Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 112,245 Bytes
afd65d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
\input{preamble}

% OK, start here.
%
\begin{document}

\title{Hypercoverings}


\maketitle

\phantomsection
\label{section-phantom}

\tableofcontents

\section{Introduction}
\label{section-introduction}

\noindent
Let $\mathcal{C}$ be a site, see Sites, Definition \ref{sites-definition-site}.
Let $X$ be an object of $\mathcal{C}$.
Given an abelian sheaf $\mathcal{F}$
on $\mathcal{C}$ we would like to compute
its cohomology groups
$$
H^i(X, \mathcal{F}).
$$
According to our general definitions (Cohomology on Sites, Section
\ref{sites-cohomology-section-cohomology-sheaves})
this cohomology group is computed by
choosing an injective resolution
$
0 \to \mathcal{F} \to \mathcal{I}^0 \to \mathcal{I}^1 \to \ldots
$
and setting
$$
H^i(X, \mathcal{F})
=
H^i(
\Gamma(X, \mathcal{I}^0) \to
\Gamma(X, \mathcal{I}^1) \to
\Gamma(X, \mathcal{I}^2)\to \ldots)
$$
The goal of this chapter is to show that we may also compute these
cohomology groups without choosing an injective resolution
(in the case that $\mathcal{C}$ has fibre products). To do this
we will use hypercoverings.

\medskip\noindent
A hypercovering in a site is a generalization of a covering, see
\cite[Expos\'e V, Sec. 7]{SGA4}. Given a hypercovering $K$ of an object
$X$, there is a {\v C}ech to cohomology spectral sequence
expressing the cohomology of an abelian sheaf $\mathcal{F}$
over $X$ in terms of the cohomology of the sheaf over the
components $K_n$ of $K$. It turns out that there are always
enough hypercoverings, so that taking the colimit over all hypercoverings,
the spectral sequence degenerates and the cohomology of $\mathcal{F}$
over $X$ is computed by the colimit of the {\v C}ech cohomology groups.

\medskip\noindent
A more general gadget one can consider is a simplicial augmentation where
one has cohomological descent, see \cite[Expos\'e Vbis]{SGA4}. A nice
manuscript on cohomological descent is the text by Brian Conrad, see
\url{https://math.stanford.edu/~conrad/papers/hypercover.pdf}.
We will come back to these issue in the chapter on simplicial spaces
where we will show, for example, that proper hypercoverings of
``locally compact'' topological spaces are of cohomological
descent (Simplicial Spaces, Section
\ref{spaces-simplicial-section-proper-hypercovering}).
Our method of attack will be to reduce this statement to the {\v C}ech to
cohomology spectral sequence constructed in this chapter.






























\section{Semi-representable objects}
\label{section-semi-representable}

\noindent
In order to start we make the following definition.
The letters ``SR'' stand for Semi-Representable.

\begin{definition}
\label{definition-SR}
Let $\mathcal{C}$ be a category. We denote $\text{SR}(\mathcal{C})$
the category of {\it semi-representable objects} defined as follows
\begin{enumerate}
\item objects are families of objects $\{U_i\}_{i \in I}$, and
\item morphisms $\{U_i\}_{i \in I} \to \{V_j\}_{j \in J}$ are given by
a map $\alpha : I \to J$ and for each $i \in I$
a morphism $f_i : U_i \to V_{\alpha(i)}$ of $\mathcal{C}$.
\end{enumerate}
Let $X \in \Ob(\mathcal{C})$ be an object of $\mathcal{C}$.
The category of {\it semi-representable objects over $X$}
is the category
$\text{SR}(\mathcal{C}, X) = \text{SR}(\mathcal{C}/X)$.
\end{definition}

\noindent
This definition is essentially equivalent to
\cite[Expos\'e V, Subsection 7.3.0]{SGA4}. Note that
this is a ``big'' category. We will later ``bound'' the size of the index
sets $I$ that we need for hypercoverings of $X$. We can then redefine
$\text{SR}(\mathcal{C}, X)$ to become a category. Let's spell out
the objects and morphisms $\text{SR}(\mathcal{C}, X)$:
\begin{enumerate}
\item objects are families of morphisms
$\{U_i \to X\}_{i \in I}$, and
\item morphisms $\{U_i \to X\}_{i \in I} \to
\{V_j \to X\}_{j \in J}$ are given by
a map $\alpha : I \to J$ and for each $i \in I$
a morphism $f_i : U_i \to V_{\alpha(i)}$ over $X$.
\end{enumerate}
There is a forgetful functor
$\text{SR}(\mathcal{C}, X) \to \text{SR}(\mathcal{C})$.

\begin{definition}
\label{definition-SR-F}
Let $\mathcal{C}$ be a category.
We denote $F$ the functor {\it which associates a presheaf to a
semi-representable object}. In a formula
\begin{eqnarray*}
F : \text{SR}(\mathcal{C}) & \longrightarrow & \textit{PSh}(\mathcal{C}) \\
\{U_i\}_{i \in I} & \longmapsto & \amalg_{i\in I} h_{U_i}
\end{eqnarray*}
where $h_U$ denotes the representable presheaf associated to
the object $U$.
\end{definition}

\noindent
Given a morphism $U \to X$ we obtain a morphism $h_U \to h_X$ of representable
presheaves. Thus we often think of $F$ on $\text{SR}(\mathcal{C}, X)$
as a functor into the category of presheaves of sets over $h_X$,
namely $\textit{PSh}(\mathcal{C})/h_X$. Here is a picture:
$$
\xymatrix{
\text{SR}(\mathcal{C}, X) \ar[r]_F \ar[d] &
\textit{PSh}(\mathcal{C})/h_X \ar[d] \\
\text{SR}(\mathcal{C}) \ar[r]^F &
\textit{PSh}(\mathcal{C})
}
$$
Next we discuss the existence of limits in the category of semi-representable
objects.

\begin{lemma}
\label{lemma-coprod-prod-SR}
Let $\mathcal{C}$ be a category.
\begin{enumerate}
\item the category $\text{SR}(\mathcal{C})$ has coproducts
and $F$ commutes with them,
\item the functor $F : \text{SR}(\mathcal{C}) \to \textit{PSh}(\mathcal{C})$
commutes with limits,
\item if $\mathcal{C}$ has fibre products, then $\text{SR}(\mathcal{C})$
has fibre products,
\item if $\mathcal{C}$ has products of pairs, then
$\text{SR}(\mathcal{C})$ has products of pairs,
\item if $\mathcal{C}$ has equalizers, so does $\text{SR}(\mathcal{C})$, and
\item if $\mathcal{C}$ has a final object, so does $\text{SR}(\mathcal{C})$.
\end{enumerate}
Let $X \in \Ob(\mathcal{C})$.
\begin{enumerate}
\item the category $\text{SR}(\mathcal{C}, X)$ has coproducts
and $F$ commutes with them,
\item if $\mathcal{C}$ has fibre products, then $\text{SR}(\mathcal{C}, X)$
has finite limits and
$F : \text{SR}(\mathcal{C}, X) \to \textit{PSh}(\mathcal{C})/h_X$
commutes with them.
\end{enumerate}
\end{lemma}

\begin{proof}
Proof of the results on $\text{SR}(\mathcal{C})$.
Proof of (1). The coproduct of $\{U_i\}_{i \in I}$ and $\{V_j\}_{j \in J}$ is
$\{U_i\}_{i \in I} \amalg \{V_j\}_{j \in J}$, in other words, the family
of objects whose index set is $I \amalg J$ and for an element
$k \in I \amalg J$ gives $U_i$ if $k = i \in I$ and gives $V_j$ if
$k = j \in J$. Similarly for coproducts
of families of objects. It is clear that $F$ commutes with these.

\medskip\noindent
Proof of (2). For $U$ in $\Ob(\mathcal{C})$ consider the object $\{U\}$ of
$\text{SR}(\mathcal{C})$. It is clear that
$\Mor_{\text{SR}(\mathcal{C})}(\{U\}, K)) = F(K)(U)$
for $K \in \Ob(\text{SR}(\mathcal{C}))$. Since limits of presheaves
are computed at the level of sections
(Sites, Section \ref{sites-section-limits-colimits-PSh})
we conclude that $F$ commutes with limits.

\medskip\noindent
Proof of (3). Suppose given a morphism
$(\alpha, f_i) : \{U_i\}_{i \in I} \to \{V_j\}_{j \in J}$
and a morphism
$(\beta, g_k) : \{W_k\}_{k \in K} \to \{V_j\}_{j \in J}$.
The fibred product of these morphisms is given by
$$
\{ U_i \times_{f_i, V_j, g_k} W_k\}_{(i, j, k) \in I \times J \times K
\text{ such that } j = \alpha(i) = \beta(k)}
$$
The fibre products exist if $\mathcal{C}$ has fibre products.

\medskip\noindent
Proof of (4). The product of $\{U_i\}_{i \in I}$ and $\{V_j\}_{j \in J}$ is
$\{U_i \times V_j\}_{i \in I, j \in J}$. The products exist if
$\mathcal{C}$ has products.

\medskip\noindent
Proof of (5). The equalizer of two maps
$(\alpha, f_i), (\alpha', f'_i) : \{U_i\}_{i \in I} \to \{V_j\}_{j \in J}$
is
$$
\{
\text{Eq}(f_i, f'_i : U_i \to V_{\alpha(i)})
\}_{i \in I,\ \alpha(i) = \alpha'(i)}
$$
The equalizers exist if $\mathcal{C}$ has equalizers.

\medskip\noindent
Proof of (6). If $X$ is a final object of $\mathcal{C}$, then
$\{X\}$ is a final object of $\text{SR}(\mathcal{C})$.

\medskip\noindent
Proof of the statements about $\text{SR}(\mathcal{C}, X)$.
These follow from the results above applied to the category
$\mathcal{C}/X$ using that
$\text{SR}(\mathcal{C}/X) = \text{SR}(\mathcal{C}, X)$ and that
$\textit{PSh}(\mathcal{C}/X) = \textit{PSh}(\mathcal{C})/h_X$
(Sites, Lemma \ref{sites-lemma-essential-image-j-shriek} applied
to $\mathcal{C}$ endowed with the chaotic topology). However
we also argue directly as follows.
It is clear that the coproduct of
$\{U_i \to X\}_{i \in I}$ and $\{V_j \to X\}_{j \in J}$
is $\{U_i \to X\}_{i \in I} \amalg \{V_j \to X\}_{j \in J}$
and similarly for coproducts of
families of families of morphisms with target $X$.
The object $\{X \to X\}$ is a final
object of $\text{SR}(\mathcal{C}, X)$.
Suppose given a morphism
$(\alpha, f_i) : \{U_i \to X\}_{i \in I} \to \{V_j \to X\}_{j \in J}$
and a morphism
$(\beta, g_k) : \{W_k \to X\}_{k \in K} \to \{V_j \to X\}_{j \in J}$.
The fibred product of these morphisms is given by
$$
\{ U_i \times_{f_i, V_j, g_k} W_k \to X \}_{(i, j, k) \in I \times J \times K
\text{ such that } j = \alpha(i) = \beta(k)}
$$
The fibre products exist by the assumption that
$\mathcal{C}$ has fibre products.
Thus $\text{SR}(\mathcal{C}, X)$ has finite limits,
see Categories, Lemma \ref{categories-lemma-finite-limits-exist}.
We omit verifying the statements on the functor $F$ in this case.
\end{proof}





\section{Hypercoverings}
\label{section-hypercoverings}

\noindent
If we assume our category is a site, then we can make the following
definition.

\begin{definition}
\label{definition-covering-SR}
Let $\mathcal{C}$ be a site. Let
$f = (\alpha, f_i) : \{U_i\}_{i \in I} \to \{V_j\}_{j \in J}$
be a morphism in the category $\text{SR}(\mathcal{C})$.
We say that $f$ is a {\it covering} if for every $j \in J$ the
family of morphisms $\{U_i \to V_j\}_{i \in I, \alpha(i) = j}$
is a covering for the site $\mathcal{C}$.
Let $X$ be an object of $\mathcal{C}$.
A morphism $K \to L$ in $\text{SR}(\mathcal{C}, X)$ is
a {\it covering} if its image in $\text{SR}(\mathcal{C})$ is
a covering.
\end{definition}

\begin{lemma}
\label{lemma-covering-permanence}
Let $\mathcal{C}$ be a site.
\begin{enumerate}
\item A composition of coverings in $\text{SR}(\mathcal{C})$
is a covering.
\item If $K \to L$ is a covering in $\text{SR}(\mathcal{C})$
and $L' \to L$ is a morphism, then $L' \times_L K$ exists
and $L' \times_L K \to L'$ is a covering.
\item If $\mathcal{C}$ has products of pairs, and
$A \to B$ and $K \to L$ are coverings in $\text{SR}(\mathcal{C})$,
then $A \times K \to B \times L$ is a covering.
\end{enumerate}
Let $X \in \Ob(\mathcal{C})$. Then (1) and (2) holds for
$\text{SR}(\mathcal{C}, X)$ and (3) holds if $\mathcal{C}$
has fibre products.
\end{lemma}

\begin{proof}
Part (1) is immediate from the axioms of a site.
Part (2) follows by the construction of fibre products
in $\text{SR}(\mathcal{C})$ in the proof of
Lemma \ref{lemma-coprod-prod-SR}
and the requirement that the morphisms in a covering
of $\mathcal{C}$ are representable.
Part (3) follows by thinking of $A \times K \to B \times L$
as the composition $A \times K \to B \times K \to B \times L$
and hence a composition of basechanges of coverings.
The final statement follows because $\text{SR}(\mathcal{C}, X) =
\text{SR}(\mathcal{C}/X)$.
\end{proof}

\noindent
By Lemma \ref{lemma-coprod-prod-SR} and
Simplicial, Lemma \ref{simplicial-lemma-existence-cosk}
the coskeleton of a truncated simplicial object of
$\text{SR}(\mathcal{C}, X)$ exists if $\mathcal{C}$ has fibre products.
Hence the following definition makes sense.

\begin{definition}
\label{definition-hypercovering}
Let $\mathcal{C}$ be a site. Assume $\mathcal{C}$ has fibre products.
Let $X \in \Ob(\mathcal{C})$ be an object of $\mathcal{C}$.
A {\it hypercovering of $X$} is a simplicial object
$K$ of $\text{SR}(\mathcal{C}, X)$ such that
\begin{enumerate}
\item The object $K_0$ is a covering of $X$ for the site $\mathcal{C}$.
\item For every $n \geq 0$ the canonical morphism
$$
K_{n + 1} \longrightarrow (\text{cosk}_n \text{sk}_n K)_{n + 1}
$$
is a covering in the sense defined above.
\end{enumerate}
\end{definition}

\noindent
Condition (1) makes sense since each object of
$\text{SR}(\mathcal{C}, X)$ is after all a family
of morphisms with target $X$. It could also be
formulated as saying that the morphism of $K_0$ to
the final object of $\text{SR}(\mathcal{C}, X)$
is a covering.

\begin{example}[{\v C}ech hypercoverings]
\label{example-cech}
Let $\mathcal{C}$ be a site with fibre products.
Let $\{U_i \to X\}_{i \in I}$ be a covering of $\mathcal{C}$.
Set $K_0 = \{U_i \to X\}_{i \in I}$.
Then $K_0$ is a $0$-truncated simplicial object of
$\text{SR}(\mathcal{C}, X)$. Hence we may form
$$
K = \text{cosk}_0 K_0.
$$
Clearly $K$ passes condition (1) of Definition \ref{definition-hypercovering}.
Since all the morphisms $K_{n + 1} \to (\text{cosk}_n \text{sk}_n K)_{n + 1}$
are isomorphisms by
Simplicial, Lemma \ref{simplicial-lemma-cosk-up}
it also passes condition (2). Note that
the terms $K_n$ are the usual
$$
K_n = \{
U_{i_0} \times_X U_{i_1} \times_X \ldots \times_X U_{i_n} \to X
\}_{(i_0, i_1, \ldots, i_n) \in I^{n + 1}}
$$
A hypercovering of $X$ of this form is called a
{\it {\v C}ech hypercovering} of $X$.
\end{example}

\begin{example}[Hypercovering by a simplicial object of the site]
\label{example-hypercovering-in-C}
Let $\mathcal{C}$ be a site with fibre products. Let
$X \in \Ob(\mathcal{C})$. Let $U$ be a simplicial object of $\mathcal{C}$.
As usual we denote $U_n = U([n])$. Finally, assume given an augmentation
$$
a : U \to X
$$
In this situation we can consider the simplicial object $K$
of $\text{SR}(\mathcal{C}, X)$ with terms $K_n = \{U_n \to X\}$.
Then $K$ is a hypercovering of $X$ in the sense of
Definition \ref{definition-hypercovering}
if and only if the following three
conditions\footnote{As $\mathcal{C}$ has fibre products, the
category $\mathcal{C}/X$ has all finite limits.
Hence the required coskeleta exist by
Simplicial, Lemma \ref{simplicial-lemma-existence-cosk}.} hold:
\begin{enumerate}
\item $\{U_0 \to X\}$ is a covering of $\mathcal{C}$,
\item $\{U_1 \to U_0 \times_X U_0\}$ is a covering of $\mathcal{C}$,
\item $\{U_{n + 1} \to (\text{cosk}_n\text{sk}_n U)_{n + 1}\}$
is a covering of $\mathcal{C}$ for $n \geq 1$.
\end{enumerate}
We omit the straightforward verification.
\end{example}

\begin{example}[{\v C}ech hypercovering associated to a cover]
\label{example-cech-cover}
Let $\mathcal{C}$ be a site with fibre products. Let $U \to X$ be a
morphism of $\mathcal{C}$ such that $\{U \to X\}$ is a covering of
$\mathcal{C}$\footnote{A morphism of $\mathcal{C}$ with this property
is sometimes called a ``cover''.}. Consider the simplical object $K$ of
$\text{SR}(\mathcal{C}, X)$ with terms
$$
K_n = \{U \times_X U \times_X \ldots \times_X U \to X\}
\quad (n + 1 \text{ factors})
$$
Then $K$ is a hypercovering of $X$. This example is a special case of both
Example \ref{example-cech} and of
Example \ref{example-hypercovering-in-C}.
\end{example}

\begin{lemma}
\label{lemma-hypercoverings-set}
Let $\mathcal{C}$ be a site with fibre products.
Let $X \in \Ob(\mathcal{C})$ be an object of $\mathcal{C}$.
The collection of all hypercoverings of $X$ forms a set.
\end{lemma}

\begin{proof}
Since $\mathcal{C}$ is a site, the set of all coverings of
$X$ forms a set. Thus we see that the collection
of possible $K_0$ forms a set. Suppose we have shown that
the collection of all possible $K_0, \ldots, K_n$ form
a set. Then it is enough to show that given
$K_0, \ldots, K_n$ the collection of all possible
$K_{n + 1}$ forms a set. And this is clearly true since
we have to choose $K_{n + 1}$ among all possible coverings
of $(\text{cosk}_n \text{sk}_n K)_{n + 1}$.
\end{proof}

\begin{remark}
\label{remark-hypercoverings-really-set}
The lemma does not just say that there is a cofinal
system of choices of hypercoverings that is a set,
but that really the hypercoverings form a set.
\end{remark}

