Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 112,245 Bytes
afd65d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 |
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Hypercoverings}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
Let $\mathcal{C}$ be a site, see Sites, Definition \ref{sites-definition-site}.
Let $X$ be an object of $\mathcal{C}$.
Given an abelian sheaf $\mathcal{F}$
on $\mathcal{C}$ we would like to compute
its cohomology groups
$$
H^i(X, \mathcal{F}).
$$
According to our general definitions (Cohomology on Sites, Section
\ref{sites-cohomology-section-cohomology-sheaves})
this cohomology group is computed by
choosing an injective resolution
$
0 \to \mathcal{F} \to \mathcal{I}^0 \to \mathcal{I}^1 \to \ldots
$
and setting
$$
H^i(X, \mathcal{F})
=
H^i(
\Gamma(X, \mathcal{I}^0) \to
\Gamma(X, \mathcal{I}^1) \to
\Gamma(X, \mathcal{I}^2)\to \ldots)
$$
The goal of this chapter is to show that we may also compute these
cohomology groups without choosing an injective resolution
(in the case that $\mathcal{C}$ has fibre products). To do this
we will use hypercoverings.
\medskip\noindent
A hypercovering in a site is a generalization of a covering, see
\cite[Expos\'e V, Sec. 7]{SGA4}. Given a hypercovering $K$ of an object
$X$, there is a {\v C}ech to cohomology spectral sequence
expressing the cohomology of an abelian sheaf $\mathcal{F}$
over $X$ in terms of the cohomology of the sheaf over the
components $K_n$ of $K$. It turns out that there are always
enough hypercoverings, so that taking the colimit over all hypercoverings,
the spectral sequence degenerates and the cohomology of $\mathcal{F}$
over $X$ is computed by the colimit of the {\v C}ech cohomology groups.
\medskip\noindent
A more general gadget one can consider is a simplicial augmentation where
one has cohomological descent, see \cite[Expos\'e Vbis]{SGA4}. A nice
manuscript on cohomological descent is the text by Brian Conrad, see
\url{https://math.stanford.edu/~conrad/papers/hypercover.pdf}.
We will come back to these issue in the chapter on simplicial spaces
where we will show, for example, that proper hypercoverings of
``locally compact'' topological spaces are of cohomological
descent (Simplicial Spaces, Section
\ref{spaces-simplicial-section-proper-hypercovering}).
Our method of attack will be to reduce this statement to the {\v C}ech to
cohomology spectral sequence constructed in this chapter.
\section{Semi-representable objects}
\label{section-semi-representable}
\noindent
In order to start we make the following definition.
The letters ``SR'' stand for Semi-Representable.
\begin{definition}
\label{definition-SR}
Let $\mathcal{C}$ be a category. We denote $\text{SR}(\mathcal{C})$
the category of {\it semi-representable objects} defined as follows
\begin{enumerate}
\item objects are families of objects $\{U_i\}_{i \in I}$, and
\item morphisms $\{U_i\}_{i \in I} \to \{V_j\}_{j \in J}$ are given by
a map $\alpha : I \to J$ and for each $i \in I$
a morphism $f_i : U_i \to V_{\alpha(i)}$ of $\mathcal{C}$.
\end{enumerate}
Let $X \in \Ob(\mathcal{C})$ be an object of $\mathcal{C}$.
The category of {\it semi-representable objects over $X$}
is the category
$\text{SR}(\mathcal{C}, X) = \text{SR}(\mathcal{C}/X)$.
\end{definition}
\noindent
This definition is essentially equivalent to
\cite[Expos\'e V, Subsection 7.3.0]{SGA4}. Note that
this is a ``big'' category. We will later ``bound'' the size of the index
sets $I$ that we need for hypercoverings of $X$. We can then redefine
$\text{SR}(\mathcal{C}, X)$ to become a category. Let's spell out
the objects and morphisms $\text{SR}(\mathcal{C}, X)$:
\begin{enumerate}
\item objects are families of morphisms
$\{U_i \to X\}_{i \in I}$, and
\item morphisms $\{U_i \to X\}_{i \in I} \to
\{V_j \to X\}_{j \in J}$ are given by
a map $\alpha : I \to J$ and for each $i \in I$
a morphism $f_i : U_i \to V_{\alpha(i)}$ over $X$.
\end{enumerate}
There is a forgetful functor
$\text{SR}(\mathcal{C}, X) \to \text{SR}(\mathcal{C})$.
\begin{definition}
\label{definition-SR-F}
Let $\mathcal{C}$ be a category.
We denote $F$ the functor {\it which associates a presheaf to a
semi-representable object}. In a formula
\begin{eqnarray*}
F : \text{SR}(\mathcal{C}) & \longrightarrow & \textit{PSh}(\mathcal{C}) \\
\{U_i\}_{i \in I} & \longmapsto & \amalg_{i\in I} h_{U_i}
\end{eqnarray*}
where $h_U$ denotes the representable presheaf associated to
the object $U$.
\end{definition}
\noindent
Given a morphism $U \to X$ we obtain a morphism $h_U \to h_X$ of representable
presheaves. Thus we often think of $F$ on $\text{SR}(\mathcal{C}, X)$
as a functor into the category of presheaves of sets over $h_X$,
namely $\textit{PSh}(\mathcal{C})/h_X$. Here is a picture:
$$
\xymatrix{
\text{SR}(\mathcal{C}, X) \ar[r]_F \ar[d] &
\textit{PSh}(\mathcal{C})/h_X \ar[d] \\
\text{SR}(\mathcal{C}) \ar[r]^F &
\textit{PSh}(\mathcal{C})
}
$$
Next we discuss the existence of limits in the category of semi-representable
objects.
\begin{lemma}
\label{lemma-coprod-prod-SR}
Let $\mathcal{C}$ be a category.
\begin{enumerate}
\item the category $\text{SR}(\mathcal{C})$ has coproducts
and $F$ commutes with them,
\item the functor $F : \text{SR}(\mathcal{C}) \to \textit{PSh}(\mathcal{C})$
commutes with limits,
\item if $\mathcal{C}$ has fibre products, then $\text{SR}(\mathcal{C})$
has fibre products,
\item if $\mathcal{C}$ has products of pairs, then
$\text{SR}(\mathcal{C})$ has products of pairs,
\item if $\mathcal{C}$ has equalizers, so does $\text{SR}(\mathcal{C})$, and
\item if $\mathcal{C}$ has a final object, so does $\text{SR}(\mathcal{C})$.
\end{enumerate}
Let $X \in \Ob(\mathcal{C})$.
\begin{enumerate}
\item the category $\text{SR}(\mathcal{C}, X)$ has coproducts
and $F$ commutes with them,
\item if $\mathcal{C}$ has fibre products, then $\text{SR}(\mathcal{C}, X)$
has finite limits and
$F : \text{SR}(\mathcal{C}, X) \to \textit{PSh}(\mathcal{C})/h_X$
commutes with them.
\end{enumerate}
\end{lemma}
\begin{proof}
Proof of the results on $\text{SR}(\mathcal{C})$.
Proof of (1). The coproduct of $\{U_i\}_{i \in I}$ and $\{V_j\}_{j \in J}$ is
$\{U_i\}_{i \in I} \amalg \{V_j\}_{j \in J}$, in other words, the family
of objects whose index set is $I \amalg J$ and for an element
$k \in I \amalg J$ gives $U_i$ if $k = i \in I$ and gives $V_j$ if
$k = j \in J$. Similarly for coproducts
of families of objects. It is clear that $F$ commutes with these.
\medskip\noindent
Proof of (2). For $U$ in $\Ob(\mathcal{C})$ consider the object $\{U\}$ of
$\text{SR}(\mathcal{C})$. It is clear that
$\Mor_{\text{SR}(\mathcal{C})}(\{U\}, K)) = F(K)(U)$
for $K \in \Ob(\text{SR}(\mathcal{C}))$. Since limits of presheaves
are computed at the level of sections
(Sites, Section \ref{sites-section-limits-colimits-PSh})
we conclude that $F$ commutes with limits.
\medskip\noindent
Proof of (3). Suppose given a morphism
$(\alpha, f_i) : \{U_i\}_{i \in I} \to \{V_j\}_{j \in J}$
and a morphism
$(\beta, g_k) : \{W_k\}_{k \in K} \to \{V_j\}_{j \in J}$.
The fibred product of these morphisms is given by
$$
\{ U_i \times_{f_i, V_j, g_k} W_k\}_{(i, j, k) \in I \times J \times K
\text{ such that } j = \alpha(i) = \beta(k)}
$$
The fibre products exist if $\mathcal{C}$ has fibre products.
\medskip\noindent
Proof of (4). The product of $\{U_i\}_{i \in I}$ and $\{V_j\}_{j \in J}$ is
$\{U_i \times V_j\}_{i \in I, j \in J}$. The products exist if
$\mathcal{C}$ has products.
\medskip\noindent
Proof of (5). The equalizer of two maps
$(\alpha, f_i), (\alpha', f'_i) : \{U_i\}_{i \in I} \to \{V_j\}_{j \in J}$
is
$$
\{
\text{Eq}(f_i, f'_i : U_i \to V_{\alpha(i)})
\}_{i \in I,\ \alpha(i) = \alpha'(i)}
$$
The equalizers exist if $\mathcal{C}$ has equalizers.
\medskip\noindent
Proof of (6). If $X$ is a final object of $\mathcal{C}$, then
$\{X\}$ is a final object of $\text{SR}(\mathcal{C})$.
\medskip\noindent
Proof of the statements about $\text{SR}(\mathcal{C}, X)$.
These follow from the results above applied to the category
$\mathcal{C}/X$ using that
$\text{SR}(\mathcal{C}/X) = \text{SR}(\mathcal{C}, X)$ and that
$\textit{PSh}(\mathcal{C}/X) = \textit{PSh}(\mathcal{C})/h_X$
(Sites, Lemma \ref{sites-lemma-essential-image-j-shriek} applied
to $\mathcal{C}$ endowed with the chaotic topology). However
we also argue directly as follows.
It is clear that the coproduct of
$\{U_i \to X\}_{i \in I}$ and $\{V_j \to X\}_{j \in J}$
is $\{U_i \to X\}_{i \in I} \amalg \{V_j \to X\}_{j \in J}$
and similarly for coproducts of
families of families of morphisms with target $X$.
The object $\{X \to X\}$ is a final
object of $\text{SR}(\mathcal{C}, X)$.
Suppose given a morphism
$(\alpha, f_i) : \{U_i \to X\}_{i \in I} \to \{V_j \to X\}_{j \in J}$
and a morphism
$(\beta, g_k) : \{W_k \to X\}_{k \in K} \to \{V_j \to X\}_{j \in J}$.
The fibred product of these morphisms is given by
$$
\{ U_i \times_{f_i, V_j, g_k} W_k \to X \}_{(i, j, k) \in I \times J \times K
\text{ such that } j = \alpha(i) = \beta(k)}
$$
The fibre products exist by the assumption that
$\mathcal{C}$ has fibre products.
Thus $\text{SR}(\mathcal{C}, X)$ has finite limits,
see Categories, Lemma \ref{categories-lemma-finite-limits-exist}.
We omit verifying the statements on the functor $F$ in this case.
\end{proof}
\section{Hypercoverings}
\label{section-hypercoverings}
\noindent
If we assume our category is a site, then we can make the following
definition.
\begin{definition}
\label{definition-covering-SR}
Let $\mathcal{C}$ be a site. Let
$f = (\alpha, f_i) : \{U_i\}_{i \in I} \to \{V_j\}_{j \in J}$
be a morphism in the category $\text{SR}(\mathcal{C})$.
We say that $f$ is a {\it covering} if for every $j \in J$ the
family of morphisms $\{U_i \to V_j\}_{i \in I, \alpha(i) = j}$
is a covering for the site $\mathcal{C}$.
Let $X$ be an object of $\mathcal{C}$.
A morphism $K \to L$ in $\text{SR}(\mathcal{C}, X)$ is
a {\it covering} if its image in $\text{SR}(\mathcal{C})$ is
a covering.
\end{definition}
\begin{lemma}
\label{lemma-covering-permanence}
Let $\mathcal{C}$ be a site.
\begin{enumerate}
\item A composition of coverings in $\text{SR}(\mathcal{C})$
is a covering.
\item If $K \to L$ is a covering in $\text{SR}(\mathcal{C})$
and $L' \to L$ is a morphism, then $L' \times_L K$ exists
and $L' \times_L K \to L'$ is a covering.
\item If $\mathcal{C}$ has products of pairs, and
$A \to B$ and $K \to L$ are coverings in $\text{SR}(\mathcal{C})$,
then $A \times K \to B \times L$ is a covering.
\end{enumerate}
Let $X \in \Ob(\mathcal{C})$. Then (1) and (2) holds for
$\text{SR}(\mathcal{C}, X)$ and (3) holds if $\mathcal{C}$
has fibre products.
\end{lemma}
\begin{proof}
Part (1) is immediate from the axioms of a site.
Part (2) follows by the construction of fibre products
in $\text{SR}(\mathcal{C})$ in the proof of
Lemma \ref{lemma-coprod-prod-SR}
and the requirement that the morphisms in a covering
of $\mathcal{C}$ are representable.
Part (3) follows by thinking of $A \times K \to B \times L$
as the composition $A \times K \to B \times K \to B \times L$
and hence a composition of basechanges of coverings.
The final statement follows because $\text{SR}(\mathcal{C}, X) =
\text{SR}(\mathcal{C}/X)$.
\end{proof}
\noindent
By Lemma \ref{lemma-coprod-prod-SR} and
Simplicial, Lemma \ref{simplicial-lemma-existence-cosk}
the coskeleton of a truncated simplicial object of
$\text{SR}(\mathcal{C}, X)$ exists if $\mathcal{C}$ has fibre products.
Hence the following definition makes sense.
\begin{definition}
\label{definition-hypercovering}
Let $\mathcal{C}$ be a site. Assume $\mathcal{C}$ has fibre products.
Let $X \in \Ob(\mathcal{C})$ be an object of $\mathcal{C}$.
A {\it hypercovering of $X$} is a simplicial object
$K$ of $\text{SR}(\mathcal{C}, X)$ such that
\begin{enumerate}
\item The object $K_0$ is a covering of $X$ for the site $\mathcal{C}$.
\item For every $n \geq 0$ the canonical morphism
$$
K_{n + 1} \longrightarrow (\text{cosk}_n \text{sk}_n K)_{n + 1}
$$
is a covering in the sense defined above.
\end{enumerate}
\end{definition}
\noindent
Condition (1) makes sense since each object of
$\text{SR}(\mathcal{C}, X)$ is after all a family
of morphisms with target $X$. It could also be
formulated as saying that the morphism of $K_0$ to
the final object of $\text{SR}(\mathcal{C}, X)$
is a covering.
\begin{example}[{\v C}ech hypercoverings]
\label{example-cech}
Let $\mathcal{C}$ be a site with fibre products.
Let $\{U_i \to X\}_{i \in I}$ be a covering of $\mathcal{C}$.
Set $K_0 = \{U_i \to X\}_{i \in I}$.
Then $K_0$ is a $0$-truncated simplicial object of
$\text{SR}(\mathcal{C}, X)$. Hence we may form
$$
K = \text{cosk}_0 K_0.
$$
Clearly $K$ passes condition (1) of Definition \ref{definition-hypercovering}.
Since all the morphisms $K_{n + 1} \to (\text{cosk}_n \text{sk}_n K)_{n + 1}$
are isomorphisms by
Simplicial, Lemma \ref{simplicial-lemma-cosk-up}
it also passes condition (2). Note that
the terms $K_n$ are the usual
$$
K_n = \{
U_{i_0} \times_X U_{i_1} \times_X \ldots \times_X U_{i_n} \to X
\}_{(i_0, i_1, \ldots, i_n) \in I^{n + 1}}
$$
A hypercovering of $X$ of this form is called a
{\it {\v C}ech hypercovering} of $X$.
\end{example}
\begin{example}[Hypercovering by a simplicial object of the site]
\label{example-hypercovering-in-C}
Let $\mathcal{C}$ be a site with fibre products. Let
$X \in \Ob(\mathcal{C})$. Let $U$ be a simplicial object of $\mathcal{C}$.
As usual we denote $U_n = U([n])$. Finally, assume given an augmentation
$$
a : U \to X
$$
In this situation we can consider the simplicial object $K$
of $\text{SR}(\mathcal{C}, X)$ with terms $K_n = \{U_n \to X\}$.
Then $K$ is a hypercovering of $X$ in the sense of
Definition \ref{definition-hypercovering}
if and only if the following three
conditions\footnote{As $\mathcal{C}$ has fibre products, the
category $\mathcal{C}/X$ has all finite limits.
Hence the required coskeleta exist by
Simplicial, Lemma \ref{simplicial-lemma-existence-cosk}.} hold:
\begin{enumerate}
\item $\{U_0 \to X\}$ is a covering of $\mathcal{C}$,
\item $\{U_1 \to U_0 \times_X U_0\}$ is a covering of $\mathcal{C}$,
\item $\{U_{n + 1} \to (\text{cosk}_n\text{sk}_n U)_{n + 1}\}$
is a covering of $\mathcal{C}$ for $n \geq 1$.
\end{enumerate}
We omit the straightforward verification.
\end{example}
\begin{example}[{\v C}ech hypercovering associated to a cover]
\label{example-cech-cover}
Let $\mathcal{C}$ be a site with fibre products. Let $U \to X$ be a
morphism of $\mathcal{C}$ such that $\{U \to X\}$ is a covering of
$\mathcal{C}$\footnote{A morphism of $\mathcal{C}$ with this property
is sometimes called a ``cover''.}. Consider the simplical object $K$ of
$\text{SR}(\mathcal{C}, X)$ with terms
$$
K_n = \{U \times_X U \times_X \ldots \times_X U \to X\}
\quad (n + 1 \text{ factors})
$$
Then $K$ is a hypercovering of $X$. This example is a special case of both
Example \ref{example-cech} and of
Example \ref{example-hypercovering-in-C}.
