Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 105,174 Bytes
afd65d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
\input{preamble}

% OK, start here.
%
\begin{document}

\title{Injectives}


\maketitle

\phantomsection
\label{section-phantom}

\tableofcontents

\section{Introduction}
\label{section-introduction}

\noindent
In future chapters we will use the existence of injectives and
K-injective complexes to do cohomology of sheaves of modules on
ringed sites. In this chapter we explain how to produce injectives
and K-injective complexes first for modules on sites and later
more generally for Grothendieck abelian categories.

\medskip\noindent
We observe that we already know that the category of
abelian groups and the category of modules over a ring have
enough injectives, see More on Algebra, Sections
\ref{more-algebra-section-abelian-groups} and
\ref{more-algebra-section-injectives-modules}





\section{Baer's argument for modules}
\label{section-baer}

\noindent
There is another, more set-theoretic approach to showing that any $R$-module
$M$ can be imbedded in an injective module. This approach constructs
the injective module by a transfinite colimit of push-outs. While this
method is somewhat abstract and more complicated than the one of
More on Algebra, Section \ref{more-algebra-section-injectives-modules},
it is also more general. Apparently this method originates with Baer,
and was revisited by Cartan and Eilenberg in
\cite{Cartan-Eilenberg} and by Grothendieck in \cite{Tohoku}.
There Grothendieck uses it to show that
many other abelian categories have enough injectives. We will get back to
the general case later (Section \ref{section-grothendieck-categories}).

\medskip\noindent
We begin with a few set theoretic remarks.
Let $\{B_{\beta}\}_{\beta \in \alpha}$ be an inductive system of
objects in some category $\mathcal{C}$, indexed by
an ordinal $\alpha$. Assume that $\colim_{\beta \in \alpha} B_\beta$
exists in $\mathcal{C}$. If $A$ is an object of $\mathcal{C}$, then there is a
natural map
\begin{equation}
\label{equation-compare}
\colim_{\beta \in \alpha} \Mor_\mathcal{C}(A, B_\beta)
\longrightarrow
\Mor_\mathcal{C}(A, \colim_{\beta \in \alpha} B_\beta).
\end{equation}
because if one is given a map $A \to B_\beta$ for some $\beta$, one
naturally gets a map from $A$  into the colimit by composing with
$B_\beta \to \colim_{\beta \in \alpha} B_\alpha$.
Note that the left colimit is one of sets! In general, (\ref{equation-compare})
is neither injective or surjective.

\begin{example}
\label{example-not-surjective}
Consider the category of sets. Let $A = \mathbf{N}$ and
$B_n = \{1, \ldots, n\}$ be the inductive system indexed by the natural numbers
where $B_n \to B_m$ for $n \leq m$ is the obvious map. Then
$\colim B_n = \mathbf{N}$, so there is a map
$A \to \colim B_n$, which does not factor as $A \to B_m$
for any $m$. Consequently,
$\colim \Mor(A, B_n) \to \Mor(A, \colim B_n)$
is not surjective.
\end{example}

\begin{example}
\label{example-not-injective}
Next we give an example where the map fails to be injective. Let $B_n =
\mathbf{N}/\{1,  2, \ldots, n\}$, that is, the quotient set of
$\mathbf{N}$ with the first $n$ elements collapsed to one element.
There are natural maps $B_n \to B_m$ for $n \leq m$, so the
$\{B_n\}$ form a system of sets over $\mathbf{N}$. It is easy to see that
$\colim B_n = \{*\}$: it is the one-point set.
So it follows that $\Mor(A, \colim B_n)$ is a one-element set
for every set $A$.
However, $\colim \Mor(A , B_n)$ is {\bf not} a one-element set.
Consider the family of maps $A \to B_n$ which are just the natural projections
$\mathbf{N} \to \mathbf{N}/\{1, 2, \ldots, n\}$ and the family of
maps $A \to B_n$ which map the whole of $A$ to the class of $1$.
These two families of maps are distinct at each step and thus are distinct in
$\colim \Mor(A, B_n)$, but they induce the same map
$A \to \colim B_n$.
\end{example}

\noindent
Nonetheless, if we map out of a finite set then
(\ref{equation-compare}) is an isomorphism always.

\begin{lemma}
\label{lemma-out-of-finite}
Suppose that, in (\ref{equation-compare}), $\mathcal{C}$ is the category
of sets and $A$ is a {\it finite set}, then the map is a bijection.
\end{lemma}

\begin{proof}
Let $f : A \to \colim B_\beta$.
The range of $f$ is finite, containing say
elements $c_1, \ldots, c_r \in \colim B_\beta$.
These all come from some elements in $B_\beta$ for $\beta \in \alpha$
large by definition of the colimit. Thus we can define
$\widetilde{f} : A \to B_\beta$ lifting $f$ at a finite stage.
This proves that (\ref{equation-compare}) is surjective.
Next, suppose two maps $f : A \to B_\gamma, f' : A \to B_{\gamma'}$
define the same map $A \to \colim B_\beta$.
Then each of the finitely many elements of $A$ gets sent to the same point in
the colimit. By definition of the colimit for sets, there is
$\beta \geq \gamma, \gamma'$ such that the finitely many elements of
$A$ get sent to the same points in $B_\beta$ under $f$ and $f'$.
This proves that (\ref{equation-compare}) is injective.
\end{proof}