\noindent
The category of presheaves on $\mathcal{C}$ has
finite (co)limits. Hence the functors $\text{cosk}_n$
exists for presheaves of sets.

\begin{lemma}
\label{lemma-hypercovering-F}
Let $\mathcal{C}$ be a site with fibre products.
Let $X \in \Ob(\mathcal{C})$ be an object of $\mathcal{C}$.
Let $K$ be a hypercovering of $X$.
Consider the simplicial object $F(K)$ of $\textit{PSh}(\mathcal{C})$,
endowed with its augmentation to the constant simplicial presheaf $h_X$.
\begin{enumerate}
\item The morphism of presheaves $F(K)_0 \to h_X$ becomes
a surjection after sheafification.
\item The morphism
$$
(d^1_0, d^1_1) :
F(K)_1
\longrightarrow
F(K)_0 \times_{h_X} F(K)_0
$$
becomes a surjection after sheafification.
\item For every $n \geq 1$ the morphism
$$
F(K)_{n + 1} \longrightarrow (\text{cosk}_n \text{sk}_n F(K))_{n + 1}
$$
turns into a surjection after sheafification.
\end{enumerate}
\end{lemma}

\begin{proof}
We will use the fact that if
$\{U_i \to U\}_{i \in I}$ is a covering of the site
$\mathcal{C}$, then the morphism
$$
\amalg_{i \in I} h_{U_i} \to h_U
$$
becomes surjective after sheafification, see
Sites, Lemma \ref{sites-lemma-covering-surjective-after-sheafification}.
Thus the first assertion follows immediately.

\medskip\noindent
For the second assertion, note that according to
Simplicial, Example \ref{simplicial-example-cosk0}
the simplicial object $\text{cosk}_0 \text{sk}_0 K$
has terms $K_0 \times \ldots \times K_0$. Thus
according to the definition of a hypercovering we
see that $(d^1_0, d^1_1) : K_1 \to K_0 \times K_0$ is a
covering. Hence (2) follows from the claim above
and the fact that $F$ transforms products into fibred
products over $h_X$.

\medskip\noindent
For the third, we claim that
$\text{cosk}_n \text{sk}_n F(K) =
F(\text{cosk}_n \text{sk}_n K)$ for $n \geq 1$.
To prove this, denote temporarily $F'$ the functor
$\text{SR}(\mathcal{C}, X) \to \textit{PSh}(\mathcal{C})/h_X$.
By Lemma \ref{lemma-coprod-prod-SR} the functor
$F'$ commutes with finite limits.
By our description of the $\text{cosk}_n$ functor in
Simplicial, Section \ref{simplicial-section-skeleton}
we see that $\text{cosk}_n \text{sk}_n F'(K) =
F'(\text{cosk}_n \text{sk}_n K)$.
Recall that the category used in the description of
$(\text{cosk}_n U)_m$ in
Simplicial, Lemma \ref{simplicial-lemma-existence-cosk}
is the category $(\Delta/[m])^{opp}_{\leq n}$. It is an
amusing exercise to show that $(\Delta/[m])_{\leq n}$ is
a connected category (see
Categories, Definition \ref{categories-definition-category-connected})
as soon as $n \geq 1$. Hence,
Categories, Lemma \ref{categories-lemma-connected-limit-over-X}
shows that $\text{cosk}_n \text{sk}_n F'(K) =
\text{cosk}_n \text{sk}_n F(K)$. Whence the claim.
Property (2) follows from this, because now we see that
the morphism in (2) is the result of applying the
functor $F$ to a covering as in Definition \ref{definition-covering-SR},
and the result follows from the first fact mentioned
in this proof.
\end{proof}



\section{Acyclicity}
\label{section-acyclicity}

\noindent
Let $\mathcal{C}$ be a site.
For a presheaf of sets $\mathcal{F}$ we denote $\mathbf{Z}_\mathcal{F}$
the presheaf of abelian groups defined by the rule
$$
\mathbf{Z}_\mathcal{F}(U) = \text{free abelian group on }\mathcal{F}(U).
$$
We will sometimes call this the {\it free abelian presheaf on $\mathcal{F}$}.
Of course the construction $\mathcal{F} \mapsto \mathbf{Z}_\mathcal{F}$
is a functor and it is left adjoint to the forgetful functor
$\textit{PAb}(\mathcal{C}) \to \textit{PSh}(\mathcal{C})$.
Of course the sheafification $\mathbf{Z}_\mathcal{F}^\#$ is
a sheaf of abelian groups, and the functor
$\mathcal{F} \mapsto \mathbf{Z}_\mathcal{F}^\#$ is a
left adjoint as well. We sometimes call $\mathbf{Z}_\mathcal{F}^\#$
the {\it free abelian sheaf on $\mathcal{F}$}.

\medskip\noindent
For an object $X$ of the site $\mathcal{C}$ we denote
$\mathbf{Z}_X$ the free abelian presheaf on $h_X$, and
we denote $\mathbf{Z}_X^\#$ its sheafification.

\begin{definition}
\label{definition-homology}
Let $\mathcal{C}$ be a site.
Let $K$ be a simplicial object of $\textit{PSh}(\mathcal{C})$.
By the above we get a simplicial object $\mathbf{Z}_K^\#$ of
$\textit{Ab}(\mathcal{C})$. We can take its associated
complex of abelian presheaves $s(\mathbf{Z}_K^\#)$, see
Simplicial, Section \ref{simplicial-section-complexes}.
The {\it homology of $K$} is the homology of the
complex of abelian sheaves $s(\mathbf{Z}_K^\#)$.
\end{definition}

\noindent
In other words, the {\it $i$th homology $H_i(K)$ of $K$}
is the sheaf of abelian groups $H_i(K) = H_i(s(\mathbf{Z}_K^\#))$.
In this section we worry about the homology in case $K$
is a hypercovering of an object $X$ of $\mathcal{C}$.

\begin{lemma}
\label{lemma-compare-cosk0}
Let $\mathcal{C}$ be a site.
Let $\mathcal{F} \to \mathcal{G}$ be a morphism
of presheaves of sets. Denote $K$ the simplicial
object of $\textit{PSh}(\mathcal{C})$ whose $n$th
term is the $(n + 1)$st fibre product of $\mathcal{F}$
over $\mathcal{G}$, see
Simplicial, Example \ref{simplicial-example-fibre-products-simplicial-object}.
Then, if $\mathcal{F} \to \mathcal{G}$ is surjective after
sheafification, we have
$$
H_i(K) =
\left\{
\begin{matrix}
0 & \text{if} & i > 0\\
\mathbf{Z}_\mathcal{G}^\# & \text{if} & i = 0
\end{matrix}
\right.
$$
The isomorphism in degree $0$ is given by the
morphism $H_0(K) \to \mathbf{Z}_\mathcal{G}^\#$
coming from the map $(\mathbf{Z}_K^\#)_0 =
\mathbf{Z}_\mathcal{F}^\# \to \mathbf{Z}_\mathcal{G}^\#$.
\end{lemma}

\begin{proof}
Let $\mathcal{G}' \subset \mathcal{G}$ be the image of
the morphism $\mathcal{F} \to \mathcal{G}$.
Let $U \in \Ob(\mathcal{C})$. Set
$A = \mathcal{F}(U)$ and $B = \mathcal{G}'(U)$.
Then the simplicial set $K(U)$ is equal to the simplicial
set with $n$-simplices given by
$$
A \times_B A \times_B \ldots \times_B A\ (n + 1 \text{ factors)}.
$$
By Simplicial, Lemma \ref{simplicial-lemma-cosk-minus-one-equivalence}
the morphism $K(U) \to B$ is a trivial Kan fibration.
Thus it is a homotopy equivalence
(Simplicial, Lemma \ref{simplicial-lemma-trivial-kan-homotopy}).
Hence applying the functor ``free abelian group on'' to this
we deduce that
$$
\mathbf{Z}_K(U) \longrightarrow \mathbf{Z}_B
$$
is a homotopy equivalence. Note that $s(\mathbf{Z}_B)$ is
the complex
$$
\ldots \to
\bigoplus\nolimits_{b \in B}\mathbf{Z} \xrightarrow{0}
\bigoplus\nolimits_{b \in B}\mathbf{Z} \xrightarrow{1}
\bigoplus\nolimits_{b \in B}\mathbf{Z} \xrightarrow{0}
\bigoplus\nolimits_{b \in B}\mathbf{Z} \to 0
$$
see Simplicial, Lemma \ref{simplicial-lemma-homology-eilenberg-maclane}.
Thus we see that
$H_i(s(\mathbf{Z}_K(U))) = 0$ for $i > 0$, and
$H_0(s(\mathbf{Z}_K(U))) = \bigoplus_{b \in B}\mathbf{Z}
= \bigoplus_{s \in \mathcal{G}'(U)} \mathbf{Z}$.
These identifications are compatible with restriction
maps.

\medskip\noindent
We conclude that $H_i(s(\mathbf{Z}_K)) = 0$ for $i > 0$ and
$H_0(s(\mathbf{Z}_K)) = \mathbf{Z}_{\mathcal{G}'}$, where here
we compute homology groups in $\textit{PAb}(\mathcal{C})$. Since
sheafification is an exact functor we deduce the result
of the lemma. Namely, the exactness implies
that $H_0(s(\mathbf{Z}_K))^\# = H_0(s(\mathbf{Z}_K^\#))$,
and similarly for other indices.
\end{proof}

\begin{lemma}
\label{lemma-acyclicity}
Let $\mathcal{C}$ be a site.
Let $f : L \to K$ be a morphism of
simplicial objects of $\textit{PSh}(\mathcal{C})$.
Let $n \geq 0$ be an integer.
Assume that
\begin{enumerate}
\item For $i < n$ the morphism $L_i \to K_i$ is an isomorphism.
\item The morphism $L_n \to K_n$ is surjective after sheafification.
\item The canonical map $L \to \text{cosk}_n \text{sk}_n L$ is an isomorphism.
\item The canonical map $K \to \text{cosk}_n \text{sk}_n K$ is an isomorphism.
\end{enumerate}
Then $H_i(f) : H_i(L) \to H_i(K)$ is an isomorphism.
\end{lemma}

\begin{proof}
This proof is exactly the same as the proof of
Lemma \ref{lemma-compare-cosk0} above. Namely,
we first let $K_n' \subset K_n$ be the sub presheaf
which is the image of the map $L_n \to K_n$. Assumption
(2) means that the sheafification of $K_n'$ is equal to
the sheafification of $K_n$. Moreover, since $L_i = K_i$
for all $i < n$ we see that get an $n$-truncated
simplicial presheaf $U$ by taking
$U_0 = L_0 = K_0, \ldots, U_{n - 1} = L_{n - 1} = K_{n - 1}, U_n = K'_n$.
Denote $K' = \text{cosk}_n U$, a simplicial presheaf.
Because we can construct $K'_m$ as a finite limit, and
since sheafification is exact, we see that
$(K'_m)^\# = K_m$. In other words, $(K')^\# = K^\#$.
We conclude, by exactness of sheafification once more,
that $H_i(K) = H_i(K')$. Thus it suffices to prove the lemma
for the morphism $L \to K'$, in other words, we may
assume that $L_n \to K_n$ is a surjective morphism
of {\it presheaves}!

\medskip\noindent
In this case, for any object $U$ of $\mathcal{C}$ we
see that the morphism of simplicial sets
$$
L(U) \longrightarrow K(U)
$$
satisfies all the assumptions of
Simplicial, Lemma \ref{simplicial-lemma-section}.
Hence it is a trivial Kan fibration. In particular it is
a homotopy equivalence
(Simplicial, Lemma \ref{simplicial-lemma-trivial-kan-homotopy}).
Thus
$$
\mathbf{Z}_L(U) \longrightarrow \mathbf{Z}_K(U)
$$
is a homotopy equivalence too. This for all $U$.
The result follows.
\end{proof}

\begin{lemma}
\label{lemma-acyclic-hypercover-sheaves}
Let $\mathcal{C}$ be a site.
Let $K$ be a simplicial presheaf.
Let $\mathcal{G}$ be a presheaf.
Let $K \to \mathcal{G}$ be an augmentation of $K$
towards $\mathcal{G}$. Assume that
\begin{enumerate}
\item The morphism of presheaves $K_0 \to \mathcal{G}$ becomes
a surjection after sheafification.
\item The morphism
$$
(d^1_0, d^1_1) :
K_1
\longrightarrow
K_0 \times_\mathcal{G} K_0
$$
becomes a surjection after sheafification.
\item For every $n \geq 1$ the morphism
$$
K_{n + 1} \longrightarrow (\text{cosk}_n \text{sk}_n K)_{n + 1}
$$
turns into a surjection after sheafification.
\end{enumerate}
Then $H_i(K) = 0$ for $i > 0$ and
$H_0(K) = \mathbf{Z}_\mathcal{G}^\#$.
\end{lemma}

\begin{proof}
Denote $K^n = \text{cosk}_n \text{sk}_n K$ for $n \geq 1$.
Define $K^0$ as the simplicial object with terms
$(K^0)_n$ equal to the $(n + 1)$-fold fibred product
$K_0 \times_\mathcal{G} \ldots \times_\mathcal{G} K_0$,
see Simplicial,
Example \ref{simplicial-example-fibre-products-simplicial-object}.
We have morphisms
$$
K \longrightarrow \ldots \to K^n \to K^{n - 1} \to \ldots \to K^1 \to K^0.
$$
The morphisms $K \to K^i$, $K^j \to K^i$ for $j \geq i \geq 1$ come
from the universal properties of the $\text{cosk}_n$ functors.
The morphism $K^1 \to K^0$ is the canonical morphism
from
Simplicial, Remark \ref{simplicial-remark-augmentation}.
We also recall that $K^0 \to \text{cosk}_1 \text{sk}_1 K^0$
is an isomorphism, see
Simplicial, Lemma \ref{simplicial-lemma-cosk-minus-one}.

\medskip\noindent
By Lemma \ref{lemma-compare-cosk0} we see that
$H_i(K^0) = 0$ for $i > 0$ and $H_0(K^0) = \mathbf{Z}_\mathcal{G}^\#$.

