$ is Gorenstein. This implies that
$\Ext^i_A(\kappa_A, A)$ is nonzero for exactly one $i$,
namely for $i = \dim(A)$, and
$\Ext^{\dim(A)}_A(\kappa_A, A) \cong \kappa_A$
(see Lemmas \ref{lemma-normalized-finite}, \ref{lemma-apply-CM}, and
\ref{lemma-gorenstein-CM}).
Thus we see that
$\Ext^i_B(B/\mathfrak m_A B, B)$ is zero except for one $i$,
namely $i = \dim(A)$ and
$\Ext^{\dim(A)}_B(B/\mathfrak m_A B, B) \cong B/\mathfrak m_A B$.
Thus $B/\mathfrak m_A B$ is Gorenstein by
Lemma \ref{lemma-normalized-finite}.
\end{proof}
\begin{lemma}
\label{lemma-tor-injective-hull}
Let $(A, \mathfrak m, \kappa)$ be a Noetherian local Gorenstein ring
of dimension $d$. Let $E$ be the injective hull of $\kappa$. Then
$\text{Tor}_i^A(E, \kappa)$ is zero for $i \not = d$
and $\text{Tor}_d^A(E, \kappa) = \kappa$.
\end{lemma}
\begin{proof}
Since $A$ is Gorenstein $\omega_A^\bullet = A[d]$ is a
normalized dualizing complex for $A$.
Also $E$ is the only nonzero cohomology module of
$R\Gamma_\mathfrak m(\omega_A^\bullet)$ sitting in degree $0$, see
Lemma \ref{lemma-local-cohomology-of-dualizing}.
By Lemma \ref{lemma-torsion-tensor-product} we have
$$
E \otimes_A^\mathbf{L} \kappa =
R\Gamma_\mathfrak m(\omega_A^\bullet) \otimes_A^\mathbf{L} \kappa =
R\Gamma_\mathfrak m(\omega_A^\bullet \otimes_A^\mathbf{L} \kappa) =
R\Gamma_\mathfrak m(\kappa[d]) = \kappa[d]
$$
and the lemma follows.
\end{proof}
\section{The ubiquity of dualizing complexes}
\label{section-ubiquity-dualizing}
\noindent
Many Noetherian rings have dualizing complexes.
\begin{lemma}
\label{lemma-flat-unramified}
Let $A \to B$ be a local homomorphism of Noetherian local rings.
Let $\omega_A^\bullet$ be a normalized dualizing complex.
If $A \to B$ is flat and $\mathfrak m_A B = \mathfrak m_B$,
then $\omega_A^\bullet \otimes_A B$ is a normalized dualizing
complex for $B$.
\end{lemma}
\begin{proof}
It is clear that $\omega_A^\bullet \otimes_A B$ is in $D^b_{\textit{Coh}}(B)$.
Let $\kappa_A$ and $\kappa_B$ be the residue fields of $A$ and $B$.
By More on Algebra, Lemma \ref{more-algebra-lemma-base-change-RHom}
we see that
$$
R\Hom_B(\kappa_B, \omega_A^\bullet \otimes_A B) =
R\Hom_A(\kappa_A, \omega_A^\bullet) \otimes_A B =
\kappa_A[0] \otimes_A B = \kappa_B[0]
$$
Thus $\omega_A^\bullet \otimes_A B$ has finite injective dimension by
More on Algebra, Lemma
\ref{more-algebra-lemma-finite-injective-dimension-Noetherian-local}.
Finally, we can use the same arguments to see that
$$
R\Hom_B(\omega_A^\bullet \otimes_A B, \omega_A^\bullet \otimes_A B) =
R\Hom_A(\omega_A^\bullet, \omega_A^\bullet) \otimes_A B = A \otimes_A B = B
$$
as desired.
\end{proof}
\begin{lemma}
\label{lemma-flat-iso-mod-I}
Let $A \to B$ be a flat map of Noetherian rings. Let
$I \subset A$ be an ideal such that $A/I = B/IB$ and
such that $IB$ is contained in the Jacobson radical of $B$.
Let $\omega_A^\bullet$ be a dualizing complex.
Then $\omega_A^\bullet \otimes_A B$ is a dualizing
complex for $B$.
\end{lemma}
\begin{proof}
It is clear that $\omega_A^\bullet \otimes_A B$ is in $D^b_{\textit{Coh}}(B)$.
By More on Algebra, Lemma \ref{more-algebra-lemma-base-change-RHom}
we see that
$$
R\Hom_B(K \otimes_A B, \omega_A^\bullet \otimes_A B) =
R\Hom_A(K, \omega_A^\bullet) \otimes_A B
$$
for any $K \in D^b_{\textit{Coh}}(A)$. For any ideal
$IB \subset J \subset B$ there is a unique ideal $I \subset J' \subset A$
such that $A/J' \otimes_A B = B/J$. Thus $\omega_A^\bullet \otimes_A B$
has finite injective dimension by
More on Algebra, Lemma
\ref{more-algebra-lemma-finite-injective-dimension-Noetherian-radical}.
Finally, we also have
$$
R\Hom_B(\omega_A^\bullet \otimes_A B, \omega_A^\bullet \otimes_A B) =
R\Hom_A(\omega_A^\bullet, \omega_A^\bullet) \otimes_A B = A \otimes_A B = B
$$
as desired.
\end{proof}
\begin{lemma}
\label{lemma-completion-henselization-dualizing}
Let $A$ be a Noetherian ring and let $I \subset A$ be an ideal.
Let $\omega_A^\bullet$ be a dualizing complex.
\begin{enumerate}
\item $\omega_A^\bullet \otimes_A A^h$ is a dualizing complex on the
henselization $(A^h, I^h)$ of the pair $(A, I)$,
\item $\omega_A^\bullet \otimes_A A^\wedge$ is a dualizing complex on
the $I$-adic completion $A^\wedge$, and
\item if $A$ is local, then $\omega_A^\bullet \otimes_A A^h$,
resp.\ $\omega_A^\bullet \otimes_A A^{sh}$ is a dualzing complex
on the henselization, resp.\ strict henselization of $A$.
\end{enumerate}
\end{lemma}
\begin{proof}
Immediate from Lemmas \ref{lemma-flat-unramified} and
\ref{lemma-flat-iso-mod-I}.
See More on Algebra, Sections \ref{more-algebra-section-henselian-pairs},
\ref{more-algebra-section-permanence-completion}, and
\ref{more-algebra-section-permanence-henselization} and
Algebra, Sections \ref{algebra-section-completion} and
\ref{algebra-section-completion-noetherian}
for information on completions and henselizations.
\end{proof}
\begin{lemma}
\label{lemma-ubiquity-dualizing}
The following types of rings have a dualizing complex:
\begin{enumerate}
\item fields,
\item Noetherian complete local rings,
\item $\mathbf{Z}$,
\item Dedekind domains,
\item any ring which is obtained from one of the rings above by
taking an algebra essentially of finite type, or by taking an
ideal-adic completion, or by taking a henselization,
or by taking a strict henselization.
\end{enumerate}
\end{lemma}
\begin{proof}
Part (5) follows from Proposition
\ref{proposition-dualizing-essentially-finite-type}
and Lemma \ref{lemma-completion-henselization-dualizing}.
By Lemma \ref{lemma-regular-gorenstein} a regular local ring has a
dualizing complex.
A complete Noetherian local ring is the quotient of a regular
local ring by the Cohen structure theorem
(Algebra, Theorem \ref{algebra-theorem-cohen-structure-theorem}).
Let $A$ be a Dedekind domain. Then every ideal $I$ is a finite
projective $A$-module (follows from
Algebra, Lemma \ref{algebra-lemma-finite-projective}
and the fact that the local rings of $A$ are discrete valuation ring
and hence PIDs). Thus every $A$-module has finite injective dimension
at most $1$ by
More on Algebra, Lemma \ref{more-algebra-lemma-injective-amplitude}.
It follows easily that $A[0]$ is a dualizing complex.
\end{proof}
\section{Formal fibres}
\label{section-formal-fibres}
\noindent
This section is a continuation of
More on Algebra, Section \ref{more-algebra-section-properties-formal-fibres}.
There we saw there is a (fairly) good theory of Noetherian rings $A$
whose local rings have Cohen-Macaulay formal fibres. Namely, we proved
(1) it suffices to check the formal fibres of localizations at
maximal ideals are Cohen-Macaulay,
(2) the property is inherited by rings of finite type over $A$,
(3) the fibres of $A \to A^\wedge$ are Cohen-Macaulay for
any completion $A^\wedge$ of $A$, and
(4) the property is inherited by henselizations of $A$. See
More on Algebra, Lemma \ref{more-algebra-lemma-check-P-ring-maximal-ideals},
Proposition \ref{more-algebra-proposition-finite-type-over-P-ring},
Lemma \ref{more-algebra-lemma-map-P-ring-to-completion-P}, and
Lemma \ref{more-algebra-lemma-henselization-pair-P-ring}.
Similarly, for Noetherian rings whose local rings have formal fibres
which are geometrically reduced, geometrically normal, $(S_n)$, and
geometrically $(R_n)$.
In this section we will see that the same is true for Noetherian rings
whose local rings have formal fibres which are Gorenstein
or local complete intersections.
This is relevant to this chapter because a Noetherian ring which has a
dualizing complex is an example.
\begin{lemma}
\label{lemma-formal-fibres-gorenstein}
Properties (A), (B), (C), (D), and (E) of
More on Algebra, Section \ref{more-algebra-section-properties-formal-fibres}
hold for $P(k \to R) =$``$R$ is a Gorenstein ring''.
\end{lemma}
\begin{proof}
Since we already know the result holds for Cohen-Macaulay instead
of Gorenstein, we may in each step assume the ring we have is
Cohen-Macaulay. This is not particularly helpful for the proof, but
psychologically may be useful.
\medskip\noindent
Part (A). Let $K/k$ be a finitely generated field extension.
Let $R$ be a Gorenstein $k$-algebra.
We can find a global complete intersection
$A = k[x_1, \ldots, x_n]/(f_1, \ldots, f_c)$
over $k$ such that $K$ is isomorphic to the fraction field of $A$, see
Algebra, Lemma \ref{algebra-lemma-colimit-syntomic}.
Then $R \to R \otimes_k A$ is a relative global complete intersection.
Hence $R \otimes_k A$ is Gorenstein by Lemma \ref{lemma-gorenstein-lci}.