\noindent
The most interesting case of the lemma is when $\alpha = \omega$, i.e.,
when the system $\{B_\beta\}$ is a system $\{B_n\}_{n \in \mathbf{N}}$
over the natural numbers as in
Examples \ref{example-not-surjective} and
\ref{example-not-injective}.
The essential idea is that $A$ is ``small'' relative to the long chain of
compositions $B_1 \to B_2 \to \ldots$, so that it has to factor through a
finite step. A more general version of this lemma can be found in
Sets, Lemma \ref{sets-lemma-map-from-set-lifts}.
Next, we generalize this to the category of modules.

\begin{definition}
\label{definition-small}
Let $\mathcal{C}$ be a category, let $I \subset \text{Arrows}(\mathcal{C})$,
and let $\alpha$ be an ordinal. An object $A$ of $\mathcal{C}$ is said to
be {\it $\alpha$-small with respect to $I$} if whenever $\{B_\beta\}$ is
a system over $\alpha$ with transition maps in $I$, then
the map (\ref{equation-compare}) is an isomorphism.
\end{definition}

\noindent
In the rest of this section we shall restrict ourselves
to the category of $R$-modules for a fixed commutative ring $R$.
We shall also take $I$ to be the collection of injective maps, i.e., the
{\it monomorphisms} in the category of modules over $R$. In this case, for
any system $\{B_\beta\}$ as in the definition each of the maps
$$
B_\beta \to \colim_{\beta \in \alpha} B_\beta
$$
is an injection. It follows that the map (\ref{equation-compare}) is an
{\it injection}. We can in fact interpret the $B_\beta$'s as submodules
of the module $B = \colim_{\beta \in \alpha} B_\beta$, and then we
have $B = \bigcup_{\beta \in \alpha} B_\beta$. This is not an abuse of
notation if we identify $B_\alpha$ with the image in the colimit.
We now want to show that modules are always small for ``large'' ordinals
$\alpha$.

\begin{proposition}
\label{proposition-modules-are-small}
Let $R$ be a ring. Let $M$ be an $R$-module.
Let $\kappa$ the cardinality of the set of submodules of $M$.
If $\alpha$ is an ordinal whose cofinality is bigger than $\kappa$,
then $M$ is $\alpha$-small with respect to injections.
\end{proposition}

\begin{proof}
The proof is straightforward, but let us first think about a special case.
If $M$ is finite, then the claim is that for any inductive system
$\{B_\beta\}$ with injections between them, parametrized by a
limit ordinal, any map $M \to \colim B_\beta$ factors through one of
the $B_\beta$. And this we proved in
Lemma \ref{lemma-out-of-finite}.

\medskip\noindent
Now we start the proof in the general case.
We need only show that the map (\ref{equation-compare}) is a surjection.
Let $f : M \to \colim B_\beta$ be a map.
Consider the subobjects $\{f^{-1}(B_\beta)\}$ of $M$, where $B_\beta$
is considered as a subobject of the colimit $B = \bigcup_\beta B_\beta$.
If one of these, say $f^{-1}(B_\beta)$, fills $M$,
then the map factors through $B_\beta$.

\medskip\noindent
So suppose to the contrary that all of the $f^{-1}(B_\beta)$ were proper
subobjects of $M$. However, we know that
$$
\bigcup f^{-1}(B_\beta) = f^{-1}\left(\bigcup B_\beta\right) = M.
$$
Now there are at most $\kappa$ different subobjects of $M$ that occur among
the $f^{-1}(B_\alpha)$, by hypothesis.
Thus we can find a subset $S \subset \alpha$ of cardinality at most
$\kappa$ such that as $\beta'$ ranges over $S$, the
$f^{-1}(B_{\beta'})$ range over \emph{all} the $f^{-1}(B_\alpha)$.