\medskip\noindent
Pick $n \geq 1$. Consider the morphism $K^n \to K^{n - 1}$.
It is an isomorphism on terms of degree $< n$.
Note that $K^n \to \text{cosk}_n \text{sk}_n K^n$ and
$K^{n - 1} \to \text{cosk}_n \text{sk}_n K^{n - 1}$
are isomorphisms. Note that $(K^n)_n = K_n$ and
that $(K^{n - 1})_n = (\text{cosk}_{n - 1} \text{sk}_{n - 1} K)_n$.
Hence by assumption, we have that $(K^n)_n \to (K^{n - 1})_n$
is a morphism of presheaves which becomes surjective after
sheafification. By Lemma \ref{lemma-acyclicity} we conclude that
$H_i(K^n) = H_i(K^{n - 1})$.
Combined with the above this proves the lemma.
\end{proof}

\begin{lemma}
\label{lemma-hypercovering-acyclic}
Let $\mathcal{C}$ be a site with fibre products.
Let $X$ be an object of $\mathcal{C}$.
Let $K$ be a hypercovering of $X$.
The homology of the simplicial presheaf $F(K)$ is
$0$ in degrees $> 0$ and equal to $\mathbf{Z}_X^\#$
in degree $0$.
\end{lemma}

\begin{proof}
Combine Lemmas \ref{lemma-acyclic-hypercover-sheaves}
and \ref{lemma-hypercovering-F}.
\end{proof}












\section{{\v C}ech cohomology and hypercoverings}
\label{section-hyper-cech}

\noindent
Let $\mathcal{C}$ be a site. Consider a presheaf of
abelian groups $\mathcal{F}$ on the site $\mathcal{C}$.
It defines a functor
\begin{eqnarray*}
\mathcal{F} : \text{SR}(\mathcal{C})^{opp}
& \longrightarrow &
\textit{Ab} \\
\{U_i\}_{i \in I} &
\longmapsto &
\prod\nolimits_{i \in I} \mathcal{F}(U_i)
\end{eqnarray*}
Thus a simplicial object $K$ of $\text{SR}(\mathcal{C})$
is turned into a cosimplicial object $\mathcal{F}(K)$ of $\textit{Ab}$.
The cochain complex $s(\mathcal{F}(K))$ associated to $\mathcal{F}(K)$
(Simplicial, Section
\ref{simplicial-section-dold-kan-cosimplicial})
is called the {\v C}ech complex of $\mathcal{F}$ with
respect to the simplicial object $K$. We set
$$
\check{H}^i(K, \mathcal{F})
=
H^i(s(\mathcal{F}(K))).
$$
and we call it the $i$th {\v C}ech cohomology group
of $\mathcal{F}$ with respect to $K$.
In this section we prove analogues of some of the results for
{\v C}ech cohomology of open coverings proved in
Cohomology, Sections \ref{cohomology-section-cech},
\ref{cohomology-section-cech-functor} and
\ref{cohomology-section-cech-cohomology-cohomology}.

\begin{lemma}
\label{lemma-h0-cech}
Let $\mathcal{C}$ be a site with fibre products.
Let $X$ be an object of $\mathcal{C}$.
Let $K$ be a hypercovering of $X$.
Let $\mathcal{F}$ be a sheaf of abelian groups on $\mathcal{C}$.
Then $\check{H}^0(K, \mathcal{F}) = \mathcal{F}(X)$.
\end{lemma}

\begin{proof}
We have
$$
\check{H}^0(K, \mathcal{F})
=
\Ker(\mathcal{F}(K_0) \longrightarrow \mathcal{F}(K_1))
$$
Write $K_0 = \{U_i \to X\}$. It is a covering in the site
$\mathcal{C}$. As well, we have that $K_1 \to K_0 \times K_0$
is a covering in $\text{SR}(\mathcal{C}, X)$. Hence we may
write $K_1 = \amalg_{i_0, i_1 \in I} \{V_{i_0i_1j} \to X\}$
so that the morphism $K_1 \to K_0 \times K_0$ is given
by coverings $\{V_{i_0i_1j} \to U_{i_0} \times_X U_{i_1}\}$
of the site $\mathcal{C}$. Thus we can further identify
$$
\check{H}^0(K, \mathcal{F})
=
\Ker(
\prod\nolimits_i \mathcal{F}(U_i)
\longrightarrow
\prod\nolimits_{i_0i_1 j} \mathcal{F}(V_{i_0i_1j})
)
$$
with obvious map. The sheaf property of $\mathcal{F}$
implies that $\check{H}^0(K, \mathcal{F}) = H^0(X, \mathcal{F})$.
\end{proof}

\noindent
In fact this property characterizes the abelian sheaves among all
abelian presheaves on $\mathcal{C}$ of course.
The analogue of Cohomology, Lemma \ref{lemma-injective-trivial-cech}
in this case is the following.

\begin{lemma}
\label{lemma-injective-trivial-cech}
Let $\mathcal{C}$ be a site with fibre products.
Let $X$ be an object of $\mathcal{C}$.
Let $K$ be a hypercovering of $X$.
Let $\mathcal{I}$ be an injective sheaf of abelian groups on $\mathcal{C}$.
Then
$$
\check{H}^p(K, \mathcal{I}) =
\left\{
\begin{matrix}
\mathcal{I}(X) & \text{if} & p = 0 \\
0 & \text{if} & p > 0
\end{matrix}
\right.
$$
\end{lemma}

\begin{proof}
Observe that for any object $Z = \{U_i \to X\}$ of
$\text{SR}(\mathcal{C}, X)$ and any abelian sheaf
$\mathcal{F}$ on $\mathcal{C}$ we have
\begin{eqnarray*}
\mathcal{F}(Z)
& = &
\prod \mathcal{F}(U_i) \\
& = &
\prod \Mor_{\textit{PSh}(\mathcal{C})}(h_{U_i}, \mathcal{F})\\
& = &
\Mor_{\textit{PSh}(\mathcal{C})}(F(Z), \mathcal{F})\\
& = &
\Mor_{\textit{PAb}(\mathcal{C})}(\mathbf{Z}_{F(Z)}, \mathcal{F}) \\
& = &
\Mor_{\textit{Ab}(\mathcal{C})}(\mathbf{Z}_{F(Z)}^\#, \mathcal{F})
\end{eqnarray*}
Thus we see, for any simplicial object $K$ of
$\text{SR}(\mathcal{C}, X)$ that we have
\begin{equation}
\label{equation-identify-cech}
s(\mathcal{F}(K))
=
\Hom_{\textit{Ab}(\mathcal{C})}(s(\mathbf{Z}_{F(K)}^\#), \mathcal{F})
\end{equation}
see Definition \ref{definition-homology} for notation.
The complex of sheaves $s(\mathbf{Z}_{F(K)}^\#)$ is quasi-isomorphic
to $\mathbf{Z}_X^\#$ if $K$ is a hypercovering, see
Lemma \ref{lemma-hypercovering-acyclic}. We conclude
that if $\mathcal{I}$ is an injective abelian sheaf, and
$K$ a hypercovering, then the complex $s(\mathcal{I}(K))$
is acyclic except possibly in degree $0$.
In other words, we have
$$
\check{H}^i(K, \mathcal{I}) = 0
$$
for $i > 0$. Combined with Lemma \ref{lemma-h0-cech} the lemma is proved.
\end{proof}

\noindent
Next we come to the analogue of Cohomology on Sites, Lemma
\ref{sites-cohomology-lemma-cech-spectral-sequence}.
Let $\mathcal{C}$ be a site.
Let $\mathcal{F}$ be a sheaf of abelian groups on $\mathcal{C}$.
Recall that $\underline{H}^i(\mathcal{F})$ indicates the presheaf
of abelian groups on $\mathcal{C}$ which is defined by the
rule $\underline{H}^i(\mathcal{F}) : U \longmapsto H^i(U, \mathcal{F})$.
We extend this to $\text{SR}(\mathcal{C})$ as in the introduction
to this section.

\begin{lemma}
\label{lemma-cech-spectral-sequence}
Let $\mathcal{C}$ be a site with fibre products.
Let $X$ be an object of $\mathcal{C}$.
Let $K$ be a hypercovering of $X$.
Let $\mathcal{F}$ be a sheaf of abelian groups on $\mathcal{C}$.
There is a map
$$
s(\mathcal{F}(K))
\longrightarrow
R\Gamma(X, \mathcal{F})
$$
in $D^{+}(\textit{Ab})$ functorial in $\mathcal{F}$, which induces
natural transformations
$$
\check{H}^i(K, -) \longrightarrow H^i(X, -)
$$
as functors $\textit{Ab}(\mathcal{C}) \to \textit{Ab}$. Moreover,
there is a spectral sequence $(E_r, d_r)_{r \geq 0}$ with
$$
E_2^{p, q} = \check{H}^p(K, \underline{H}^q(\mathcal{F}))
$$
converging to $H^{p + q}(X, \mathcal{F})$.
This spectral sequence is functorial in $\mathcal{F}$ and
in the hypercovering $K$.
\end{lemma}

\begin{proof}
We could prove this by the same method as employed in the corresponding
lemma in the chapter on cohomology. Instead let us prove this by a
double complex argument.

\medskip\noindent
Choose an injective resolution $\mathcal{F} \to \mathcal{I}^\bullet$
in the category of abelian sheaves on $\mathcal{C}$. Consider the
double complex $A^{\bullet, \bullet}$ with terms
$$
A^{p, q} = \mathcal{I}^q(K_p)
$$
where the differential $d_1^{p, q} : A^{p, q} \to A^{p + 1, q}$ is the one
coming from the differential on the complex $s(\mathcal{I}^q(K))$
associated to the cosimplicial abelian group $\mathcal{I}^p(K)$
and the differential $d_2^{p, q} : A^{p, q} \to A^{p, q + 1}$ is the one
coming from the differential $\mathcal{I}^q \to \mathcal{I}^{q + 1}$.
Denote $\text{Tot}(A^{\bullet, \bullet})$ the total complex associated to
the double complex $A^{\bullet, \bullet}$, see
Homology, Section \ref{homology-section-double-complexes}.
We will use the two spectral
sequences $({}'E_r, {}'d_r)$ and $({}''E_r, {}''d_r)$
associated to this double complex, see
Homology, Section \ref{homology-section-double-complex}.

\medskip\noindent
By Lemma \ref{lemma-injective-trivial-cech}
the complexes $s(\mathcal{I}^q(K))$ are acyclic in
positive degrees and have $H^0$ equal to $\mathcal{I}^q(X)$.
Hence by
Homology, Lemma \ref{homology-lemma-double-complex-gives-resolution}
the natural map
$$
\mathcal{I}^\bullet(X) \longrightarrow \text{Tot}(A^{\bullet, \bullet})
$$
is a quasi-isomorphism of complexes of abelian groups. In particular
we conclude that $H^n(\text{Tot}(A^{\bullet, \bullet})) = H^n(X, \mathcal{F})$.

\medskip\noindent
The map $s(\mathcal{F}(K)) \longrightarrow R\Gamma(X, \mathcal{F})$ of
the lemma is the composition of the map
$s(\mathcal{F}(K)) \to \text{Tot}(A^{\bullet, \bullet})$
followed by the inverse
of the displayed quasi-isomorphism above. This works because
$\mathcal{I}^\bullet(X)$ is a representative of $R\Gamma(X, \mathcal{F})$.

\medskip\noindent
Consider the spectral sequence $({}'E_r, {}'d_r)_{r \geq 0}$. By
Homology, Lemma \ref{homology-lemma-ss-double-complex}
we see that
$$
{}'E_2^{p, q} = H^p_I(H^q_{II}(A^{\bullet, \bullet}))
$$
In other words, we first take cohomology with respect to
$d_2$ which gives the groups
${}'E_1^{p, q} = \underline{H}^q(\mathcal{F})(K_p)$.
Hence it is indeed the case (by the description of the differential
${}'d_1$) that
${}'E_2^{p, q} = \check{H}^p(K, \underline{H}^q(\mathcal{F}))$.
By the above and Homology, Lemma \ref{homology-lemma-first-quadrant-ss}
we see that this converges to $H^n(X, \mathcal{F})$ as desired.

\medskip\noindent
We omit the proof of the statements regarding the functoriality of
the above constructions in the abelian sheaf $\mathcal{F}$ and the
hypercovering $K$.
\end{proof}









\section{Hypercoverings a la Verdier}
\label{section-hypercoverings-verdier}

\noindent
The astute reader will have noticed that all we need in order
to get the {\v C}ech to cohomology spectral sequence for a
hypercovering of an object $X$, is the
conclusion of Lemma \ref{lemma-hypercovering-F}.
Therefore the following definition makes sense.

\begin{definition}
\label{definition-hypercovering-variant}
Let $\mathcal{C}$ be a site. Assume $\mathcal{C}$ has equalizers
and fibre products. Let $\mathcal{G}$ be a presheaf of sets.
A {\it hypercovering of $\mathcal{G}$} is a simplicial object
$K$ of $\text{SR}(\mathcal{C})$ endowed with an augmentation
$F(K) \to \mathcal{G}$ such that
\begin{enumerate}
\item $F(K_0) \to \mathcal{G}$ becomes surjective
after sheafification,
\item $F(K_1) \to F(K_0) \times_\mathcal{G} F(K_0)$
becomes surjective after sheafification, and
\item $F(K_{n + 1}) \longrightarrow F((\text{cosk}_n \text{sk}_n K)_{n + 1})$
for $n \geq 1$ becomes surjective after sheafification.
\end{enumerate}
We say that a simplicial object $K$ of $\text{SR}(\mathcal{C})$
is a {\it hypercovering} if $K$ is a hypercovering of the final
object $*$ of $\textit{PSh}(\mathcal{C})$.
\end{definition}

\noindent
The assumption that $\mathcal{C}$ has fibre products and equalizers
guarantees that $\text{SR}(\mathcal{C})$ has fibre products
and equalizers and $F$ commutes with these
(Lemma \ref{lemma-coprod-prod-SR}) which suffices
to define the coskeleton functors used (see
Simplicial, Remark \ref{simplicial-remark-existence-cosk} and
Categories, Lemma \ref{categories-lemma-fibre-products-equalizers-exist}).
If $\mathcal{C}$ is general, we can replace the condition (3) by the
condition that
$F(K_{n + 1}) \longrightarrow ((\text{cosk}_n \text{sk}_n F(K))_{n + 1})$
for $n \geq 1$ becomes surjective after sheafification and the
results of this section remain valid.

\medskip\noindent
Let $\mathcal{F}$ be an abelian sheaf on $\mathcal{C}$.
In the previous section, we defined the {\v C}ech complex of $\mathcal{F}$
with respect to a simplicial object $K$ of $\text{SR}(\mathcal{C})$.
Next, given a presheaf $\mathcal{G}$ we set
$$
H^0(\mathcal{G}, \mathcal{F}) =
\Mor_{\textit{PSh}(\mathcal{C})}(\mathcal{G}, \mathcal{F}) =
\Mor_{\Sh(\mathcal{C})}(\mathcal{G}^\#, \mathcal{F}) =
H^0(\mathcal{G}^\#, \mathcal{F})
$$
with notation as in
Cohomology on Sites, Section \ref{sites-cohomology-section-limp}.
This is a left exact functor and its higher derived functors
(briefly studied in
Cohomology on Sites, Section \ref{sites-cohomology-section-limp})
are denoted $H^i(\mathcal{G}, \mathcal{F})$.
We will show that given a hypercovering $K$ of $\mathcal{G}$,
there is a {\v C}ech to cohomology spectral sequence converging to the
cohomology $H^i(\mathcal{G}, \mathcal{F})$.
Note that if $\mathcal{G} = *$, then
$H^i(*, \mathcal{F}) = H^i(\mathcal{C}, \mathcal{F})$ recovers
the cohomology of $\mathcal{F}$ on the site $\mathcal{C}$.

\begin{lemma}
\label{lemma-h0-cech-variant}
Let $\mathcal{C}$ be a site with equalizers and fibre products.
Let $\mathcal{G}$ be a presheaf on $\mathcal{C}$.
Let $K$ be a hypercovering of $\mathcal{G}$.
Let $\mathcal{F}$ be a sheaf of abelian groups on $\mathcal{C}$.
Then $\check{H}^0(K, \mathcal{F}) = H^0(\mathcal{G}, \mathcal{F})$.
\end{lemma}

\begin{proof}
This follows from the definition of $H^0(\mathcal{G}, \mathcal{F})$
and the fact that
$$
\xymatrix{
F(K_1) \ar@<1ex>[r] \ar@<-1ex>[r] &
F(K_0) \ar[r] & \mathcal{G}
}
$$
becomes an coequalizer diagram after sheafification.
\end{proof}

\begin{lemma}
\label{lemma-injective-trivial-cech-variant}
Let $\mathcal{C}$ be a site with equalizers and fibre products.
Let $\mathcal{G}$ be a presheaf on $\mathcal{C}$.
Let $K$ be a hypercovering of $\mathcal{G}$.
Let $\mathcal{I}$ be an injective sheaf of abelian groups on $\mathcal{C}$.
Then
$$
\check{H}^p(K, \mathcal{I}) =
\left\{
\begin{matrix}
H^0(\mathcal{G}, \mathcal{I}) & \text{if} & p = 0 \\
0 & \text{if} & p > 0
\end{matrix}
\right.
$$
\end{lemma}

\begin{proof}
By (\ref{equation-identify-cech}) we have
$$
s(\mathcal{F}(K))
=
\Hom_{\textit{Ab}(\mathcal{C})}(s(\mathbf{Z}_{F(K)}^\#), \mathcal{F})
$$
The complex $s(\mathbf{Z}_{F(K)}^\#)$ is quasi-isomorphic
to $\mathbf{Z}_\mathcal{G}^\#$, see
Lemma \ref{lemma-acyclic-hypercover-sheaves}. We conclude
that if $\mathcal{I}$ is an injective abelian sheaf, then
the complex $s(\mathcal{I}(K))$ is acyclic except possibly in degree $0$.
In other words, we have $\check{H}^i(K, \mathcal{I}) = 0$
for $i > 0$. Combined with Lemma \ref{lemma-h0-cech-variant}
the lemma is proved.
\end{proof}

\begin{lemma}
\label{lemma-cech-spectral-sequence-variant}
Let $\mathcal{C}$ be a site with equalizers and fibre products.
Let $\mathcal{G}$ be a presheaf on $\mathcal{C}$.
Let $K$ be a hypercovering of $\mathcal{G}$.
Let $\mathcal{F}$ be a sheaf of abelian groups on $\mathcal{C}$.
There is a map
$$
s(\mathcal{F}(K)) \longrightarrow R\Gamma(\mathcal{G}, \mathcal{F})
$$
in $D^{+}(\textit{Ab})$ functorial in $\mathcal{F}$, which induces
a natural transformation
$$
\check{H}^i(K, -) \longrightarrow H^i(\mathcal{G}, -)
$$
of functors $\textit{Ab}(\mathcal{C}) \to \textit{Ab}$. Moreover,
there is a spectral sequence $(E_r, d_r)_{r \geq 0}$ with
$$
E_2^{p, q} = \check{H}^p(K, \underline{H}^q(\mathcal{F}))
$$
converging to $H^{p + q}(\mathcal{G}, \mathcal{F})$.
This spectral sequence is functorial in $\mathcal{F}$ and
in the hypercovering $K$.
\end{lemma}

\begin{proof}
Choose an injective resolution $\mathcal{F} \to \mathcal{I}^\bullet$
in the category of abelian sheaves on $\mathcal{C}$. Consider the
double complex $A^{\bullet, \bullet}$ with terms
$$
A^{p, q} = \mathcal{I}^q(K_p)
$$
where the differential $d_1^{p, q} : A^{p, q} \to A^{p + 1, q}$
is the one coming from the differential $\mathcal{I}^p \to \mathcal{I}^{p + 1}$
and the differential $d_2^{p, q} : A^{p, q} \to A^{p, q + 1}$ is the
one coming from the differential on the complex
$s(\mathcal{I}^p(K))$ associated to the cosimplicial abelian group
$\mathcal{I}^p(K)$ as explained above.
We will use the two spectral
sequences $({}'E_r, {}'d_r)$ and $({}''E_r, {}''d_r)$
associated to this double complex, see
Homology, Section \ref{homology-section-double-complex}.