Thus $R \otimes_k K$ is too as a localization.
\medskip\noindent
Proof of (B). This is clear because a ring is Gorenstein
if and only if all of its local rings are Gorenstein.
\medskip\noindent
Part (C). Let $A \to B \to C$ be flat maps of Noetherian rings.
Assume the fibres of $A \to B$ are Gorenstein and $B \to C$ is regular.
We have to show the fibres of $A \to C$ are Gorenstein.
Clearly, we may assume $A = k$ is a field. Then we may assume that
$B \to C$ is a regular local homomorphism of Noetherian local rings.
Then $B$ is Gorenstein and $C/\mathfrak m_B C$ is regular, in
particular Gorenstein (Lemma \ref{lemma-regular-gorenstein}).
Then $C$ is Gorenstein by
Lemma \ref{lemma-flat-under-gorenstein}.
\medskip\noindent
Part (D). This follows from Lemma \ref{lemma-flat-under-gorenstein}.
Part (E) is immediate as the condition does not refer to the ground field.
\end{proof}
\begin{lemma}
\label{lemma-dualizing-gorenstein-formal-fibres}
Let $A$ be a Noetherian local ring. If $A$ has a dualizing complex,
then the formal fibres of $A$ are Gorenstein.
\end{lemma}
\begin{proof}
Let $\mathfrak p$ be a prime of $A$. The formal fibre of $A$ at $\mathfrak p$
is isomorphic to the formal fibre of $A/\mathfrak p$ at $(0)$. The quotient
$A/\mathfrak p$ has a dualizing complex
(Lemma \ref{lemma-dualizing-quotient}).
Thus it suffices to check the statement
when $A$ is a local domain and $\mathfrak p = (0)$.
Let $\omega_A^\bullet$ be a dualizing complex for $A$. Then
$\omega_A^\bullet \otimes_A A^\wedge$ is a dualizing complex
for the completion $A^\wedge$
(Lemma \ref{lemma-flat-unramified}).
Then $\omega_A^\bullet \otimes_A K$ is a dualizing
complex for the fraction field $K$ of $A$
(Lemma \ref{lemma-dualizing-localize}).
Hence $\omega_A^\bullet \otimes_A K$
is isomorphic ot $K[n]$ for some $n \in \mathbf{Z}$.
Similarly, we conclude a dualizing complex for the formal fibre
$A^\wedge \otimes_A K$ is
$$
\omega_A^\bullet \otimes_A A^\wedge \otimes_{A^\wedge} (A^\wedge \otimes_A K) =
(\omega_A^\bullet \otimes_A K) \otimes_K (A^\wedge \otimes_A K) \cong
(A^\wedge \otimes_A K)[n]
$$
as desired.
\end{proof}
\noindent
Here is the verification promised in
Divided Power Algebra, Remark \ref{dpa-remark-no-good-ci-map}.
\begin{lemma}
\label{lemma-formal-fibres-lci}
Properties (A), (B), (C), (D), and (E) of
More on Algebra, Section \ref{more-algebra-section-properties-formal-fibres}
hold for $P(k \to R) =$``$R$ is a local complete intersection''.
See Divided Power Algebra, Definition \ref{dpa-definition-lci}.
\end{lemma}
\begin{proof}
Part (A). Let $K/k$ be a finitely generated field extension.
Let $R$ be a $k$-algebra which is a local complete intersection.
We can find a global complete intersection
$A = k[x_1, \ldots, x_n]/(f_1, \ldots, f_c)$
over $k$ such that $K$ is isomorphic to the fraction field of $A$, see
Algebra, Lemma \ref{algebra-lemma-colimit-syntomic}.
Then $R \to R \otimes_k A$ is a relative global complete intersection.
It follows that $R \otimes_k A$ is a local complete intersection
by Divided Power Algebra, Lemma \ref{dpa-lemma-avramov}.
\medskip\noindent
Proof of (B). This is clear
because a ring is a local complete intersection if and only if all of its
local rings are complete intersections.
\medskip\noindent
Part (C). Let $A \to B \to C$ be flat maps of Noetherian rings.
Assume the fibres of $A \to B$ are local complete intersections
and $B \to C$ is regular. We have to show the fibres of $A \to C$
are local complete intersections. Clearly, we may assume $A = k$ is a field.
Then we may assume that $B \to C$ is a regular local homomorphism
of Noetherian local rings. Then $B$ is a complete intersection and
$C/\mathfrak m_B C$ is regular, in particular a complete intersection
(by definition). Then $C$ is a complete intersection by
Divided Power Algebra, Lemma \ref{dpa-lemma-avramov}.
\medskip\noindent
Part (D). This follows by the same arguments as in (C) from
the other implication in
Divided Power Algebra, Lemma \ref{dpa-lemma-avramov}.
Part (E) is immediate as the condition does not refer to the ground
field.
\end{proof}
\section{Upper shriek algebraically}
\label{section-relative-dualizing-complex-algebraic}
\noindent
For a finite type homomorphism $R \to A$ of Noetherian rings
we will construct a functor $\varphi^! : D(R) \to D(A)$
well defined up to nonunique isomorphism which
as we will see in Duality for Schemes, Remark
\ref{duality-remark-local-calculation-shriek}
agrees up to isomorphism with the upper shriek functors
one encounters in the duality theory for schemes.
To motivate the construction we mention two additional properties:
\begin{enumerate}
\item $\varphi^!$ sends a dualizing complex for $R$ (if it exists)
to a dualizing complex for $A$, and
\item $\omega_{A/R}^\bullet = \varphi^!(R)$ is a kind of
relative dualizing complex: it lies in $D^b_{\textit{Coh}}(A)$ and restricts
to a dualizing complex on the fibres provided $R \to A$ is flat.
\end{enumerate}
These statemens are Lemmas \ref{lemma-shriek-dualizing-algebraic} and
\ref{lemma-relative-dualizing-algebraic}.
\medskip\noindent
Let $\varphi : R \to A$ be a finite type homomorphism of Noetherian rings.
We will define a functor $\varphi^! : D(R) \to D(A)$ in the following way
\begin{enumerate}
\item If $\varphi : R \to A$ is surjective we set
$\varphi^!(K) = R\Hom(A, K)$. Here we use the functor
$R\Hom(A, -) : D(R) \to D(A)$ of
Section \ref{section-trivial}, and
\item in general we choose a surjection $\psi : P \to A$ with
$P = R[x_1, \ldots, x_n]$ and we set
$\varphi^!(K) = \psi^!(K \otimes_R^\mathbf{L} P)[n]$.
Here we use the functor
$- \otimes_R^\mathbf{L} P : D(R) \to D(P)$
of More on Algebra, Section \ref{more-algebra-section-derived-base-change}.
\end{enumerate}
Note the shift $[n]$ by the number of variables in the polynomial
ring. This construction is {\bf not} canonical and the functor
$\varphi^!$ will only be well defined up to a (nonunique) isomorphism of
functors\footnote{It is possible to make the construction canonical:
use $\Omega^n_{P/R}[n]$ instead of $P[n]$ in the
construction and use this in Lemma \ref{lemma-well-defined}.
The material in this section becomes a lot more involved
if one wants to do this.}.
\begin{lemma}
\label{lemma-well-defined}
Let $\varphi : R \to A$ be a finite type homomorphism of
Noetherian rings. The functor $\varphi^!$ is well defined
up to isomorphism.
\end{lemma}
\begin{proof}
Suppose that $\psi_1 : P_1 = R[x_1, \ldots, x_n] \to A$ and
$\psi_2 : P_2 = R[y_1, \ldots, y_m] \to A$ are two
surjections from polynomial rings onto $A$. Then we get a
commutative diagram
$$
\xymatrix{
R[x_1, \ldots, x_n, y_1, \ldots, y_m]
\ar[d]^{x_i \mapsto g_i} \ar[rr]_-{y_j \mapsto f_j} & &
R[x_1, \ldots, x_n] \ar[d] \\
R[y_1, \ldots, y_m] \ar[rr] & & A
}
$$
where $f_j$ and $g_i$ are chosen such that $\psi_1(f_j) = \psi_2(y_j)$
and $\psi_2(g_i) = \psi_1(x_i)$. By symmetry it suffices to prove
the functors defined using $P \to A$ and $P[y_1, \ldots, y_m] \to A$
are isomorphic. By induction we may assume $m = 1$. This reduces
us to the case discussed in the next paragraph.
\medskip\noindent
Here $\psi : P \to A$ is given and $\chi : P[y] \to A$ induces
$\psi$ on $P$. Write $Q = P[y]$.
Choose $g \in P$ with $\psi(g) = \chi(y)$.
Denote $\pi : Q \to P$ the $P$-algebra map
with $\pi(y) = g$. Then $\chi = \psi \circ \pi$ and hence
$\chi^! = \psi^! \circ \pi^!$ as both are
adjoint to the restriction functor $D(A) \to D(Q)$ by the material
in Section \ref{section-trivial}. Thus
$$
\chi^!\left(K \otimes_R^\mathbf{L} Q\right)[n + 1] =
\psi^!\left(\pi^!\left(K \otimes_R^\mathbf{L} Q\right)[1]\right)[n]
$$
Hence it suffices to show that
$\pi^!(K \otimes_R^\mathbf{L} Q[1]) = K \otimes_R^\mathbf{L} P$
Thus it suffices to show that the functor
$\pi^!(-) : D(Q) \to D(P)$
is isomorphic to $K \mapsto K \otimes_Q^\mathbf{L} P[-1]$.
This follows from Lemma \ref{lemma-compute-for-effective-Cartier-algebraic}.
\end{proof}
\begin{lemma}
\label{lemma-shriek-boundedness}
Let $\varphi : R \to A$ be a finite type homomorphism of Noetherian rings.
\begin{enumerate}
\item $\varphi^!$ maps $D^+(R)$ into $D^+(A)$ and
$D^+_{\textit{Coh}}(R)$ into $D^+_{\textit{Coh}}(A)$.
\item if $\varphi$ is perfect, then $\varphi^!$ maps
$D^-(R)$ into $D^-(A)$,
$D^-_{\textit{Coh}}(R)$ into $D^-_{\textit{Coh}}(A)$, and
$D^b_{\textit{Coh}}(R)$ into $D^b_{\textit{Coh}}(A)$.
\end{enumerate}
\end{lemma}
\begin{proof}
Choose a factorization $R \to P \to A$ as in the definition of $\varphi^!$.