\end{example}
\begin{lemma}
\label{lemma-hypercoverings-set}
Let $\mathcal{C}$ be a site with fibre products.
Let $X \in \Ob(\mathcal{C})$ be an object of $\mathcal{C}$.
The collection of all hypercoverings of $X$ forms a set.
\end{lemma}
\begin{proof}
Since $\mathcal{C}$ is a site, the set of all coverings of
$X$ forms a set. Thus we see that the collection
of possible $K_0$ forms a set. Suppose we have shown that
the collection of all possible $K_0, \ldots, K_n$ form
a set. Then it is enough to show that given
$K_0, \ldots, K_n$ the collection of all possible
$K_{n + 1}$ forms a set. And this is clearly true since
we have to choose $K_{n + 1}$ among all possible coverings
of $(\text{cosk}_n \text{sk}_n K)_{n + 1}$.
\end{proof}
\begin{remark}
\label{remark-hypercoverings-really-set}
The lemma does not just say that there is a cofinal
system of choices of hypercoverings that is a set,
but that really the hypercoverings form a set.
\end{remark}
\noindent
The category of presheaves on $\mathcal{C}$ has
finite (co)limits. Hence the functors $\text{cosk}_n$
exists for presheaves of sets.
\begin{lemma}
\label{lemma-hypercovering-F}
Let $\mathcal{C}$ be a site with fibre products.
Let $X \in \Ob(\mathcal{C})$ be an object of $\mathcal{C}$.
Let $K$ be a hypercovering of $X$.
Consider the simplicial object $F(K)$ of $\textit{PSh}(\mathcal{C})$,
endowed with its augmentation to the constant simplicial presheaf $h_X$.
\begin{enumerate}
\item The morphism of presheaves $F(K)_0 \to h_X$ becomes
a surjection after sheafification.
\item The morphism
$$
(d^1_0, d^1_1) :
F(K)_1
\longrightarrow
F(K)_0 \times_{h_X} F(K)_0
$$
becomes a surjection after sheafification.
\item For every $n \geq 1$ the morphism
$$
F(K)_{n + 1} \longrightarrow (\text{cosk}_n \text{sk}_n F(K))_{n + 1}
$$
turns into a surjection after sheafification.
\end{enumerate}
\end{lemma}
\begin{proof}
We will use the fact that if
$\{U_i \to U\}_{i \in I}$ is a covering of the site
$\mathcal{C}$, then the morphism
$$
\amalg_{i \in I} h_{U_i} \to h_U
$$
becomes surjective after sheafification, see
Sites, Lemma \ref{sites-lemma-covering-surjective-after-sheafification}.
Thus the first assertion follows immediately.
\medskip\noindent
For the second assertion, note that according to
Simplicial, Example \ref{simplicial-example-cosk0}
the simplicial object $\text{cosk}_0 \text{sk}_0 K$
has terms $K_0 \times \ldots \times K_0$. Thus
according to the definition of a hypercovering we
see that $(d^1_0, d^1_1) : K_1 \to K_0 \times K_0$ is a
covering. Hence (2) follows from the claim above
and the fact that $F$ transforms products into fibred
products over $h_X$.
\medskip\noindent
For the third, we claim that
$\text{cosk}_n \text{sk}_n F(K) =
F(\text{cosk}_n \text{sk}_n K)$ for $n \geq 1$.
To prove this, denote temporarily $F'$ the functor
$\text{SR}(\mathcal{C}, X) \to \textit{PSh}(\mathcal{C})/h_X$.
By Lemma \ref{lemma-coprod-prod-SR} the functor
$F'$ commutes with finite limits.
By our description of the $\text{cosk}_n$ functor in
Simplicial, Section \ref{simplicial-section-skeleton}
we see that $\text{cosk}_n \text{sk}_n F'(K) =
F'(\text{cosk}_n \text{sk}_n K)$.
Recall that the category used in the description of
$(\text{cosk}_n U)_m$ in
Simplicial, Lemma \ref{simplicial-lemma-existence-cosk}
is the category $(\Delta/[m])^{opp}_{\leq n}$. It is an
amusing exercise to show that $(\Delta/[m])_{\leq n}$ is
a connected category (see
Categories, Definition \ref{categories-definition-category-connected})
as soon as $n \geq 1$. Hence,
Categories, Lemma \ref{categories-lemma-connected-limit-over-X}
shows that $\text{cosk}_n \text{sk}_n F'(K) =
\text{cosk}_n \text{sk}_n F(K)$. Whence the claim.
Property (2) follows from this, because now we see that
the morphism in (2) is the result of applying the
functor $F$ to a covering as in Definition \ref{definition-covering-SR},
and the result follows from the first fact mentioned
in this proof.
\end{proof}
\section{Acyclicity}
\label{section-acyclicity}
\noindent
Let $\mathcal{C}$ be a site.
For a presheaf of sets $\mathcal{F}$ we denote $\mathbf{Z}_\mathcal{F}$
the presheaf of abelian groups defined by the rule
$$
\mathbf{Z}_\mathcal{F}(U) = \text{free abelian group on }\mathcal{F}(U).
$$
We will sometimes call this the {\it free abelian presheaf on $\mathcal{F}$}.
Of course the construction $\mathcal{F} \mapsto \mathbf{Z}_\mathcal{F}$
is a functor and it is left adjoint to the forgetful functor
$\textit{PAb}(\mathcal{C}) \to \textit{PSh}(\mathcal{C})$.
Of course the sheafification $\mathbf{Z}_\mathcal{F}^\#$ is
a sheaf of abelian groups, and the functor
$\mathcal{F} \mapsto \mathbf{Z}_\mathcal{F}^\#$ is a
left adjoint as well. We sometimes call $\mathbf{Z}_\mathcal{F}^\#$
the {\it free abelian sheaf on $\mathcal{F}$}.
\medskip\noindent
For an object $X$ of the site $\mathcal{C}$ we denote
$\mathbf{Z}_X$ the free abelian presheaf on $h_X$, and
we denote $\mathbf{Z}_X^\#$ its sheafification.
\begin{definition}
\label{definition-homology}
Let $\mathcal{C}$ be a site.
Let $K$ be a simplicial object of $\textit{PSh}(\mathcal{C})$.
By the above we get a simplicial object $\mathbf{Z}_K^\#$ of
$\textit{Ab}(\mathcal{C})$. We can take its associated
complex of abelian presheaves $s(\mathbf{Z}_K^\#)$, see
Simplicial, Section \ref{simplicial-section-complexes}.
The {\it homology of $K$} is the homology of the
complex of abelian sheaves $s(\mathbf{Z}_K^\#)$.
\end{definition}
\noindent
In other words, the {\it $i$th homology $H_i(K)$ of $K$}
is the sheaf of abelian groups $H_i(K) = H_i(s(\mathbf{Z}_K^\#))$.
In this section we worry about the homology in case $K$
is a hypercovering of an object $X$ of $\mathcal{C}$.
\begin{lemma}
\label{lemma-compare-cosk0}
Let $\mathcal{C}$ be a site.
Let $\mathcal{F} \to \mathcal{G}$ be a morphism
of presheaves of sets. Denote $K$ the simplicial
object of $\textit{PSh}(\mathcal{C})$ whose $n$th
term is the $(n + 1)$st fibre product of $\mathcal{F}$
over $\mathcal{G}$, see
Simplicial, Example \ref{simplicial-example-fibre-products-simplicial-object}.
Then, if $\mathcal{F} \to \mathcal{G}$ is surjective after
sheafification, we have
$$
H_i(K) =
\left\{
\begin{matrix}
0 & \text{if} & i > 0\\
\mathbf{Z}_\mathcal{G}^\# & \text{if} & i = 0
\end{matrix}
\right.
$$
The isomorphism in degree $0$ is given by the
morphism $H_0(K) \to \mathbf{Z}_\mathcal{G}^\#$
coming from the map $(\mathbf{Z}_K^\#)_0 =
\mathbf{Z}_\mathcal{F}^\# \to \mathbf{Z}_\mathcal{G}^\#$.
\end{lemma}
\begin{proof}
Let $\mathcal{G}' \subset \mathcal{G}$ be the image of
the morphism $\mathcal{F} \to \mathcal{G}$.
Let $U \in \Ob(\mathcal{C})$. Set
$A = \mathcal{F}(U)$ and $B = \mathcal{G}'(U)$.
Then the simplicial set $K(U)$ is equal to the simplicial
set with $n$-simplices given by
$$
A \times_B A \times_B \ldots \times_B A\ (n + 1 \text{ factors)}.
$$
By Simplicial, Lemma \ref{simplicial-lemma-cosk-minus-one-equivalence}
the morphism $K(U) \to B$ is a trivial Kan fibration.
Thus it is a homotopy equivalence
(Simplicial, Lemma \ref{simplicial-lemma-trivial-kan-homotopy}).
Hence applying the functor ``free abelian group on'' to this
we deduce that
$$
\mathbf{Z}_K(U) \longrightarrow \mathbf{Z}_B
$$
is a homotopy equivalence. Note that $s(\mathbf{Z}_B)$ is
the complex
$$
\ldots \to
\bigoplus\nolimits_{b \in B}\mathbf{Z} \xrightarrow{0}
\bigoplus\nolimits_{b \in B}\mathbf{Z} \xrightarrow{1}
\bigoplus\nolimits_{b \in B}\mathbf{Z} \xrightarrow{0}
\bigoplus\nolimits_{b \in B}\mathbf{Z} \to 0
$$
see Simplicial, Lemma \ref{simplicial-lemma-homology-eilenberg-maclane}.
Thus we see that
$H_i(s(\mathbf{Z}_K(U))) = 0$ for $i > 0$, and
$H_0(s(\mathbf{Z}_K(U))) = \bigoplus_{b \in B}\mathbf{Z}
= \bigoplus_{s \in \mathcal{G}'(U)} \mathbf{Z}$.
These identifications are compatible with restriction
maps.
\medskip\noindent
We conclude that $H_i(s(\mathbf{Z}_K)) = 0$ for $i > 0$ and
$H_0(s(\mathbf{Z}_K)) = \mathbf{Z}_{\mathcal{G}'}$, where here
we compute homology groups in $\textit{PAb}(\mathcal{C})$. Since
sheafification is an exact functor we deduce the result
of the lemma. Namely, the exactness implies
that $H_0(s(\mathbf{Z}_K))^\# = H_0(s(\mathbf{Z}_K^\#))$,
and similarly for other indices.
\end{proof}
\begin{lemma}
\label{lemma-acyclicity}
Let $\mathcal{C}$ be a site.
Let $f : L \to K$ be a morphism of
simplicial objects of $\textit{PSh}(\mathcal{C})$.
Let $n \geq 0$ be an integer.
Assume that
\begin{enumerate}
\item For $i < n$ the morphism $L_i \to K_i$ is an isomorphism.
\item The morphism $L_n \to K_n$ is surjective after sheafification.
\item The canonical map $L \to \text{cosk}_n \text{sk}_n L$ is an isomorphism.
\item The canonical map $K \to \text{cosk}_n \text{sk}_n K$ is an isomorphism.
\end{enumerate}
Then $H_i(f) : H_i(L) \to H_i(K)$ is an isomorphism.
\end{lemma}
\begin{proof}
This proof is exactly the same as the proof of
Lemma \ref{lemma-compare-cosk0} above. Namely,
we first let $K_n' \subset K_n$ be the sub presheaf
which is the image of the map $L_n \to K_n$. Assumption
(2) means that the sheafification of $K_n'$ is equal to
the sheafification of $K_n$. Moreover, since $L_i = K_i$
for all $i < n$ we see that get an $n$-truncated
simplicial presheaf $U$ by taking
$U_0 = L_0 = K_0, \ldots, U_{n - 1} = L_{n - 1} = K_{n - 1}, U_n = K'_n$.
Denote $K' = \text{cosk}_n U$, a simplicial presheaf.
Because we can construct $K'_m$ as a finite limit, and
since sheafification is exact, we see that
$(K'_m)^\# = K_m$. In other words, $(K')^\# = K^\#$.
We conclude, by exactness of sheafification once more,
that $H_i(K) = H_i(K')$. Thus it suffices to prove the lemma
for the morphism $L \to K'$, in other words, we may
assume that $L_n \to K_n$ is a surjective morphism
of {\it presheaves}!
\medskip\noindent
In this case, for any object $U$ of $\mathcal{C}$ we
see that the morphism of simplicial sets
$$
L(U) \longrightarrow K(U)
$$
satisfies all the assumptions of
Simplicial, Lemma \ref{simplicial-lemma-section}.
Hence it is a trivial Kan fibration. In particular it is
a homotopy equivalence
(Simplicial, Lemma \ref{simplicial-lemma-trivial-kan-homotopy}).
Thus
$$
\mathbf{Z}_L(U) \longrightarrow \mathbf{Z}_K(U)
$$
is a homotopy equivalence too. This for all $U$.
The result follows.
\end{proof}
\begin{lemma}
\label{lemma-acyclic-hypercover-sheaves}
Let $\mathcal{C}$ be a site.
Let $K$ be a simplicial presheaf.
Let $\mathcal{G}$ be a presheaf.
Let $K \to \mathcal{G}$ be an augmentation of $K$
towards $\mathcal{G}$. Assume that
\begin{enumerate}
\item The morphism of presheaves $K_0 \to \mathcal{G}$ becomes
a surjection after sheafification.
\item The morphism
$$
(d^1_0, d^1_1) :
K_1
\longrightarrow
K_0 \times_\mathcal{G} K_0
$$
becomes a surjection after sheafification.
\item For every $n \geq 1$ the morphism
$$
K_{n + 1} \longrightarrow (\text{cosk}_n \text{sk}_n K)_{n + 1}
$$
turns into a surjection after sheafification.
\end{enumerate}
Then $H_i(K) = 0$ for $i > 0$ and
$H_0(K) = \mathbf{Z}_\mathcal{G}^\#$.
\end{lemma}
\begin{proof}
Denote $K^n = \text{cosk}_n \text{sk}_n K$ for $n \geq 1$.
Define $K^0$ as the simplicial object with terms
$(K^0)_n$ equal to the $(n + 1)$-fold fibred product
$K_0 \times_\mathcal{G} \ldots \times_\mathcal{G} K_0$,
see Simplicial,
Example \ref{simplicial-example-fibre-products-simplicial-object}.
We have morphisms
$$
K \longrightarrow \ldots \to K^n \to K^{n - 1} \to \ldots \to K^1 \to K^0.
$$
The morphisms $K \to K^i$, $K^j \to K^i$ for $j \geq i \geq 1$ come
from the universal properties of the $\text{cosk}_n$ functors.
The morphism $K^1 \to K^0$ is the canonical morphism
from
Simplicial, Remark \ref{simplicial-remark-augmentation}.
We also recall that $K^0 \to \text{cosk}_1 \text{sk}_1 K^0$
is an isomorphism, see
Simplicial, Lemma \ref{simplicial-lemma-cosk-minus-one}.
\medskip\noindent
By Lemma \ref{lemma-compare-cosk0} we see that
$H_i(K^0) = 0$ for $i > 0$ and $H_0(K^0) = \mathbf{Z}_\mathcal{G}^\#$.
\medskip\noindent
Pick $n \geq 1$. Consider the morphism $K^n \to K^{n - 1}$.
It is an isomorphism on terms of degree $< n$.
Note that $K^n \to \text{cosk}_n \text{sk}_n K^n$ and
$K^{n - 1} \to \text{cosk}_n \text{sk}_n K^{n - 1}$
are isomorphisms. Note that $(K^n)_n = K_n$ and
that $(K^{n - 1})_n = (\text{cosk}_{n - 1} \text{sk}_{n - 1} K)_n$.
Hence by assumption, we have that $(K^n)_n \to (K^{n - 1})_n$
is a morphism of presheaves which becomes surjective after
sheafification. By Lemma \ref{lemma-acyclicity} we conclude that
$H_i(K^n) = H_i(K^{n - 1})$.
Combined with the above this proves the lemma.
\end{proof}
\begin{lemma}
\label{lemma-hypercovering-acyclic}
Let $\mathcal{C}$ be a site with fibre products.
Let $X$ be an object of $\mathcal{C}$.
Let $K$ be a hypercovering of $X$.
The homology of the simplicial presheaf $F(K)$ is
$0$ in degrees $> 0$ and equal to $\mathbf{Z}_X^\#$
in degree $0$.
\end{lemma}
\begin{proof}
Combine Lemmas \ref{lemma-acyclic-hypercover-sheaves}
and \ref{lemma-hypercovering-F}.
\end{proof}
\section{{\v C}ech cohomology and hypercoverings}
\label{section-hyper-cech}
\noindent
Let $\mathcal{C}$ be a site. Consider a presheaf of
abelian groups $\mathcal{F}$ on the site $\mathcal{C}$.
It defines a functor
\begin{eqnarray*}
\mathcal{F} : \text{SR}(\mathcal{C})^{opp}
& \longrightarrow &
\textit{Ab} \\
\{U_i\}_{i \in I} &
\longmapsto &
\prod\nolimits_{i \in I} \mathcal{F}(U_i)
\end{eqnarray*}
Thus a simplicial object $K$ of $\text{SR}(\mathcal{C})$
is turned into a cosimplicial object $\mathcal{F}(K)$ of $\textit{Ab}$.