\medskip\noindent
By Lemma \ref{lemma-injective-trivial-cech-variant} the complexes
$s(\mathcal{I}^p(K))$ are acyclic in positive degrees and have
$H^0$ equal to $H^0(\mathcal{G}, \mathcal{I}^p)$. Hence by
Homology, Lemma \ref{homology-lemma-double-complex-gives-resolution}
and its proof the spectral sequence $({}'E_r, {}'d_r)$ degenerates,
and the natural map
$$
H^0(\mathcal{G}, \mathcal{I}^\bullet) \longrightarrow
\text{Tot}(A^{\bullet, \bullet})
$$
is a quasi-isomorphism of complexes of abelian groups. The map
$s(\mathcal{F}(K)) \longrightarrow R\Gamma(\mathcal{G}, \mathcal{F})$
of the lemma is the composition of the natural map
$s(\mathcal{F}(K)) \to \text{Tot}(A^{\bullet, \bullet})$
followed by the inverse of the displayed quasi-isomorphism above.
This works because $H^0(\mathcal{G}, \mathcal{I}^\bullet)$
is a representative of $R\Gamma(\mathcal{G}, \mathcal{F})$.

\medskip\noindent
Consider the spectral sequence $({}''E_r, {}''d_r)_{r \geq 0}$. By
Homology, Lemma \ref{homology-lemma-ss-double-complex}
we see that
$$
{}''E_2^{p, q} = H^p_{II}(H^q_I(A^{\bullet, \bullet}))
$$
In other words, we first take cohomology with respect to
$d_1$ which gives the groups
${}''E_1^{p, q} = \underline{H}^p(\mathcal{F})(K_q)$.
Hence it is indeed the case (by the description of the differential
${}''d_1$) that
${}''E_2^{p, q} = \check{H}^p(K, \underline{H}^q(\mathcal{F}))$.
Since this spectral sequence converges to the cohomology of
$\text{Tot}(A^{\bullet, \bullet})$ the proof is finished.
\end{proof}

\begin{lemma}
\label{lemma-cech-spectral-sequence-verdier}
Let $\mathcal{C}$ be a site with equalizers and fibre products.
Let $K$ be a hypercovering.
Let $\mathcal{F}$ be an abelian sheaf. There is a
spectral sequence $(E_r, d_r)_{r \geq 0}$ with
$$
E_2^{p, q} = \check{H}^p(K, \underline{H}^q(\mathcal{F}))
$$
converging to the global cohomology groups $H^{p + q}(\mathcal{F})$.
\end{lemma}

\begin{proof}
This is a special case of Lemma \ref{lemma-cech-spectral-sequence-variant}.
\end{proof}







\section{Covering hypercoverings}
\label{section-covering}

\noindent
Here are some ways to construct hypercoverings.
We note that since the category
$\text{SR}(\mathcal{C}, X)$ has fibre products
the category of simplicial objects
of $\text{SR}(\mathcal{C}, X)$ has fibre products
as well, see Simplicial, Lemma \ref{simplicial-lemma-fibre-product}.

\begin{lemma}
\label{lemma-funny-gamma}
Let $\mathcal{C}$ be a site with fibre products.
Let $X$ be an object of $\mathcal{C}$.
Let $K, L, M$ be simplicial objects of $\text{SR}(\mathcal{C}, X)$.
Let $a : K \to L$, $b : M \to L$ be morphisms.
Assume
\begin{enumerate}
\item $K$ is a hypercovering of $X$,
\item the morphism $M_0 \to L_0$ is a covering, and
\item for all $n \geq 0$ in the diagram
$$
\xymatrix{
M_{n + 1} \ar[dd] \ar[rr] \ar[rd]^\gamma &
&
(\text{cosk}_n \text{sk}_n M)_{n + 1} \ar[dd] \\
&
L_{n + 1}
\times_{(\text{cosk}_n \text{sk}_n L)_{n + 1}}
(\text{cosk}_n \text{sk}_n M)_{n + 1}
\ar[ld] \ar[ru]
& \\
L_{n + 1} \ar[rr] & & (\text{cosk}_n \text{sk}_n L)_{n + 1}
}
$$
the arrow $\gamma$ is a covering.
\end{enumerate}
Then the fibre product $K \times_L M$ is a hypercovering of $X$.
\end{lemma}

\begin{proof}
The morphism $(K \times_L M)_0 = K_0 \times_{L_0} M_0 \to K_0$
is a base change of a covering by (2), hence a covering, see
Lemma \ref{lemma-covering-permanence}. And $K_0 \to \{X \to X\}$
is a covering by (1). Thus $(K \times_L M)_0 \to \{X \to X\}$
is a covering by Lemma \ref{lemma-covering-permanence}. Hence
$K \times_L M$ satisfies the first condition of Definition
\ref{definition-hypercovering}.

\medskip\noindent
We still have to check that
$$
K_{n + 1} \times_{L_{n + 1}} M_{n + 1} = (K \times_L M)_{n + 1}
\longrightarrow
(\text{cosk}_n \text{sk}_n (K \times_L M))_{n + 1}
$$
is a covering for all $n \geq 0$. We abbreviate as follows:
$A = (\text{cosk}_n \text{sk}_n K)_{n + 1}$,
$B = (\text{cosk}_n \text{sk}_n L)_{n + 1}$, and
$C = (\text{cosk}_n \text{sk}_n M)_{n + 1}$.
The functor $\text{cosk}_n \text{sk}_n$ commutes with fibre products,
see Simplicial, Lemma \ref{simplicial-lemma-cosk-fibre-product}.
Thus the right hand side above is equal to $A \times_B C$.
Consider the following commutative diagram
$$
\xymatrix{
K_{n + 1} \times_{L_{n + 1}} M_{n + 1} \ar[r] \ar[d] &
M_{n + 1} \ar[d] \ar[rd]_\gamma \ar[rrd] &
& \\
K_{n + 1} \ar[r] \ar[rd] &
L_{n + 1} \ar[rrd] &
L_{n + 1} \times_B C \ar[l] \ar[r] &
C \ar[d] \\
&
A \ar[rr] &
&
B
}
$$
This diagram shows that
$$
K_{n + 1} \times_{L_{n + 1}} M_{n + 1}
=
(K_{n + 1} \times_B C)
\times_{(L_{n + 1} \times_B C), \gamma}
M_{n + 1}
$$
Now, $K_{n + 1} \times_B C \to A \times_B C$
is a base change of the covering $K_{n + 1} \to A$
via the morphism $A \times_B C \to A$, hence is a
covering. By assumption (3) the morphism $\gamma$ is a covering.
Hence the morphism
$$
(K_{n + 1} \times_B C)
\times_{(L_{n + 1} \times_B C), \gamma}
M_{n + 1}
\longrightarrow
K_{n + 1} \times_B C
$$
is a covering as a base change of a covering.
The lemma follows as a composition of coverings
is a covering.
\end{proof}

\begin{lemma}
\label{lemma-product-hypercoverings}
Let $\mathcal{C}$ be a site with fibre products.
Let $X$ be an object of $\mathcal{C}$.
If $K, L$ are hypercoverings of $X$, then
$K \times L$ is a hypercovering of $X$.
\end{lemma}

\begin{proof}
You can either verify this directly, or use
Lemma \ref{lemma-funny-gamma} above and check that $L \to \{X \to X\}$
has property (3).
\end{proof}


\noindent
Let $\mathcal{C}$ be a site with fibre products.
Let $X$ be an object of $\mathcal{C}$.
Since the category $\text{SR}(\mathcal{C}, X)$ has coproducts and
finite limits, it is permissible to speak about the objects
$U \times K$ and $\Hom(U, K)$ for certain simplicial sets $U$
(for example those with finitely many nondegenerate simplices)
and any simplicial object $K$ of $\text{SR}(\mathcal{C}, X)$.
See Simplicial, Sections
\ref{simplicial-section-product-with-simplicial-sets} and
\ref{simplicial-section-hom-from-simplicial-sets}.

\begin{lemma}
\label{lemma-covering}
Let $\mathcal{C}$ be a site with fibre products.
Let $X$ be an object of $\mathcal{C}$.
Let $K$ be a hypercovering of $X$.
Let $k \geq 0$ be an integer.
Let $u : Z \to K_k$ be a covering
in $\text{SR}(\mathcal{C}, X)$.
Then there exists a morphism of hypercoverings
$f: L \to K$ such that $L_k \to K_k$
factors through $u$.
\end{lemma}

\begin{proof}
Denote $Y = K_k$. Let $C[k]$ be the cosimplicial set defined in
Simplicial, Example \ref{simplicial-example-simplex-cosimplicial-set}.
We will use the description of $\Hom(C[k], Y)$ and $\Hom(C[k], Z)$
given in
Simplicial, Lemma \ref{simplicial-lemma-morphism-into-product}.
There is a canonical morphism
$K \to \Hom(C[k], Y)$ corresponding to $\text{id} : K_k = Y \to Y$.
Consider the morphism $\Hom(C[k], Z) \to \Hom(C[k], Y)$
which on degree $n$ terms is the morphism
$$
\prod\nolimits_{\alpha : [k] \to [n]} Z
\longrightarrow
\prod\nolimits_{\alpha : [k] \to [n]} Y
$$
using the given morphism $Z \to Y$ on each factor. Set
$$
L = K \times_{\Hom(C[k], Y)} \Hom(C[k], Z).
$$
The morphism $L_k \to K_k$ sits in to a commutative diagram
$$
\xymatrix{
L_k \ar[r] \ar[d] &
\prod_{\alpha : [k] \to [k]} Z \ar[r]^-{\text{pr}_{\text{id}_{[k]}}} \ar[d] &
Z \ar[d] \\
K_k \ar[r] &
\prod_{\alpha : [k] \to [k]} Y \ar[r]^-{\text{pr}_{\text{id}_{[k]}}} &
Y
}
$$
Since the composition of the two bottom arrows is the identity
we conclude that we have the desired factorization.

\medskip\noindent
We still have to show that $L$ is a hypercovering of $X$.
To see this we will use Lemma \ref{lemma-funny-gamma}.
Condition (1) is satisfied by assumption.
For (2), the morphism
$$
\Hom(C[k], Z)_0 \to \Hom(C[k], Y)_0
$$
is a covering because it is isomorphic to $Z \to Y$ as
there is only one morphism $[k] \to [0]$.

\medskip\noindent
Let us consider condition (3) for $n = 0$. Then, since
$(\text{cosk}_0 T)_1 = T \times T$
(Simplicial, Example \ref{simplicial-example-cosk0})
and since $\Hom(C[k], Z)_1 = \prod_{\alpha : [k] \to [1]} Z$
we obtain the diagram
$$
\xymatrix{
\prod\nolimits_{\alpha : [k] \to [1]} Z \ar[r] \ar[d] &
Z \times Z \ar[d] \\
\prod\nolimits_{\alpha : [k] \to [1]} Y \ar[r] &
Y \times Y
}
$$
with horizontal arrows corresponding to the projection onto the factors
corresponding to the two nonsurjective $\alpha$. Thus the arrow $\gamma$
is the morphism
$$
\prod\nolimits_{\alpha : [k] \to [1]} Z
\longrightarrow
\prod\nolimits_{\alpha : [k] \to [1]\text{ not onto}} Z
\times
\prod\nolimits_{\alpha : [k] \to [1]\text{ onto}} Y
$$
which is a product of coverings and hence a covering by
Lemma \ref{lemma-covering-permanence}.

\medskip\noindent
Let us consider condition (3) for $n > 0$. We claim there is an
injective map $\tau : S' \to S$ of finite sets, such that for any
object $T$ of $\text{SR}(\mathcal{C}, X)$ the morphism
\begin{equation}
\label{equation-map}
\Hom(C[k], T)_{n + 1} \to
(\text{cosk}_n \text{sk}_n \Hom(C[k], T))_{n + 1}
\end{equation}
is isomorphic to the projection $\prod_{s \in S} T \to \prod_{s' \in S'} T$
functorially in $T$. If this is true, then we see, arguing as in the previous
paragraph, that the arrow $\gamma$ is the morphism
$$
\prod\nolimits_{s \in S} Z
\longrightarrow
\prod\nolimits_{s \in S'} Z
\times
\prod\nolimits_{s \not\in \tau(S')} Y
$$
which is a product of coverings and hence a covering by
Lemma \ref{lemma-covering-permanence}. By construction, we have
$\Hom(C[k], T)_{n + 1} = \prod_{\alpha : [k] \to [n + 1]} T$
(see Simplicial, Lemma \ref{simplicial-lemma-morphism-into-product}).
Correspondingly we take $S = \text{Map}([k], [n + 1])$.
On the other hand, Simplicial, Lemma \ref{simplicial-lemma-formula-limit},
provides a description of points of
$(\text{cosk}_n \text{sk}_n \Hom(C[k], T))_{n + 1}$
as sequences $(f_0, \ldots, f_{n + 1})$ of points of $\Hom(C[k], T)_n$
satisfying $d^n_{j - 1} f_i = d^n_i f_j$ for $0 \leq i < j \leq n + 1$.
We can write $f_i = (f_{i, \alpha})$ with $f_{i, \alpha}$ a point of $T$
and $\alpha \in \text{Map}([k], [n])$. The conditions translate into
$$
f_{i, \delta^n_{j - 1} \circ \beta} = f_{j, \delta_i^n \circ \beta}
$$
for any $0 \leq i < j \leq n + 1$ and $\beta : [k] \to [n - 1]$. Thus we
see that
$$
S' = \{0, \ldots, n + 1\} \times \text{Map}([k], [n]) / \sim
$$
where the equivalence relation is generated by the equivalences
$$
(i, \delta^n_{j - 1} \circ \beta) \sim (j, \delta_i^n \circ \beta)
$$
for $0 \leq i < j \leq n + 1$ and $\beta : [k] \to [n - 1]$.
A computation (omitted) shows that the morphism (\ref{equation-map})
corresponds to the map $S' \to S$ which sends $(i, \alpha)$ to
$\delta^{n + 1}_i \circ \alpha \in S$. (It may be a comfort to the
reader to see that this map is well defined by part (1) of
Simplicial, Lemma \ref{simplicial-lemma-relations-face-degeneracy}.)
To finish the proof it suffices to show that if
$\alpha, \alpha' : [k] \to [n]$ and $0 \leq i < j \leq n + 1$
are such that
$$
\delta^{n + 1}_i \circ \alpha = \delta^{n + 1}_j \circ \alpha'
$$
then we have $\alpha = \delta^n_{j - 1} \circ \beta$
and $\alpha' = \delta_i^n \circ \beta$ for some $\beta : [k] \to [n - 1]$.
This is easy to see and omitted.
\end{proof}

\begin{lemma}
\label{lemma-covering-sheaf}
Let $\mathcal{C}$ be a site with fibre products.
Let $X$ be an object of $\mathcal{C}$.
Let $K$ be a hypercovering of $X$.
Let $n \geq 0$ be an integer.
Let $u : \mathcal{F} \to F(K_n)$ be a morphism
of presheaves which becomes surjective
on sheafification.
Then there exists a morphism of hypercoverings
$f: L \to K$ such that $F(f_n) : F(L_n) \to F(K_n)$
factors through $u$.
\end{lemma}

\begin{proof}
Write $K_n = \{U_i \to X\}_{i \in I}$.
Thus the map $u$ is a morphism of presheaves of sets
$u : \mathcal{F} \to \amalg h_{u_i}$.
The assumption on $u$ means that for every
$i \in I$ there exists a covering $\{U_{ij} \to U_i\}_{j \in I_i}$
of the site $\mathcal{C}$ and a morphism of presheaves
$t_{ij} : h_{U_{ij}} \to \mathcal{F}$ such that
$u \circ t_{ij}$ is the map $h_{U_{ij}} \to h_{U_i}$
coming from the morphism $U_{ij} \to U_i$.
Set $J = \amalg_{i \in I} I_i$, and let
$\alpha : J \to I$ be the obvious map.
For $j \in J$ denote $V_j = U_{\alpha(j)j}$. Set
$Z = \{V_j \to X\}_{j \in J}$.
Finally, consider the morphism
$u' : Z \to K_n$ given by $\alpha : J \to I$
and the morphisms $V_j = U_{\alpha(j)j} \to U_{\alpha(j)}$
above. Clearly, this is a covering in the
category $\text{SR}(\mathcal{C}, X)$, and by
construction $F(u') : F(Z) \to F(K_n)$ factors through $u$.
Thus the result follows from Lemma \ref{lemma-covering} above.
\end{proof}


\section{Adding simplices}
\label{section-adding-simplices}

\noindent
In this section we prove some technical lemmas which we will need later.
Let $\mathcal{C}$ be a site with fibre products.
Let $X$ be an object of $\mathcal{C}$.
As we pointed out in Section \ref{section-covering} above,
the objects $U \times K$ and $\Hom(U, K)$
for certain simplicial sets $U$
and any simplicial object $K$ of $\text{SR}(\mathcal{C}, X)$
are defined. See Simplicial, Sections
\ref{simplicial-section-product-with-simplicial-sets} and
\ref{simplicial-section-hom-from-simplicial-sets}.

\begin{lemma}
\label{lemma-one-more-simplex}
Let $\mathcal{C}$ be a site with fibre products.
Let $X$ be an object of $\mathcal{C}$.
Let $K$ be a hypercovering of $X$.
Let $U \subset V$ be simplicial sets, with $U_n, V_n$
finite nonempty for all $n$.
Assume that $U$ has finitely many nondegenerate simplices.
Suppose $n \geq 0$ and $x \in V_n$,
$x \not \in U_n$ are such that
\begin{enumerate}
\item $V_i = U_i$ for $i < n$,
\item $V_n = U_n \cup \{x\}$,
\item any $z \in V_j$, $z \not \in U_j$ for $j > n$
is degenerate.
\end{enumerate}
Then the morphism
$$
\Hom(V, K)_0
\longrightarrow
\Hom(U, K)_0
$$
of $\text{SR}(\mathcal{C}, X)$ is a covering.
\end{lemma}

\begin{proof}
If $n = 0$, then it follows easily that $V = U \amalg \Delta[0]$
(see below). In this case $\Hom(V, K)_0 =
\Hom(U, K)_0 \times K_0$. The result, in this case, then follows
from Lemma \ref{lemma-covering-permanence}.