The functor $- \otimes_R^\mathbf{L} : D(R) \to D(P)$ preserves
the subcategories
$D^+, D^+_{\textit{Coh}}, D^-, D^-_{\textit{Coh}}, D^b_{\textit{Coh}}$.
The functor $R\Hom(A, -) : D(P) \to D(A)$
preserves $D^+$ and $D^+_{\textit{Coh}}$ by
Lemma \ref{lemma-exact-support-coherent}.
If $R \to A$ is perfect, then $A$ is perfect as a $P$-module, see
More on Algebra, Lemma \ref{more-algebra-lemma-perfect-ring-map}.
Recall that the restriction of $R\Hom(A, K)$ to $D(P)$ is
$R\Hom_P(A, K)$. By More on Algebra, Lemma
\ref{more-algebra-lemma-dual-perfect-complex}
we have $R\Hom_P(A, K) = E \otimes_P^\mathbf{L} K$ for
some perfect $E \in D(P)$. Since we can represent $E$ by
a finite complex of finite projective $P$-modules
it is clear that $R\Hom_P(A, K)$ is in
$D^-(P), D^-_{\textit{Coh}}(P), D^b_{\textit{Coh}}(P)$
as soon as $K$ is. Since the restriction functor
$D(A) \to D(P)$ reflects these subcategories, the
proof is complete.
\end{proof}
\begin{lemma}
\label{lemma-shriek-dualizing-algebraic}
Let $\varphi$ be a finite type homomorphism of Noetherian rings.
If $\omega_R^\bullet$ is a dualizing complex for $R$, then
$\varphi^!(\omega_R^\bullet)$ is a dualizing complex for $A$.
\end{lemma}
\begin{proof}
Follows from Lemmas
\ref{lemma-dualizing-polynomial-ring} and
\ref{lemma-dualizing-quotient},
\end{proof}
\begin{lemma}
\label{lemma-flat-bc}
Let $R \to R'$ be a flat homomorphism of Noetherian rings.
Let $\varphi : R \to A$ be a finite type ring map.
Let $\varphi' : R' \to A' = A \otimes_R R'$ be the map induced by $\varphi$.
Then we have a functorial maps
$$
\varphi^!(K) \otimes_A^\mathbf{L} A' \longrightarrow
(\varphi')^!(K \otimes_R^\mathbf{L} R')
$$
for $K$ in $D(R)$ which are isomorphisms for $K \in D^+(R)$.
\end{lemma}
\begin{proof}
Choose a factorization $R \to P \to A$ where $P$ is a polynomial ring over $R$.
This gives a corresponding factorization $R' \to P' \to A'$ by base change.
Since we have $(K \otimes_R^\mathbf{L} P) \otimes_P^\mathbf{L} P' =
(K \otimes_R^\mathbf{L} R') \otimes_{R'}^\mathbf{L} P'$
by More on Algebra, Lemma \ref{more-algebra-lemma-double-base-change}
it suffices to construct maps
$$
R\Hom(A, K \otimes_R^\mathbf{L} P[n]) \otimes_A^\mathbf{L} A'
\longrightarrow
R\Hom(A', (K \otimes_R^\mathbf{L} P[n]) \otimes_P^\mathbf{L} P')
$$
functorial in $K$. For this we use the map (\ref{equation-base-change})
constructed in Section \ref{section-base-change-trivial-duality}
for $P, A, P', A'$.
The map is an isomorphism for $K \in D^+(R)$ by
Lemma \ref{lemma-flat-bc-surjection}.
\end{proof}
\begin{lemma}
\label{lemma-bc}
Let $R \to R'$ be a homomorphism of Noetherian rings.
Let $\varphi : R \to A$ be a perfect ring map
(More on Algebra, Definition
\ref{more-algebra-definition-pseudo-coherent-perfect})
such that $R'$ and $A$ are tor independent over $R$.
Let $\varphi' : R' \to A' = A \otimes_R R'$ be the map induced by $\varphi$.
Then we have a functorial isomorphism
$$
\varphi^!(K) \otimes_A^\mathbf{L} A' =
(\varphi')^!(K \otimes_R^\mathbf{L} R')
$$
for $K$ in $D(R)$.
\end{lemma}
\begin{proof}
We may choose a factorization $R \to P \to A$ where $P$
is a polynomial ring over $R$ such that $A$ is a perfect $P$-module, see
More on Algebra, Lemma \ref{more-algebra-lemma-perfect-ring-map}.
This gives a corresponding factorization $R' \to P' \to A'$ by base change.
Since we have $(K \otimes_R^\mathbf{L} P) \otimes_P^\mathbf{L} P' =
(K \otimes_R^\mathbf{L} R') \otimes_{R'}^\mathbf{L} P'$
by More on Algebra, Lemma \ref{more-algebra-lemma-double-base-change}
it suffices to construct maps
$$
R\Hom(A, K \otimes_R^\mathbf{L} P[n]) \otimes_A^\mathbf{L} A'
\longrightarrow
R\Hom(A', (K \otimes_R^\mathbf{L} P[n]) \otimes_P^\mathbf{L} P')
$$
functorial in $K$. We have
$$
A \otimes_P^\mathbf{L} P' = A \otimes_R^\mathbf{L} R' = A'
$$
The first equality by
More on Algebra, Lemma \ref{more-algebra-lemma-base-change-comparison}
applied to $R, R', P, P'$. The second equality because
$A$ and $R'$ are tor independent over $R$. Hence $A$ and $P'$ are
tor independent over $P$ and we can use the map (\ref{equation-base-change})
constructed in Section \ref{section-base-change-trivial-duality} for
$P, A, P', A'$
get the desired arrow. By Lemma \ref{lemma-bc-surjection}
to finish the proof it suffices to prove that $A$ is a perfect $P$-module
which we saw above.
\end{proof}
\begin{lemma}
\label{lemma-bc-flat}
Let $R \to R'$ be a homomorphism of Noetherian rings.
Let $\varphi : R \to A$ be flat of finite type.
Let $\varphi' : R' \to A' = A \otimes_R R'$ be the map induced by $\varphi$.
Then we have a functorial isomorphism
$$
\varphi^!(K) \otimes_A^\mathbf{L} A' =
(\varphi')^!(K \otimes_R^\mathbf{L} R')
$$
for $K$ in $D(R)$.
\end{lemma}
\begin{proof}
Special case of Lemma \ref{lemma-bc} by
More on Algebra, Lemma
\ref{more-algebra-lemma-flat-finite-presentation-perfect}.
\end{proof}
\begin{lemma}
\label{lemma-composition-shriek-algebraic}
Let $A \xrightarrow{a} B \xrightarrow{b} C$ be finite type homomorphisms of
Noetherian rings. Then there is a transformation of functors
$b^! \circ a^! \to (b \circ a)^!$ which is an isomorphism on $D^+(A)$.
\end{lemma}
\begin{proof}
Choose a polynomial ring $P = A[x_1, \ldots, x_n]$ over $A$
and a surjection $P \to B$. Choose elements $c_1, \ldots, c_m \in C$
generating $C$ over $B$. Set $Q = P[y_1, \ldots, y_m]$ and
denote $Q' = Q \otimes_P B = B[y_1, \ldots, y_m]$.
Let $\chi : Q' \to C$ be the surjection sending $y_j$ to $c_j$.
Picture
$$
\xymatrix{
& Q \ar[r]_{\psi'} & Q' \ar[r]_\chi & C \\
A \ar[r] & P \ar[r]^\psi \ar[u] & B \ar[u]
}
$$
By Lemma \ref{lemma-flat-bc-surjection} for $M \in D(P)$ we have an arrow
$\psi^!(M) \otimes_B^\mathbf{L} Q' \to (\psi')^!(M \otimes_P^\mathbf{L} Q)$
which is an isomorphism whenever $M$ is bounded below. Also
we have $\chi^! \circ (\psi')^! = (\chi \circ \psi')^!$ as both
functors are adjoint to the restriction functor $D(C) \to D(Q)$
by Section \ref{section-trivial}. Then we see
\begin{align*}
b^!(a^!(K))
& =
\chi^!(\psi^!(K \otimes_A^\mathbf{L} P)[n] \otimes_B^\mathbf{L} Q)[m] \\
& \to
\chi^!((\psi')^!(K \otimes_A^\mathbf{L} P \otimes_P^\mathbf{L} Q))[n + m] \\
& =
(\chi \circ \psi')^!(K\otimes_A^\mathbf{L} Q)[n + m] \\
& =
(b \circ a)^!(K)
\end{align*}
where we have used in addition to the above
More on Algebra, Lemma \ref{more-algebra-lemma-double-base-change}.
\end{proof}
\begin{lemma}
\label{lemma-upper-shriek-finite}
Let $\varphi : R \to A$ be a finite map of Noetherian rings.
Then $\varphi^!$ is isomorphic to the functor
$R\Hom(A, -) : D(R) \to D(A)$ from
Section \ref{section-trivial}.
\end{lemma}
\begin{proof}
Suppose that $A$ is generated by $n > 1$ elements over $R$.
Then can factor $R \to A$ as a composition of two finite ring maps
where in both steps the number of generators is $< n$.
Since we have Lemma \ref{lemma-composition-shriek-algebraic} and
Lemma \ref{lemma-composition-right-adjoints}
we conclude that it suffices
to prove the lemma when $A$ is generated by one element over $R$.
Since $A$ is finite over $R$, it follows that $A$ is a quotient
of $B = R[x]/(f)$ where $f$ is a monic polynomial in $x$
(Algebra, Lemma \ref{algebra-lemma-finite-is-integral}).
Again using the lemmas on composition and the fact that we
have agreement for surjections by definition, we conclude that
it suffices to prove the lemma for $R \to B = R[x]/(f)$.
In this case, the functor $\varphi^!$ is isomorphic to
$K \mapsto K \otimes_R^\mathbf{L} B$; you prove this by
using Lemma \ref{lemma-compute-for-effective-Cartier-algebraic}
for the map $R[x] \to B$ (note that the shift in the definition
of $\varphi^!$ and in the lemma add up to zero).
For the functor $R\Hom(B, -) : D(R) \to D(B)$ we can use
Lemma \ref{lemma-RHom-is-tensor-special}
to see that it suffices to show $\Hom_R(B, R) \cong B$
as $B$-modules. Suppose that $f$ has degree $d$.
Then an $R$-basis for $B$ is given by $1, x, \ldots, x^{d - 1}$.