The cochain complex $s(\mathcal{F}(K))$ associated to $\mathcal{F}(K)$
(Simplicial, Section
\ref{simplicial-section-dold-kan-cosimplicial})
is called the {\v C}ech complex of $\mathcal{F}$ with
respect to the simplicial object $K$. We set
$$
\check{H}^i(K, \mathcal{F})
=
H^i(s(\mathcal{F}(K))).
$$
and we call it the $i$th {\v C}ech cohomology group
of $\mathcal{F}$ with respect to $K$.
In this section we prove analogues of some of the results for
{\v C}ech cohomology of open coverings proved in
Cohomology, Sections \ref{cohomology-section-cech},
\ref{cohomology-section-cech-functor} and
\ref{cohomology-section-cech-cohomology-cohomology}.
\begin{lemma}
\label{lemma-h0-cech}
Let $\mathcal{C}$ be a site with fibre products.
Let $X$ be an object of $\mathcal{C}$.
Let $K$ be a hypercovering of $X$.
Let $\mathcal{F}$ be a sheaf of abelian groups on $\mathcal{C}$.
Then $\check{H}^0(K, \mathcal{F}) = \mathcal{F}(X)$.
\end{lemma}
\begin{proof}
We have
$$
\check{H}^0(K, \mathcal{F})
=
\Ker(\mathcal{F}(K_0) \longrightarrow \mathcal{F}(K_1))
$$
Write $K_0 = \{U_i \to X\}$. It is a covering in the site
$\mathcal{C}$. As well, we have that $K_1 \to K_0 \times K_0$
is a covering in $\text{SR}(\mathcal{C}, X)$. Hence we may
write $K_1 = \amalg_{i_0, i_1 \in I} \{V_{i_0i_1j} \to X\}$
so that the morphism $K_1 \to K_0 \times K_0$ is given
by coverings $\{V_{i_0i_1j} \to U_{i_0} \times_X U_{i_1}\}$
of the site $\mathcal{C}$. Thus we can further identify
$$
\check{H}^0(K, \mathcal{F})
=
\Ker(
\prod\nolimits_i \mathcal{F}(U_i)
\longrightarrow
\prod\nolimits_{i_0i_1 j} \mathcal{F}(V_{i_0i_1j})
)
$$
with obvious map. The sheaf property of $\mathcal{F}$
implies that $\check{H}^0(K, \mathcal{F}) = H^0(X, \mathcal{F})$.
\end{proof}
\noindent
In fact this property characterizes the abelian sheaves among all
abelian presheaves on $\mathcal{C}$ of course.
The analogue of Cohomology, Lemma \ref{lemma-injective-trivial-cech}
in this case is the following.
\begin{lemma}
\label{lemma-injective-trivial-cech}
Let $\mathcal{C}$ be a site with fibre products.
Let $X$ be an object of $\mathcal{C}$.
Let $K$ be a hypercovering of $X$.
Let $\mathcal{I}$ be an injective sheaf of abelian groups on $\mathcal{C}$.
Then
$$
\check{H}^p(K, \mathcal{I}) =
\left\{
\begin{matrix}
\mathcal{I}(X) & \text{if} & p = 0 \\
0 & \text{if} & p > 0
\end{matrix}
\right.
$$
\end{lemma}
\begin{proof}
Observe that for any object $Z = \{U_i \to X\}$ of
$\text{SR}(\mathcal{C}, X)$ and any abelian sheaf
$\mathcal{F}$ on $\mathcal{C}$ we have
\begin{eqnarray*}
\mathcal{F}(Z)
& = &
\prod \mathcal{F}(U_i) \\
& = &
\prod \Mor_{\textit{PSh}(\mathcal{C})}(h_{U_i}, \mathcal{F})\\
& = &
\Mor_{\textit{PSh}(\mathcal{C})}(F(Z), \mathcal{F})\\
& = &
\Mor_{\textit{PAb}(\mathcal{C})}(\mathbf{Z}_{F(Z)}, \mathcal{F}) \\
& = &
\Mor_{\textit{Ab}(\mathcal{C})}(\mathbf{Z}_{F(Z)}^\#, \mathcal{F})
\end{eqnarray*}
Thus we see, for any simplicial object $K$ of
$\text{SR}(\mathcal{C}, X)$ that we have
\begin{equation}
\label{equation-identify-cech}
s(\mathcal{F}(K))
=
\Hom_{\textit{Ab}(\mathcal{C})}(s(\mathbf{Z}_{F(K)}^\#), \mathcal{F})
\end{equation}
see Definition \ref{definition-homology} for notation.
The complex of sheaves $s(\mathbf{Z}_{F(K)}^\#)$ is quasi-isomorphic
to $\mathbf{Z}_X^\#$ if $K$ is a hypercovering, see
Lemma \ref{lemma-hypercovering-acyclic}. We conclude
that if $\mathcal{I}$ is an injective abelian sheaf, and
$K$ a hypercovering, then the complex $s(\mathcal{I}(K))$
is acyclic except possibly in degree $0$.
In other words, we have
$$
\check{H}^i(K, \mathcal{I}) = 0
$$
for $i > 0$. Combined with Lemma \ref{lemma-h0-cech} the lemma is proved.
\end{proof}
\noindent
Next we come to the analogue of Cohomology on Sites, Lemma
\ref{sites-cohomology-lemma-cech-spectral-sequence}.
Let $\mathcal{C}$ be a site.
Let $\mathcal{F}$ be a sheaf of abelian groups on $\mathcal{C}$.
Recall that $\underline{H}^i(\mathcal{F})$ indicates the presheaf
of abelian groups on $\mathcal{C}$ which is defined by the
rule $\underline{H}^i(\mathcal{F}) : U \longmapsto H^i(U, \mathcal{F})$.
We extend this to $\text{SR}(\mathcal{C})$ as in the introduction
to this section.
\begin{lemma}
\label{lemma-cech-spectral-sequence}
Let $\mathcal{C}$ be a site with fibre products.
Let $X$ be an object of $\mathcal{C}$.
Let $K$ be a hypercovering of $X$.
Let $\mathcal{F}$ be a sheaf of abelian groups on $\mathcal{C}$.
There is a map
$$
s(\mathcal{F}(K))
\longrightarrow
R\Gamma(X, \mathcal{F})
$$
in $D^{+}(\textit{Ab})$ functorial in $\mathcal{F}$, which induces
natural transformations
$$
\check{H}^i(K, -) \longrightarrow H^i(X, -)
$$
as functors $\textit{Ab}(\mathcal{C}) \to \textit{Ab}$. Moreover,
there is a spectral sequence $(E_r, d_r)_{r \geq 0}$ with
$$
E_2^{p, q} = \check{H}^p(K, \underline{H}^q(\mathcal{F}))
$$
converging to $H^{p + q}(X, \mathcal{F})$.
This spectral sequence is functorial in $\mathcal{F}$ and
in the hypercovering $K$.
\end{lemma}
\begin{proof}
We could prove this by the same method as employed in the corresponding
lemma in the chapter on cohomology. Instead let us prove this by a
double complex argument.
\medskip\noindent
Choose an injective resolution $\mathcal{F} \to \mathcal{I}^\bullet$
in the category of abelian sheaves on $\mathcal{C}$. Consider the
double complex $A^{\bullet, \bullet}$ with terms
$$
A^{p, q} = \mathcal{I}^q(K_p)
$$
where the differential $d_1^{p, q} : A^{p, q} \to A^{p + 1, q}$ is the one
coming from the differential on the complex $s(\mathcal{I}^q(K))$
associated to the cosimplicial abelian group $\mathcal{I}^p(K)$
and the differential $d_2^{p, q} : A^{p, q} \to A^{p, q + 1}$ is the one
coming from the differential $\mathcal{I}^q \to \mathcal{I}^{q + 1}$.
Denote $\text{Tot}(A^{\bullet, \bullet})$ the total complex associated to
the double complex $A^{\bullet, \bullet}$, see
Homology, Section \ref{homology-section-double-complexes}.
We will use the two spectral
sequences $({}'E_r, {}'d_r)$ and $({}''E_r, {}''d_r)$
associated to this double complex, see
Homology, Section \ref{homology-section-double-complex}.
\medskip\noindent
By Lemma \ref{lemma-injective-trivial-cech}
the complexes $s(\mathcal{I}^q(K))$ are acyclic in
positive degrees and have $H^0$ equal to $\mathcal{I}^q(X)$.
Hence by
Homology, Lemma \ref{homology-lemma-double-complex-gives-resolution}
the natural map
$$
\mathcal{I}^\bullet(X) \longrightarrow \text{Tot}(A^{\bullet, \bullet})
$$
is a quasi-isomorphism of complexes of abelian groups. In particular
we conclude that $H^n(\text{Tot}(A^{\bullet, \bullet})) = H^n(X, \mathcal{F})$.
\medskip\noindent
The map $s(\mathcal{F}(K)) \longrightarrow R\Gamma(X, \mathcal{F})$ of
the lemma is the composition of the map
$s(\mathcal{F}(K)) \to \text{Tot}(A^{\bullet, \bullet})$
followed by the inverse
of the displayed quasi-isomorphism above. This works because
$\mathcal{I}^\bullet(X)$ is a representative of $R\Gamma(X, \mathcal{F})$.
\medskip\noindent
Consider the spectral sequence $({}'E_r, {}'d_r)_{r \geq 0}$. By
Homology, Lemma \ref{homology-lemma-ss-double-complex}
we see that
$$
{}'E_2^{p, q} = H^p_I(H^q_{II}(A^{\bullet, \bullet}))
$$
In other words, we first take cohomology with respect to
$d_2$ which gives the groups
${}'E_1^{p, q} = \underline{H}^q(\mathcal{F})(K_p)$.
Hence it is indeed the case (by the description of the differential
${}'d_1$) that
${}'E_2^{p, q} = \check{H}^p(K, \underline{H}^q(\mathcal{F}))$.
By the above and Homology, Lemma \ref{homology-lemma-first-quadrant-ss}
we see that this converges to $H^n(X, \mathcal{F})$ as desired.
\medskip\noindent
We omit the proof of the statements regarding the functoriality of
the above constructions in the abelian sheaf $\mathcal{F}$ and the
hypercovering $K$.
\end{proof}
\section{Hypercoverings a la Verdier}
\label{section-hypercoverings-verdier}
\noindent
The astute reader will have noticed that all we need in order
to get the {\v C}ech to cohomology spectral sequence for a
hypercovering of an object $X$, is the
conclusion of Lemma \ref{lemma-hypercovering-F}.
Therefore the following definition makes sense.
\begin{definition}
\label{definition-hypercovering-variant}
Let $\mathcal{C}$ be a site. Assume $\mathcal{C}$ has equalizers
and fibre products. Let $\mathcal{G}$ be a presheaf of sets.
A {\it hypercovering of $\mathcal{G}$} is a simplicial object
$K$ of $\text{SR}(\mathcal{C})$ endowed with an augmentation
$F(K) \to \mathcal{G}$ such that
\begin{enumerate}
\item $F(K_0) \to \mathcal{G}$ becomes surjective
after sheafification,
\item $F(K_1) \to F(K_0) \times_\mathcal{G} F(K_0)$
becomes surjective after sheafification, and
\item $F(K_{n + 1}) \longrightarrow F((\text{cosk}_n \text{sk}_n K)_{n + 1})$
for $n \geq 1$ becomes surjective after sheafification.
\end{enumerate}
We say that a simplicial object $K$ of $\text{SR}(\mathcal{C})$
is a {\it hypercovering} if $K$ is a hypercovering of the final
object $*$ of $\textit{PSh}(\mathcal{C})$.
\end{definition}
\noindent
The assumption that $\mathcal{C}$ has fibre products and equalizers
guarantees that $\text{SR}(\mathcal{C})$ has fibre products
and equalizers and $F$ commutes with these
(Lemma \ref{lemma-coprod-prod-SR}) which suffices
to define the coskeleton functors used (see
Simplicial, Remark \ref{simplicial-remark-existence-cosk} and
Categories, Lemma \ref{categories-lemma-fibre-products-equalizers-exist}).
If $\mathcal{C}$ is general, we can replace the condition (3) by the
condition that
$F(K_{n + 1}) \longrightarrow ((\text{cosk}_n \text{sk}_n F(K))_{n + 1})$
for $n \geq 1$ becomes surjective after sheafification and the
results of this section remain valid.
\medskip\noindent
Let $\mathcal{F}$ be an abelian sheaf on $\mathcal{C}$.
In the previous section, we defined the {\v C}ech complex of $\mathcal{F}$
with respect to a simplicial object $K$ of $\text{SR}(\mathcal{C})$.
Next, given a presheaf $\mathcal{G}$ we set
$$
H^0(\mathcal{G}, \mathcal{F}) =
\Mor_{\textit{PSh}(\mathcal{C})}(\mathcal{G}, \mathcal{F}) =
\Mor_{\Sh(\mathcal{C})}(\mathcal{G}^\#, \mathcal{F}) =
H^0(\mathcal{G}^\#, \mathcal{F})
$$
with notation as in
Cohomology on Sites, Section \ref{sites-cohomology-section-limp}.
This is a left exact functor and its higher derived functors
(briefly studied in
Cohomology on Sites, Section \ref{sites-cohomology-section-limp})
are denoted $H^i(\mathcal{G}, \mathcal{F})$.
We will show that given a hypercovering $K$ of $\mathcal{G}$,
there is a {\v C}ech to cohomology spectral sequence converging to the
cohomology $H^i(\mathcal{G}, \mathcal{F})$.
Note that if $\mathcal{G} = *$, then
$H^i(*, \mathcal{F}) = H^i(\mathcal{C}, \mathcal{F})$ recovers
the cohomology of $\mathcal{F}$ on the site $\mathcal{C}$.
\begin{lemma}
\label{lemma-h0-cech-variant}
Let $\mathcal{C}$ be a site with equalizers and fibre products.
Let $\mathcal{G}$ be a presheaf on $\mathcal{C}$.
Let $K$ be a hypercovering of $\mathcal{G}$.
Let $\mathcal{F}$ be a sheaf of abelian groups on $\mathcal{C}$.
Then $\check{H}^0(K, \mathcal{F}) = H^0(\mathcal{G}, \mathcal{F})$.
\end{lemma}
\begin{proof}
This follows from the definition of $H^0(\mathcal{G}, \mathcal{F})$
and the fact that
$$
\xymatrix{
F(K_1) \ar@<1ex>[r] \ar@<-1ex>[r] &
F(K_0) \ar[r] & \mathcal{G}
}
$$
becomes an coequalizer diagram after sheafification.
\end{proof}
\begin{lemma}
\label{lemma-injective-trivial-cech-variant}
Let $\mathcal{C}$ be a site with equalizers and fibre products.
Let $\mathcal{G}$ be a presheaf on $\mathcal{C}$.
Let $K$ be a hypercovering of $\mathcal{G}$.
Let $\mathcal{I}$ be an injective sheaf of abelian groups on $\mathcal{C}$.
Then
$$
\check{H}^p(K, \mathcal{I}) =
\left\{
\begin{matrix}
H^0(\mathcal{G}, \mathcal{I}) & \text{if} & p = 0 \\
0 & \text{if} & p > 0
\end{matrix}
\right.
$$
\end{lemma}
\begin{proof}
By (\ref{equation-identify-cech}) we have
$$
s(\mathcal{F}(K))
=
\Hom_{\textit{Ab}(\mathcal{C})}(s(\mathbf{Z}_{F(K)}^\#), \mathcal{F})
$$
The complex $s(\mathbf{Z}_{F(K)}^\#)$ is quasi-isomorphic
to $\mathbf{Z}_\mathcal{G}^\#$, see
Lemma \ref{lemma-acyclic-hypercover-sheaves}. We conclude
that if $\mathcal{I}$ is an injective abelian sheaf, then
the complex $s(\mathcal{I}(K))$ is acyclic except possibly in degree $0$.
In other words, we have $\check{H}^i(K, \mathcal{I}) = 0$
for $i > 0$. Combined with Lemma \ref{lemma-h0-cech-variant}
the lemma is proved.
\end{proof}
\begin{lemma}
\label{lemma-cech-spectral-sequence-variant}
Let $\mathcal{C}$ be a site with equalizers and fibre products.
Let $\mathcal{G}$ be a presheaf on $\mathcal{C}$.
Let $K$ be a hypercovering of $\mathcal{G}$.
Let $\mathcal{F}$ be a sheaf of abelian groups on $\mathcal{C}$.
There is a map
$$
s(\mathcal{F}(K)) \longrightarrow R\Gamma(\mathcal{G}, \mathcal{F})
$$
in $D^{+}(\textit{Ab})$ functorial in $\mathcal{F}$, which induces
a natural transformation
$$
\check{H}^i(K, -) \longrightarrow H^i(\mathcal{G}, -)
$$
of functors $\textit{Ab}(\mathcal{C}) \to \textit{Ab}$. Moreover,
there is a spectral sequence $(E_r, d_r)_{r \geq 0}$ with
$$
E_2^{p, q} = \check{H}^p(K, \underline{H}^q(\mathcal{F}))
$$
converging to $H^{p + q}(\mathcal{G}, \mathcal{F})$.
This spectral sequence is functorial in $\mathcal{F}$ and
in the hypercovering $K$.
\end{lemma}
\begin{proof}
Choose an injective resolution $\mathcal{F} \to \mathcal{I}^\bullet$
in the category of abelian sheaves on $\mathcal{C}$. Consider the
double complex $A^{\bullet, \bullet}$ with terms
$$
A^{p, q} = \mathcal{I}^q(K_p)
$$
where the differential $d_1^{p, q} : A^{p, q} \to A^{p + 1, q}$
is the one coming from the differential $\mathcal{I}^p \to \mathcal{I}^{p + 1}$
and the differential $d_2^{p, q} : A^{p, q} \to A^{p, q + 1}$ is the
one coming from the differential on the complex
$s(\mathcal{I}^p(K))$ associated to the cosimplicial abelian group
$\mathcal{I}^p(K)$ as explained above.