\medskip\noindent
Let $a : \Delta[n] \to V$ be the morphism associated to $x$
as in Simplicial, Lemma \ref{simplicial-lemma-simplex-map}.
Let us write $\partial \Delta[n] = i_{(n-1)!} \text{sk}_{n - 1} \Delta[n]$
for the $(n - 1)$-skeleton of $\Delta[n]$.
Let $b : \partial \Delta[n] \to U$ be the restriction
of $a$ to the $(n - 1)$ skeleton of $\Delta[n]$. By
Simplicial, Lemma \ref{simplicial-lemma-glue-simplex}
we have $V = U \amalg_{\partial \Delta[n]} \Delta[n]$. By
Simplicial, Lemma
\ref{simplicial-lemma-hom-from-coprod}
we get that
$$
\xymatrix{
\Hom(V, K)_0 \ar[r] \ar[d] &
\Hom(U, K)_0 \ar[d] \\
\Hom(\Delta[n], K)_0 \ar[r] &
\Hom(\partial \Delta[n], K)_0
}
$$
is a fibre product square. Thus it suffices to show that
the bottom horizontal arrow is a covering. By
Simplicial, Lemma \ref{simplicial-lemma-cosk-shriek}
this arrow is identified with
$$
K_n \to (\text{cosk}_{n - 1} \text{sk}_{n - 1} K)_n
$$
and hence is a covering by definition of a hypercovering.
\end{proof}

\begin{lemma}
\label{lemma-add-simplices}
Let $\mathcal{C}$ be a site with fibre products.
Let $X$ be an object of $\mathcal{C}$.
Let $K$ be a hypercovering of $X$.
Let $U \subset V$ be simplicial sets, with $U_n, V_n$
finite nonempty for all $n$.
Assume that $U$ and $V$ have finitely many nondegenerate simplices.
Then the morphism
$$
\Hom(V, K)_0
\longrightarrow
\Hom(U, K)_0
$$
of $\text{SR}(\mathcal{C}, X)$ is a covering.
\end{lemma}

\begin{proof}
By Lemma \ref{lemma-one-more-simplex}
above, it suffices to prove a simple lemma
about inclusions of simplicial sets $U \subset V$ as in the
lemma. And this is exactly the result of
Simplicial, Lemma \ref{simplicial-lemma-add-simplices}.
\end{proof}

\begin{lemma}
\label{lemma-degeneracy-maps-coverings}
Let $\mathcal{C}$ be a site with fibre products. Let $X$ be an object of
$\mathcal{C}$. Let $K$ be a hypercovering of $X$. Then
\begin{enumerate}
\item $K_n$ is a covering of $X$ for each $n \geq 0$,
\item $d^n_i : K_n \to K_{n - 1}$ is a covering for all $n \geq 1$
and $0 \leq i \leq n$.
\end{enumerate}
\end{lemma}

\begin{proof}
Recall that $K_0$ is a covering of $X$ by
Definition \ref{definition-hypercovering}
and that this is equivalent to saying that
$K_0 \to \{X \to X\}$ is a covering in the sense
of Definition \ref{definition-covering-SR}.
Hence (1) follows from (2) because it will prove that
the composition
$K_n \to K_{n - 1} \to \ldots \to K_0 \to \{X \to X\}$
is a covering by Lemma \ref{lemma-covering-permanence}.

\medskip\noindent
Proof of (2). Observe that
$\Mor(\Delta[n], K)_0 = K_n$ by
Simplicial, Lemma \ref{simplicial-lemma-exists-hom-from-simplicial-set-finite}.
Therefore (2) follows from Lemma \ref{lemma-add-simplices}
applied to the $n + 1$ different inclusions $\Delta[n - 1] \to \Delta[n]$.
\end{proof}

\begin{remark}
\label{remark-P-covering}
A useful special case of Lemmas \ref{lemma-add-simplices} and
\ref{lemma-degeneracy-maps-coverings} is the following.
Suppose we have a category $\mathcal{C}$ having fibre products.
Let $P \subset \text{Arrows}(\mathcal{C})$ be a subset
stable under base change, stable under composition,
and containing all isomorphisms. Then one says a
{\it $P$-hypercovering} is an augmentation $a : U \to X$
from a simplicial object of $\mathcal{C}$ such that
\begin{enumerate}
\item $U_0 \to X$ is in $P$,
\item $U_1 \to U_0 \times_X U_0$ is in $P$,
\item $U_{n + 1} \to (\text{cosk}_n\text{sk}_n U)_{n + 1}$
is in $P$ for $n \geq 1$.
\end{enumerate}
The category $\mathcal{C}/X$ has all finite limits, hence the
coskeleta used in the formulation above exist
(see Categories, Lemma \ref{categories-lemma-finite-limits-exist}).
Then we claim that the morphisms $U_n \to X$ and $d^n_i : U_n \to U_{n - 1}$
are in $P$. This follows from the aforementioned
lemmas by turning $\mathcal{C}$ into a site whose coverings
are $\{f : V \to U\}$ with $f \in P$ and taking $K$ given by
$K_n = \{U_n \to X\}$.
\end{remark}


\section{Homotopies}
\label{section-homotopies}

\noindent
Let $\mathcal{C}$ be a site with fibre products.
Let $X$ be an object of $\mathcal{C}$.
Let $L$ be a simplicial object of $\text{SR}(\mathcal{C}, X)$.
According to
Simplicial, Lemma \ref{simplicial-lemma-exists-hom-from-simplicial-set-finite}
there exists an object $\Hom(\Delta[1], L)$
in the category $\text{Simp}(\text{SR}(\mathcal{C}, X))$ which represents the
functor
$$
T
\longmapsto
\Mor_{\text{Simp}(\text{SR}(\mathcal{C}, X))}(\Delta[1] \times T, L)
$$
There is a canonical morphism
$$
\Hom(\Delta[1], L) \to L \times L
$$
coming from $e_i : \Delta[0] \to \Delta[1]$ and the identification
$\Hom(\Delta[0], L) = L$.

\begin{lemma}
\label{lemma-hom-hypercovering}
Let $\mathcal{C}$ be a site with fibre products.
Let $X$ be an object of $\mathcal{C}$.
Let $L$ be a simplicial object of $\text{SR}(\mathcal{C}, X)$.
Let $n \geq 0$. Consider the commutative diagram
\begin{equation}
\label{equation-diagram}
\xymatrix{
\Hom(\Delta[1], L)_{n + 1} \ar[r] \ar[d] &
(\text{cosk}_n \text{sk}_n \Hom(\Delta[1], L))_{n + 1} \ar[d] \\
(L \times L)_{n + 1} \ar[r] &
(\text{cosk}_n \text{sk}_n (L \times L))_{n + 1}
}
\end{equation}
coming from the morphism defined above.
We can identify the terms in this diagram as follows,
where
$\partial \Delta[n + 1] = i_{n!}\text{sk}_n \Delta[n + 1]$
is the $n$-skeleton of the $(n + 1)$-simplex:
\begin{eqnarray*}
\Hom(\Delta[1], L)_{n + 1}
& = &
\Hom(\Delta[1] \times \Delta[n + 1], L)_0 \\
(\text{cosk}_n \text{sk}_n \Hom(\Delta[1], L))_{n + 1}
& = &
\Hom(\Delta[1] \times \partial \Delta[n + 1], L)_0 \\
(L \times L)_{n + 1}
& = &
\Hom(
(\Delta[n + 1] \amalg \Delta[n + 1], L)_0 \\
(\text{cosk}_n \text{sk}_n (L \times L))_{n + 1}
& = &
\Hom(
\partial \Delta[n + 1]
\amalg
\partial \Delta[n + 1], L)_0
\end{eqnarray*}
and the morphism between these objects of $\text{SR}(\mathcal{C}, X)$
come from the commutative diagram of simplicial sets
\begin{equation}
\label{equation-dual-diagram}
\xymatrix{
\Delta[1] \times \Delta[n + 1] &
\Delta[1] \times \partial\Delta[n + 1] \ar[l] \\
\Delta[n + 1] \amalg \Delta[n + 1] \ar[u] &
\partial\Delta[n + 1] \amalg \partial\Delta[n + 1]
\ar[l] \ar[u]
}
\end{equation}
Moreover the fibre product of the bottom arrow and the
right arrow in (\ref{equation-diagram}) is equal to
$$
\Hom(U, L)_0
$$
where $U \subset \Delta[1] \times \Delta[n + 1]$
is the smallest simplicial subset such that both
$\Delta[n + 1] \amalg \Delta[n + 1]$ and
$\Delta[1] \times \partial\Delta[n + 1]$ map into it.
\end{lemma}

\begin{proof}
The first and third equalities are
Simplicial, Lemma \ref{simplicial-lemma-exists-hom-from-simplicial-set-finite}.
The second and fourth follow from the cited lemma combined with
Simplicial, Lemma \ref{simplicial-lemma-cosk-shriek}.
The last assertion follows from the fact that
$U$ is the push-out of the bottom and right arrow of the
diagram (\ref{equation-dual-diagram}), via
Simplicial, Lemma \ref{simplicial-lemma-hom-from-coprod}.
To see that $U$ is equal to this push-out it suffices
to see that the intersection of
$\Delta[n + 1] \amalg \Delta[n + 1]$ and
$\Delta[1] \times \partial\Delta[n + 1]$
in $\Delta[1] \times \Delta[n + 1]$ is equal to
$\partial\Delta[n + 1] \amalg \partial\Delta[n + 1]$.
This we leave to the reader.
\end{proof}

\begin{lemma}
\label{lemma-homotopy}
Let $\mathcal{C}$ be a site with fibre products.
Let $X$ be an object of $\mathcal{C}$.
Let $K, L$ be hypercoverings of $X$.
Let $a, b : K \to L$ be morphisms of hypercoverings.
There exists a morphism of hypercoverings
$c : K' \to K$ such that $a \circ c$ is homotopic
to $b \circ c$.
\end{lemma}

\begin{proof}
Consider the following commutative diagram
$$
\xymatrix{
K' \ar@{=}[r]^-{def} \ar[rd]_c &
K \times_{(L \times L)} \Hom(\Delta[1], L)
\ar[r] \ar[d] & \Hom(\Delta[1], L) \ar[d] \\
& K \ar[r]^{(a, b)} & L \times L
}
$$
By the functorial property of $\Hom(\Delta[1], L)$
the composition of the horizontal morphisms
corresponds to a morphism $K' \times \Delta[1] \to L$ which
defines a homotopy between $c \circ a$ and $c \circ b$.
Thus if we can show that $K'$ is a
hypercovering of $X$, then we obtain the lemma.
To see this we will apply Lemma \ref{lemma-funny-gamma}
to the pair of morphisms $K \to L \times L$
and $\Hom(\Delta[1], L) \to L \times L$.
Condition (1) of Lemma \ref{lemma-funny-gamma} is satisfied.
Condition (2) of Lemma \ref{lemma-funny-gamma} is true because
$\Hom(\Delta[1], L)_0 = L_1$, and the morphism
$(d^1_0, d^1_1) : L_1 \to L_0 \times L_0$ is a
covering of $\text{SR}(\mathcal{C}, X)$ by our
assumption that $L$ is a hypercovering.
To prove condition (3) of Lemma \ref{lemma-funny-gamma}
we use Lemma \ref{lemma-hom-hypercovering} above. According
to this lemma the morphism $\gamma$ of condition (3) of Lemma
\ref{lemma-funny-gamma} is the morphism
$$
\Hom(\Delta[1] \times \Delta[n + 1], L)_0
\longrightarrow
\Hom(U, L)_0
$$
where $U \subset \Delta[1] \times \Delta[n + 1]$.
According to Lemma \ref{lemma-add-simplices}
this is a covering and hence the claim has been proven.
\end{proof}

\begin{remark}
\label{remark-contractible-category}
Note that the crux of the proof is to use
Lemma \ref{lemma-add-simplices}. This lemma
is completely general and does not care about the
exact shape of the simplicial sets (as long as they
have only finitely many nondegenerate simplices).
It seems altogether reasonable to expect a result
of the following kind:
Given any morphism $a : K \times \partial \Delta[k]
\to L$, with $K$ and $L$ hypercoverings, there
exists a morphism of hypercoverings $c : K' \to K$
and a morphism  $g : K' \times \Delta[k] \to L$
such that
$g|_{K' \times \partial \Delta[k]} =
a \circ (c \times \text{id}_{\partial \Delta[k]})$.
In other words, the category of hypercoverings is in
a suitable sense contractible.
\end{remark}

















\section{Cohomology and hypercoverings}
\label{section-cohomology}

\noindent
Let $\mathcal{C}$ be a site with fibre products.
Let $X$ be an object of $\mathcal{C}$.
Let $\mathcal{F}$ be a sheaf of abelian groups on $\mathcal{C}$.
Let $K, L$ be hypercoverings of $X$.
If $a, b : K \to L$ are homotopic maps,
then $\mathcal{F}(a), \mathcal{F}(b) : \mathcal{F}(K) \to \mathcal{F}(L)$
are homotopic maps, see
Simplicial, Lemma \ref{simplicial-lemma-functorial-homotopy}.
Hence have the same effect on cohomology groups of the associated
cochain complexes, see
Simplicial, Lemma \ref{simplicial-lemma-homotopy-s-Q}.
We are going to use this to define the colimit over all
hypercoverings.

\medskip\noindent
Let us temporarily denote $\text{HC}(\mathcal{C}, X)$
the category of hypercoverings of $X$. We have seen that
this is a category and not a ``big'' category,
see Lemma \ref{lemma-hypercoverings-set}.
This will be the index category for our diagram, see
Categories, Section \ref{categories-section-limits} for notation.
Consider the diagram
$$
\check{H}^i(-, \mathcal{F}) :
\text{HC}(\mathcal{C}, X)
\longrightarrow
\textit{Ab}.
$$
By Lemma \ref{lemma-product-hypercoverings} and
Lemma \ref{lemma-homotopy}, and the remark on homotopies above,
this diagram is directed, see
Categories, Definition \ref{categories-definition-directed}.
Thus the colimit
$$
\check{H}^i_{\text{HC}}(X, \mathcal{F})
=
\colim_{K \in \text{HC}(\mathcal{C}, X)}
\check{H}^i(K, \mathcal{F})
$$
has a particularly simple description (see location cited).

\begin{theorem}
\label{theorem-cohomology-hypercoverings}
Let $\mathcal{C}$ be a site with fibre products.
Let $X$ be an object of $\mathcal{C}$. Let $i \geq 0$.
The functors
\begin{eqnarray*}
\textit{Ab}(\mathcal{C}) & \longrightarrow & \textit{Ab} \\
\mathcal{F} & \longmapsto & H^i(X, \mathcal{F}) \\
\mathcal{F} & \longmapsto & \check{H}^i_{\text{HC}}(X, \mathcal{F})
\end{eqnarray*}
are canonically isomorphic.
\end{theorem}

\begin{proof}[Proof using spectral sequences.]
Suppose that $\xi \in H^p(X, \mathcal{F})$ for some $p \geq 0$.
Let us show that $\xi$ is in the image of the map
$\check{H}^p(X, \mathcal{F}) \to H^p(X, \mathcal{F})$ of
Lemma \ref{lemma-cech-spectral-sequence}
for some hypercovering $K$ of $X$.

\medskip\noindent
This is true if $p = 0$ by Lemma \ref{lemma-h0-cech}.
If $p = 1$, choose a {\v C}ech hypercovering $K$ of $X$ as in
Example \ref{example-cech} starting with a covering
$K_0 = \{U_i \to X\}$ in the site $\mathcal{C}$ such that
$\xi|_{U_i} = 0$, see
Cohomology on Sites,
Lemma \ref{sites-cohomology-lemma-kill-cohomology-class-on-covering}.
It follows immediately from the spectral sequence
in Lemma \ref{lemma-cech-spectral-sequence} that $\xi$ comes
from an element of $\check{H}^1(K, \mathcal{F})$ in this case.
In general, choose any hypercovering $K$ of $X$ such
that $\xi$ maps to zero in $\underline{H}^p(\mathcal{F})(K_0)$
(using Example \ref{example-cech} and
Cohomology on Sites,
Lemma \ref{sites-cohomology-lemma-kill-cohomology-class-on-covering}
again).
By the spectral sequence of Lemma \ref{lemma-cech-spectral-sequence}
the obstruction for $\xi$ to come from an element of
$\check{H}^p(K, \mathcal{F})$ is a sequence of elements
$\xi_1, \ldots, \xi_{p - 1}$ with
$\xi_q \in \check{H}^{p - q}(K, \underline{H}^q(\mathcal{F}))$
(more precisely the images of the $\xi_q$ in certain subquotients
of these groups).