Let $\delta_i : B \to R$, $i = 0, \ldots, d - 1$
be the $R$-linear map which picks off the coefficient
of $x^i$ with respect to the given basis. Then
$\delta_0, \ldots, \delta_{d - 1}$ is a basis for $\Hom_R(B, R)$.
Finally, for $0 \leq i \leq d - 1$ a computation shows that
$$
x^i \delta_{d - 1} =
\delta_{d - 1 - i} + b_1 \delta_{d - i} + \ldots + b_i \delta_{d - 1}
$$
for some $c_1, \ldots, c_d \in R$\footnote{If
$f = x^d + a_1 x^{d - 1} + \ldots + a_d$, then
$c_1 = -a_1$, $c_2 = a_1^2 - a_2$, $c_3 = -a_1^3 + 2a_1a_2 -a_3$, etc.}.
Hence $\Hom_R(B, R)$ is a principal $B$-module with generator
$\delta_{d - 1}$. By looking
at ranks we conclude that it is a rank $1$ free $B$-module.
\end{proof}
\begin{lemma}
\label{lemma-upper-shriek-localize}
Let $R$ be a Noetherian ring and let $f \in R$.
If $\varphi$ denotes the map $R \to R_f$, then $\varphi^!$
is isomorphic to $- \otimes_R^\mathbf{L} R_f$.
More generally, if $\varphi : R \to R'$ is a map such that
$\Spec(R') \to \Spec(R)$ is an open immersion, then
$\varphi^!$ is isomorphic to $- \otimes_R^\mathbf{L} R'$.
\end{lemma}
\begin{proof}
Choose the presentation $R \to R[x] \to R[x]/(fx - 1) = R_f$ and observe
that $fx - 1$ is a nonzerodivisor in $R[x]$. Thus we can apply
using Lemma \ref{lemma-compute-for-effective-Cartier-algebraic}
to compute the functor $\varphi^!$. Details omitted;
note that the shift in the definition
of $\varphi^!$ and in the lemma add up to zero.
\medskip\noindent
In the general case note that $R' \otimes_R R' = R'$.
Hence the result follows from the base change results
above. Either Lemma \ref{lemma-flat-bc} or
Lemma \ref{lemma-bc} will do.
\end{proof}
\begin{lemma}
\label{lemma-upper-shriek-is-tensor-functor}
Let $\varphi : R \to A$ be a perfect homomorphism of Noetherian rings
(for example $\varphi$ is flat of finite type).
Then $\varphi^!(K) = K \otimes_R^\mathbf{L} \varphi^!(R)$
for $K \in D(R)$.
\end{lemma}
\begin{proof}
(The parenthetical statement follows from
More on Algebra, Lemma
\ref{more-algebra-lemma-flat-finite-presentation-perfect}.)
We can choose a factorization $R \to P \to A$ where $P$ is a polynomial
ring in $n$ variables over $R$ and then $A$ is a perfect $P$-module, see
More on Algebra, Lemma \ref{more-algebra-lemma-perfect-ring-map}.
Recall that $\varphi^!(K) = R\Hom(A, K \otimes_R^\mathbf{L} P[n])$.
Thus the result follows from
Lemma \ref{lemma-RHom-is-tensor-special}
and More on Algebra, Lemma \ref{more-algebra-lemma-double-base-change}.
\end{proof}
\begin{lemma}
\label{lemma-relative-dualizing-if-have-omega}
Let $\varphi : A \to B$ be a finite type homomorphism of Noetherian rings.
Let $\omega_A^\bullet$ be a dualizing complex for $A$. Set
$\omega_B^\bullet = \varphi^!(\omega_A^\bullet)$. Denote
$D_A(K) = R\Hom_A(K, \omega_A^\bullet)$ for $K \in D_{\textit{Coh}}(A)$
and
$D_B(L) = R\Hom_B(L, \omega_B^\bullet)$ for $L \in D_{\textit{Coh}}(B)$.
Then there is a functorial isomorphism
$$
\varphi^!(K) = D_B(D_A(K) \otimes_A^\mathbf{L} B)
$$
for $K \in D_{\textit{Coh}}(A)$.
\end{lemma}
\begin{proof}
Observe that $\omega_B^\bullet$ is a dualizing complex for $B$ by
Lemma \ref{lemma-shriek-dualizing-algebraic}.
Let $A \to B \to C$ be finite type homomorphisms of Noetherian rings.
If the lemma holds for $A \to B$ and $B \to C$, then the lemma holds for
$A \to C$. This follows from
Lemma \ref{lemma-composition-shriek-algebraic}
and the fact that $D_B \circ D_B \cong \text{id}$ by
Lemma \ref{lemma-dualizing}.
Thus it suffices to prove the lemma in case $A \to B$ is
a surjection and in the case where $B$ is a
polynomial ring over $A$.
\medskip\noindent
Assume $B = A[x_1, \ldots, x_n]$. Since $D_A \circ D_A \cong \text{id}$,
it suffices to prove
$D_B(K \otimes_A B) \cong D_A(K) \otimes_A B[n]$ for $K$
in $D_{\textit{Coh}}(A)$.
Choose a bounded complex $I^\bullet$ of injectives representing
$\omega_A^\bullet$. Choose a quasi-isomorphism
$I^\bullet \otimes_A B \to J^\bullet$ where $J^\bullet$
is a bounded complex of $B$-modules. Given a complex
$K^\bullet$ of $A$-modules, consider the obvious
map of complexes
$$
\Hom^\bullet(K^\bullet, I^\bullet) \otimes_A B[n]
\longrightarrow
\Hom^\bullet(K^\bullet \otimes_A B, J^\bullet[n])
$$
The left hand side represents $D_A(K) \otimes_A B[n]$ and the right hand
side represents $D_B(K \otimes_A B)$. Thus it suffices to prove this
map is a quasi-isomorphism if the cohomology modules
of $K^\bullet$ are finite $A$-modules. Observe that the
cohomology of the complex in degree $r$ (on either side)
only depends on finitely many of the $K^i$. Thus we may
replace $K^\bullet$ by a truncation, i.e., we may assume
$K^\bullet$ represents an object of $D^-_{\textit{Coh}}(A)$.
Then $K^\bullet$ is quasi-isomorphic to a bounded
above complex of finite free $A$-modules.
Therefore we may assume $K^\bullet$ is a bounded
above complex of finite free $A$-modules.
In this case it is easy to that the
displayed map is an isomorphism of complexes which finishes
the proof in this case.
\medskip\noindent
Assume that $A \to B$ is surjective. Denote $i_* : D(B) \to D(A)$
the restriction functor and recall that $\varphi^!(-) = R\Hom(A, -)$
is a right adjoint to $i_*$ (Lemma \ref{lemma-right-adjoint}).
For $F \in D(B)$ we have
\begin{align*}
\Hom_B(F, D_B(D_A(K) \otimes_A^\mathbf{L} B))
& =
\Hom_B((D_A(K) \otimes_A^\mathbf{L} B) \otimes_B^\mathbf{L} F,
\omega_B^\bullet) \\
& =
\Hom_A(D_A(K) \otimes_A^\mathbf{L} i_*F, \omega_A^\bullet) \\
& =
\Hom_A(i_*F, D_A(D_A(K))) \\
& =
\Hom_A(i_*F, K) \\
& =
\Hom_B(F, \varphi^!(K))
\end{align*}
The first equality follows from More on Algebra, Lemma
\ref{more-algebra-lemma-internal-hom} and the definition
of $D_B$. The second equality by the adjointness mentioned
above and the equality
$i_*((D_A(K) \otimes_A^\mathbf{L} B) \otimes_B^\mathbf{L} F) =
D_A(K) \otimes_A^\mathbf{L} i_*F$
(More on Algebra, Lemma \ref{more-algebra-lemma-derived-base-change}).
The third equality follows from More on Algebra, Lemma
\ref{more-algebra-lemma-internal-hom}. The fourth because
$D_A \circ D_A = \text{id}$. The final equality by adjointness again.
Thus the result holds by the Yoneda lemma.
\end{proof}
\section{Relative dualizing complexes in the Noetherian case}
\label{section-relative-dualizing-complexes-Noetherian}
\noindent
Let $\varphi : R \to A$ be a finite type homomorphism of
Noetherian rings. Then we define the {\it relative dualizing
complex of $A$ over $R$} as the object
$$
\omega_{A/R}^\bullet = \varphi^!(R)
$$
of $D(A)$. Here $\varphi^!$ is as in
Section \ref{section-relative-dualizing-complex-algebraic}.
From the material in that section we see that
$\omega_{A/R}^\bullet$ is well defined up to (non-unique) isomorphism.
\begin{lemma}
\label{lemma-base-change-relative-algebraic}
Let $R \to R'$ be a homomorphism of Noetherian rings.
Let $R \to A$ be of finite type. Set $A' = A \otimes_R R'$. If
\begin{enumerate}
\item $R \to R'$ is flat, or
\item $R \to A$ is flat, or
\item $R \to A$ is perfect
and $R'$ and $A$ are tor independent over $R$,
\end{enumerate}
then there is an isomorphism
$\omega_{A/R}^\bullet \otimes_A^\mathbf{L} A' \to \omega^\bullet_{A'/R'}$
in $D(A')$.
\end{lemma}
\begin{proof}
Follows from Lemmas \ref{lemma-flat-bc}, \ref{lemma-bc-flat}, and
\ref{lemma-bc} and the definitions.
\end{proof}
\begin{lemma}
\label{lemma-relative-dualizing-algebraic}
Let $\varphi : R \to A$ be a flat finite type map of Noetherian rings.
Then
\begin{enumerate}
\item $\omega_{A/R}^\bullet$ is in $D^b_{\textit{Coh}}(A)$
and $R$-perfect (More on Algebra,
Definition \ref{more-algebra-definition-relatively-perfect}),
\item $A \to R\Hom_A(\omega_{A/R}^\bullet, \omega_{A/R}^\bullet)$
is an isomorphism, and
\item for every map $R \to k$ to a field the base change
$\omega_{A/R}^\bullet \otimes_A^\mathbf{L} (A \otimes_R k)$
is a dualizing complex for $A \otimes_R k$.
\end{enumerate}
\end{lemma}
\begin{proof}
Choose $R \to P \to A$ as in the definition of $\varphi^!$.
Recall that $R \to A$ is a perfect ring map
(More on Algebra, Lemma
\ref{more-algebra-lemma-flat-finite-presentation-perfect}) and
hence $A$ is perfect as a $P$-modue
(More on Algebra, Lemma \ref{more-algebra-lemma-perfect-ring-map}).