We will use the two spectral
sequences $({}'E_r, {}'d_r)$ and $({}''E_r, {}''d_r)$
associated to this double complex, see
Homology, Section \ref{homology-section-double-complex}.
\medskip\noindent
By Lemma \ref{lemma-injective-trivial-cech-variant} the complexes
$s(\mathcal{I}^p(K))$ are acyclic in positive degrees and have
$H^0$ equal to $H^0(\mathcal{G}, \mathcal{I}^p)$. Hence by
Homology, Lemma \ref{homology-lemma-double-complex-gives-resolution}
and its proof the spectral sequence $({}'E_r, {}'d_r)$ degenerates,
and the natural map
$$
H^0(\mathcal{G}, \mathcal{I}^\bullet) \longrightarrow
\text{Tot}(A^{\bullet, \bullet})
$$
is a quasi-isomorphism of complexes of abelian groups. The map
$s(\mathcal{F}(K)) \longrightarrow R\Gamma(\mathcal{G}, \mathcal{F})$
of the lemma is the composition of the natural map
$s(\mathcal{F}(K)) \to \text{Tot}(A^{\bullet, \bullet})$
followed by the inverse of the displayed quasi-isomorphism above.
This works because $H^0(\mathcal{G}, \mathcal{I}^\bullet)$
is a representative of $R\Gamma(\mathcal{G}, \mathcal{F})$.
\medskip\noindent
Consider the spectral sequence $({}''E_r, {}''d_r)_{r \geq 0}$. By
Homology, Lemma \ref{homology-lemma-ss-double-complex}
we see that
$$
{}''E_2^{p, q} = H^p_{II}(H^q_I(A^{\bullet, \bullet}))
$$
In other words, we first take cohomology with respect to
$d_1$ which gives the groups
${}''E_1^{p, q} = \underline{H}^p(\mathcal{F})(K_q)$.
Hence it is indeed the case (by the description of the differential
${}''d_1$) that
${}''E_2^{p, q} = \check{H}^p(K, \underline{H}^q(\mathcal{F}))$.
Since this spectral sequence converges to the cohomology of
$\text{Tot}(A^{\bullet, \bullet})$ the proof is finished.
\end{proof}
\begin{lemma}
\label{lemma-cech-spectral-sequence-verdier}
Let $\mathcal{C}$ be a site with equalizers and fibre products.
Let $K$ be a hypercovering.
Let $\mathcal{F}$ be an abelian sheaf. There is a
spectral sequence $(E_r, d_r)_{r \geq 0}$ with
$$
E_2^{p, q} = \check{H}^p(K, \underline{H}^q(\mathcal{F}))
$$
converging to the global cohomology groups $H^{p + q}(\mathcal{F})$.
\end{lemma}
\begin{proof}
This is a special case of Lemma \ref{lemma-cech-spectral-sequence-variant}.
\end{proof}
\section{Covering hypercoverings}
\label{section-covering}
\noindent
Here are some ways to construct hypercoverings.
We note that since the category
$\text{SR}(\mathcal{C}, X)$ has fibre products
the category of simplicial objects
of $\text{SR}(\mathcal{C}, X)$ has fibre products
as well, see Simplicial, Lemma \ref{simplicial-lemma-fibre-product}.
\begin{lemma}
\label{lemma-funny-gamma}
Let $\mathcal{C}$ be a site with fibre products.
Let $X$ be an object of $\mathcal{C}$.
Let $K, L, M$ be simplicial objects of $\text{SR}(\mathcal{C}, X)$.
Let $a : K \to L$, $b : M \to L$ be morphisms.
Assume
\begin{enumerate}
\item $K$ is a hypercovering of $X$,
\item the morphism $M_0 \to L_0$ is a covering, and
\item for all $n \geq 0$ in the diagram
$$
\xymatrix{
M_{n + 1} \ar[dd] \ar[rr] \ar[rd]^\gamma &
&
(\text{cosk}_n \text{sk}_n M)_{n + 1} \ar[dd] \\
&
L_{n + 1}
\times_{(\text{cosk}_n \text{sk}_n L)_{n + 1}}
(\text{cosk}_n \text{sk}_n M)_{n + 1}
\ar[ld] \ar[ru]
& \\
L_{n + 1} \ar[rr] & & (\text{cosk}_n \text{sk}_n L)_{n + 1}
}
$$
the arrow $\gamma$ is a covering.
\end{enumerate}
Then the fibre product $K \times_L M$ is a hypercovering of $X$.
\end{lemma}
\begin{proof}
The morphism $(K \times_L M)_0 = K_0 \times_{L_0} M_0 \to K_0$
is a base change of a covering by (2), hence a covering, see
Lemma \ref{lemma-covering-permanence}. And $K_0 \to \{X \to X\}$
is a covering by (1). Thus $(K \times_L M)_0 \to \{X \to X\}$
is a covering by Lemma \ref{lemma-covering-permanence}. Hence
$K \times_L M$ satisfies the first condition of Definition
\ref{definition-hypercovering}.
\medskip\noindent
We still have to check that
$$
K_{n + 1} \times_{L_{n + 1}} M_{n + 1} = (K \times_L M)_{n + 1}
\longrightarrow
(\text{cosk}_n \text{sk}_n (K \times_L M))_{n + 1}
$$
is a covering for all $n \geq 0$. We abbreviate as follows:
$A = (\text{cosk}_n \text{sk}_n K)_{n + 1}$,
$B = (\text{cosk}_n \text{sk}_n L)_{n + 1}$, and
$C = (\text{cosk}_n \text{sk}_n M)_{n + 1}$.
The functor $\text{cosk}_n \text{sk}_n$ commutes with fibre products,
see Simplicial, Lemma \ref{simplicial-lemma-cosk-fibre-product}.
Thus the right hand side above is equal to $A \times_B C$.
Consider the following commutative diagram
$$
\xymatrix{
K_{n + 1} \times_{L_{n + 1}} M_{n + 1} \ar[r] \ar[d] &
M_{n + 1} \ar[d] \ar[rd]_\gamma \ar[rrd] &
& \\
K_{n + 1} \ar[r] \ar[rd] &
L_{n + 1} \ar[rrd] &
L_{n + 1} \times_B C \ar[l] \ar[r] &
C \ar[d] \\
&
A \ar[rr] &
&
B
}
$$
This diagram shows that
$$
K_{n + 1} \times_{L_{n + 1}} M_{n + 1}
=
(K_{n + 1} \times_B C)
\times_{(L_{n + 1} \times_B C), \gamma}
M_{n + 1}
$$
Now, $K_{n + 1} \times_B C \to A \times_B C$
is a base change of the covering $K_{n + 1} \to A$
via the morphism $A \times_B C \to A$, hence is a
covering. By assumption (3) the morphism $\gamma$ is a covering.
Hence the morphism
$$
(K_{n + 1} \times_B C)
\times_{(L_{n + 1} \times_B C), \gamma}
M_{n + 1}
\longrightarrow
K_{n + 1} \times_B C
$$
is a covering as a base change of a covering.
The lemma follows as a composition of coverings
is a covering.
\end{proof}
\begin{lemma}
\label{lemma-product-hypercoverings}
Let $\mathcal{C}$ be a site with fibre products.
Let $X$ be an object of $\mathcal{C}$.
If $K, L$ are hypercoverings of $X$, then
$K \times L$ is a hypercovering of $X$.
\end{lemma}
\begin{proof}
You can either verify this directly, or use
Lemma \ref{lemma-funny-gamma} above and check that $L \to \{X \to X\}$
has property (3).
\end{proof}
\noindent
Let $\mathcal{C}$ be a site with fibre products.
Let $X$ be an object of $\mathcal{C}$.
Since the category $\text{SR}(\mathcal{C}, X)$ has coproducts and
finite limits, it is permissible to speak about the objects
$U \times K$ and $\Hom(U, K)$ for certain simplicial sets $U$
(for example those with finitely many nondegenerate simplices)
and any simplicial object $K$ of $\text{SR}(\mathcal{C}, X)$.
See Simplicial, Sections
\ref{simplicial-section-product-with-simplicial-sets} and
\ref{simplicial-section-hom-from-simplicial-sets}.
\begin{lemma}
\label{lemma-covering}
Let $\mathcal{C}$ be a site with fibre products.
Let $X$ be an object of $\mathcal{C}$.
Let $K$ be a hypercovering of $X$.
Let $k \geq 0$ be an integer.
Let $u : Z \to K_k$ be a covering
in $\text{SR}(\mathcal{C}, X)$.
Then there exists a morphism of hypercoverings
$f: L \to K$ such that $L_k \to K_k$
factors through $u$.
\end{lemma}
\begin{proof}
Denote $Y = K_k$. Let $C[k]$ be the cosimplicial set defined in
Simplicial, Example \ref{simplicial-example-simplex-cosimplicial-set}.
We will use the description of $\Hom(C[k], Y)$ and $\Hom(C[k], Z)$
given in
Simplicial, Lemma \ref{simplicial-lemma-morphism-into-product}.
There is a canonical morphism
$K \to \Hom(C[k], Y)$ corresponding to $\text{id} : K_k = Y \to Y$.
Consider the morphism $\Hom(C[k], Z) \to \Hom(C[k], Y)$
which on degree $n$ terms is the morphism
$$
\prod\nolimits_{\alpha : [k] \to [n]} Z
\longrightarrow
\prod\nolimits_{\alpha : [k] \to [n]} Y
$$
using the given morphism $Z \to Y$ on each factor. Set
$$
L = K \times_{\Hom(C[k], Y)} \Hom(C[k], Z).
$$
The morphism $L_k \to K_k$ sits in to a commutative diagram
$$
\xymatrix{
L_k \ar[r] \ar[d] &
\prod_{\alpha : [k] \to [k]} Z \ar[r]^-{\text{pr}_{\text{id}_{[k]}}} \ar[d] &
Z \ar[d] \\
K_k \ar[r] &
\prod_{\alpha : [k] \to [k]} Y \ar[r]^-{\text{pr}_{\text{id}_{[k]}}} &
Y
}
$$
Since the composition of the two bottom arrows is the identity
we conclude that we have the desired factorization.
\medskip\noindent
We still have to show that $L$ is a hypercovering of $X$.
To see this we will use Lemma \ref{lemma-funny-gamma}.
Condition (1) is satisfied by assumption.
For (2), the morphism
$$
\Hom(C[k], Z)_0 \to \Hom(C[k], Y)_0
$$
is a covering because it is isomorphic to $Z \to Y$ as
there is only one morphism $[k] \to [0]$.
\medskip\noindent
Let us consider condition (3) for $n = 0$. Then, since
$(\text{cosk}_0 T)_1 = T \times T$
(Simplicial, Example \ref{simplicial-example-cosk0})
and since $\Hom(C[k], Z)_1 = \prod_{\alpha : [k] \to [1]} Z$
we obtain the diagram
$$
\xymatrix{
\prod\nolimits_{\alpha : [k] \to [1]} Z \ar[r] \ar[d] &
Z \times Z \ar[d] \\
\prod\nolimits_{\alpha : [k] \to [1]} Y \ar[r] &
Y \times Y
}
$$
with horizontal arrows corresponding to the projection onto the factors
corresponding to the two nonsurjective $\alpha$. Thus the arrow $\gamma$
is the morphism
$$
\prod\nolimits_{\alpha : [k] \to [1]} Z
\longrightarrow
\prod\nolimits_{\alpha : [k] \to [1]\text{ not onto}} Z
\times
\prod\nolimits_{\alpha : [k] \to [1]\text{ onto}} Y
$$
which is a product of coverings and hence a covering by
Lemma \ref{lemma-covering-permanence}.
\medskip\noindent
Let us consider condition (3) for $n > 0$. We claim there is an
injective map $\tau : S' \to S$ of finite sets, such that for any
object $T$ of $\text{SR}(\mathcal{C}, X)$ the morphism
\begin{equation}
\label{equation-map}
\Hom(C[k], T)_{n + 1} \to
(\text{cosk}_n \text{sk}_n \Hom(C[k], T))_{n + 1}
\end{equation}
is isomorphic to the projection $\prod_{s \in S} T \to \prod_{s' \in S'} T$
functorially in $T$. If this is true, then we see, arguing as in the previous
paragraph, that the arrow $\gamma$ is the morphism
$$
\prod\nolimits_{s \in S} Z
\longrightarrow
\prod\nolimits_{s \in S'} Z
\times
\prod\nolimits_{s \not\in \tau(S')} Y
$$
which is a product of coverings and hence a covering by
Lemma \ref{lemma-covering-permanence}. By construction, we have
$\Hom(C[k], T)_{n + 1} = \prod_{\alpha : [k] \to [n + 1]} T$
(see Simplicial, Lemma \ref{simplicial-lemma-morphism-into-product}).
Correspondingly we take $S = \text{Map}([k], [n + 1])$.
On the other hand, Simplicial, Lemma \ref{simplicial-lemma-formula-limit},
provides a description of points of
$(\text{cosk}_n \text{sk}_n \Hom(C[k], T))_{n + 1}$
as sequences $(f_0, \ldots, f_{n + 1})$ of points of $\Hom(C[k], T)_n$
satisfying $d^n_{j - 1} f_i = d^n_i f_j$ for $0 \leq i < j \leq n + 1$.
We can write $f_i = (f_{i, \alpha})$ with $f_{i, \alpha}$ a point of $T$
and $\alpha \in \text{Map}([k], [n])$. The conditions translate into
$$
f_{i, \delta^n_{j - 1} \circ \beta} = f_{j, \delta_i^n \circ \beta}
$$
for any $0 \leq i < j \leq n + 1$ and $\beta : [k] \to [n - 1]$. Thus we
see that
$$
S' = \{0, \ldots, n + 1\} \times \text{Map}([k], [n]) / \sim
$$
where the equivalence relation is generated by the equivalences
$$
(i, \delta^n_{j - 1} \circ \beta) \sim (j, \delta_i^n \circ \beta)
$$
for $0 \leq i < j \leq n + 1$ and $\beta : [k] \to [n - 1]$.
A computation (omitted) shows that the morphism (\ref{equation-map})
corresponds to the map $S' \to S$ which sends $(i, \alpha)$ to
$\delta^{n + 1}_i \circ \alpha \in S$. (It may be a comfort to the
reader to see that this map is well defined by part (1) of
Simplicial, Lemma \ref{simplicial-lemma-relations-face-degeneracy}.)
To finish the proof it suffices to show that if
$\alpha, \alpha' : [k] \to [n]$ and $0 \leq i < j \leq n + 1$
are such that
$$
\delta^{n + 1}_i \circ \alpha = \delta^{n + 1}_j \circ \alpha'
$$
then we have $\alpha = \delta^n_{j - 1} \circ \beta$
and $\alpha' = \delta_i^n \circ \beta$ for some $\beta : [k] \to [n - 1]$.
This is easy to see and omitted.
\end{proof}
\begin{lemma}
\label{lemma-covering-sheaf}
Let $\mathcal{C}$ be a site with fibre products.
Let $X$ be an object of $\mathcal{C}$.
Let $K$ be a hypercovering of $X$.
Let $n \geq 0$ be an integer.
Let $u : \mathcal{F} \to F(K_n)$ be a morphism
of presheaves which becomes surjective
on sheafification.
Then there exists a morphism of hypercoverings
$f: L \to K$ such that $F(f_n) : F(L_n) \to F(K_n)$
factors through $u$.
\end{lemma}
\begin{proof}
Write $K_n = \{U_i \to X\}_{i \in I}$.
Thus the map $u$ is a morphism of presheaves of sets
$u : \mathcal{F} \to \amalg h_{u_i}$.
The assumption on $u$ means that for every
$i \in I$ there exists a covering $\{U_{ij} \to U_i\}_{j \in I_i}$
of the site $\mathcal{C}$ and a morphism of presheaves
$t_{ij} : h_{U_{ij}} \to \mathcal{F}$ such that
$u \circ t_{ij}$ is the map $h_{U_{ij}} \to h_{U_i}$
coming from the morphism $U_{ij} \to U_i$.
Set $J = \amalg_{i \in I} I_i$, and let
$\alpha : J \to I$ be the obvious map.
For $j \in J$ denote $V_j = U_{\alpha(j)j}$. Set
$Z = \{V_j \to X\}_{j \in J}$.
Finally, consider the morphism
$u' : Z \to K_n$ given by $\alpha : J \to I$
and the morphisms $V_j = U_{\alpha(j)j} \to U_{\alpha(j)}$
above. Clearly, this is a covering in the
category $\text{SR}(\mathcal{C}, X)$, and by
construction $F(u') : F(Z) \to F(K_n)$ factors through $u$.
Thus the result follows from Lemma \ref{lemma-covering} above.
\end{proof}
\section{Adding simplices}
\label{section-adding-simplices}
\noindent
In this section we prove some technical lemmas which we will need later.
Let $\mathcal{C}$ be a site with fibre products.
Let $X$ be an object of $\mathcal{C}$.
As we pointed out in Section \ref{section-covering} above,
the objects $U \times K$ and $\Hom(U, K)$
for certain simplicial sets $U$
and any simplicial object $K$ of $\text{SR}(\mathcal{C}, X)$
are defined. See Simplicial, Sections
\ref{simplicial-section-product-with-simplicial-sets} and
\ref{simplicial-section-hom-from-simplicial-sets}.
\begin{lemma}
\label{lemma-one-more-simplex}
Let $\mathcal{C}$ be a site with fibre products.
Let $X$ be an object of $\mathcal{C}$.