\medskip\noindent
We can inductively replace the hypercovering $K$ by refinements
such that the obstructions $\xi_1, \ldots, \xi_{p - 1}$ restrict to zero
(and not just the images
in the subquotients -- so no subtlety here). Indeed, suppose we have
already managed to reach the situation where
$\xi_{q + 1}, \ldots, \xi_{p - 1}$ are zero.
Note that $\xi_q \in \check{H}^{p - q}(K, \underline{H}^q(\mathcal{F}))$
is the class of some element
$$
\tilde \xi_q \in
\underline{H}^q(\mathcal{F})(K_{p - q}) =
\prod H^q(U_i, \mathcal{F})
$$
if $K_{p - q} = \{U_i \to X\}_{i \in I}$. Let $\xi_{q, i}$
be the component of $\tilde \xi_q$ in $H^q(U_i, \mathcal{F})$.
As $q \geq 1$ we can use
Cohomology on Sites,
Lemma \ref{sites-cohomology-lemma-kill-cohomology-class-on-covering}
yet again to choose coverings $\{U_{i, j} \to U_i\}$
of the site such that each restriction $\xi_{q, i}|_{U_{i, j}} = 0$.
Consider the object $Z = \{U_{i, j} \to X\}$ of the category
$\text{SR}(\mathcal{C}, X)$ and its obvious morphism
$u : Z \to K_{p - q}$. It is clear that $u$ is a covering, see
Definition \ref{definition-covering-SR}. By
Lemma \ref{lemma-covering} there
exists a morphism $L \to K$ of hypercoverings of $X$ such that
$L_{p - q} \to K_{p - q}$ factors through $u$. Then clearly the
image of $\xi_q$ in $\underline{H}^q(\mathcal{F})(L_{p - q})$.
is zero. Since the spectral sequence of
Lemma \ref{lemma-cech-spectral-sequence}
is functorial this means that after replacing $K$ by $L$ we reach the
situation where $\xi_q, \ldots, \xi_{p - 1}$ are all zero.
Continuing like this we end up with a hypercovering where they are all
zero and hence $\xi$ is in the image of the map
$\check{H}^p(X, \mathcal{F}) \to H^p(X, \mathcal{F})$.

\medskip\noindent
Suppose that $K$ is a hypercovering of $X$, that
$\xi \in \check{H}^p(K, \mathcal{F})$ and that the image of
$\xi$ under the map
$\check{H}^p(X, \mathcal{F}) \to H^p(X, \mathcal{F})$ of
Lemma \ref{lemma-cech-spectral-sequence}
is zero. To finish the proof of the theorem we have to show that
there exists a morphism of hypercoverings $L \to K$ such that
$\xi$ restricts to zero in $\check{H}^p(L, \mathcal{F})$.
By the spectral sequence of Lemma \ref{lemma-cech-spectral-sequence}
the vanishing of the image of $\xi$ in $H^p(X, \mathcal{F})$
means that there exist elements $\xi_1, \ldots, \xi_{p - 2}$
with $\xi_q \in \check{H}^{p - 1 - q}(K, \underline{H}^q(\mathcal{F}))$
(more precisely the images of these in certain subquotients)
such that the images $d_{q + 1}^{p - 1 - q, q}\xi_q$ (in the spectral
sequence) add up to $\xi$. Hence by exactly the same mechanism as above
we can find a morphism of hypercoverings $L \to K$ such that
the restrictions of the elements $\xi_q$, $q = 1, \ldots, p - 2$
in $\check{H}^{p - 1 - q}(L, \underline{H}^q(\mathcal{F}))$ are zero.
Then it follows that $\xi$ is zero since the morphism $L \to K$
induces a morphism of spectral sequences according to
Lemma \ref{lemma-cech-spectral-sequence}.
\end{proof}

\begin{proof}[Proof without using spectral sequences.]
We have seen the result for $i = 0$, see Lemma \ref{lemma-h0-cech}.
We know that the functors $H^i(X, -)$ form a universal $\delta$-functor, see
Derived Categories, Lemma \ref{derived-lemma-higher-derived-functors}.
In order to prove the theorem it suffices to show that
the sequence of functors $\check{H}^i_{HC}(X, -)$ forms a
$\delta$-functor. Namely we know that {\v C}ech cohomology
is zero on injective sheaves (Lemma \ref{lemma-injective-trivial-cech})
and then we can apply
Homology, Lemma \ref{homology-lemma-efface-implies-universal}.

\medskip\noindent
Let
$$
0 \to \mathcal{F} \to \mathcal{G} \to \mathcal{H} \to 0
$$
be a short exact sequence of abelian sheaves on $\mathcal{C}$.
Let $\xi \in \check{H}^p_{HC}(X, \mathcal{H})$. Choose a hypercovering
$K$ of $X$ and an element $\sigma \in \mathcal{H}(K_p)$ representing
$\xi$ in cohomology. There is a corresponding exact sequence of
complexes
$$
0 \to s(\mathcal{F}(K)) \to s(\mathcal{G}(K)) \to s(\mathcal{H}(K))
$$
but we are not assured that there is a zero on the right also and this
is the only thing that
prevents us from defining $\delta(\xi)$ by a simple application of the
snake lemma. Recall that
$$
\mathcal{H}(K_p) = \prod \mathcal{H}(U_i)
$$
if $K_p = \{U_i \to X\}$. Let $\sigma =\prod \sigma_i$ with
$\sigma_i \in \mathcal{H}(U_i)$. Since $\mathcal{G} \to \mathcal{H}$ is
a surjection of sheaves we see that there exist coverings
$\{U_{i, j} \to U_i\}$ such that $\sigma_i|_{U_{i, j}}$ is the
image of some element $\tau_{i, j} \in \mathcal{G}(U_{i, j})$.
Consider the object $Z = \{U_{i, j} \to X\}$ of the category
$\text{SR}(\mathcal{C}, X)$ and its obvious morphism
$u : Z \to K_p$. It is clear that $u$ is a covering, see
Definition \ref{definition-covering-SR}. By
Lemma \ref{lemma-covering} there
exists a morphism $L \to K$ of hypercoverings of $X$ such that
$L_p \to K_p$ factors through $u$. After replacing $K$ by $L$
we may therefore assume that $\sigma$ is the image of an
element $\tau \in \mathcal{G}(K_p)$. Note that $d(\sigma) = 0$,
but not necessarily $d(\tau) = 0$. Thus $d(\tau) \in \mathcal{F}(K_{p + 1})$
is a cocycle. In this situation we define
$\delta(\xi)$ as the class of the cocycle $d(\tau)$ in
$\check{H}^{p + 1}_{HC}(X, \mathcal{F})$.

\medskip\noindent
At this point there are several things to verify:
(a) $\delta(\xi)$ does not depend on the choice of $\tau$,
(b) $\delta(\xi)$ does not depend on the choice of the hypercovering
$L \to K$ such that $\sigma$ lifts, and
(c) $\delta(\xi)$ does not depend on the initial hypercovering and
$\sigma$ chosen to represent $\xi$. We omit the verification of
(a), (b), and (c); the independence of the choices of the hypercoverings
really comes down to Lemmas \ref{lemma-product-hypercoverings}
and \ref{lemma-homotopy}. We also omit the verification that
$\delta$ is functorial with respect to morphisms of short exact
sequences of abelian sheaves on $\mathcal{C}$.

\medskip\noindent
Finally, we have to verify that with this definition of $\delta$
our short exact sequence of abelian sheaves above leads to a
long exact sequence of {\v C}ech cohomology groups.
First we show that if $\delta(\xi) = 0$ (with $\xi$ as above) then
$\xi$ is the image of some element
$\xi' \in \check{H}^p_{HC}(X, \mathcal{G})$.
Namely, if $\delta(\xi) = 0$, then, with notation as above, we
see that the class of $d(\tau)$ is zero in
$\check{H}^{p + 1}_{HC}(X, \mathcal{F})$. Hence there exists
a morphism of hypercoverings $L \to K$ such that the restriction
of $d(\tau)$ to an element of $\mathcal{F}(L_{p + 1})$ is
equal to $d(\upsilon)$ for some $\upsilon \in \mathcal{F}(L_p)$.
This implies that $\tau|_{L_p} + \upsilon$ form a
cocycle, and determine a class $\xi' \in \check{H}^p(L, \mathcal{G})$
which maps to $\xi$ as desired.

\medskip\noindent
We omit the proof that if $\xi' \in \check{H}^{p + 1}_{HC}(X, \mathcal{F})$
maps to zero in $\check{H}^{p + 1}_{HC}(X, \mathcal{G})$, then it is
equal to $\delta(\xi)$ for some $\xi \in \check{H}^p_{HC}(X, \mathcal{H})$.
\end{proof}

\noindent
Next, we deduce Verdier's case of
Theorem \ref{theorem-cohomology-hypercoverings}
by a sleight of hand.

\begin{proposition}
\label{proposition-cohomology-hypercoverings}
Let $\mathcal{C}$ be a site with fibre products and products of pairs.
Let $\mathcal{F}$ be an abelian sheaf on $\mathcal{C}$.
Let $i \geq 0$. Then
\begin{enumerate}
\item for every $\xi \in H^i(\mathcal{F})$ there exists a hypercovering
$K$ such that $\xi$ is in the image of the canonical map
$\check{H}^i(K, \mathcal{F}) \to H^i(\mathcal{F})$, and
\item if $K, L$ are hypercoverings and $\xi_K \in \check{H}^i(K, \mathcal{F})$,
$\xi_L \in \check{H}^i(L, \mathcal{F})$ are elements mapping
to the same element of $H^i(\mathcal{F})$, then there exists
a hypercovering $M$ and morphisms $M \to K$ and $M \to L$ such
that $\xi_K$ and $\xi_L$ map to the same element of
$\check{H}^i(M, \mathcal{F})$.
\end{enumerate}
In other words, modulo set theoretical issues, the cohomology
groups of $\mathcal{F}$ on $\mathcal{C}$ are the colimit of
the {\v C}ech cohomology groups of $\mathcal{F}$ over all hypercoverings.
\end{proposition}

\begin{proof}
This result is a trivial consequence of
Theorem \ref{theorem-cohomology-hypercoverings}.
Namely, we can artificially replace $\mathcal{C}$ with a slightly
bigger site $\mathcal{C}'$ such that
(I) $\mathcal{C}'$ has a final object $X$ and (II)
hypercoverings in $\mathcal{C}$ are more or less the
same thing as hypercoverings of $X$ in $\mathcal{C}'$.
But due to the nature of things, there is quite a bit of
bookkeeping to do.

\medskip\noindent
Let us call a family of morphisms $\{U_i \to U\}$ in $\mathcal{C}$
with fixed target a {\it weak covering} if the sheafification of the
map $\coprod_{i \in I} h_{U_i} \to h_U$ becomes surjective.
We construct a new site $\mathcal{C}'$ as follows
\begin{enumerate}
\item as a category set $\Ob(\mathcal{C}') = \Ob(\mathcal{C}) \amalg \{X\}$
and add a unique morphism to $X$ from every object of $\mathcal{C}'$,
\item $\mathcal{C}'$ has fibre products as fibre products and products
of pairs exist in $\mathcal{C}$,
\item coverings of $\mathcal{C}'$ are weak coverings of $\mathcal{C}$
together with those $\{U_i \to X\}_{i \in I}$ such that either $U_i = X$
for some $i$, or $U_i \not = X$ for all $i$ and the map
$\coprod h_{U_i} \to *$ of presheaves on $\mathcal{C}$ becomes
surjective after sheafification on $\mathcal{C}$,
\item we apply Sets, Lemma \ref{sets-lemma-coverings-site}
to restrict the coverings to obtain our site $\mathcal{C}'$.
\end{enumerate}
Then $\Sh(\mathcal{C}') = \Sh(\mathcal{C})$ because the inclusion
functor $\mathcal{C} \to \mathcal{C}'$ is a special cocontinuous functor
(see Sites, Definition \ref{sites-definition-special-cocontinuous-functor}).
We omit the straightforward verifications.

\medskip\noindent
Choose a covering $\{U_i \to X\}$ of $\mathcal{C}'$ such that $U_i$ is an
object of $\mathcal{C}$ for all $i$ (possible because
$\mathcal{C} \to \mathcal{C}'$ is special cocontinuous).
Then $K_0 = \{U_i \to X\}$ is a covering in the
site $\mathcal{C}'$ constructed above. We view $K_0$ as an object of
$\text{SR}(\mathcal{C}', X)$ and we set $K_{init} = \text{cosk}_0(K_0)$.
Then $K_{init}$ is a hypercovering of $X$, see
Example \ref{example-cech}. Note that every $K_{init, n}$ has the shape
$\{W_j \to X\}$ with $W_j \in \Ob(\mathcal{C})$.

\medskip\noindent
Proof of (1). Choose $\xi \in H^i(\mathcal{F}) = H^i(X, \mathcal{F}')$
where $\mathcal{F}'$ is the abelian sheaf on $\mathcal{C}'$ corresponding
to $\mathcal{F}$ on $\mathcal{C}$. By
Theorem \ref{theorem-cohomology-hypercoverings}
there exists a morphism of hypercoverings $K' \to K_{init}$
of $X$ in $\mathcal{C}'$ such that $\xi$ comes from an element
of $\check{H}^i(K', \mathcal{F})$.
Write $K'_n = \{U_{n, j} \to X\}$. Now since $K'_n$ maps to
$K_{init, n}$ we see that $U_{n, j}$ is an object of $\mathcal{C}$.
Hence we can define a simplicial object $K$ of $\text{SR}(\mathcal{C})$
by setting $K_n = \{U_{n, j}\}$. Since coverings in
$\mathcal{C}'$ consisting of families of morphisms of $\mathcal{C}$
are weak coverings, we see that $K$ is a hypercovering in the sense
of Definition \ref{definition-hypercovering-variant}.
Finally, since $\mathcal{F}'$ is the unique sheaf on $\mathcal{C}'$
whose restriction to $\mathcal{C}$ is equal to $\mathcal{F}$
we see that the {\v C}ech complexes $s(\mathcal{F}(K))$
and $s(\mathcal{F}'(K'))$ are identical and (1) follows.
(Compatibility with map into cohomology groups omitted.)

\medskip\noindent
Proof of (2). Let $K$ and $L$ be hypercoverings in $\mathcal{C}$.
Let $K'$ and $L'$ be the simplicial objects of $\text{SR}(\mathcal{C}', X)$
gotten from $K$ and $L$ by the functor
$\text{SR}(\mathcal{C}) \to \text{SR}(\mathcal{C}', X)$,
$\{U_i\} \mapsto \{U_i \to X\}$. As before we have equality of
{\v C}ech complexes and hence we obtain $\xi_{K'}$ and
$\xi_{L'}$ mapping to the same cohomology class of $\mathcal{F}'$
over $\mathcal{C}'$. After possibly enlarging our choice
of coverings in $\mathcal{C}'$ (due to a set theoretical issue)
we may assume that $K'$ and $L'$ are hypercoverings of $X$ in
$\mathcal{C}'$; this is true by our definition of hypercoverings in
Definition \ref{definition-hypercovering-variant} and
the fact that weak coverings in $\mathcal{C}$ give coverings in
$\mathcal{C}'$. By
Theorem \ref{theorem-cohomology-hypercoverings}
there exists a hypercovering $M'$ of $X$ in $\mathcal{C}'$
and morphisms $M' \to K'$, $M' \to L'$, and $M' \to K_{init}$
such that $\xi_{K'}$ and $\xi_{L'}$ restrict to the same element of
$\check{H}^i(M', \mathcal{F})$. Unwinding this statement as above
we find that (2) is true.
\end{proof}





\section{Hypercoverings of spaces}
\label{section-hypercoverings-spaces}

\noindent
The theory above is mildly interesting even in the case of topological
spaces. In this case we can work out what a hypercovering is and see
what the result actually says.

\medskip\noindent
Let $X$ be a topological space. Consider the site $X_{Zar}$
of Sites, Example \ref{sites-example-site-topological}. Recall that
an object of $X_{Zar}$ is simply an open of $X$ and that morphisms
of $X_{Zar}$ correspond simply to inclusions. So what is a
hypercovering of $X$ for the site $X_{Zar}$?

\medskip\noindent
Let us first unwind Definition \ref{definition-SR}.
An object of $\text{SR}(X_{Zar}, X)$ is simply given by a set
$I$ and for each $i \in I$ an open $U_i \subset X$.
Let us denote this by $\{U_i\}_{i \in I}$ since there can be no
confusion about the morphism $U_i \to X$.
A morphism $\{U_i\}_{i \in I} \to \{V_j\}_{j \in J}$
between two such objects is given by a map of sets
$\alpha : I \to J$ such that $U_i \subset V_{\alpha(i)}$ for all
$i \in I$. When is such a morphism a covering? This is the case
if and only if for every $j \in J$ we have
$V_j = \bigcup_{i\in I, \ \alpha(i) = j} U_i$ (and is
a covering in the site $X_{Zar}$).