This shows that $\omega_{A/R}^\bullet$ is in $D^b_{\textit{Coh}}(A)$
by Lemma \ref{lemma-shriek-boundedness}.
To show $\omega_{A/R}^\bullet$ is $R$-perfect it suffices to
show it has finite tor dimension as a complex of $R$-modules.
This is true because
$\omega_{A/R}^\bullet = \varphi^!(R) = R\Hom(A, P)[n]$
maps to $R\Hom_P(A, P)[n]$ in $D(P)$, which is perfect in $D(P)$
(More on Algebra, Lemma \ref{more-algebra-lemma-dual-perfect-complex}),
hence has finite tor dimension in $D(R)$
as $R \to P$ is flat. This proves (1).
\medskip\noindent
Proof of (2). The object
$R\Hom_A(\omega_{A/R}^\bullet, \omega_{A/R}^\bullet)$
of $D(A)$ maps in $D(P)$ to
\begin{align*}
R\Hom_P(\omega_{A/R}^\bullet, R\Hom(A, P)[n])
& =
R\Hom_P(R\Hom_P(A, P)[n], P)[n] \\
& =
R\Hom_P(R\Hom_P(A, P), P)
\end{align*}
This is equal to $A$ by the already used
More on Algebra, Lemma \ref{more-algebra-lemma-dual-perfect-complex}.
\medskip\noindent
Proof of (3). By Lemma \ref{lemma-base-change-relative-algebraic}
there is an isomorphism
$$
\omega_{A/R}^\bullet \otimes_A^\mathbf{L} (A \otimes_R k) \cong
\omega^\bullet_{A \otimes_R k/k}
$$
and the right hand side is a dualizing complex by
Lemma \ref{lemma-shriek-dualizing-algebraic}.
\end{proof}
\begin{lemma}
\label{lemma-base-change-dualizing-over-field}
Let $K/k$ be an extension of fields. Let $A$ be a finite type
$k$-algebra. Let $A_K = A \otimes_k K$. If
$\omega_A^\bullet$ is a dualizing complex for $A$, then
$\omega_A^\bullet \otimes_A A_K$ is a dualizing complex for $A_K$.
\end{lemma}
\begin{proof}
By the uniqueness of dualizing complexes, it doesn't matter which
dualizing complex we pick for $A$; we omit the detailed proof.
Denote $\varphi : k \to A$ the algebra structure.
We may take $\omega_A^\bullet = \varphi^!(k[0])$ by
Lemma \ref{lemma-shriek-dualizing-algebraic}.
We conclude by
Lemma \ref{lemma-relative-dualizing-algebraic}.
\end{proof}
\begin{lemma}
\label{lemma-lci-shriek}
Let $\varphi : R \to A$ be a local complete intersection homomorphism of
Noetherian rings. Then $\omega_{A/R}^\bullet$ is an invertible object of
$D(A)$ and $\varphi^!(K) = K \otimes_R^\mathbf{L} \omega_{A/R}^\bullet$
for all $K \in D(R)$.
\end{lemma}
\begin{proof}
Recall that a local complete intersection homomorphism is a perfect
ring map by More on Algebra, Lemma \ref{more-algebra-lemma-lci-perfect}.
Hence the final statement holds by
Lemma \ref{lemma-upper-shriek-is-tensor-functor}.
By More on Algebra, Definition
\ref{more-algebra-definition-local-complete-intersection}
we can write $A = R[x_1, \ldots, x_n]/I$ where $I$ is a
Koszul-regular ideal.
The construction of $\varphi^!$ in
Section \ref{section-relative-dualizing-complex-algebraic}
shows that it suffices to show the lemma in case
$A = R/I$ where $I \subset R$ is a Koszul-regular ideal.
Checking $\omega_{A/R}^\bullet$ is invertible in $D(A)$
is local on $\Spec(A)$ by More on Algebra, Lemma
\ref{more-algebra-lemma-invertible-derived}.
Moreover, formation of $\omega_{A/R}^\bullet$ commutes with
localization on $R$ by Lemma \ref{lemma-flat-bc}.
Combining
More on Algebra, Definition \ref{more-algebra-definition-regular-ideal} and
Lemma \ref{more-algebra-lemma-noetherian-finite-all-equivalent} and
Algebra, Lemma \ref{algebra-lemma-regular-sequence-in-neighbourhood}
we can find $g_1, \ldots, g_r \in R$ generating the unit ideal in $A$
such that $I_{g_j} \subset R_{g_j}$ is generated by a regular sequence.
Thus we may assume $A = R/(f_1, \ldots, f_c)$ where $f_1, \ldots, f_c$
is a regular sequence in $R$. Then we consider the ring maps
$$
R \to R/(f_1) \to R/(f_1, f_2) \to \ldots \to R/(f_1, \ldots, f_c) = A
$$
and we use Lemma \ref{lemma-composition-shriek-algebraic}
(and the final statement already proven)
to see that it suffices to prove the lemma for each step.
Finally, in case $A = R/(f)$ for some nonzerodivisor $f$
we see that the lemma is true since $\varphi^!(R) = R\Hom(A, R)$
is invertible by Lemma \ref{lemma-compute-for-effective-Cartier-algebraic}.
\end{proof}
\begin{lemma}
\label{lemma-gorenstein-shriek}
Let $\varphi : R \to A$ be a flat finite type homomorphism of Noetherian rings.
The following are equivalent
\begin{enumerate}
\item the fibres $A \otimes_R \kappa(\mathfrak p)$ are Gorenstein
for all primes $\mathfrak p \subset R$, and
\item $\omega_{A/R}^\bullet$ is an invertible object of $D(A)$, see
More on Algebra, Lemma \ref{more-algebra-lemma-invertible-derived}.
\end{enumerate}
\end{lemma}
\begin{proof}
If (2) holds, then the fibre rings $A \otimes_R \kappa(\mathfrak p)$
have invertible dualizing complexes, and hence are Gorenstein.
See Lemmas \ref{lemma-relative-dualizing-algebraic} and \ref{lemma-gorenstein}.
\medskip\noindent
For the converse, assume (1).
Observe that $\omega_{A/R}^\bullet$ is in $D^b_{\textit{Coh}}(A)$
by Lemma \ref{lemma-shriek-boundedness} (since flat finite type homomorphisms
of Noetherian rings are perfect, see
More on Algebra, Lemma
\ref{more-algebra-lemma-flat-finite-presentation-perfect}).
Take a prime $\mathfrak q \subset A$ lying over $\mathfrak p \subset R$.
Then
$$
\omega_{A/R}^\bullet \otimes_A^\mathbf{L} \kappa(\mathfrak q) =
\omega_{A/R}^\bullet \otimes_A^\mathbf{L}
(A \otimes_R \kappa(\mathfrak p))
\otimes_{(A \otimes_R \kappa(\mathfrak p))}^\mathbf{L}
\kappa(\mathfrak q)
$$
Applying Lemmas \ref{lemma-relative-dualizing-algebraic} and
\ref{lemma-gorenstein} and assumption (1) we find that this complex has $1$
nonzero cohomology group which is a $1$-dimensional
$\kappa(\mathfrak q)$-vector space. By
More on Algebra, Lemma
\ref{more-algebra-lemma-lift-bounded-pseudo-coherent-to-perfect}
we conclude that $(\omega_{A/R}^\bullet)_f$ is an invertible
object of $D(A_f)$ for some $f \in A$, $f \not \in \mathfrak q$.
This proves (2) holds.
\end{proof}
\noindent
The following lemma is useful to see how dimension functions change
when passing to a finite type algebra over a Noetherian ring.
\begin{lemma}
\label{lemma-shriek-normalized}
Let $\varphi : R \to A$ be a finite type homomorphism of Noetherian rings.
Assume $R$ local and let $\mathfrak m \subset A$ be a maximal
ideal lying over the maximal ideal of $R$. If $\omega_R^\bullet$
is a normalized dualizing complex for $R$, then
$\varphi^!(\omega_R^\bullet)_\mathfrak m$ is a normalized
dualizing complex for $A_\mathfrak m$.
\end{lemma}
\begin{proof}
We already know that $\varphi^!(\omega_R^\bullet)$ is a dualizing
complex for $A$, see Lemma \ref{lemma-shriek-dualizing-algebraic}.
Choose a factorization $R \to P \to A$ with $P = R[x_1, \ldots, x_n]$
as in the construction of $\varphi^!$. If we can prove the
lemma for $R \to P$ and the maximal ideal $\mathfrak m'$ of $P$ corresponding to
$\mathfrak m$, then we obtain the result for $R \to A$ by
applying Lemma \ref{lemma-normalized-quotient} to
$P_{\mathfrak m'} \to A_\mathfrak m$ or by applying
Lemma \ref{lemma-quotient-function} to $P \to A$.
In the case $A = R[x_1, \ldots, x_n]$ we see that
$\dim(A_\mathfrak m) = \dim(R) + n$ for example by
Algebra, Lemma \ref{algebra-lemma-dimension-base-fibre-equals-total}
(combined with Algebra, Lemma \ref{algebra-lemma-dim-affine-space}
to compute the dimension of the fibre).
The fact that $\omega_R^\bullet$ is normalized means
that $i = -\dim(R)$ is the smallest index such that
$H^i(\omega_R^\bullet)$ is nonzero (follows from
Lemmas \ref{lemma-sitting-in-degrees} and
\ref{lemma-nonvanishing-generically-local}).
Then $\varphi^!(\omega_R^\bullet)_\mathfrak m =
\omega_R^\bullet \otimes_R A_\mathfrak m[n]$
has its first nonzero cohomology module in degree $-\dim(R) - n$
and therefore is the normalized dualizing complex for $A_\mathfrak m$.
\end{proof}
\begin{lemma}
\label{lemma-relative-dualizing-trivial-vanishing}
Let $R \to A$ be a finite type homomorphism of Noetherian rings.
Let $\mathfrak q \subset A$ be a prime ideal lying over
$\mathfrak p \subset R$. Then
$$
H^i(\omega_{A/R}^\bullet)_\mathfrak q \not = 0
\Rightarrow - d \leq i
$$
where $d$ is the dimension of the fibre of $\Spec(A) \to \Spec(R)$
over $\mathfrak p$ at the point $\mathfrak q$.