Let $K$ be a hypercovering of $X$.
Let $U \subset V$ be simplicial sets, with $U_n, V_n$
finite nonempty for all $n$.
Assume that $U$ has finitely many nondegenerate simplices.
Suppose $n \geq 0$ and $x \in V_n$,
$x \not \in U_n$ are such that
\begin{enumerate}
\item $V_i = U_i$ for $i < n$,
\item $V_n = U_n \cup \{x\}$,
\item any $z \in V_j$, $z \not \in U_j$ for $j > n$
is degenerate.
\end{enumerate}
Then the morphism
$$
\Hom(V, K)_0
\longrightarrow
\Hom(U, K)_0
$$
of $\text{SR}(\mathcal{C}, X)$ is a covering.
\end{lemma}
\begin{proof}
If $n = 0$, then it follows easily that $V = U \amalg \Delta[0]$
(see below). In this case $\Hom(V, K)_0 =
\Hom(U, K)_0 \times K_0$. The result, in this case, then follows
from Lemma \ref{lemma-covering-permanence}.
\medskip\noindent
Let $a : \Delta[n] \to V$ be the morphism associated to $x$
as in Simplicial, Lemma \ref{simplicial-lemma-simplex-map}.
Let us write $\partial \Delta[n] = i_{(n-1)!} \text{sk}_{n - 1} \Delta[n]$
for the $(n - 1)$-skeleton of $\Delta[n]$.
Let $b : \partial \Delta[n] \to U$ be the restriction
of $a$ to the $(n - 1)$ skeleton of $\Delta[n]$. By
Simplicial, Lemma \ref{simplicial-lemma-glue-simplex}
we have $V = U \amalg_{\partial \Delta[n]} \Delta[n]$. By
Simplicial, Lemma
\ref{simplicial-lemma-hom-from-coprod}
we get that
$$
\xymatrix{
\Hom(V, K)_0 \ar[r] \ar[d] &
\Hom(U, K)_0 \ar[d] \\
\Hom(\Delta[n], K)_0 \ar[r] &
\Hom(\partial \Delta[n], K)_0
}
$$
is a fibre product square. Thus it suffices to show that
the bottom horizontal arrow is a covering. By
Simplicial, Lemma \ref{simplicial-lemma-cosk-shriek}
this arrow is identified with
$$
K_n \to (\text{cosk}_{n - 1} \text{sk}_{n - 1} K)_n
$$
and hence is a covering by definition of a hypercovering.
\end{proof}
\begin{lemma}
\label{lemma-add-simplices}
Let $\mathcal{C}$ be a site with fibre products.
Let $X$ be an object of $\mathcal{C}$.
Let $K$ be a hypercovering of $X$.
Let $U \subset V$ be simplicial sets, with $U_n, V_n$
finite nonempty for all $n$.
Assume that $U$ and $V$ have finitely many nondegenerate simplices.
Then the morphism
$$
\Hom(V, K)_0
\longrightarrow
\Hom(U, K)_0
$$
of $\text{SR}(\mathcal{C}, X)$ is a covering.
\end{lemma}
\begin{proof}
By Lemma \ref{lemma-one-more-simplex}
above, it suffices to prove a simple lemma
about inclusions of simplicial sets $U \subset V$ as in the
lemma. And this is exactly the result of
Simplicial, Lemma \ref{simplicial-lemma-add-simplices}.
\end{proof}
\begin{lemma}
\label{lemma-degeneracy-maps-coverings}
Let $\mathcal{C}$ be a site with fibre products. Let $X$ be an object of
$\mathcal{C}$. Let $K$ be a hypercovering of $X$. Then
\begin{enumerate}
\item $K_n$ is a covering of $X$ for each $n \geq 0$,
\item $d^n_i : K_n \to K_{n - 1}$ is a covering for all $n \geq 1$
and $0 \leq i \leq n$.
\end{enumerate}
\end{lemma}
\begin{proof}
Recall that $K_0$ is a covering of $X$ by
Definition \ref{definition-hypercovering}
and that this is equivalent to saying that
$K_0 \to \{X \to X\}$ is a covering in the sense
of Definition \ref{definition-covering-SR}.
Hence (1) follows from (2) because it will prove that
the composition
$K_n \to K_{n - 1} \to \ldots \to K_0 \to \{X \to X\}$
is a covering by Lemma \ref{lemma-covering-permanence}.
\medskip\noindent
Proof of (2). Observe that
$\Mor(\Delta[n], K)_0 = K_n$ by
Simplicial, Lemma \ref{simplicial-lemma-exists-hom-from-simplicial-set-finite}.
Therefore (2) follows from Lemma \ref{lemma-add-simplices}
applied to the $n + 1$ different inclusions $\Delta[n - 1] \to \Delta[n]$.
\end{proof}
\begin{remark}
\label{remark-P-covering}
A useful special case of Lemmas \ref{lemma-add-simplices} and
\ref{lemma-degeneracy-maps-coverings} is the following.
Suppose we have a category $\mathcal{C}$ having fibre products.
Let $P \subset \text{Arrows}(\mathcal{C})$ be a subset
stable under base change, stable under composition,
and containing all isomorphisms. Then one says a
{\it $P$-hypercovering} is an augmentation $a : U \to X$
from a simplicial object of $\mathcal{C}$ such that
\begin{enumerate}
\item $U_0 \to X$ is in $P$,
\item $U_1 \to U_0 \times_X U_0$ is in $P$,
\item $U_{n + 1} \to (\text{cosk}_n\text{sk}_n U)_{n + 1}$
is in $P$ for $n \geq 1$.
\end{enumerate}
The category $\mathcal{C}/X$ has all finite limits, hence the
coskeleta used in the formulation above exist
(see Categories, Lemma \ref{categories-lemma-finite-limits-exist}).
Then we claim that the morphisms $U_n \to X$ and $d^n_i : U_n \to U_{n - 1}$
are in $P$. This follows from the aforementioned
lemmas by turning $\mathcal{C}$ into a site whose coverings
are $\{f : V \to U\}$ with $f \in P$ and taking $K$ given by
$K_n = \{U_n \to X\}$.
\end{remark}
\section{Homotopies}
\label{section-homotopies}
\noindent
Let $\mathcal{C}$ be a site with fibre products.
Let $X$ be an object of $\mathcal{C}$.
Let $L$ be a simplicial object of $\text{SR}(\mathcal{C}, X)$.
According to
Simplicial, Lemma \ref{simplicial-lemma-exists-hom-from-simplicial-set-finite}
there exists an object $\Hom(\Delta[1], L)$
in the category $\text{Simp}(\text{SR}(\mathcal{C}, X))$ which represents the
functor
$$
T
\longmapsto
\Mor_{\text{Simp}(\text{SR}(\mathcal{C}, X))}(\Delta[1] \times T, L)
$$
There is a canonical morphism
$$
\Hom(\Delta[1], L) \to L \times L
$$
coming from $e_i : \Delta[0] \to \Delta[1]$ and the identification
$\Hom(\Delta[0], L) = L$.
\begin{lemma}
\label{lemma-hom-hypercovering}
Let $\mathcal{C}$ be a site with fibre products.
Let $X$ be an object of $\mathcal{C}$.
Let $L$ be a simplicial object of $\text{SR}(\mathcal{C}, X)$.
Let $n \geq 0$. Consider the commutative diagram
\begin{equation}
\label{equation-diagram}
\xymatrix{
\Hom(\Delta[1], L)_{n + 1} \ar[r] \ar[d] &
(\text{cosk}_n \text{sk}_n \Hom(\Delta[1], L))_{n + 1} \ar[d] \\
(L \times L)_{n + 1} \ar[r] &
(\text{cosk}_n \text{sk}_n (L \times L))_{n + 1}
}
\end{equation}
coming from the morphism defined above.
We can identify the terms in this diagram as follows,
where
$\partial \Delta[n + 1] = i_{n!}\text{sk}_n \Delta[n + 1]$
is the $n$-skeleton of the $(n + 1)$-simplex:
\begin{eqnarray*}
\Hom(\Delta[1], L)_{n + 1}
& = &
\Hom(\Delta[1] \times \Delta[n + 1], L)_0 \\
(\text{cosk}_n \text{sk}_n \Hom(\Delta[1], L))_{n + 1}
& = &
\Hom(\Delta[1] \times \partial \Delta[n + 1], L)_0 \\
(L \times L)_{n + 1}
& = &
\Hom(
(\Delta[n + 1] \amalg \Delta[n + 1], L)_0 \\
(\text{cosk}_n \text{sk}_n (L \times L))_{n + 1}
& = &
\Hom(
\partial \Delta[n + 1]
\amalg
\partial \Delta[n + 1], L)_0
\end{eqnarray*}
and the morphism between these objects of $\text{SR}(\mathcal{C}, X)$
come from the commutative diagram of simplicial sets
\begin{equation}
\label{equation-dual-diagram}
\xymatrix{
\Delta[1] \times \Delta[n + 1] &
\Delta[1] \times \partial\Delta[n + 1] \ar[l] \\
\Delta[n + 1] \amalg \Delta[n + 1] \ar[u] &
\partial\Delta[n + 1] \amalg \partial\Delta[n + 1]
\ar[l] \ar[u]
}
\end{equation}
Moreover the fibre product of the bottom arrow and the
right arrow in (\ref{equation-diagram}) is equal to
$$
\Hom(U, L)_0
$$
where $U \subset \Delta[1] \times \Delta[n + 1]$
is the smallest simplicial subset such that both
$\Delta[n + 1] \amalg \Delta[n + 1]$ and
$\Delta[1] \times \partial\Delta[n + 1]$ map into it.
\end{lemma}
\begin{proof}
The first and third equalities are
Simplicial, Lemma \ref{simplicial-lemma-exists-hom-from-simplicial-set-finite}.
The second and fourth follow from the cited lemma combined with
Simplicial, Lemma \ref{simplicial-lemma-cosk-shriek}.
The last assertion follows from the fact that
$U$ is the push-out of the bottom and right arrow of the
diagram (\ref{equation-dual-diagram}), via
Simplicial, Lemma \ref{simplicial-lemma-hom-from-coprod}.
To see that $U$ is equal to this push-out it suffices
to see that the intersection of
$\Delta[n + 1] \amalg \Delta[n + 1]$ and
$\Delta[1] \times \partial\Delta[n + 1]$
in $\Delta[1] \times \Delta[n + 1]$ is equal to
$\partial\Delta[n + 1] \amalg \partial\Delta[n + 1]$.
This we leave to the reader.
\end{proof}
\begin{lemma}
\label{lemma-homotopy}
Let $\mathcal{C}$ be a site with fibre products.
Let $X$ be an object of $\mathcal{C}$.
Let $K, L$ be hypercoverings of $X$.
Let $a, b : K \to L$ be morphisms of hypercoverings.
There exists a morphism of hypercoverings
$c : K' \to K$ such that $a \circ c$ is homotopic
to $b \circ c$.
\end{lemma}
\begin{proof}
Consider the following commutative diagram
$$
\xymatrix{
K' \ar@{=}[r]^-{def} \ar[rd]_c &
K \times_{(L \times L)} \Hom(\Delta[1], L)
\ar[r] \ar[d] & \Hom(\Delta[1], L) \ar[d] \\
& K \ar[r]^{(a, b)} & L \times L
}
$$
By the functorial property of $\Hom(\Delta[1], L)$
the composition of the horizontal morphisms
corresponds to a morphism $K' \times \Delta[1] \to L$ which
defines a homotopy between $c \circ a$ and $c \circ b$.
Thus if we can show that $K'$ is a
hypercovering of $X$, then we obtain the lemma.
To see this we will apply Lemma \ref{lemma-funny-gamma}
to the pair of morphisms $K \to L \times L$
and $\Hom(\Delta[1], L) \to L \times L$.
Condition (1) of Lemma \ref{lemma-funny-gamma} is satisfied.
Condition (2) of Lemma \ref{lemma-funny-gamma} is true because
$\Hom(\Delta[1], L)_0 = L_1$, and the morphism
$(d^1_0, d^1_1) : L_1 \to L_0 \times L_0$ is a
covering of $\text{SR}(\mathcal{C}, X)$ by our
assumption that $L$ is a hypercovering.
To prove condition (3) of Lemma \ref{lemma-funny-gamma}
we use Lemma \ref{lemma-hom-hypercovering} above. According
to this lemma the morphism $\gamma$ of condition (3) of Lemma
\ref{lemma-funny-gamma} is the morphism
$$
\Hom(\Delta[1] \times \Delta[n + 1], L)_0
\longrightarrow
\Hom(U, L)_0
$$
where $U \subset \Delta[1] \times \Delta[n + 1]$.
According to Lemma \ref{lemma-add-simplices}
this is a covering and hence the claim has been proven.
\end{proof}
\begin{remark}
\label{remark-contractible-category}
Note that the crux of the proof is to use
Lemma \ref{lemma-add-simplices}. This lemma
is completely general and does not care about the
exact shape of the simplicial sets (as long as they
have only finitely many nondegenerate simplices).
It seems altogether reasonable to expect a result
of the following kind:
Given any morphism $a : K \times \partial \Delta[k]
\to L$, with $K$ and $L$ hypercoverings, there
exists a morphism of hypercoverings $c : K' \to K$
and a morphism $g : K' \times \Delta[k] \to L$
such that
$g|_{K' \times \partial \Delta[k]} =
a \circ (c \times \text{id}_{\partial \Delta[k]})$.
In other words, the category of hypercoverings is in
a suitable sense contractible.
\end{remark}
\section{Cohomology and hypercoverings}
\label{section-cohomology}
\noindent
Let $\mathcal{C}$ be a site with fibre products.
Let $X$ be an object of $\mathcal{C}$.
Let $\mathcal{F}$ be a sheaf of abelian groups on $\mathcal{C}$.
Let $K, L$ be hypercoverings of $X$.
If $a, b : K \to L$ are homotopic maps,
then $\mathcal{F}(a), \mathcal{F}(b) : \mathcal{F}(K) \to \mathcal{F}(L)$
are homotopic maps, see
Simplicial, Lemma \ref{simplicial-lemma-functorial-homotopy}.
Hence have the same effect on cohomology groups of the associated
cochain complexes, see
Simplicial, Lemma \ref{simplicial-lemma-homotopy-s-Q}.
We are going to use this to define the colimit over all
hypercoverings.
\medskip\noindent
Let us temporarily denote $\text{HC}(\mathcal{C}, X)$
the category of hypercoverings of $X$. We have seen that
this is a category and not a ``big'' category,
see Lemma \ref{lemma-hypercoverings-set}.
This will be the index category for our diagram, see
Categories, Section \ref{categories-section-limits} for notation.
Consider the diagram
$$
\check{H}^i(-, \mathcal{F}) :
\text{HC}(\mathcal{C}, X)
\longrightarrow
\textit{Ab}.
$$
By Lemma \ref{lemma-product-hypercoverings} and
Lemma \ref{lemma-homotopy}, and the remark on homotopies above,
this diagram is directed, see
Categories, Definition \ref{categories-definition-directed}.
Thus the colimit
$$
\check{H}^i_{\text{HC}}(X, \mathcal{F})
=
\colim_{K \in \text{HC}(\mathcal{C}, X)}
\check{H}^i(K, \mathcal{F})
$$
has a particularly simple description (see location cited).
\begin{theorem}
\label{theorem-cohomology-hypercoverings}
Let $\mathcal{C}$ be a site with fibre products.
Let $X$ be an object of $\mathcal{C}$. Let $i \geq 0$.
The functors
\begin{eqnarray*}
\textit{Ab}(\mathcal{C}) & \longrightarrow & \textit{Ab} \\
\mathcal{F} & \longmapsto & H^i(X, \mathcal{F}) \\
\mathcal{F} & \longmapsto & \check{H}^i_{\text{HC}}(X, \mathcal{F})
\end{eqnarray*}
are canonically isomorphic.
\end{theorem}
\begin{proof}[Proof using spectral sequences.]
Suppose that $\xi \in H^p(X, \mathcal{F})$ for some $p \geq 0$.
Let us show that $\xi$ is in the image of the map
$\check{H}^p(X, \mathcal{F}) \to H^p(X, \mathcal{F})$ of
Lemma \ref{lemma-cech-spectral-sequence}
for some hypercovering $K$ of $X$.
\medskip\noindent
This is true if $p = 0$ by Lemma \ref{lemma-h0-cech}.
If $p = 1$, choose a {\v C}ech hypercovering $K$ of $X$ as in
Example \ref{example-cech} starting with a covering
$K_0 = \{U_i \to X\}$ in the site $\mathcal{C}$ such that
$\xi|_{U_i} = 0$, see
Cohomology on Sites,
Lemma \ref{sites-cohomology-lemma-kill-cohomology-class-on-covering}.
It follows immediately from the spectral sequence
in Lemma \ref{lemma-cech-spectral-sequence} that $\xi$ comes
from an element of $\check{H}^1(K, \mathcal{F})$ in this case.
In general, choose any hypercovering $K$ of $X$ such
that $\xi$ maps to zero in $\underline{H}^p(\mathcal{F})(K_0)$
(using Example \ref{example-cech} and
Cohomology on Sites,
Lemma \ref{sites-cohomology-lemma-kill-cohomology-class-on-covering}
again).
By the spectral sequence of Lemma \ref{lemma-cech-spectral-sequence}
the obstruction for $\xi$ to come from an element of
$\check{H}^p(K, \mathcal{F})$ is a sequence of elements
$\xi_1, \ldots, \xi_{p - 1}$ with
$\xi_q \in \check{H}^{p - q}(K, \underline{H}^q(\mathcal{F}))$
(more precisely the images of the $\xi_q$ in certain subquotients
of these groups).