\medskip\noindent
Using the above we get the following description of a hypercovering
in the site $X_{Zar}$. A hypercovering of $X$ in $X_{Zar}$
is given by the following data
\begin{enumerate}
\item a simplicial set $I$ (see
Simplicial, Section \ref{simplicial-section-simplicial-set}), and
\item for each $n \geq 0$ and every $i \in I_n$ an open set $U_i \subset X$.
\end{enumerate}
We will denote such a collection of data by the notation $(I, \{U_i\})$.
In order for this to be a hypercovering of $X$ we require
the following properties
\begin{itemize}
\item for $i \in I_n$ and $0 \leq a \leq n$
we have $U_i \subset U_{d^n_a(i)}$,
\item for $i \in I_n$ and $0 \leq a \leq n$ we have $U_i = U_{s^n_a(i)}$,
\item we have
\begin{equation}
\label{equation-covering-X}
X = \bigcup\nolimits_{i \in I_0} U_i,
\end{equation}
\item for every $i_0, i_1 \in I_0$, we have
\begin{equation}
\label{equation-covering-two}
U_{i_0} \cap U_{i_1} =
\bigcup\nolimits_{i \in I_1, \ d^1_0(i) = i_0, \ d^1_1(i) = i_1} U_i,
\end{equation}
\item for every $n \geq 1$ and every
$(i_0, \ldots, i_{n + 1}) \in (I_n)^{n + 2}$ such that
$d^n_{b - 1}(i_a) = d^n_a(i_b)$ for all $0\leq a < b\leq n + 1$
we have
\begin{equation}
\label{equation-covering-general}
U_{i_0} \cap \ldots \cap U_{i_{n + 1}} =
\bigcup\nolimits_{i \in I_{n + 1},
\ d^{n + 1}_a(i) = i_a, \ a = 0, \ldots, n + 1} U_i,
\end{equation}
\item each of the open coverings (\ref{equation-covering-X}),
(\ref{equation-covering-two}), and (\ref{equation-covering-general})
is an element of $\text{Cov}(X_{Zar})$
(this is a set theoretic condition, bounding
the size of the index sets of the coverings).
\end{itemize}
Conditions (\ref{equation-covering-X}) and
(\ref{equation-covering-two}) should be familiar from the
chapter on sheaves on spaces for example, and condition
(\ref{equation-covering-general}) is the natural generalization.

\begin{remark}
\label{remark-not-covering-set}
One feature of this description is that if one of the multiple
intersections $U_{i_0} \cap \ldots \cap U_{i_{n + 1}}$ is empty then
the covering on the right hand side may be the empty covering.
Thus it is not automatically the case that the maps
$I_{n + 1} \to (\text{cosk}_n\text{sk}_n I)_{n + 1}$ are surjective.
This means that the geometric realization of $I$ may be an interesting
(non-contractible) space.

\medskip\noindent
In fact, let $I'_n \subset I_n$ be the subset
consisting of those simplices $i \in I_n$ such that
$U_i \not = \emptyset$. It is easy to see that $I' \subset I$
is a subsimplicial set, and that $(I', \{U_i\})$ is a hypercovering.
Hence we can always refine a hypercovering to a hypercovering where
none of the opens $U_i$ is empty.
\end{remark}

\begin{remark}
\label{remark-repackage-into-simplicial-space}
Let us repackage this information in yet another way.
Namely, suppose that $(I, \{U_i\})$ is a hypercovering of
the topological space $X$. Given this data we can construct
a simplicial topological space $U_\bullet$ by setting
$$
U_n = \coprod\nolimits_{i \in I_n} U_i,
$$
and where for given $\varphi : [n] \to [m]$ we let
morphisms $U(\varphi) : U_n \to U_m$ be the morphism
coming from the inclusions $U_i \subset U_{\varphi(i)}$
for $i \in I_n$. This simplicial topological space comes
with an augmentation $\epsilon : U_\bullet \to X$.
With this morphism the simplicial space $U_\bullet$ becomes
a hypercovering of $X$ along which one has cohomological descent
in the sense of \cite[Expos\'e Vbis]{SGA4}.
In other words, $H^n(U_\bullet, \epsilon^*\mathcal{F}) = H^n(X, \mathcal{F})$.
(Insert future reference here to cohomology over simplicial
spaces and cohomological descent formulated in those terms.)
Suppose that $\mathcal{F}$ is an abelian sheaf on $X$.
In this case the spectral sequence of Lemma \ref{lemma-cech-spectral-sequence}
becomes the spectral sequence with $E_1$-term
$$
E_1^{p, q} = H^q(U_p, \epsilon_q^*\mathcal{F})
\Rightarrow
H^{p + q}(U_\bullet, \epsilon^*\mathcal{F}) = H^{p + q}(X, \mathcal{F})
$$
comparing the total cohomology of $\epsilon^*\mathcal{F}$
to the cohomology groups of $\mathcal{F}$ over the pieces
of $U_\bullet$. (Insert future reference to this spectral sequence
here.)
\end{remark}

\noindent
In topology we often want to find hypercoverings of $X$ which
have the property that all the $U_i$ come from a given basis for the topology
of $X$ and that all the coverings
(\ref{equation-covering-two}) and (\ref{equation-covering-general})
are from a given cofinal collection of coverings.
Here are two example lemmas.

\begin{lemma}
\label{lemma-basis-hypercovering}
Let $X$ be a topological space.
Let $\mathcal{B}$ be a basis for the topology of $X$.
There exists a hypercovering $(I, \{U_i\})$ of $X$
such that each $U_i$ is an element of $\mathcal{B}$.
\end{lemma}

\begin{proof}
Let $n \geq 0$.
Let us say that an {\it $n$-truncated hypercovering} of $X$ is
given by an $n$-truncated simplicial set $I$ and for each
$i \in I_a$, $0 \leq a \leq n$ an open $U_i$ of $X$ such that
the conditions defining a hypercovering hold whenever they make sense.
In other words we require the inclusion relations and covering
conditions only when all simplices that occur in them
are $a$-simplices with $a \leq n$. The lemma follows if we can prove
that given a $n$-truncated hypercovering $(I, \{U_i\})$ with
all $U_i \in \mathcal{B}$ we can extend it to an $(n + 1)$-truncated
hypercovering without adding any $a$-simplices for $a \leq n$.
This we do as follows. First we consider the $(n + 1)$-truncated
simplicial set $I'$ defined by
$I' = \text{sk}_{n + 1}(\text{cosk}_n I)$.
Recall that
$$
I'_{n + 1} =
\left\{
\begin{matrix}
(i_0, \ldots, i_{n + 1}) \in (I_n)^{n + 2} \text{ such that}\\
d^n_{b - 1}(i_a) = d^n_a(i_b) \text{ for all }0\leq a < b\leq n + 1
\end{matrix}
\right\}
$$
If $i' \in I'_{n + 1}$ is degenerate, say $i' = s^n_a(i)$ then we set
$U_{i'} = U_i$ (this is forced on us anyway by the second condition).
We also set $J_{i'} = \{i'\}$ in this case.
If $i' \in I'_{n + 1}$ is nondegenerate, say
$i' = (i_0, \ldots, i_{n + 1})$, then we choose a set
$J_{i'}$ and an open covering
\begin{equation}
\label{equation-choose-covering}
U_{i_0} \cap \ldots \cap U_{i_{n + 1}} =
\bigcup\nolimits_{i \in J_{i'}} U_i,
\end{equation}
with $U_i \in \mathcal{B}$ for $i \in J_{i'}$.
Set
$$
I_{n + 1} = \coprod\nolimits_{i' \in I'_{n + 1}} J_{i'}
$$
There is a canonical map $\pi : I_{n + 1} \to I'_{n + 1}$ which is
a bijection over the set of degenerate simplices in $I'_{n + 1}$ by
construction.
For $i \in I_{n + 1}$ we define $d^{n + 1}_a(i) = d^{n + 1}_a(\pi(i))$.
For $i \in I_n$ we define $s^n_a(i) \in I_{n + 1}$ as the unique
simplex lying over the degenerate simplex $s^n_a(i) \in I'_{n + 1}$.
We omit the verification that this defines an $(n + 1)$-truncated
hypercovering of $X$.
\end{proof}

\begin{lemma}
\label{lemma-quasi-separated-quasi-compact-hypercovering}
Let $X$ be a topological space.
Let $\mathcal{B}$ be a basis for the topology of $X$.
Assume that
\begin{enumerate}
\item $X$ is quasi-compact,
\item each $U \in \mathcal{B}$ is quasi-compact open, and
\item the intersection of any two quasi-compact opens in
$X$ is quasi-compact.
\end{enumerate}
Then there exists a hypercovering $(I, \{U_i\})$ of $X$ with the
following properties
\begin{enumerate}
\item each $U_i$ is an element of the basis $\mathcal{B}$,
\item each of the $I_n$ is a finite set, and in particular
\item each of the coverings  (\ref{equation-covering-X}),
(\ref{equation-covering-two}), and (\ref{equation-covering-general})
is finite.
\end{enumerate}
\end{lemma}

\begin{proof}
This follows directly from the construction in the proof of
Lemma \ref{lemma-basis-hypercovering} if we choose finite coverings
by elements of $\mathcal{B}$ in (\ref{equation-choose-covering}).
Details omitted.
\end{proof}







\section{Constructing hypercoverings}
\label{section-hypercovering-sites}

\noindent
Let $\mathcal{C}$ be a site. In this section we will think of a
simplicial object of $\text{SR}(\mathcal{C})$ as follows.
As usual, we set $K_n = K([n])$ and we denote $K(\varphi) : K_n \to K_m$
the morphism associated to $\varphi : [m] \to [n]$.
We may write $K_n = \{U_{n, i}\}_{i \in I_n}$. For
$\varphi : [m] \to [n]$ the morphism $K(\varphi) : K_n \to K_m$
is given by a map $\alpha(\varphi) : I_n \to I_m$ and morphisms
$f_{\varphi, i} : U_{n, i} \to U_{m, \alpha(\varphi)(i)}$
for $i \in I_n$. The fact that $K$ is a simplicial object of
$\text{SR}(\mathcal{C})$ implies that $(I_n, \alpha(\varphi))$
is a simplicial set
and that $f_{\psi, \alpha(\varphi)(i)} \circ f_{\varphi, i} =
f_{\varphi \circ \psi, i}$ when $\psi : [l] \to [m]$.

\begin{lemma}
\label{lemma-split}
Let $\mathcal{C}$ be a site. Let $K$ be an $r$-truncated simplicial object
of $\text{SR}(\mathcal{C})$. The following are equivalent
\begin{enumerate}
\item $K$ is split (Simplicial, Definition \ref{simplicial-definition-split}),
\item $f_{\varphi, i} : U_{n, i} \to U_{m, \alpha(\varphi)(i)}$
is an isomorphism for $r \geq n \geq 0$,
$\varphi : [m] \to [n]$ surjective, $i \in I_n$, and
\item $f_{\sigma^n_j, i} : U_{n, i} \to U_{n + 1, \alpha(\sigma^n_j)(i)}$
is an isomorphism for $0 \leq j \leq n < r$, $i \in I_n$.
\end{enumerate}
The same holds for simplicial objects if in (2) and (3)
we set $r = \infty$.
\end{lemma}

\begin{proof}
The splitting of a simplicial set is unique and is given by
the nondegenerate indices $N(I_n)$ in each degree $n$, see
Simplicial, Lemma \ref{simplicial-lemma-splitting-simplicial-sets}.
The coproduct of two objects $\{U_i\}_{i \in I}$ and $\{U_j\}_{j \in J}$
of $\text{SR}(\mathcal{C})$ is given by $\{U_l\}_{l \in I \amalg J}$
with obvious notation. Hence a splitting of $K$ must be given by
$N(K_n) = \{U_i\}_{i \in N(I_n)}$. The equivalence of (1) and (2)
now follows by unwinding the definitions. The equivalence of (2)
and (3) follows from the fact that any surjection
$\varphi : [m] \to [n]$ is a composition of morphisms
$\sigma^k_j$ with $k = n, n + 1, \ldots, m - 1$.
\end{proof}

\begin{lemma}
\label{lemma-hypercovering-object}
Let $\mathcal{C}$ be a site with fibre products.
Let $\mathcal{B} \subset \Ob(\mathcal{C})$ be a subset.
Assume
\begin{enumerate}
\item any object $U$ of $\mathcal{C}$ has a covering
$\{U_j \to U\}_{j \in J}$ with $U_j \in \mathcal{B}$, and
\item if $\{U_j \to U\}_{j \in J}$ is a covering
with $U_j \in \mathcal{B}$ and $\{U' \to U\}$ is a morphism with
$U' \in \mathcal{B}$, then $\{U_j \to U\}_{j \in J} \amalg \{U' \to U\}$
is a covering.
\end{enumerate}
Then for any $X$ in $\mathcal{C}$ there is a hypercovering $K$
of $X$ such that $K_n = \{U_{n, i}\}_{i \in I_n}$
with $U_{n, i} \in \mathcal{B}$ for all $i \in I_n$.
\end{lemma}

\begin{proof}
A warmup for this proof is the proof of
Lemma \ref{lemma-basis-hypercovering} and
we encourage the reader to read that proof first.

\medskip\noindent
First we replace $\mathcal{C}$ by the site $\mathcal{C}/X$.
After doing so we may assume that $X$ is the final object
of $\mathcal{C}$ and that $\mathcal{C}$ has all finite limits
(Categories, Lemma \ref{categories-lemma-finite-limits-exist}).

\medskip\noindent
Let $n \geq 0$. Let us say that an
{\it $n$-truncated $\mathcal{B}$-hypercovering of $X$}
is given by an $n$-truncated simplicial object $K$
of $\text{SR}(\mathcal{C})$
such that for $i \in I_a$, $0 \leq a \leq n$
we have $U_{a, i} \in \mathcal{B}$ and such that
$K_0$ is a covering of $X$ and
$K_{a + 1} \to (\text{cosk}_a \text{sk}_a K)_{a + 1}$
for $a = 0, \ldots, n - 1$
is a covering as in Definition \ref{definition-covering-SR}.

\medskip\noindent
Since $X$ has a covering $\{U_{0, i} \to X\}_{i \in I_0}$
with $U_i \in \mathcal{B}$ by assumption, we get a $0$-truncated
$\mathcal{B}$-hypercovering of $X$. Observe that any $0$-truncated
$\mathcal{B}$-hypercovering of $X$ is split, see
Lemma \ref{lemma-split}.

\medskip\noindent
The lemma follows if we can prove for $n \geq 0$ that given a
split $n$-truncated $\mathcal{B}$-hypercovering $K$ of $X$
we can extend it to a
split $(n + 1)$-truncated $\mathcal{B}$-hypercovering of $X$.

\medskip\noindent
Construction of the extension. Consider the $(n + 1)$-truncated simplicial
object $K' = \text{sk}_{n + 1}(\text{cosk}_n K)$ of $\text{SR}(\mathcal{C})$.
Write
$$
K'_{n + 1} = \{U'_{n + 1, i}\}_{i \in I'_{n + 1}}
$$
Since $K = \text{sk}_n K'$ we have $K_a = K'_a$ for $0 \leq a \leq n$.
For every $i' \in I'_{n + 1}$ we choose a covering
\begin{equation}
\label{equation-choose-covering-B}
\{g_{n + 1, j} : U_{n + 1, j} \to U'_{n + 1, i'}\}_{j \in J_{i'}}
\end{equation}
with $U_{n + 1, j} \in \mathcal{B}$ for $j \in J_{i'}$.
This is possible by our assumption on $\mathcal{B}$ in the lemma.
For $0 \leq m \leq n$ denote $N_m \subset I_m$ the subset of
nondegenerate indices. We set
$$
I_{n + 1} =
\coprod\nolimits_{\varphi : [n + 1] \to [m]\text{ surjective, }0\leq m \leq n}
N_m \amalg
\coprod\nolimits_{i' \in I'_{n + 1}} J_{i'}
$$
For $j \in I_{n + 1}$ we set
$$
U_{n + 1, j} =
\left\{
\begin{matrix}
U_{m, i} & \text{if} &
j = (\varphi, i) & \text{where} & \varphi : [n + 1] \to [m], i \in N_m \\
U_{n + 1, j} & \text{if} &
j \in J_{i'} & \text{where} & i' \in I'_{n + 1}
\end{matrix}
\right.
$$
with obvious notation. We set $K_{n + 1} = \{U_{n + 1, j}\}_{j \in I_{n + 1}}$.
By construction $U_{n + 1, j}$ is an element
of $\mathcal{B}$ for all $j \in I_{n + 1}$. Let us define compatible
maps
$$
I_{n + 1} \to I'_{n + 1}
\quad\text{and}\quad
K_{n + 1} \to K'_{n + 1}
$$
Namely, the first map is given by
$(\varphi, i) \mapsto \alpha'(\varphi)(i)$ and
$(j \in J_{i'}) \mapsto i'$.
For the second map we use the morphisms
$$
f'_{\varphi, i} : U_{m, i} \to U'_{n + 1, \alpha'(\varphi)(i)}
\quad\text{and}\quad
g_{n + 1, j} : U_{n + 1, j} \to U'_{n + 1, i'}
$$
We claim the morphism
$$
K_{n + 1} \to K'_{n + 1} =
(\text{cosk}_n \text{sk}_n K')_{n + 1} =
(\text{cosk}_n K)_{n + 1}
$$
is a covering as in Definition \ref{definition-covering-SR}.
Namely, if $i' \in I'_{n + 1}$, then either $i'$ is nondegenerate
and the inverse image of $i'$ in $I_{n + 1}$ is equal to $J_{i'}$
and we get a covering of $U'_{n + 1, i'}$ by our choice
(\ref{equation-choose-covering-B}), or $i'$ is degenerate and
the inverse image of $i'$ in $I_{n + 1}$ is
$J_{i'} \amalg \{(\varphi, i)\}$ for a unique pair $(\varphi, i)$
and we get a covering by our choice (\ref{equation-choose-covering-B})
and assumption (2) of the lemma.