\end{lemma}
\begin{proof}
Choose a factorization $R \to P \to A$ with $P = R[x_1, \ldots, x_n]$
as in Section \ref{section-relative-dualizing-complex-algebraic}
so that $\omega_{A/R}^\bullet = R\Hom(A, P)[n]$.
We have to show that $R\Hom(A, P)_\mathfrak q$
has vanishing cohomology in degrees $< n - d$.
By Lemma \ref{lemma-RHom-ext} this means we have to
show that $\Ext_P^i(P/I, P)_{\mathfrak r} = 0$ for $i < n - d$
where $\mathfrak r \subset P$ is the prime corresponding to $\mathfrak q$
and $I$ is the kernel of $P \to A$.
We may rewrite this as
$\Ext_{P_\mathfrak r}^i(P_\mathfrak r/IP_\mathfrak r, P_\mathfrak r)$
by More on Algebra, Lemma
\ref{more-algebra-lemma-pseudo-coherence-and-base-change-ext}.
Thus we have to show
$$
\text{depth}_{IP_\mathfrak r}(P_\mathfrak r) \geq n - d
$$
by Lemma \ref{lemma-depth}.
By Lemma \ref{lemma-depth-flat-CM} we have
$$
\text{depth}_{IP_\mathfrak r}(P_\mathfrak r) \geq
\dim((P \otimes_R \kappa(\mathfrak p))_\mathfrak r) -
\dim((P/I \otimes_R \kappa(\mathfrak p))_\mathfrak r)
$$
The two expressions on the right hand side agree by
Algebra, Lemma \ref{algebra-lemma-codimension}.
\end{proof}
\begin{lemma}
\label{lemma-relative-dualizing-flat-vanishing}
Let $R \to A$ be a flat finite type homomorphism of Noetherian rings.
Let $\mathfrak q \subset A$ be a prime ideal lying over
$\mathfrak p \subset R$. Then
$$
H^i(\omega_{A/R}^\bullet)_\mathfrak q \not = 0
\Rightarrow - d \leq i \leq 0
$$
where $d$ is the dimension of the fibre of $\Spec(A) \to \Spec(R)$
over $\mathfrak p$ at the point $\mathfrak q$. If all fibres of
$\Spec(A) \to \Spec(R)$ have dimension $\leq d$, then
$\omega_{A/R}^\bullet$ has tor amplitude in $[-d, 0]$
as a complex of $R$-modules.
\end{lemma}
\begin{proof}
The lower bound has been shown in
Lemma \ref{lemma-relative-dualizing-trivial-vanishing}.
Choose a factorization $R \to P \to A$ with $P = R[x_1, \ldots, x_n]$
as in Section \ref{section-relative-dualizing-complex-algebraic}
so that $\omega_{A/R}^\bullet = R\Hom(A, P)[n]$.
The upper bound means that $\Ext^i_P(A, P)$ is zero for $i > n$.
This follows from
More on Algebra, Lemma \ref{more-algebra-lemma-perfect-over-polynomial-ring}
which shows that $A$ is a perfect $P$-module with
tor amplitude in $[-n, 0]$.
\medskip\noindent
Proof of the final statement. Let $R \to R'$ be a ring homomorphism
of Noetherian rings. Set $A' = A \otimes_R R'$. Then
$$
\omega_{A'/R'}^\bullet =
\omega_{A/R}^\bullet \otimes_A^\mathbf{L} A' =
\omega_{A/R}^\bullet \otimes_R^\mathbf{L} R'
$$
The first isomorphism by Lemma \ref{lemma-base-change-relative-algebraic}
and the second, which takes place in $D(R')$, by
More on Algebra, Lemma \ref{more-algebra-lemma-base-change-comparison}.
By the first part of the proof
(note that the fibres of $\Spec(A') \to \Spec(R')$ have dimension $\leq d$)
we conclude that $\omega_{A/R}^\bullet \otimes_R^\mathbf{L} R'$
has cohomology only in degrees $[-d, 0]$. Taking $R' = R \oplus M$
to be the square zero thickening of $R$ by a finite $R$-module $M$,
we see that $R\Hom(A, P) \otimes_R^\mathbf{L} M$
has cohomology only in the interval $[-d, 0]$ for any finite $R$-module $M$.
Since any $R$-module is a filtered colimit of finite $R$-modules
and since tensor products commute with colimits we conclude.
\end{proof}
\begin{lemma}
\label{lemma-relative-dualizing-CM-vanishing}
Let $R \to A$ be a finite type homomorphism of Noetherian rings.
Let $\mathfrak p \subset R$ be a prime ideal. Assume
\begin{enumerate}
\item $R_\mathfrak p$ is Cohen-Macaulay, and
\item for any minimal prime $\mathfrak q \subset A$ we have
$\text{trdeg}_{\kappa(R \cap \mathfrak q)} \kappa(\mathfrak q) \leq r$.
\end{enumerate}
Then
$$
H^i(\omega_{A/R}^\bullet)_\mathfrak p \not = 0 \Rightarrow - r \leq i
$$
and $H^{-r}(\omega_{A/R}^\bullet)_\mathfrak p$ is $(S_2)$
as an $A_\mathfrak p$-module.
\end{lemma}
\begin{proof}
We may replace $R$ by $R_\mathfrak p$ by
Lemma \ref{lemma-base-change-relative-algebraic}.
Thus we may assume $R$ is a Cohen-Macaulay local ring
and we have to show the assertions of the lemma
for the $A$-modules $H^i(\omega_{A/R}^\bullet)$.
\medskip\noindent
Let $R^\wedge$ be the completion of $R$.
The map $R \to R^\wedge$ is flat and $R^\wedge$ is Cohen-Macaulay
(More on Algebra, Lemma \ref{more-algebra-lemma-completion-CM}).
Observe that the minimal primes of $A \otimes_R R^\wedge$
lie over minimal primes of $A$ by the flatness of
$A \to A \otimes_R R^\wedge$ (and going down for flatness, see
Algebra, Lemma \ref{algebra-lemma-flat-going-down}).
Thus condition (2) holds for the finite type ring map
$R^\wedge \to A \otimes_R R^\wedge$ by
Morphisms, Lemma \ref{morphisms-lemma-dimension-fibre-after-base-change}.
Appealing to Lemma \ref{lemma-base-change-relative-algebraic}
once again it suffices to prove the lemma for
$R^\wedge \to A \otimes_R R^\wedge$. In this way, using
Lemma \ref{lemma-ubiquity-dualizing},
we may assume $R$ is a Noetherian local
Cohen-Macaulay ring which has a dualizing complex $\omega_R^\bullet$.
\medskip\noindent
Let $\mathfrak m \subset A$ be a maximal ideal.
It suffices to show that the assertions of
the lemma hold for $H^i(\omega_{A/R}^\bullet)_\mathfrak m$.
If $\mathfrak m$ does not lie over the maximal ideal of $R$,
then we replace $R$ by a localization to reduce to this case
(small detail omitted).
\medskip\noindent
We may assume $\omega_R^\bullet$ is normalized.
Setting $d = \dim(R)$ we see that $\omega_R^\bullet = \omega_R[d]$
for some $R$-module $\omega_R$, see
Lemma \ref{lemma-apply-CM}. Set
$\omega_A^\bullet = \varphi^!(\omega_R^\bullet)$.
By Lemma \ref{lemma-relative-dualizing-if-have-omega} we have
$$
\omega_{A/R}^\bullet =
R\Hom_A(\omega_R[d] \otimes_R^\mathbf{L} A, \omega_A^\bullet)
$$
By the dimension formula we have $\dim(A_\mathfrak m) \leq d + r$, see
Morphisms, Lemma \ref{morphisms-lemma-dimension-formula-general}
and use that $\kappa(\mathfrak m)$ is finite over the residue field of $R$
by the Hilbert Nullstellensatz.
By Lemma \ref{lemma-shriek-normalized}
we see that $(\omega_A^\bullet)_\mathfrak m$
is a normalized dualizing complex for $A_\mathfrak m$.
Hence $H^i((\omega_A^\bullet)_\mathfrak m)$ is nonzero
only for $-d - r \leq i \leq 0$, see
Lemma \ref{lemma-sitting-in-degrees}.
Since $\omega_R[d] \otimes_R^\mathbf{L} A$ lives in
degrees $\leq -d$ we conclude the vanishing holds.
Finally, we also see that
$$
H^{-r}(\omega_{A/R}^\bullet)_\mathfrak m =
\Hom_A(\omega_R \otimes_R A, H^{-d - r}(\omega_A^\bullet))_\mathfrak m
$$
Since $H^{-d - r}(\omega_A^\bullet)_\mathfrak m$ is $(S_2)$ by
Lemma \ref{lemma-depth-dualizing-module}
we find that the final statement is true by
More on Algebra, Lemma \ref{more-algebra-lemma-hom-into-S2}.
\end{proof}
\section{More on dualizing complexes}
\label{section-more-dualizing}
\noindent
Some lemmas which don't fit anywhere else very well.
\begin{lemma}
\label{lemma-descent}
Let $A \to B$ be a faithfully flat map of Noetherian rings.
If $K \in D(A)$ and $K \otimes_A^\mathbf{L} B$
is a dualizing complex for $B$, then $K$ is a dualizing complex
for $A$.
\end{lemma}
\begin{proof}
Since $A \to B$ is flat we have
$H^i(K) \otimes_A B = H^i(K \otimes_A^\mathbf{L} B)$.
Since $K \otimes_A^\mathbf{L} B$ is in $D^b_{\textit{Coh}}(B)$
we first find that $K$ is in $D^b(A)$ and then we see that
$H^i(K)$ is a finite $A$-module by
Algebra, Lemma \ref{algebra-lemma-descend-properties-modules}.
Let $M$ be a finite $A$-module. Then
$$
R\Hom_A(M, K) \otimes_A B = R\Hom_B(M \otimes_A B, K \otimes_A^\mathbf{L} B)
$$
by More on Algebra, Lemma \ref{more-algebra-lemma-base-change-RHom}.
Since $K \otimes_A^\mathbf{L} B$ has finite injective dimension,
say injective-amplitude in $[a, b]$, we see that the right hand side
has vanishing cohomology in degrees $> b$.
Since $A \to B$ is faithfully flat, we find
that $R\Hom_A(M, K)$ has vanishing cohomology in degrees $> b$.
Thus $K$ has finite injective dimension by
More on Algebra, Lemma \ref{more-algebra-lemma-injective-amplitude}.
To finish the proof we have to show that the map
$A \to R\Hom_A(K, K)$ is an isomorphism.