\medskip\noindent
We can inductively replace the hypercovering $K$ by refinements
such that the obstructions $\xi_1, \ldots, \xi_{p - 1}$ restrict to zero
(and not just the images
in the subquotients -- so no subtlety here). Indeed, suppose we have
already managed to reach the situation where
$\xi_{q + 1}, \ldots, \xi_{p - 1}$ are zero.
Note that $\xi_q \in \check{H}^{p - q}(K, \underline{H}^q(\mathcal{F}))$
is the class of some element
$$
\tilde \xi_q \in
\underline{H}^q(\mathcal{F})(K_{p - q}) =
\prod H^q(U_i, \mathcal{F})
$$
if $K_{p - q} = \{U_i \to X\}_{i \in I}$. Let $\xi_{q, i}$
be the component of $\tilde \xi_q$ in $H^q(U_i, \mathcal{F})$.
As $q \geq 1$ we can use
Cohomology on Sites,
Lemma \ref{sites-cohomology-lemma-kill-cohomology-class-on-covering}
yet again to choose coverings $\{U_{i, j} \to U_i\}$
of the site such that each restriction $\xi_{q, i}|_{U_{i, j}} = 0$.
Consider the object $Z = \{U_{i, j} \to X\}$ of the category
$\text{SR}(\mathcal{C}, X)$ and its obvious morphism
$u : Z \to K_{p - q}$. It is clear that $u$ is a covering, see
Definition \ref{definition-covering-SR}. By
Lemma \ref{lemma-covering} there
exists a morphism $L \to K$ of hypercoverings of $X$ such that
$L_{p - q} \to K_{p - q}$ factors through $u$. Then clearly the
image of $\xi_q$ in $\underline{H}^q(\mathcal{F})(L_{p - q})$.
is zero. Since the spectral sequence of
Lemma \ref{lemma-cech-spectral-sequence}
is functorial this means that after replacing $K$ by $L$ we reach the
situation where $\xi_q, \ldots, \xi_{p - 1}$ are all zero.
Continuing like this we end up with a hypercovering where they are all
zero and hence $\xi$ is in the image of the map
$\check{H}^p(X, \mathcal{F}) \to H^p(X, \mathcal{F})$.
\medskip\noindent
Suppose that $K$ is a hypercovering of $X$, that
$\xi \in \check{H}^p(K, \mathcal{F})$ and that the image of
$\xi$ under the map
$\check{H}^p(X, \mathcal{F}) \to H^p(X, \mathcal{F})$ of
Lemma \ref{lemma-cech-spectral-sequence}
is zero. To finish the proof of the theorem we have to show that
there exists a morphism of hypercoverings $L \to K$ such that
$\xi$ restricts to zero in $\check{H}^p(L, \mathcal{F})$.
By the spectral sequence of Lemma \ref{lemma-cech-spectral-sequence}
the vanishing of the image of $\xi$ in $H^p(X, \mathcal{F})$
means that there exist elements $\xi_1, \ldots, \xi_{p - 2}$
with $\xi_q \in \check{H}^{p - 1 - q}(K, \underline{H}^q(\mathcal{F}))$
(more precisely the images of these in certain subquotients)
such that the images $d_{q + 1}^{p - 1 - q, q}\xi_q$ (in the spectral
sequence) add up to $\xi$. Hence by exactly the same mechanism as above
we can find a morphism of hypercoverings $L \to K$ such that
the restrictions of the elements $\xi_q$, $q = 1, \ldots, p - 2$
in $\check{H}^{p - 1 - q}(L, \underline{H}^q(\mathcal{F}))$ are zero.
Then it follows that $\xi$ is zero since the morphism $L \to K$
induces a morphism of spectral sequences according to
Lemma \ref{lemma-cech-spectral-sequence}.
\end{proof}
\begin{proof}[Proof without using spectral sequences.]
We have seen the result for $i = 0$, see Lemma \ref{lemma-h0-cech}.
We know that the functors $H^i(X, -)$ form a universal $\delta$-functor, see
Derived Categories, Lemma \ref{derived-lemma-higher-derived-functors}.
In order to prove the theorem it suffices to show that
the sequence of functors $\check{H}^i_{HC}(X, -)$ forms a
$\delta$-functor. Namely we know that {\v C}ech cohomology
is zero on injective sheaves (Lemma \ref{lemma-injective-trivial-cech})
and then we can apply
Homology, Lemma \ref{homology-lemma-efface-implies-universal}.
\medskip\noindent
Let
$$
0 \to \mathcal{F} \to \mathcal{G} \to \mathcal{H} \to 0
$$
be a short exact sequence of abelian sheaves on $\mathcal{C}$.
Let $\xi \in \check{H}^p_{HC}(X, \mathcal{H})$. Choose a hypercovering
$K$ of $X$ and an element $\sigma \in \mathcal{H}(K_p)$ representing
$\xi$ in cohomology. There is a corresponding exact sequence of
complexes
$$
0 \to s(\mathcal{F}(K)) \to s(\mathcal{G}(K)) \to s(\mathcal{H}(K))
$$
but we are not assured that there is a zero on the right also and this
is the only thing that
prevents us from defining $\delta(\xi)$ by a simple application of the
snake lemma. Recall that
$$
\mathcal{H}(K_p) = \prod \mathcal{H}(U_i)
$$
if $K_p = \{U_i \to X\}$. Let $\sigma =\prod \sigma_i$ with
$\sigma_i \in \mathcal{H}(U_i)$. Since $\mathcal{G} \to \mathcal{H}$ is
a surjection of sheaves we see that there exist coverings
$\{U_{i, j} \to U_i\}$ such that $\sigma_i|_{U_{i, j}}$ is the
image of some element $\tau_{i, j} \in \mathcal{G}(U_{i, j})$.
Consider the object $Z = \{U_{i, j} \to X\}$ of the category
$\text{SR}(\mathcal{C}, X)$ and its obvious morphism
$u : Z \to K_p$. It is clear that $u$ is a covering, see
Definition \ref{definition-covering-SR}. By
Lemma \ref{lemma-covering} there
exists a morphism $L \to K$ of hypercoverings of $X$ such that
$L_p \to K_p$ factors through $u$. After replacing $K$ by $L$
we may therefore assume that $\sigma$ is the image of an
element $\tau \in \mathcal{G}(K_p)$. Note that $d(\sigma) = 0$,
but not necessarily $d(\tau) = 0$. Thus $d(\tau) \in \mathcal{F}(K_{p + 1})$
is a cocycle. In this situation we define
$\delta(\xi)$ as the class of the cocycle $d(\tau)$ in
$\check{H}^{p + 1}_{HC}(X, \mathcal{F})$.
\medskip\noindent
At this point there are several things to verify:
(a) $\delta(\xi)$ does not depend on the choice of $\tau$,
(b) $\delta(\xi)$ does not depend on the choice of the hypercovering
$L \to K$ such that $\sigma$ lifts, and
(c) $\delta(\xi)$ does not depend on the initial hypercovering and
$\sigma$ chosen to represent $\xi$. We omit the verification of
(a), (b), and (c); the independence of the choices of the hypercoverings
really comes down to Lemmas \ref{lemma-product-hypercoverings}
and \ref{lemma-homotopy}. We also omit the verification that
$\delta$ is functorial with respect to morphisms of short exact
sequences of abelian sheaves on $\mathcal{C}$.
\medskip\noindent
Finally, we have to verify that with this definition of $\delta$
our short exact sequence of abelian sheaves above leads to a
long exact sequence of {\v C}ech cohomology groups.
First we show that if $\delta(\xi) = 0$ (with $\xi$ as above) then
$\xi$ is the image of some element
$\xi' \in \check{H}^p_{HC}(X, \mathcal{G})$.
Namely, if $\delta(\xi) = 0$, then, with notation as above, we
see that the class of $d(\tau)$ is zero in
$\check{H}^{p + 1}_{HC}(X, \mathcal{F})$. Hence there exists
a morphism of hypercoverings $L \to K$ such that the restriction
of $d(\tau)$ to an element of $\mathcal{F}(L_{p + 1})$ is
equal to $d(\upsilon)$ for some $\upsilon \in \mathcal{F}(L_p)$.
This implies that $\tau|_{L_p} + \upsilon$ form a
cocycle, and determine a class $\xi' \in \check{H}^p(L, \mathcal{G})$
which maps to $\xi$ as desired.
\medskip\noindent
We omit the proof that if $\xi' \in \check{H}^{p + 1}_{HC}(X, \mathcal{F})$
maps to zero in $\check{H}^{p + 1}_{HC}(X, \mathcal{G})$, then it is
equal to $\delta(\xi)$ for some $\xi \in \check{H}^p_{HC}(X, \mathcal{H})$.
\end{proof}
\noindent
Next, we deduce Verdier's case of
Theorem \ref{theorem-cohomology-hypercoverings}
by a sleight of hand.
\begin{proposition}
\label{proposition-cohomology-hypercoverings}
Let $\mathcal{C}$ be a site with fibre products and products of pairs.
Let $\mathcal{F}$ be an abelian sheaf on $\mathcal{C}$.
Let $i \geq 0$. Then
\begin{enumerate}
\item for every $\xi \in H^i(\mathcal{F})$ there exists a hypercovering
$K$ such that $\xi$ is in the image of the canonical map
$\check{H}^i(K, \mathcal{F}) \to H^i(\mathcal{F})$, and
\item if $K, L$ are hypercoverings and $\xi_K \in \check{H}^i(K, \mathcal{F})$,
$\xi_L \in \check{H}^i(L, \mathcal{F})$ are elements mapping
to the same element of $H^i(\mathcal{F})$, then there exists
a hypercovering $M$ and morphisms $M \to K$ and $M \to L$ such
that $\xi_K$ and $\xi_L$ map to the same element of
$\check{H}^i(M, \mathcal{F})$.
\end{enumerate}
In other words, modulo set theoretical issues, the cohomology
groups of $\mathcal{F}$ on $\mathcal{C}$ are the colimit of
the {\v C}ech cohomology groups of $\mathcal{F}$ over all hypercoverings.
\end{proposition}
\begin{proof}
This result is a trivial consequence of
Theorem \ref{theorem-cohomology-hypercoverings}.
Namely, we can artificially replace $\mathcal{C}$ with a slightly
bigger site $\mathcal{C}'$ such that
(I) $\mathcal{C}'$ has a final object $X$ and (II)
hypercoverings in $\mathcal{C}$ are more or less the
same thing as hypercoverings of $X$ in $\mathcal{C}'$.
But due to the nature of things, there is quite a bit of
bookkeeping to do.
\medskip\noindent
Let us call a family of morphisms $\{U_i \to U\}$ in $\mathcal{C}$
with fixed target a {\it weak covering} if the sheafification of the
map $\coprod_{i \in I} h_{U_i} \to h_U$ becomes surjective.
We construct a new site $\mathcal{C}'$ as follows
\begin{enumerate}
\item as a category set $\Ob(\mathcal{C}') = \Ob(\mathcal{C}) \amalg \{X\}$
and add a unique morphism to $X$ from every object of $\mathcal{C}'$,
\item $\mathcal{C}'$ has fibre products as fibre products and products
of pairs exist in $\mathcal{C}$,
\item coverings of $\mathcal{C}'$ are weak coverings of $\mathcal{C}$
together with those $\{U_i \to X\}_{i \in I}$ such that either $U_i = X$
for some $i$, or $U_i \not = X$ for all $i$ and the map
$\coprod h_{U_i} \to *$ of presheaves on $\mathcal{C}$ becomes
surjective after sheafification on $\mathcal{C}$,
\item we apply Sets, Lemma \ref{sets-lemma-coverings-site}
to restrict the coverings to obtain our site $\mathcal{C}'$.
\end{enumerate}
Then $\Sh(\mathcal{C}') = \Sh(\mathcal{C})$ because the inclusion
functor $\mathcal{C} \to \mathcal{C}'$ is a special cocontinuous functor
(see Sites, Definition \ref{sites-definition-special-cocontinuous-functor}).
We omit the straightforward verifications.
\medskip\noindent
Choose a covering $\{U_i \to X\}$ of $\mathcal{C}'$ such that $U_i$ is an
object of $\mathcal{C}$ for all $i$ (possible because
$\mathcal{C} \to \mathcal{C}'$ is special cocontinuous).
Then $K_0 = \{U_i \to X\}$ is a covering in the
site $\mathcal{C}'$ constructed above. We view $K_0$ as an object of
$\text{SR}(\mathcal{C}', X)$ and we set $K_{init} = \text{cosk}_0(K_0)$.
Then $K_{init}$ is a hypercovering of $X$, see
Example \ref{example-cech}. Note that every $K_{init, n}$ has the shape
$\{W_j \to X\}$ with $W_j \in \Ob(\mathcal{C})$.
\medskip\noindent
Proof of (1). Choose $\xi \in H^i(\mathcal{F}) = H^i(X, \mathcal{F}')$
where $\mathcal{F}'$ is the abelian sheaf on $\mathcal{C}'$ corresponding
to $\mathcal{F}$ on $\mathcal{C}$. By
Theorem \ref{theorem-cohomology-hypercoverings}
there exists a morphism of hypercoverings $K' \to K_{init}$
of $X$ in $\mathcal{C}'$ such that $\xi$ comes from an element
of $\check{H}^i(K', \mathcal{F})$.
Write $K'_n = \{U_{n, j} \to X\}$. Now since $K'_n$ maps to
$K_{init, n}$ we see that $U_{n, j}$ is an object of $\mathcal{C}$.
Hence we can define a simplicial object $K$ of $\text{SR}(\mathcal{C})$
by setting $K_n = \{U_{n, j}\}$. Since coverings in
$\mathcal{C}'$ consisting of families of morphisms of $\mathcal{C}$
are weak coverings, we see that $K$ is a hypercovering in the sense
of Definition \ref{definition-hypercovering-variant}.
Finally, since $\mathcal{F}'$ is the unique sheaf on $\mathcal{C}'$
whose restriction to $\mathcal{C}$ is equal to $\mathcal{F}$
we see that the {\v C}ech complexes $s(\mathcal{F}(K))$
and $s(\mathcal{F}'(K'))$ are identical and (1) follows.
(Compatibility with map into cohomology groups omitted.)
\medskip\noindent
Proof of (2). Let $K$ and $L$ be hypercoverings in $\mathcal{C}$.
Let $K'$ and $L'$ be the simplicial objects of $\text{SR}(\mathcal{C}', X)$
gotten from $K$ and $L$ by the functor
$\text{SR}(\mathcal{C}) \to \text{SR}(\mathcal{C}', X)$,
$\{U_i\} \mapsto \{U_i \to X\}$. As before we have equality of
{\v C}ech complexes and hence we obtain $\xi_{K'}$ and
$\xi_{L'}$ mapping to the same cohomology class of $\mathcal{F}'$
over $\mathcal{C}'$. After possibly enlarging our choice
of coverings in $\mathcal{C}'$ (due to a set theoretical issue)
we may assume that $K'$ and $L'$ are hypercoverings of $X$ in
$\mathcal{C}'$; this is true by our definition of hypercoverings in
Definition \ref{definition-hypercovering-variant} and
the fact that weak coverings in $\mathcal{C}$ give coverings in
$\mathcal{C}'$. By
Theorem \ref{theorem-cohomology-hypercoverings}
there exists a hypercovering $M'$ of $X$ in $\mathcal{C}'$
and morphisms $M' \to K'$, $M' \to L'$, and $M' \to K_{init}$
such that $\xi_{K'}$ and $\xi_{L'}$ restrict to the same element of
$\check{H}^i(M', \mathcal{F})$. Unwinding this statement as above
we find that (2) is true.
\end{proof}
\section{Hypercoverings of spaces}
\label{section-hypercoverings-spaces}
\noindent
The theory above is mildly interesting even in the case of topological
spaces. In this case we can work out what a hypercovering is and see
what the result actually says.
\medskip\noindent
Let $X$ be a topological space. Consider the site $X_{Zar}$
of Sites, Example \ref{sites-example-site-topological}. Recall that
an object of $X_{Zar}$ is simply an open of $X$ and that morphisms
of $X_{Zar}$ correspond simply to inclusions. So what is a
hypercovering of $X$ for the site $X_{Zar}$?
\medskip\noindent
Let us first unwind Definition \ref{definition-SR}.
An object of $\text{SR}(X_{Zar}, X)$ is simply given by a set
$I$ and for each $i \in I$ an open $U_i \subset X$.
Let us denote this by $\{U_i\}_{i \in I}$ since there can be no
confusion about the morphism $U_i \to X$.
A morphism $\{U_i\}_{i \in I} \to \{V_j\}_{j \in J}$
between two such objects is given by a map of sets
$\alpha : I \to J$ such that $U_i \subset V_{\alpha(i)}$ for all
$i \in I$. When is such a morphism a covering? This is the case
if and only if for every $j \in J$ we have
$V_j = \bigcup_{i\in I, \ \alpha(i) = j} U_i$ (and is
a covering in the site $X_{Zar}$).
\medskip\noindent
Using the above we get the following description of a hypercovering
in the site $X_{Zar}$. A hypercovering of $X$ in $X_{Zar}$
is given by the following data
\begin{enumerate}
\item a simplicial set $I$ (see
Simplicial, Section \ref{simplicial-section-simplicial-set}), and
\item for each $n \geq 0$ and every $i \in I_n$ an open set $U_i \subset X$.
\end{enumerate}
We will denote such a collection of data by the notation $(I, \{U_i\})$.