\medskip\noindent
To finish the proof we have to define the morphisms
$K(\varphi) : K_{n + 1} \to K_m$ corresponding to morphisms
$\varphi : [m] \to [n + 1]$, $0 \leq m \leq n$ and the morphisms
$K(\varphi) : K_m \to K_{n + 1}$ corresponding to morphisms
$\varphi : [n + 1] \to [m]$, $0 \leq m \leq n$
satisfying suitable composition relations.
For the first kind we use the composition
$$
K_{n + 1} \to K'_{n + 1} \xrightarrow{K'(\varphi)} K'_m = K_m
$$
to define $K(\varphi) : K_{n + 1} \to K_m$.
For the second kind, suppose given $\varphi : [n + 1] \to [m]$,
$0 \leq m \leq n$. We define the corresponding morphism
$K(\varphi) : K_m \to K_{n + 1}$ as follows:
\begin{enumerate}
\item for $i \in I_m$ there is a unique surjective map
$\psi : [m] \to [m_0]$ and a unique $i_0 \in I_{m_0}$ nondegenerate
such that $\alpha(\psi)(i_0) = i$\footnote{For example, if $i$ is
nondegenerate, then $m = m_0$ and $\psi = \text{id}_{[m]}$.},
\item we set $\varphi_0 = \psi_0 \circ \varphi : [n + 1] \to [m_0]$
and we map
$i \in I_m$ to $(\varphi_0, i_0) \in I_{n + 1}$, in other words,
$\alpha(\varphi)(i) = (\varphi_0, i_0)$, and
\item the morphism
$f_{\varphi, i} : U_{m, i} \to U_{n + 1, \alpha(\varphi)(i)} = U_{m_0, i_0}$
is the inverse of the isomorphism $f_{\psi, i_0} : U_{m_0, i_0} \to U_{m, i}$
(see Lemma \ref{lemma-split}).
\end{enumerate}
We omit the straightforward but cumbersome verification that this defines
a split $(n + 1)$-truncated $\mathcal{B}$-hypercovering of $X$
extending the given $n$-truncated one. In fact, everything is clear
from the above, except for the verification that the morphisms
$K(\varphi)$ compose correctly for all $\varphi : [a] \to [b]$
with $0 \leq a, b \leq n + 1$.
\end{proof}

\begin{lemma}
\label{lemma-hypercovering-site}
Let $\mathcal{C}$ be a site with equalizers and fibre products.
Let $\mathcal{B} \subset \Ob(\mathcal{C})$ be a subset. Assume
that any object of $\mathcal{C}$ has a covering
whose members are elements of $\mathcal{B}$.
Then there is a hypercovering $K$ such that
$K_n = \{U_i\}_{i \in I_n}$ with $U_i \in \mathcal{B}$
for all $i \in I_n$.
\end{lemma}

\begin{proof}
This proof is almost the same as the proof of
Lemma \ref{lemma-hypercovering-object}. We will
only explain the differences.

\medskip\noindent
Let $n \geq 1$. Let us say that an
{\it $n$-truncated $\mathcal{B}$-hypercovering}
is given by an $n$-truncated simplicial
object $K$ of $\text{SR}(\mathcal{C})$
such that for $i \in I_a$, $0 \leq a \leq n$
we have $U_{a, i} \in \mathcal{B}$ and such that
\begin{enumerate}
\item $F(K_0)^\# \to *$ is surjective,
\item $F(K_1)^\# \to F(K_0)^\# \times F(K_0)^\#$ is surjective,
\item $F(K_{a + 1})^\# \to F((\text{cosk}_a \text{sk}_a K)_{a + 1})^\#$
for $a = 1, \ldots, n - 1$ is surjective.
\end{enumerate}
We first explicitly construct a split $1$-truncated $\mathcal{B}$-hypercovering.

\medskip\noindent
Take $I_0 = \mathcal{B}$ and $K_0 = \{U\}_{U \in \mathcal{B}}$.
Then (1) holds by our assumption on $\mathcal{B}$. Set
$$
\Omega =
\{(U, V, W, a, b) \mid U, V, W \in \mathcal{B}, a : U \to V, b : U \to W\}
$$
Then we set $I_1 = I_0 \amalg \Omega$. For $i \in I_1$ we set
$U_{1, i} = U_{0, i}$ if $i \in I_0$ and $U_{1, i} = U$
if $i = (U, V, W, a, b) \in \Omega$. The map
$K(\sigma^0_0) : K_0 \to K_1$ corresponds to the
inclusion $\alpha(\sigma^0_0) : I_0 \to I_1$
and the identity $f_{\sigma^0_0, i} : U_{0, i} \to U_{1, i}$
on objects. The maps $K(\delta^1_0), K(\delta^1_1) : K_1 \to K_0$
correspond to the two maps $I_1 \to I_0$ which are the
identity on $I_0 \subset I_1$ and map $(U, V, W, a, b) \in \Omega \subset I_1$
to $V$, resp.\ $W$. The corresponding morphisms
$f_{\delta^1_0, i}, f_{\delta^1_1, i} : U_{1, i} \to U_{0, i}$ are
the identity if $i \in I_0$ and $a, b$ in case $i = (U, V, W, a, b) \in \Omega$.
The reason that (2) holds is that any section of
$F(K_0)^\# \times F(K_0)^\#$ over an object $U$ of $\mathcal{C}$
comes, after replacing $U$ by the members of a covering,
from a map $U \to F(K_0) \times F(K_0)$.
This in turn means we have $V, W \in \mathcal{B}$
and two morphisms $U \to V$ and $U \to W$. Further replacing
$U$ by the members of a covering we may assume $U \in \mathcal{B}$
as desired.

\medskip\noindent
The lemma follows if we can prove that given a split
$n$-truncated $\mathcal{B}$-hypercovering $K$ for $n \geq 1$
we can extend it to a split $(n + 1)$-truncated $\mathcal{B}$-hypercovering.
Here the argument proceeds exactly as in the proof of
Lemma \ref{lemma-hypercovering-object}.
We omit the precise details, except for the following comments.
First, we do not need assumption (2) in the proof of the current
lemma as we do not need the morphism
$K_{n + 1} \to (\text{cosk}_n K)_{n + 1}$ to be covering;
we only need it to induce a surjection on associated sheaves of sets
which follows from
Sites, Lemma \ref{sites-lemma-covering-surjective-after-sheafification}.
Second, the assumption that $\mathcal{C}$ has fibre products and equalizers
guarantees that $\text{SR}(\mathcal{C})$ has fibre products
and equalizers and $F$ commutes with these
(Lemma \ref{lemma-coprod-prod-SR}). This suffices
assure us the coskeleton functors used exist (see
Simplicial, Remark \ref{simplicial-remark-existence-cosk} and
Categories, Lemma \ref{categories-lemma-fibre-products-equalizers-exist}).
\end{proof}

\begin{lemma}
\label{lemma-hypercovering-morphism-sites}
Let $f : \mathcal{C} \to \mathcal{D}$ be a morphism of sites
given by the functor $u : \mathcal{D} \to \mathcal{C}$.
Assume $\mathcal{D}$ and $\mathcal{C}$ have equalizers and
fibre products and $u$ commutes with them.
If a simplicial object $K$ of $\text{SR}(\mathcal{D})$
is a hypercovering, then $u(K)$ is a hypercovering.
\end{lemma}

\begin{proof}
If we write $K_n = \{U_{n, i}\}_{i \in I_n}$ as in the introduction
to this section, then $u(K)$ is the object of $\text{SR}(\mathcal{C})$
given by $u(K_n) = \{u(U_i)\}_{i \in I_n}$.
By Sites, Lemma \ref{sites-lemma-pullback-representable-sheaf}
we have $f^{-1}h_U^\# = h_{u(U)}^\#$ for $U \in \Ob(\mathcal{D})$.
This means that $f^{-1}F(K_n)^\# = F(u(K_n))^\#$ for all $n$.
Let us check the conditions (1), (2), (3) for $u(K)$ to be a
hypercovering from Definition \ref{definition-hypercovering-variant}.
Since $f^{-1}$ is an exact functor, we find that
$$
F(u(K_0))^\# = f^{-1}F(K_0)^\# \to f^{-1}* = *
$$
is surjective as a pullback of a surjective map and we get (1).
Similarly,
$$
F(u(K_1))^\# = f^{-1}F(K_1)^\# \to
f^{-1} (F(K_0) \times F(K_0))^\# = F(u(K_0))^\# \times F(u(K_0))^\#
$$
is surjective as a pullback and we get (2). For condition (3),
in order to conclude by the same method it suffices if
$$
F((\text{cosk}_n \text{sk}_n u(K))_{n + 1})^\# =
f^{-1}F((\text{cosk}_n \text{sk}_n K)_{n + 1})^\#
$$
The above shows that $f^{-1}F(-) = F(u(-))$. Thus it suffices to show
that $u$ commutes with the limits used in defining
$(\text{cosk}_n \text{sk}_n K)_{n + 1}$ for $n \geq 1$.
By Simplicial, Remark \ref{simplicial-remark-existence-cosk}
these limits are finite connected limits and $u$ commutes with these
by assumption.
\end{proof}

\begin{lemma}
\label{lemma-hypercovering-continuous-functor}
Let $\mathcal{C}$, $\mathcal{D}$ be sites. Let
$u : \mathcal{D} \to \mathcal{C}$ be a continuous functor.
Assume $\mathcal{D}$ and $\mathcal{C}$ have fibre products
and $u$ commutes with them. Let $Y \in \mathcal{D}$ and
$K \in \text{SR}(\mathcal{D}, Y)$ a hypercovering of $Y$.
Then $u(K)$ is a hypercovering of $u(Y)$.
\end{lemma}

\begin{proof}
This is easier than the proof of Lemma \ref{lemma-hypercovering-morphism-sites}
because the notion of being a hypercovering of an object is stronger, see
Definitions \ref{definition-hypercovering} and \ref{definition-covering-SR}.
Namely, $u$ sends coverings to coverings by the definition of
a morphism of sites. It suffices to check $u$ commutes with the
limits used in defining
$(\text{cosk}_n \text{sk}_n K)_{n + 1}$ for $n \geq 1$.
This is clear because the induced functor
$\mathcal{D}/Y \to \mathcal{C}/X$ commutes with all finite limits
(and source and target have all finite limits by
Categories, Lemma \ref{categories-lemma-finite-limits-exist}).
\end{proof}

\begin{lemma}
\label{lemma-w-contractible}
Let $\mathcal{C}$ be a site. Let $\mathcal{B} \subset \Ob(\mathcal{C})$
be a subset. Assume
\begin{enumerate}
\item $\mathcal{C}$ has fibre products,
\item for all $X \in \Ob(\mathcal{C})$ there exists a finite covering
$\{U_i \to X\}_{i \in I}$ with $U_i \in \mathcal{B}$,
\item if $\{U_i \to X\}_{i \in I}$ is a finite covering with
$U_i \in \mathcal{B}$ and $U \to X$ is a morphism with $U \in \mathcal{B}$,
then $\{U_i \to X\}_{i \in I} \amalg \{U \to X\}$ is a covering.
\end{enumerate}
Then for every $X$ there exists a hypercovering $K$ of $X$
such that each $K_n = \{U_{n, i} \to X\}_{i \in I_n}$ with
$I_n$ finite and $U_{n, i} \in \mathcal{B}$.
\end{lemma}

\begin{proof}
This lemma is the analogue of
Lemma \ref{lemma-quasi-separated-quasi-compact-hypercovering}
for sites. To prove the lemma we follow exactly the proof of
Lemma \ref{lemma-hypercovering-object}
paying attention to the following two points
\begin{enumerate}
\item[(a)] We choose our initial covering $\{U_{0, i} \to X\}_{i \in I_0}$
with $U_{0, i} \in \mathcal{B}$ such that the index set $I_0$ is finite, and
\item[(b)] in choosing the coverings
(\ref{equation-choose-covering-B})
we choose $J_{i'}$ finite.
\end{enumerate}
The reader sees easily that with these modifications we end up
with finite index sets $I_n$ for all $n$.
\end{proof}

\begin{remark}
\label{remark-taking-disjoint-unions}
Let $\mathcal{C}$ be a site. Let
$K$ and $L$ be objects of $\text{SR}(\mathcal{C})$.
Write $K = \{U_i\}_{i \in I}$ and $L = \{V_j\}_{j \in J}$.
Assume $U = \coprod_{i \in I} U_i$ and $V = \coprod_{j \in J} V_j$
exist. Then we get
$$
\Mor_{\text{SR}(\mathcal{C})}(K, L) \longrightarrow \Mor_\mathcal{C}(U, V)
$$
as follows. Given $f : K \to L$ given by $\alpha : I \to J$
and $f_i : U_i \to V_{\alpha(i)}$ we obtain a transformation of functors
$$
\Mor_\mathcal{C}(V, -) =
\prod\nolimits_{j \in J} \Mor_\mathcal{C}(V_j, -)
\to
\prod\nolimits_{i \in I} \Mor_\mathcal{C}(U_i, -) =
\Mor_\mathcal{C}(U, -)
$$
sending $(g_j)_{j \in J}$ to
$(g_{\alpha(i)} \circ f_i)_{i \in I}$. Hence the Yoneda lemma
produces the corresponding map $U \to V$. Of course, $U \to V$
maps the summand $U_i$ into the summand $V_{\alpha(i)}$ via
the morphism $f_i$.
\end{remark}

\begin{remark}
\label{remark-take-unions-hypercovering}
Let $\mathcal{C}$ be a site. Assume $\mathcal{C}$ has
fibre products and equalizers and let $K$ be a hypercovering.
Write $K_n = \{U_{n, i}\}_{i \in I_n}$. Suppose that
\begin{enumerate}
\item[(a)] $U_n = \coprod_{i \in I_n} U_{n, i}$ exists, and
\item[(b)] $\coprod_{i \in I_n} h_{U_{n, i}} \to h_{U_n}$ induces
an isomorphism on sheafifications.
\end{enumerate}
Then we get another simplicial object $L$ of $\text{SR}(\mathcal{C})$
with $L_n = \{U_n\}$, see
Remark \ref{remark-taking-disjoint-unions}.
Now we claim that $L$ is a hypercovering.
To see this we check conditions (1), (2), (3) of
Definition \ref{definition-hypercovering-variant}.
Condition (1) follows from (b) and (1) for $K$.
Condition (2) follows in exactly the same way.
Condition (3) follows because
\begin{align*}
F((\text{cosk}_n \text{sk}_n L)_{n + 1})^\#
& =
((\text{cosk}_n \text{sk}_n F(L)^\#)_{n + 1}) \\
& =
((\text{cosk}_n \text{sk}_n F(K)^\#)_{n + 1}) \\
& =
F((\text{cosk}_n \text{sk}_n K)_{n + 1})^\#
\end{align*}
for $n \geq 1$ and hence the condition for $K$ implies the condition for
$L$ exactly as in (1) and (2).
Note that $F$ commutes with connected limits and sheafification is exact
proving the first and last equality; the middle equality follows as
$F(K)^\# = F(L)^\#$ by (b).
\end{remark}

\begin{remark}
\label{remark-take-unions-hypercovering-X}
Let $\mathcal{C}$ be a site. Let $X \in \Ob(\mathcal{C})$.
Assume $\mathcal{C}$ has fibre products and let $K$ be a hypercovering of $X$.
Write $K_n = \{U_{n, i}\}_{i \in I_n}$. Suppose that
\begin{enumerate}
\item[(a)] $U_n = \coprod_{i \in I_n} U_{n, i}$ exists,
\item[(b)] given morphisms
$(\alpha, f_i) : \{U_i\}_{i \in I} \to \{V_j\}_{j \in J}$ and
$(\beta, g_k) : \{W_k\}_{k \in K} \to \{V_j\}_{j \in J}$
in $\text{SR}(\mathcal{C})$ such that
$U = \coprod U_i$, $V = \coprod V_j$, and $W = \coprod W_j$
exist, then $U \times_V W =
\coprod_{(i, j, k), \alpha(i) = j = \beta(k)} U_i \times_{V_j} W_k$,
\item[(c)] if $(\alpha, f_i) : \{U_i\}_{i \in I} \to \{V_j\}_{j \in J}$
is a covering in the sense of
Definition \ref{definition-covering-SR}
and $U = \coprod U_i$ and $V = \coprod V_j$ exist,
then the corresponding morphism $U \to V$
of Remark \ref{remark-taking-disjoint-unions}
is a covering of $\mathcal{C}$.
\end{enumerate}
Then we get another simplicial object $L$ of $\text{SR}(\mathcal{C})$
with $L_n = \{U_n\}$, see
Remark \ref{remark-taking-disjoint-unions}.
Now we claim that $L$ is a hypercovering of $X$.
To see this we check conditions (1), (2) of
Definition \ref{definition-hypercovering}.
Condition (1) follows from (c) and (1) for $K$
because (1) for $K$ says $K_0 = \{U_{0, i}\}_{i \in I_0}$
is a covering of $\{X\}$ in the sense of
Definition \ref{definition-covering-SR}.
Condition (2) follows because $\mathcal{C}/X$ has
all finite limits hence $\text{SR}(\mathcal{C}/X)$
has all finite limits, and condition (b) says the
construction of ``taking disjoint unions'' commutes
with these fimite limits. Thus the morphism
$$
L_{n + 1} \longrightarrow (\text{cosk}_n \text{sk}_n L)_{n + 1}
$$
is a covering as it is the consequence of applying our
``taking disjoint unions'' functor to the morphism
$$
K_{n + 1} \longrightarrow (\text{cosk}_n \text{sk}_n K)_{n + 1}
$$
which is assumed to be a covering in the sense of
Definition \ref{definition-covering-SR} by (2) for $K$.
This makes sense because property (b) in particular assures
us that if we start with a finite diagram of
semi-representable objects over $X$
for which we can take disjoint unions, then
the limit of the diagram in $\text{SR}(\mathcal{C}/X)$
still is a semi-representable object over $X$ for which
we can take disjoint unions.
\end{remark}





\input{chapters}

\bibliography{my}
\bibliographystyle{amsalpha}

\end{document}