For this we again use
More on Algebra, Lemma \ref{more-algebra-lemma-base-change-RHom}
and the fact that
$B \to R\Hom_B(K \otimes_A^\mathbf{L} B, K \otimes_A^\mathbf{L} B)$
is an isomorphism.
\end{proof}
\begin{lemma}
\label{lemma-descent-ascent}
Let $\varphi : A \to B$ be a homomorphism of Noetherian rings. Assume
\begin{enumerate}
\item $A \to B$ is syntomic and induces a surjective map on spectra, or
\item $A \to B$ is a faithfully flat local complete intersection, or
\item $A \to B$ is faithfully flat of finite type with Gorenstein fibres.
\end{enumerate}
Then $K \in D(A)$ is a dualizing complex for $A$ if and only if
$K \otimes_A^\mathbf{L} B$ is a dualizing complex for $B$.
\end{lemma}
\begin{proof}
Observe that $A \to B$ satisfies (1) if and only if $A \to B$
satisfies (2) by More on Algebra, Lemma \ref{more-algebra-lemma-syntomic-lci}.
Observe that in both (2) and (3) the relative dualzing
complex $\varphi^!(A) = \omega_{B/A}^\bullet$ is an invertible
object of $D(B)$, see
Lemmas \ref{lemma-lci-shriek} and \ref{lemma-gorenstein-shriek}.
Moreover we have
$\varphi^!(K) = K \otimes_A^\mathbf{L} \omega_{B/A}^\bullet$
in both cases, see Lemma \ref{lemma-upper-shriek-is-tensor-functor}
for case (3).
Thus $\varphi^!(K)$ is the same as $K \otimes_A^\mathbf{L} B$
up to tensoring with an invertible object of $D(B)$.
Hence $\varphi^!(K)$ is a dualizing complex for $B$
if and only if $K \otimes_A^\mathbf{L} B$ is
(as being a dualizing complex is local and invariant under shifts).
Thus we see that if $K$ is dualizing for $A$, then
$K \otimes_A^\mathbf{L} B$ is dualizing for $B$ by
Lemma \ref{lemma-shriek-dualizing-algebraic}.
To descend the property, see
Lemma \ref{lemma-descent}.
\end{proof}
\begin{lemma}
\label{lemma-injective-hull-goes-up}
Let $(A, \mathfrak m, \kappa) \to (B, \mathfrak n, l)$
be a flat local homorphism of Noetherian rings such that
$\mathfrak n = \mathfrak m B$. If $E$ is the injective
hull of $\kappa$, then $E \otimes_A B$ is the injective
hull of $l$.
\end{lemma}
\begin{proof}
Write $E = \bigcup E_n$ as in Lemma \ref{lemma-union-artinian}.
It suffices to show that $E_n \otimes_{A/\mathfrak m^n} B/\mathfrak n^n$
is the injective hull of $l$ over $B/\mathfrak n$.
This reduces us to the case where $A$ and $B$ are Artinian local.
Observe that $\text{length}_A(A) = \text{length}_B(B)$ and
$\text{length}_A(E) = \text{length}_B(E \otimes_A B)$
by Algebra, Lemma \ref{algebra-lemma-pullback-module}.
By Lemma \ref{lemma-finite} we have
$\text{length}_A(E) = \text{length}_A(A)$ and
$\text{length}_B(E') = \text{length}_B(B)$
where $E'$ is the injective hull of $l$ over $B$.
We conclude $\text{length}_B(E') = \text{length}_B(E \otimes_A B)$.
Observe that
$$
\dim_l((E \otimes_A B)[\mathfrak n]) =
\dim_l(E[\mathfrak m] \otimes_A B) =
\dim_\kappa(E[\mathfrak m]) = 1
$$
where we have used flatness of $A \to B$ and $\mathfrak n = \mathfrak mB$.
Thus there is an injective $B$-module map $E \otimes_A B \to E'$
by Lemma \ref{lemma-torsion-submodule-sum-injective-hulls}.
By equality of lengths shown above this is an isomorphism.
\end{proof}
\begin{lemma}
\label{lemma-injective-goes-up}
Let $\varphi : A \to B$ be a flat homorphism of Noetherian rings such
that for all primes $\mathfrak q \subset B$ we have
$\mathfrak p B_\mathfrak q = \mathfrak qB_\mathfrak q$
where $\mathfrak p = \varphi^{-1}(\mathfrak q)$, for example
if $\varphi$ is \'etale.
If $I$ is an injective $A$-module, then $I \otimes_A B$ is
an injective $B$-module.
\end{lemma}
\begin{proof}
\'Etale maps satisfy the assumption by
Algebra, Lemma \ref{algebra-lemma-etale-at-prime}.
By Lemma \ref{lemma-sum-injective-modules} and
Proposition \ref{proposition-structure-injectives-noetherian}
we may assume $I$ is the injective hull of $\kappa(\mathfrak p)$
for some prime $\mathfrak p \subset A$.
Then $I$ is a module over $A_\mathfrak p$.
It suffices to prove $I \otimes_A B = I \otimes_{A_\mathfrak p} B_\mathfrak p$
is injective as a $B_\mathfrak p$-module, see
Lemma \ref{lemma-injective-flat}.
Thus we may assume $(A, \mathfrak m, \kappa)$ is local Noetherian
and $I = E$ is the injective hull of the residue field $\kappa$.
Our assumption implies that the Noetherian ring $B/\mathfrak m B$
is a product of fields (details omitted).
Thus there are finitely many prime ideals
$\mathfrak m_1, \ldots, \mathfrak m_n$ in $B$
lying over $\mathfrak m$ and they are all maximal ideals.
Write $E = \bigcup E_n$ as in Lemma \ref{lemma-union-artinian}.
Then $E \otimes_A B = \bigcup E_n \otimes_A B$
and $E_n \otimes_A B$ is a finite $B$-module with support
$\{\mathfrak m_1, \ldots, \mathfrak m_n\}$ hence decomposes
as a product over the localizations at $\mathfrak m_i$.
Thus $E \otimes_A B = \prod (E \otimes_A B)_{\mathfrak m_i}$.
Since $(E \otimes_A B)_{\mathfrak m_i} = E \otimes_A B_{\mathfrak m_i}$
is the injective hull of the residue field of $\mathfrak m_i$
by Lemma \ref{lemma-injective-hull-goes-up} we conclude.
\end{proof}
\section{Relative dualizing complexes}
\label{section-relative-dualizing-complexes}
\noindent
For a finite type ring map $\varphi : R \to A$ of Noetherian rings
we have the relative dualizing complex $\omega_{A/R}^\bullet = \varphi^!(R)$
considered in Section \ref{section-relative-dualizing-complexes-Noetherian}.
If $R$ is not Noetherian, a similarly constructed complex will
in general not have good properties. In this section, we give a
definition of a relative dualizing complex for a flat and finitely presented
ring maps $R \to A$ of non-Noetherian rings. The definition is
chosen to globalize to flat and finitely presented morphisms
of schemes, see Duality for Schemes, Section
\ref{duality-section-relative-dualizing-complexes}. We will
show that relative dualizing complexes exist (when the definition
applies), are unique up to (noncanonical) isomorphism,
and that in the Noetherian case we recover the complex of
Section \ref{section-relative-dualizing-complexes-Noetherian}.
\medskip\noindent
The Noetherian reader may safely skip this section!
\begin{definition}
\label{definition-relative-dualizing-complex}
Let $R \to A$ be a flat ring map of finite presentation.
A {\it relative dualizing complex} is an object $K \in D(A)$ such that
\begin{enumerate}
\item $K$ is $R$-perfect (More on Algebra, Definition
\ref{more-algebra-definition-relatively-perfect}), and
\item $R\Hom_{A \otimes_R A}(A, K \otimes_A^\mathbf{L} (A \otimes_R A))$
is isomorphic to $A$.
\end{enumerate}
\end{definition}
\noindent
To understand this definition you may have to read and understand some
of the following lemmas. Lemmas \ref{lemma-relative-dualizing-noetherian} and
\ref{lemma-uniqueness-relative-dualizing} show this definition
does not clash with the definition in
Section \ref{section-relative-dualizing-complexes-Noetherian}.
\begin{lemma}
\label{lemma-uniqueness-relative-dualizing}
Let $R \to A$ be a flat ring map of finite presentation.
Any two relative dualizing complexes for $R \to A$ are isomorphic.
\end{lemma}
\begin{proof}
Let $K$ and $L$ be two relative dualizing complexes for $R \to A$.
Denote $K_1 = K \otimes_A^\mathbf{L} (A \otimes_R A)$
and $L_2 = (A \otimes_R A) \otimes_A^\mathbf{L} L$ the
derived base changes via the first and second coprojections
$A \to A \otimes_R A$. By symmetry the assumption on $L_2$
implies that $R\Hom_{A \otimes_R A}(A, L_2)$ is isomorphic to $A$.
By More on Algebra, Lemma
\ref{more-algebra-lemma-internal-hom-evaluate-tensor-isomorphism} part (3)
applied twice we have
$$
A \otimes_{A \otimes_R A}^\mathbf{L} L_2 \cong
R\Hom_{A \otimes_R A}(A, K_1 \otimes_{A \otimes_R A}^\mathbf{L} L_2) \cong
A \otimes_{A \otimes_R A}^\mathbf{L} K_1
$$
Applying the restriction functor $D(A \otimes_R A) \to D(A)$
for either coprojection we obtain the desired result.
\end{proof}
\begin{lemma}
\label{lemma-relative-dualizing-noetherian}
Let $\varphi : R \to A$ be a flat finite type ring map of Noetherian rings.
Then the relative dualizing complex $\omega_{A/R}^\bullet = \varphi^!(R)$
of Section \ref{section-relative-dualizing-complexes-Noetherian}
is a relative dualizing complex in the sense of
Definition \ref{definition-relative-dualizing-complex}.
\end{lemma}
\begin{proof}
From Lemma \ref{lemma-relative-dualizing-algebraic} we see that
$\varphi^!(R)$ is $R$-perfect.
Denote $\delta : A \otimes_R A \to A$ the multiplication map
and $p_1, p_2 : A \to A \otimes_R A$ the coprojections.