In order for this to be a hypercovering of $X$ we require
the following properties
\begin{itemize}
\item for $i \in I_n$ and $0 \leq a \leq n$
we have $U_i \subset U_{d^n_a(i)}$,
\item for $i \in I_n$ and $0 \leq a \leq n$ we have $U_i = U_{s^n_a(i)}$,
\item we have
\begin{equation}
\label{equation-covering-X}
X = \bigcup\nolimits_{i \in I_0} U_i,
\end{equation}
\item for every $i_0, i_1 \in I_0$, we have
\begin{equation}
\label{equation-covering-two}
U_{i_0} \cap U_{i_1} =
\bigcup\nolimits_{i \in I_1, \ d^1_0(i) = i_0, \ d^1_1(i) = i_1} U_i,
\end{equation}
\item for every $n \geq 1$ and every
$(i_0, \ldots, i_{n + 1}) \in (I_n)^{n + 2}$ such that
$d^n_{b - 1}(i_a) = d^n_a(i_b)$ for all $0\leq a < b\leq n + 1$
we have
\begin{equation}
\label{equation-covering-general}
U_{i_0} \cap \ldots \cap U_{i_{n + 1}} =
\bigcup\nolimits_{i \in I_{n + 1},
\ d^{n + 1}_a(i) = i_a, \ a = 0, \ldots, n + 1} U_i,
\end{equation}
\item each of the open coverings (\ref{equation-covering-X}),
(\ref{equation-covering-two}), and (\ref{equation-covering-general})
is an element of $\text{Cov}(X_{Zar})$
(this is a set theoretic condition, bounding
the size of the index sets of the coverings).
\end{itemize}
Conditions (\ref{equation-covering-X}) and
(\ref{equation-covering-two}) should be familiar from the
chapter on sheaves on spaces for example, and condition
(\ref{equation-covering-general}) is the natural generalization.
\begin{remark}
\label{remark-not-covering-set}
One feature of this description is that if one of the multiple
intersections $U_{i_0} \cap \ldots \cap U_{i_{n + 1}}$ is empty then
the covering on the right hand side may be the empty covering.
Thus it is not automatically the case that the maps
$I_{n + 1} \to (\text{cosk}_n\text{sk}_n I)_{n + 1}$ are surjective.
This means that the geometric realization of $I$ may be an interesting
(non-contractible) space.
\medskip\noindent
In fact, let $I'_n \subset I_n$ be the subset
consisting of those simplices $i \in I_n$ such that
$U_i \not = \emptyset$. It is easy to see that $I' \subset I$
is a subsimplicial set, and that $(I', \{U_i\})$ is a hypercovering.
Hence we can always refine a hypercovering to a hypercovering where
none of the opens $U_i$ is empty.
\end{remark}
\begin{remark}
\label{remark-repackage-into-simplicial-space}
Let us repackage this information in yet another way.
Namely, suppose that $(I, \{U_i\})$ is a hypercovering of
the topological space $X$. Given this data we can construct
a simplicial topological space $U_\bullet$ by setting
$$
U_n = \coprod\nolimits_{i \in I_n} U_i,
$$
and where for given $\varphi : [n] \to [m]$ we let
morphisms $U(\varphi) : U_n \to U_m$ be the morphism
coming from the inclusions $U_i \subset U_{\varphi(i)}$
for $i \in I_n$. This simplicial topological space comes
with an augmentation $\epsilon : U_\bullet \to X$.
With this morphism the simplicial space $U_\bullet$ becomes
a hypercovering of $X$ along which one has cohomological descent
in the sense of \cite[Expos\'e Vbis]{SGA4}.
In other words, $H^n(U_\bullet, \epsilon^*\mathcal{F}) = H^n(X, \mathcal{F})$.
(Insert future reference here to cohomology over simplicial
spaces and cohomological descent formulated in those terms.)
Suppose that $\mathcal{F}$ is an abelian sheaf on $X$.
In this case the spectral sequence of Lemma \ref{lemma-cech-spectral-sequence}
becomes the spectral sequence with $E_1$-term
$$
E_1^{p, q} = H^q(U_p, \epsilon_q^*\mathcal{F})
\Rightarrow
H^{p + q}(U_\bullet, \epsilon^*\mathcal{F}) = H^{p + q}(X, \mathcal{F})
$$
comparing the total cohomology of $\epsilon^*\mathcal{F}$
to the cohomology groups of $\mathcal{F}$ over the pieces
of $U_\bullet$. (Insert future reference to this spectral sequence
here.)
\end{remark}
\noindent
In topology we often want to find hypercoverings of $X$ which
have the property that all the $U_i$ come from a given basis for the topology
of $X$ and that all the coverings
(\ref{equation-covering-two}) and (\ref{equation-covering-general})
are from a given cofinal collection of coverings.
Here are two example lemmas.
\begin{lemma}
\label{lemma-basis-hypercovering}
Let $X$ be a topological space.
Let $\mathcal{B}$ be a basis for the topology of $X$.
There exists a hypercovering $(I, \{U_i\})$ of $X$
such that each $U_i$ is an element of $\mathcal{B}$.
\end{lemma}
\begin{proof}
Let $n \geq 0$.
Let us say that an {\it $n$-truncated hypercovering} of $X$ is
given by an $n$-truncated simplicial set $I$ and for each
$i \in I_a$, $0 \leq a \leq n$ an open $U_i$ of $X$ such that
the conditions defining a hypercovering hold whenever they make sense.
In other words we require the inclusion relations and covering
conditions only when all simplices that occur in them
are $a$-simplices with $a \leq n$. The lemma follows if we can prove
that given a $n$-truncated hypercovering $(I, \{U_i\})$ with
all $U_i \in \mathcal{B}$ we can extend it to an $(n + 1)$-truncated
hypercovering without adding any $a$-simplices for $a \leq n$.
This we do as follows. First we consider the $(n + 1)$-truncated
simplicial set $I'$ defined by
$I' = \text{sk}_{n + 1}(\text{cosk}_n I)$.
Recall that
$$
I'_{n + 1} =
\left\{
\begin{matrix}
(i_0, \ldots, i_{n + 1}) \in (I_n)^{n + 2} \text{ such that}\\
d^n_{b - 1}(i_a) = d^n_a(i_b) \text{ for all }0\leq a < b\leq n + 1
\end{matrix}
\right\}
$$
If $i' \in I'_{n + 1}$ is degenerate, say $i' = s^n_a(i)$ then we set
$U_{i'} = U_i$ (this is forced on us anyway by the second condition).
We also set $J_{i'} = \{i'\}$ in this case.
If $i' \in I'_{n + 1}$ is nondegenerate, say
$i' = (i_0, \ldots, i_{n + 1})$, then we choose a set
$J_{i'}$ and an open covering
\begin{equation}
\label{equation-choose-covering}
U_{i_0} \cap \ldots \cap U_{i_{n + 1}} =
\bigcup\nolimits_{i \in J_{i'}} U_i,
\end{equation}
with $U_i \in \mathcal{B}$ for $i \in J_{i'}$.
Set
$$
I_{n + 1} = \coprod\nolimits_{i' \in I'_{n + 1}} J_{i'}
$$
There is a canonical map $\pi : I_{n + 1} \to I'_{n + 1}$ which is
a bijection over the set of degenerate simplices in $I'_{n + 1}$ by
construction.
For $i \in I_{n + 1}$ we define $d^{n + 1}_a(i) = d^{n + 1}_a(\pi(i))$.
For $i \in I_n$ we define $s^n_a(i) \in I_{n + 1}$ as the unique
simplex lying over the degenerate simplex $s^n_a(i) \in I'_{n + 1}$.
We omit the verification that this defines an $(n + 1)$-truncated
hypercovering of $X$.
\end{proof}
\begin{lemma}
\label{lemma-quasi-separated-quasi-compact-hypercovering}
Let $X$ be a topological space.
Let $\mathcal{B}$ be a basis for the topology of $X$.
Assume that
\begin{enumerate}
\item $X$ is quasi-compact,
\item each $U \in \mathcal{B}$ is quasi-compact open, and
\item the intersection of any two quasi-compact opens in
$X$ is quasi-compact.
\end{enumerate}
Then there exists a hypercovering $(I, \{U_i\})$ of $X$ with the
following properties
\begin{enumerate}
\item each $U_i$ is an element of the basis $\mathcal{B}$,
\item each of the $I_n$ is a finite set, and in particular
\item each of the coverings (\ref{equation-covering-X}),
(\ref{equation-covering-two}), and (\ref{equation-covering-general})
is finite.
\end{enumerate}
\end{lemma}
\begin{proof}
This follows directly from the construction in the proof of
Lemma \ref{lemma-basis-hypercovering} if we choose finite coverings
by elements of $\mathcal{B}$ in (\ref{equation-choose-covering}).
Details omitted.
\end{proof}
\section{Constructing hypercoverings}
\label{section-hypercovering-sites}
\noindent
Let $\mathcal{C}$ be a site. In this section we will think of a
simplicial object of $\text{SR}(\mathcal{C})$ as follows.
As usual, we set $K_n = K([n])$ and we denote $K(\varphi) : K_n \to K_m$
the morphism associated to $\varphi : [m] \to [n]$.
We may write $K_n = \{U_{n, i}\}_{i \in I_n}$. For
$\varphi : [m] \to [n]$ the morphism $K(\varphi) : K_n \to K_m$
is given by a map $\alpha(\varphi) : I_n \to I_m$ and morphisms
$f_{\varphi, i} : U_{n, i} \to U_{m, \alpha(\varphi)(i)}$
for $i \in I_n$. The fact that $K$ is a simplicial object of
$\text{SR}(\mathcal{C})$ implies that $(I_n, \alpha(\varphi))$
is a simplicial set
and that $f_{\psi, \alpha(\varphi)(i)} \circ f_{\varphi, i} =
f_{\varphi \circ \psi, i}$ when $\psi : [l] \to [m]$.
\begin{lemma}
\label{lemma-split}
Let $\mathcal{C}$ be a site. Let $K$ be an $r$-truncated simplicial object
of $\text{SR}(\mathcal{C})$. The following are equivalent
\begin{enumerate}
\item $K$ is split (Simplicial, Definition \ref{simplicial-definition-split}),
\item $f_{\varphi, i} : U_{n, i} \to U_{m, \alpha(\varphi)(i)}$
is an isomorphism for $r \geq n \geq 0$,
$\varphi : [m] \to [n]$ surjective, $i \in I_n$, and
\item $f_{\sigma^n_j, i} : U_{n, i} \to U_{n + 1, \alpha(\sigma^n_j)(i)}$
is an isomorphism for $0 \leq j \leq n < r$, $i \in I_n$.
\end{enumerate}
The same holds for simplicial objects if in (2) and (3)
we set $r = \infty$.
\end{lemma}
\begin{proof}
The splitting of a simplicial set is unique and is given by
the nondegenerate indices $N(I_n)$ in each degree $n$, see
Simplicial, Lemma \ref{simplicial-lemma-splitting-simplicial-sets}.
The coproduct of two objects $\{U_i\}_{i \in I}$ and $\{U_j\}_{j \in J}$
of $\text{SR}(\mathcal{C})$ is given by $\{U_l\}_{l \in I \amalg J}$
with obvious notation. Hence a splitting of $K$ must be given by
$N(K_n) = \{U_i\}_{i \in N(I_n)}$. The equivalence of (1) and (2)
now follows by unwinding the definitions. The equivalence of (2)
and (3) follows from the fact that any surjection
$\varphi : [m] \to [n]$ is a composition of morphisms
$\sigma^k_j$ with $k = n, n + 1, \ldots, m - 1$.
\end{proof}
\begin{lemma}
\label{lemma-hypercovering-object}
Let $\mathcal{C}$ be a site with fibre products.
Let $\mathcal{B} \subset \Ob(\mathcal{C})$ be a subset.
Assume
\begin{enumerate}
\item any object $U$ of $\mathcal{C}$ has a covering
$\{U_j \to U\}_{j \in J}$ with $U_j \in \mathcal{B}$, and
\item if $\{U_j \to U\}_{j \in J}$ is a covering
with $U_j \in \mathcal{B}$ and $\{U' \to U\}$ is a morphism with
$U' \in \mathcal{B}$, then $\{U_j \to U\}_{j \in J} \amalg \{U' \to U\}$
is a covering.
\end{enumerate}
Then for any $X$ in $\mathcal{C}$ there is a hypercovering $K$
of $X$ such that $K_n = \{U_{n, i}\}_{i \in I_n}$
with $U_{n, i} \in \mathcal{B}$ for all $i \in I_n$.
\end{lemma}
\begin{proof}
A warmup for this proof is the proof of
Lemma \ref{lemma-basis-hypercovering} and
we encourage the reader to read that proof first.
\medskip\noindent
First we replace $\mathcal{C}$ by the site $\mathcal{C}/X$.
After doing so we may assume that $X$ is the final object
of $\mathcal{C}$ and that $\mathcal{C}$ has all finite limits
(Categories, Lemma \ref{categories-lemma-finite-limits-exist}).
\medskip\noindent
Let $n \geq 0$. Let us say that an
{\it $n$-truncated $\mathcal{B}$-hypercovering of $X$}
is given by an $n$-truncated simplicial object $K$
of $\text{SR}(\mathcal{C})$
such that for $i \in I_a$, $0 \leq a \leq n$
we have $U_{a, i} \in \mathcal{B}$ and such that
$K_0$ is a covering of $X$ and
$K_{a + 1} \to (\text{cosk}_a \text{sk}_a K)_{a + 1}$
for $a = 0, \ldots, n - 1$
is a covering as in Definition \ref{definition-covering-SR}.
\medskip\noindent
Since $X$ has a covering $\{U_{0, i} \to X\}_{i \in I_0}$
with $U_i \in \mathcal{B}$ by assumption, we get a $0$-truncated
$\mathcal{B}$-hypercovering of $X$. Observe that any $0$-truncated
$\mathcal{B}$-hypercovering of $X$ is split, see
Lemma \ref{lemma-split}.
\medskip\noindent
The lemma follows if we can prove for $n \geq 0$ that given a
split $n$-truncated $\mathcal{B}$-hypercovering $K$ of $X$
we can extend it to a
split $(n + 1)$-truncated $\mathcal{B}$-hypercovering of $X$.
\medskip\noindent
Construction of the extension. Consider the $(n + 1)$-truncated simplicial
object $K' = \text{sk}_{n + 1}(\text{cosk}_n K)$ of $\text{SR}(\mathcal{C})$.
Write
$$
K'_{n + 1} = \{U'_{n + 1, i}\}_{i \in I'_{n + 1}}
$$
Since $K = \text{sk}_n K'$ we have $K_a = K'_a$ for $0 \leq a \leq n$.
For every $i' \in I'_{n + 1}$ we choose a covering
\begin{equation}
\label{equation-choose-covering-B}
\{g_{n + 1, j} : U_{n + 1, j} \to U'_{n + 1, i'}\}_{j \in J_{i'}}
\end{equation}
with $U_{n + 1, j} \in \mathcal{B}$ for $j \in J_{i'}$.
This is possible by our assumption on $\mathcal{B}$ in the lemma.
For $0 \leq m \leq n$ denote $N_m \subset I_m$ the subset of
nondegenerate indices. We set
$$
I_{n + 1} =
\coprod\nolimits_{\varphi : [n + 1] \to [m]\text{ surjective, }0\leq m \leq n}
N_m \amalg
\coprod\nolimits_{i' \in I'_{n + 1}} J_{i'}
$$
For $j \in I_{n + 1}$ we set
$$
U_{n + 1, j} =
\left\{
\begin{matrix}
U_{m, i} & \text{if} &
j = (\varphi, i) & \text{where} & \varphi : [n + 1] \to [m], i \in N_m \\
U_{n + 1, j} & \text{if} &
j \in J_{i'} & \text{where} & i' \in I'_{n + 1}
\end{matrix}
\right.
$$
with obvious notation. We set $K_{n + 1} = \{U_{n + 1, j}\}_{j \in I_{n + 1}}$.
By construction $U_{n + 1, j}$ is an element
of $\mathcal{B}$ for all $j \in I_{n + 1}$. Let us define compatible
maps
$$
I_{n + 1} \to I'_{n + 1}
\quad\text{and}\quad
K_{n + 1} \to K'_{n + 1}
$$
Namely, the first map is given by
$(\varphi, i) \mapsto \alpha'(\varphi)(i)$ and
$(j \in J_{i'}) \mapsto i'$.
For the second map we use the morphisms
$$
f'_{\varphi, i} : U_{m, i} \to U'_{n + 1, \alpha'(\varphi)(i)}
\quad\text{and}\quad
g_{n + 1, j} : U_{n + 1, j} \to U'_{n + 1, i'}
$$
We claim the morphism
$$
K_{n + 1} \to K'_{n + 1} =
(\text{cosk}_n \text{sk}_n K')_{n + 1} =
(\text{cosk}_n K)_{n + 1}
$$
is a covering as in Definition \ref{definition-covering-SR}.
Namely, if $i' \in I'_{n + 1}$, then either $i'$ is nondegenerate
and the inverse image of $i'$ in $I_{n + 1}$ is equal to $J_{i'}$
and we get a covering of $U'_{n + 1, i'}$ by our choice
(\ref{equation-choose-covering-B}), or $i'$ is degenerate and
the inverse image of $i'$ in $I_{n + 1}$ is
$J_{i'} \amalg \{(\varphi, i)\}$ for a unique pair $(\varphi, i)$
and we get a covering by our choice (\ref{equation-choose-covering-B})
and assumption (2) of the lemma.
\medskip\noindent
To finish the proof we have to define the morphisms
$K(\varphi) : K_{n + 1} \to K_m$ corresponding to morphisms
$\varphi : [m] \to [n + 1]$, $0 \leq m \leq n$ and the morphisms
$K(\varphi) : K_m \to K_{n + 1}$ corresponding to morphisms
$\varphi : [n + 1] \to [m]$, $0 \leq m \leq n$
satisfying suitable composition relations.
For the first kind we use the composition
$$
K_{n + 1} \to K'_{n + 1} \xrightarrow{K'(\varphi)} K'_m = K_m
$$
to define $K(\varphi) : K_{n + 1} \to K_m$.
For the second kind, suppose given $\varphi : [n + 1] \to [m]$,
$0 \leq m \leq n$. We define the corresponding morphism
$K(\varphi) : K_m \to K_{n + 1}$ as follows:
\begin{enumerate}
\item for $i \in I_m$ there is a unique surjective map
$\psi : [m] \to [m_0]$ and a unique $i_0 \in I_{m_0}$ nondegenerate
such that $\alpha(\psi)(i_0) = i$\footnote{For example, if $i$ is
nondegenerate, then $m = m_0$ and $\psi = \text{id}_{[m]}$.},
\item we set $\varphi_0 = \psi_0 \circ \varphi : [n + 1] \to [m_0]$
and we map
$i \in I_m$ to $(\varphi_0, i_0) \in I_{n + 1}$, in other words,
$\alpha(\varphi)(i) = (\varphi_0, i_0)$, and
\item the morphism
$f_{\varphi, i} : U_{m, i} \to U_{n + 1, \alpha(\varphi)(i)} = U_{m_0, i_0}$
is the inverse of the isomorphism $f_{\psi, i_0} : U_{m_0, i_0} \to U_{m, i}$
(see Lemma \ref{lemma-split}).
\end{enumerate}
We omit the straightforward but cumbersome verification that this defines
a split $(n + 1)$-truncated $\mathcal{B}$-hypercovering of $X$
extending the given $n$-truncated one. In fact, everything is clear
from the above, except for the verification that the morphisms
$K(\varphi)$ compose correctly for all $\varphi : [a] \to [b]$
with $0 \leq a, b \leq n + 1$.
\end{proof}
\begin{lemma}
\label{lemma-hypercovering-site}
Let $\mathcal{C}$ be a site with equalizers and fibre products.
Let $\mathcal{B} \subset \Ob(\mathcal{C})$ be a subset. Assume
that any object of $\mathcal{C}$ has a covering
whose members are elements of $\mathcal{B}$.
Then there is a hypercovering $K$ such that
$K_n = \{U_i\}_{i \in I_n}$ with $U_i \in \mathcal{B}$
for all $i \in I_n$.
\end{lemma}
\begin{proof}
This proof is almost the same as the proof of
Lemma \ref{lemma-hypercovering-object}. We will
only explain the differences.
\medskip\noindent
Let $n \geq 1$. Let us say that an
{\it $n$-truncated $\mathcal{B}$-hypercovering}
is given by an $n$-truncated simplicial
object $K$ of $\text{SR}(\mathcal{C})$
such that for $i \in I_a$, $0 \leq a \leq n$
we have $U_{a, i} \in \mathcal{B}$ and such that
\begin{enumerate}
\item $F(K_0)^\# \to *$ is surjective,
\item $F(K_1)^\# \to F(K_0)^\# \times F(K_0)^\#$ is surjective,
\item $F(K_{a + 1})^\# \to F((\text{cosk}_a \text{sk}_a K)_{a + 1})^\#$
for $a = 1, \ldots, n - 1$ is surjective.
\end{enumerate}
We first explicitly construct a split $1$-truncated $\mathcal{B}$-hypercovering.
\medskip\noindent
Take $I_0 = \mathcal{B}$ and $K_0 = \{U\}_{U \in \mathcal{B}}$.
Then (1) holds by our assumption on $\mathcal{B}$. Set
$$
\Omega =
\{(U, V, W, a, b) \mid U, V, W \in \mathcal{B}, a : U \to V, b : U \to W\}
$$
Then we set $I_1 = I_0 \amalg \Omega$. For $i \in I_1$ we set
$U_{1, i} = U_{0, i}$ if $i \in I_0$ and $U_{1, i} = U$
if $i = (U, V, W, a, b) \in \Omega$. The map
$K(\sigma^0_0) : K_0 \to K_1$ corresponds to the
inclusion $\alpha(\sigma^0_0) : I_0 \to I_1$
and the identity $f_{\sigma^0_0, i} : U_{0, i} \to U_{1, i}$
on objects. The maps $K(\delta^1_0), K(\delta^1_1) : K_1 \to K_0$
correspond to the two maps $I_1 \to I_0$ which are the
identity on $I_0 \subset I_1$ and map $(U, V, W, a, b) \in \Omega \subset I_1$
to $V$, resp.\ $W$. The corresponding morphisms
$f_{\delta^1_0, i}, f_{\delta^1_1, i} : U_{1, i} \to U_{0, i}$ are
the identity if $i \in I_0$ and $a, b$ in case $i = (U, V, W, a, b) \in \Omega$.
The reason that (2) holds is that any section of
$F(K_0)^\# \times F(K_0)^\#$ over an object $U$ of $\mathcal{C}$
comes, after replacing $U$ by the members of a covering,
from a map $U \to F(K_0) \times F(K_0)$.
This in turn means we have $V, W \in \mathcal{B}$
and two morphisms $U \to V$ and $U \to W$. Further replacing
$U$ by the members of a covering we may assume $U \in \mathcal{B}$
as desired.
\medskip\noindent
The lemma follows if we can prove that given a split
$n$-truncated $\mathcal{B}$-hypercovering $K$ for $n \geq 1$
we can extend it to a split $(n + 1)$-truncated $\mathcal{B}$-hypercovering.
Here the argument proceeds exactly as in the proof of
Lemma \ref{lemma-hypercovering-object}.
We omit the precise details, except for the following comments.
First, we do not need assumption (2) in the proof of the current
lemma as we do not need the morphism
$K_{n + 1} \to (\text{cosk}_n K)_{n + 1}$ to be covering;
we only need it to induce a surjection on associated sheaves of sets
which follows from
Sites, Lemma \ref{sites-lemma-covering-surjective-after-sheafification}.
Second, the assumption that $\mathcal{C}$ has fibre products and equalizers
guarantees that $\text{SR}(\mathcal{C})$ has fibre products
and equalizers and $F$ commutes with these
(Lemma \ref{lemma-coprod-prod-SR}). This suffices
assure us the coskeleton functors used exist (see
Simplicial, Remark \ref{simplicial-remark-existence-cosk} and
Categories, Lemma \ref{categories-lemma-fibre-products-equalizers-exist}).
\end{proof}
\begin{lemma}
\label{lemma-hypercovering-morphism-sites}
Let $f : \mathcal{C} \to \mathcal{D}$ be a morphism of sites
given by the functor $u : \mathcal{D} \to \mathcal{C}$.
Assume $\mathcal{D}$ and $\mathcal{C}$ have equalizers and
fibre products and $u$ commutes with them.
If a simplicial object $K$ of $\text{SR}(\mathcal{D})$
is a hypercovering, then $u(K)$ is a hypercovering.
\end{lemma}
\begin{proof}
If we write $K_n = \{U_{n, i}\}_{i \in I_n}$ as in the introduction
to this section, then $u(K)$ is the object of $\text{SR}(\mathcal{C})$
given by $u(K_n) = \{u(U_i)\}_{i \in I_n}$.
By Sites, Lemma \ref{sites-lemma-pullback-representable-sheaf}
we have $f^{-1}h_U^\# = h_{u(U)}^\#$ for $U \in \Ob(\mathcal{D})$.
This means that $f^{-1}F(K_n)^\# = F(u(K_n))^\#$ for all $n$.
Let us check the conditions (1), (2), (3) for $u(K)$ to be a
hypercovering from Definition \ref{definition-hypercovering-variant}.
Since $f^{-1}$ is an exact functor, we find that
$$
F(u(K_0))^\# = f^{-1}F(K_0)^\# \to f^{-1}* = *
$$
is surjective as a pullback of a surjective map and we get (1).
Similarly,
$$
F(u(K_1))^\# = f^{-1}F(K_1)^\# \to
f^{-1} (F(K_0) \times F(K_0))^\# = F(u(K_0))^\# \times F(u(K_0))^\#
$$
is surjective as a pullback and we get (2). For condition (3),
in order to conclude by the same method it suffices if
$$
F((\text{cosk}_n \text{sk}_n u(K))_{n + 1})^\# =
f^{-1}F((\text{cosk}_n \text{sk}_n K)_{n + 1})^\#
$$
The above shows that $f^{-1}F(-) = F(u(-))$. Thus it suffices to show
that $u$ commutes with the limits used in defining
$(\text{cosk}_n \text{sk}_n K)_{n + 1}$ for $n \geq 1$.
By Simplicial, Remark \ref{simplicial-remark-existence-cosk}
these limits are finite connected limits and $u$ commutes with these
by assumption.
\end{proof}
\begin{lemma}
\label{lemma-hypercovering-continuous-functor}
Let $\mathcal{C}$, $\mathcal{D}$ be sites. Let
$u : \mathcal{D} \to \mathcal{C}$ be a continuous functor.
Assume $\mathcal{D}$ and $\mathcal{C}$ have fibre products
and $u$ commutes with them. Let $Y \in \mathcal{D}$ and
$K \in \text{SR}(\mathcal{D}, Y)$ a hypercovering of $Y$.
Then $u(K)$ is a hypercovering of $u(Y)$.
\end{lemma}
\begin{proof}
This is easier than the proof of Lemma \ref{lemma-hypercovering-morphism-sites}
because the notion of being a hypercovering of an object is stronger, see
Definitions \ref{definition-hypercovering} and \ref{definition-covering-SR}.
Namely, $u$ sends coverings to coverings by the definition of
a morphism of sites. It suffices to check $u$ commutes with the
limits used in defining
$(\text{cosk}_n \text{sk}_n K)_{n + 1}$ for $n \geq 1$.
This is clear because the induced functor
$\mathcal{D}/Y \to \mathcal{C}/X$ commutes with all finite limits
(and source and target have all finite limits by
Categories, Lemma \ref{categories-lemma-finite-limits-exist}).
\end{proof}
\begin{lemma}
\label{lemma-w-contractible}
Let $\mathcal{C}$ be a site. Let $\mathcal{B} \subset \Ob(\mathcal{C})$
be a subset. Assume
\begin{enumerate}
\item $\mathcal{C}$ has fibre products,
\item for all $X \in \Ob(\mathcal{C})$ there exists a finite covering
$\{U_i \to X\}_{i \in I}$ with $U_i \in \mathcal{B}$,
\item if $\{U_i \to X\}_{i \in I}$ is a finite covering with
$U_i \in \mathcal{B}$ and $U \to X$ is a morphism with $U \in \mathcal{B}$,
then $\{U_i \to X\}_{i \in I} \amalg \{U \to X\}$ is a covering.
\end{enumerate}
Then for every $X$ there exists a hypercovering $K$ of $X$
such that each $K_n = \{U_{n, i} \to X\}_{i \in I_n}$ with
$I_n$ finite and $U_{n, i} \in \mathcal{B}$.
\end{lemma}
\begin{proof}
This lemma is the analogue of
Lemma \ref{lemma-quasi-separated-quasi-compact-hypercovering}
for sites. To prove the lemma we follow exactly the proof of
Lemma \ref{lemma-hypercovering-object}
paying attention to the following two points
\begin{enumerate}
\item[(a)] We choose our initial covering $\{U_{0, i} \to X\}_{i \in I_0}$
with $U_{0, i} \in \mathcal{B}$ such that the index set $I_0$ is finite, and
\item[(b)] in choosing the coverings
(\ref{equation-choose-covering-B})
we choose $J_{i'}$ finite.
\end{enumerate}
The reader sees easily that with these modifications we end up
with finite index sets $I_n$ for all $n$.
\end{proof}
\begin{remark}
\label{remark-taking-disjoint-unions}
Let $\mathcal{C}$ be a site. Let
$K$ and $L$ be objects of $\text{SR}(\mathcal{C})$.
Write $K = \{U_i\}_{i \in I}$ and $L = \{V_j\}_{j \in J}$.
Assume $U = \coprod_{i \in I} U_i$ and $V = \coprod_{j \in J} V_j$
exist. Then we get
$$
\Mor_{\text{SR}(\mathcal{C})}(K, L) \longrightarrow \Mor_\mathcal{C}(U, V)
$$
as follows. Given $f : K \to L$ given by $\alpha : I \to J$
and $f_i : U_i \to V_{\alpha(i)}$ we obtain a transformation of functors
$$
\Mor_\mathcal{C}(V, -) =
\prod\nolimits_{j \in J} \Mor_\mathcal{C}(V_j, -)
\to
\prod\nolimits_{i \in I} \Mor_\mathcal{C}(U_i, -) =
\Mor_\mathcal{C}(U, -)
$$
sending $(g_j)_{j \in J}$ to
$(g_{\alpha(i)} \circ f_i)_{i \in I}$. Hence the Yoneda lemma
produces the corresponding map $U \to V$. Of course, $U \to V$
maps the summand $U_i$ into the summand $V_{\alpha(i)}$ via
the morphism $f_i$.
\end{remark}
\begin{remark}
\label{remark-take-unions-hypercovering}
Let $\mathcal{C}$ be a site. Assume $\mathcal{C}$ has
fibre products and equalizers and let $K$ be a hypercovering.
Write $K_n = \{U_{n, i}\}_{i \in I_n}$. Suppose that
\begin{enumerate}
\item[(a)] $U_n = \coprod_{i \in I_n} U_{n, i}$ exists, and
\item[(b)] $\coprod_{i \in I_n} h_{U_{n, i}} \to h_{U_n}$ induces
an isomorphism on sheafifications.
\end{enumerate}
Then we get another simplicial object $L$ of $\text{SR}(\mathcal{C})$
with $L_n = \{U_n\}$, see
Remark \ref{remark-taking-disjoint-unions}.
Now we claim that $L$ is a hypercovering.
To see this we check conditions (1), (2), (3) of
Definition \ref{definition-hypercovering-variant}.
Condition (1) follows from (b) and (1) for $K$.
Condition (2) follows in exactly the same way.
Condition (3) follows because
\begin{align*}
F((\text{cosk}_n \text{sk}_n L)_{n + 1})^\#
& =
((\text{cosk}_n \text{sk}_n F(L)^\#)_{n + 1}) \\
& =
((\text{cosk}_n \text{sk}_n F(K)^\#)_{n + 1}) \\
& =
F((\text{cosk}_n \text{sk}_n K)_{n + 1})^\#
\end{align*}
for $n \geq 1$ and hence the condition for $K$ implies the condition for
$L$ exactly as in (1) and (2).
Note that $F$ commutes with connected limits and sheafification is exact
proving the first and last equality; the middle equality follows as
$F(K)^\# = F(L)^\#$ by (b).
\end{remark}
\begin{remark}
\label{remark-take-unions-hypercovering-X}
Let $\mathcal{C}$ be a site. Let $X \in \Ob(\mathcal{C})$.
Assume $\mathcal{C}$ has fibre products and let $K$ be a hypercovering of $X$.
Write $K_n = \{U_{n, i}\}_{i \in I_n}$. Suppose that
\begin{enumerate}
\item[(a)] $U_n = \coprod_{i \in I_n} U_{n, i}$ exists,
\item[(b)] given morphisms
$(\alpha, f_i) : \{U_i\}_{i \in I} \to \{V_j\}_{j \in J}$ and
$(\beta, g_k) : \{W_k\}_{k \in K} \to \{V_j\}_{j \in J}$
in $\text{SR}(\mathcal{C})$ such that
$U = \coprod U_i$, $V = \coprod V_j$, and $W = \coprod W_j$
exist, then $U \times_V W =
\coprod_{(i, j, k), \alpha(i) = j = \beta(k)} U_i \times_{V_j} W_k$,
\item[(c)] if $(\alpha, f_i) : \{U_i\}_{i \in I} \to \{V_j\}_{j \in J}$
is a covering in the sense of
Definition \ref{definition-covering-SR}
and $U = \coprod U_i$ and $V = \coprod V_j$ exist,
then the corresponding morphism $U \to V$
of Remark \ref{remark-taking-disjoint-unions}
is a covering of $\mathcal{C}$.
\end{enumerate}
Then we get another simplicial object $L$ of $\text{SR}(\mathcal{C})$
with $L_n = \{U_n\}$, see
Remark \ref{remark-taking-disjoint-unions}.
Now we claim that $L$ is a hypercovering of $X$.
To see this we check conditions (1), (2) of
Definition \ref{definition-hypercovering}.
Condition (1) follows from (c) and (1) for $K$
because (1) for $K$ says $K_0 = \{U_{0, i}\}_{i \in I_0}$
is a covering of $\{X\}$ in the sense of
Definition \ref{definition-covering-SR}.
Condition (2) follows because $\mathcal{C}/X$ has
all finite limits hence $\text{SR}(\mathcal{C}/X)$
has all finite limits, and condition (b) says the
construction of ``taking disjoint unions'' commutes
with these fimite limits. Thus the morphism
$$
L_{n + 1} \longrightarrow (\text{cosk}_n \text{sk}_n L)_{n + 1}
$$
is a covering as it is the consequence of applying our
``taking disjoint unions'' functor to the morphism
$$
K_{n + 1} \longrightarrow (\text{cosk}_n \text{sk}_n K)_{n + 1}
$$
which is assumed to be a covering in the sense of
Definition \ref{definition-covering-SR} by (2) for $K$.
This makes sense because property (b) in particular assures
us that if we start with a finite diagram of
semi-representable objects over $X$
for which we can take disjoint unions, then
the limit of the diagram in $\text{SR}(\mathcal{C}/X)$
still is a semi-representable object over $X$ for which
we can take disjoint unions.
\end{remark}
\input{chapters}
\bibliography{my}
\bibliographystyle{amsalpha}
\end{document}
|