Then
$$
\varphi^!(R) \otimes_A^\mathbf{L} (A \otimes_R A) =
\varphi^!(R) \otimes_{A, p_1}^\mathbf{L} (A \otimes_R A) =
p_2^!(A)
$$
by Lemma \ref{lemma-flat-bc}. Recall that
$
R\Hom_{A \otimes_R A}(A, \varphi^!(R) \otimes_A^\mathbf{L} (A \otimes_R A))
$
is the image of $\delta^!(\varphi^!(R) \otimes_A^\mathbf{L} (A \otimes_R A))$
under the restriction map $\delta_* : D(A) \to D(A \otimes_R A)$.
Use the definition of $\delta^!$ from
Section \ref{section-relative-dualizing-complex-algebraic}
and Lemma \ref{lemma-RHom-ext}.
Since $\delta^!(p_2^!(A)) \cong A$ by
Lemma \ref{lemma-composition-shriek-algebraic}
we conclude.
\end{proof}
\begin{lemma}
\label{lemma-base-change-relative-dualizing}
Let $R \to A$ be a flat ring map of finite presentation. Then
\begin{enumerate}
\item there exists a relative dualizing complex $K$ in $D(A)$, and
\item for any ring map $R \to R'$ setting $A' = A \otimes_R R'$
and $K' = K \otimes_A^\mathbf{L} A'$, then $K'$ is a
relative dualizing complex for $R' \to A'$.
\end{enumerate}
Moreover, if
$$
\xi : A \longrightarrow K \otimes_A^\mathbf{L} (A \otimes_R A)
$$
is a generator for the cyclic module
$\Hom_{D(A \otimes_R A)}(A, K \otimes_A^\mathbf{L} (A \otimes_R A))$
then in (2) the derived base change of $\xi$ by
$A \otimes_R A \to A' \otimes_{R'} A'$ is a generator for
the cyclic module
$\Hom_{D(A' \otimes_{R'} A')}(A',
K' \otimes_{A'}^\mathbf{L} (A' \otimes_{R'} A'))$
\end{lemma}
\begin{proof}
We first reduce to the Noetherian case. By
Algebra, Lemma \ref{algebra-lemma-flat-finite-presentation-limit-flat}
there exists a finite type $\mathbf{Z}$ subalgebra $R_0 \subset R$
and a flat finite type ring map $R_0 \to A_0$ such that
$A = A_0 \otimes_{R_0} R$. By Lemma \ref{lemma-relative-dualizing-noetherian}
there exists a relative
dualizing complex $K_0 \in D(A_0)$.
Thus if we show (2) for $K_0$, then we find that
$K_0 \otimes_{A_0}^\mathbf{L} A$ is
a dualizing complex for $R \to A$ and that it also satisfies (2)
by transitivity of derived base change.
The uniqueness of relative dualizing complexes
(Lemma \ref{lemma-uniqueness-relative-dualizing})
then shows that this holds for
any relative dualizing complex.
\medskip\noindent
Assume $R$ Noetherian and let $K$ be a relative dualizing complex
for $R \to A$. Given a ring map $R \to R'$ set $A' = A \otimes_R R'$
and $K' = K \otimes_A^\mathbf{L} A'$. To finish the proof we have
to show that $K'$ is a relative dualizing complex for $R' \to A'$.
By More on Algebra, Lemma
\ref{more-algebra-lemma-base-change-relatively-perfect}
we see that $K'$ is $R'$-perfect in all cases.
By Lemmas \ref{lemma-base-change-relative-algebraic} and
\ref{lemma-relative-dualizing-noetherian}
if $R'$ is Noetherian, then $K'$ is a relative dualizing complex
for $R' \to A'$ (in either sense).
Transitivity of derived tensor product shows that
$K \otimes_A^\mathbf{L} (A \otimes_R A)
\otimes_{A \otimes_R A}^\mathbf{L} (A' \otimes_{R'} A') =
K' \otimes_{A'}^\mathbf{L} (A' \otimes_{R'} A')$.
Flatness of $R \to A$ guarantees that
$A \otimes_{A \otimes_R A}^\mathbf{L} (A' \otimes_{R'} A') = A'$;
namely $A \otimes_R A$ and $R'$ are tor independent over $R$
so we can apply More on Algebra, Lemma
\ref{more-algebra-lemma-base-change-comparison}.
Finally, $A$ is pseudo-coherent as an $A \otimes_R A$-module
by More on Algebra, Lemma
\ref{more-algebra-lemma-more-relative-pseudo-coherent-is-moot}. Thus
we have checked all the assumptions of
More on Algebra, Lemma
\ref{more-algebra-lemma-compute-RHom-relatively-perfect}.
We find there exists a bounded below complex
$E^\bullet$ of $R$-flat finitely presented $A \otimes_R A$-modules
such that $E^\bullet \otimes_R R'$ represents
$R\Hom_{A' \otimes_{R'} A'}(A',
K' \otimes_{A'}^\mathbf{L} (A' \otimes_{R'} A'))$
and these identifications are compatible with derived base change.
Let $n \in \mathbf{Z}$, $n \not = 0$.
Define $Q^n$ by the sequence
$$
E^{n - 1} \to E^n \to Q^n \to 0
$$
Since $\kappa(\mathfrak p)$ is a Noetherian ring, we know that
$H^n(E^\bullet \otimes_R \kappa(\mathfrak p)) = 0$, see remarks above.
Chasing diagrams this means that
$$
Q^n \otimes_R \kappa(\mathfrak p) \to E^{n + 1} \otimes_R \kappa(\mathfrak p)
$$
is injective. Hence for a prime $\mathfrak q$ of $A \otimes_R A$
lying over $\mathfrak p$ we have $Q^n_\mathfrak q$ is $R_\mathfrak p$-flat
and $Q^n_\mathfrak p \to E^{n + 1}_\mathfrak q$ is
$R_\mathfrak p$-universally injective, see
Algebra, Lemma \ref{algebra-lemma-mod-injective}.
Since this holds for all primes,
we conclude that $Q^n$ is $R$-flat
and $Q^n \to E^{n + 1}$ is $R$-universally injective. In particular
$H^n(E^\bullet \otimes_R R') = 0$ for any ring map $R \to R'$.
Let $Z^0 = \Ker(E^0 \to E^1)$. Since there is an exact sequence
$0 \to Z^0 \to E^0 \to E^1 \to Q^1 \to 0$ we see that $Z^0$
is $R$-flat and that
$Z^0 \otimes_R R' = \Ker(E^0 \otimes_R R' \to E^1 \otimes_R R')$
for all $R \to R'$. Then the short exact sequence
$0 \to Q^{-1} \to Z^0 \to H^0(E^\bullet) \to 0$
shows that
$$
H^0(E^\bullet \otimes_R R') = H^0(E^\bullet) \otimes_R R'
= A \otimes_R R' = A'
$$
as desired. This equality furthermore gives the final assertion
of the lemma.
\end{proof}
\begin{lemma}
\label{lemma-relative-dualizing-RHom}
Let $R \to A$ be a flat ring map of finite presentation.
Let $K$ be a relative dualizing complex.
Then $A \to R\Hom_A(K, K)$ is an isomorphism.
\end{lemma}
\begin{proof}
By
Algebra, Lemma \ref{algebra-lemma-flat-finite-presentation-limit-flat}
there exists a finite type $\mathbf{Z}$ subalgebra $R_0 \subset R$
and a flat finite type ring map $R_0 \to A_0$ such that
$A = A_0 \otimes_{R_0} R$. By Lemmas
\ref{lemma-uniqueness-relative-dualizing},
\ref{lemma-relative-dualizing-noetherian}, and
\ref{lemma-base-change-relative-dualizing}
there exists a relative dualizing complex $K_0 \in D(A_0)$
and its derived base change is $K$.
This reduces us to the situation discussed in the next paragraph.
\medskip\noindent
Assume $R$ Noetherian and let $K$ be a relative dualizing complex
for $R \to A$. Given a ring map $R \to R'$ set $A' = A \otimes_R R'$
and $K' = K \otimes_A^\mathbf{L} A'$. To finish the proof we show
$R\Hom_{A'}(K', K') = A'$. By Lemma \ref{lemma-relative-dualizing-algebraic}
we know this is true whenever $R'$ is Noetherian.
Since a general $R'$ is a filtered colimit of Noetherian
$R$-algebras, we find the result holds by
More on Algebra, Lemma \ref{more-algebra-lemma-colimit-relatively-perfect}.
\end{proof}
\begin{lemma}
\label{lemma-relative-dualizing-composition}
Let $R \to A \to B$ be a ring maps which are flat and of finite presentation.
Let $K_{A/R}$ and $K_{B/A}$ be relative dualizing complexes for $R \to A$
and $A \to B$. Then $K = K_{A/R} \otimes_A^\mathbf{L} K_{B/A}$
is a relative dualizing complex for $R \to B$.
\end{lemma}
\begin{proof}
We will use reduction to the Noetherian case.
Namely, by Algebra, Lemma
\ref{algebra-lemma-flat-finite-presentation-limit-flat}
there exists a finite type $\mathbf{Z}$ subalgebra $R_0 \subset R$
and a flat finite type ring map $R_0 \to A_0$ such that
$A = A_0 \otimes_{R_0} R$. After increasing $R_0$ and correspondingly
replacing $A_0$ we may assume there is a flat
finite type ring map $A_0 \to B_0$ such that $B = B_0 \otimes_{R_0} R$
(use the same lemma). If we prove the lemma for $R_0 \to A_0 \to B_0$,
then the lemma follows by Lemmas
\ref{lemma-uniqueness-relative-dualizing},
\ref{lemma-relative-dualizing-noetherian}, and
\ref{lemma-base-change-relative-dualizing}.
This reduces us to the situation discussed in the next paragraph.
\medskip\noindent
Assume $R$ is Noetherian and denote $\varphi : R \to A$ and
$\psi : A \to B$ the given ring maps. Then $K_{A/R} \cong \varphi^!(R)$ and
$K_{B/A} \cong \psi^!(A)$, see references given above.
Then
$$
K = K_{A/R} \otimes_A^\mathbf{L} K_{B/A} \cong
\varphi^!(R) \otimes_A^\mathbf{L} \psi^!(A) \cong
\psi^!(\varphi^!(R)) \cong (\psi \circ \varphi)^!(R)
$$
by Lemmas \ref{lemma-upper-shriek-is-tensor-functor} and
\ref{lemma-composition-shriek-algebraic}. Thus $K$ is a relative
dualizing complex for $R \to B$.
\end{proof}
\input{chapters}
\bibliography{my}
\bibliographystyle{amsalpha}
\end{document}
|