\medskip\noindent
However, $S$ has an upper bound $\widetilde{\alpha} < \alpha$ as
$\alpha$ has cofinality bigger than $\kappa$. In particular, all the
$f^{-1}(B_{\beta'})$, $\beta' \in S$ are contained in
$f^{-1}(B_{\widetilde{\alpha}})$.
It follows that $f^{-1}(B_{\widetilde{\alpha}}) = M$.
In particular, the map $f$ factors through $B_{\widetilde{\alpha}}$.
\end{proof}

\noindent
From this lemma we will be able to deduce the existence of lots of injectives.
Let us recall Baer's criterion.

\begin{lemma}[Baer's criterion]
\label{lemma-criterion-baer}
\begin{reference}
\cite[Theorem 1]{Baer}
\end{reference}
Let $R$ be a ring. An $R$-module $Q$ is injective if and only if in every
commutative diagram
$$
\xymatrix{
\mathfrak{a} \ar[d] \ar[r] &  Q \\
R \ar@{-->}[ru]
}
$$
for $\mathfrak{a} \subset R$ an ideal, the dotted arrow exists.
\end{lemma}

\begin{proof}
This is the equivalence of (1) and (3) in
More on Algebra, Lemma \ref{more-algebra-lemma-characterize-injective-bis};
please observe that the proof given there is elementary
(and does not use $\text{Ext}$ groups or the existence of injectives
or projectives in the category of $R$-modules).
\end{proof}

\noindent
If $M$ is an $R$-module, then in general we may have a semi-complete
diagram as in
Lemma \ref{lemma-criterion-baer}.
In it, we can form the \emph{push-out}
$$
\xymatrix{
\mathfrak{a} \ar[d]  \ar[r] &  Q \ar[d] \\
R \ar[r] &  R \oplus_{\mathfrak{a}} Q.
}
$$
Here the vertical map is injective, and the diagram commutes. The point is
that we can extend $\mathfrak{a} \to Q$ to $R$ \emph{if} we extend $Q$ to the
larger module $R \oplus_{\mathfrak{a}} Q$.

\medskip\noindent
The key point of Baer's argument is to repeat this procedure
transfinitely many times. To do this we first define, given an $R$-module
$M$ the following (huge) pushout
\begin{equation}
\label{equation-huge-diagram}
\vcenter{
\xymatrix{
\bigoplus_{\mathfrak a}
\bigoplus_{\varphi \in \Hom_R(\mathfrak a, M)}
\mathfrak{a} \ar[r] \ar[d] & M \ar[d] \\
\bigoplus_{\mathfrak a}
\bigoplus_{\varphi \in \Hom_R(\mathfrak a, M)}
R \ar[r] &  \mathbf{M}(M).
}
}
\end{equation}
Here the top horizontal arrow maps the element $a \in \mathfrak a$
in the summand corresponding to $\varphi$ to the element $\varphi(a) \in M$.
The left vertical arrow maps $a \in \mathfrak a$ in the summand corresponding
to $\varphi$ simply to the element $a \in R$ in the summand corresponding
to $\varphi$. The fundamental properties of this construction are
formulated in the following lemma.

\begin{lemma}
\label{lemma-construction}
Let $R$ be a ring.
\begin{enumerate}
\item The construction $M \mapsto (M \to \mathbf{M}(M))$
is functorial in $M$.
\item The map $M \to \mathbf{M}(M)$ is injective.
\item For any ideal $\mathfrak{a}$ and any $R$-module map
$\varphi : \mathfrak a \to M$ there is an $R$-module map
$\varphi' : R \to \mathbf{M}(M)$ such that
$$
\xymatrix{
\mathfrak{a} \ar[d] \ar[r]_\varphi &  M \ar[d] \\
R \ar[r]^{\varphi'} & \mathbf{M}(M)
}
$$
commutes.
\end{enumerate}
\end{lemma}

\begin{proof}
Parts (2) and (3) are immediate from the construction.
To see (1), let $\chi : M \to N$ be an $R$-module map. We claim there exists
a canonical commutative diagram
$$
\xymatrix{
\bigoplus_{\mathfrak a}
\bigoplus_{\varphi \in \Hom_R(\mathfrak a, M)}
\mathfrak{a} \ar[r] \ar[d] \ar[rrd] & M \ar[rrd]^\chi \\
\bigoplus_{\mathfrak a}
\bigoplus_{\varphi \in \Hom_R(\mathfrak a, M)}
R \ar[rrd] & &
\bigoplus_{\mathfrak a}
\bigoplus_{\psi \in \Hom_R(\mathfrak a, N)}
\mathfrak{a} \ar[r] \ar[d] & N \\
& & \bigoplus_{\mathfrak a}
\bigoplus_{\psi \in \Hom_R(\mathfrak a, N)}
R
}
$$
which induces the desired map $\mathbf{M}(M) \to \mathbf{M}(N)$.
The middle east-south-east arrow maps the summand $\mathfrak a$
corresponding to $\varphi$ via $\text{id}_{\mathfrak a}$ to the
summand $\mathfrak a$ corresponding to $\psi = \chi \circ \varphi$.
Similarly for the lower east-south-east arrow. Details omitted.
\end{proof}

\noindent
The idea will now be to apply the functor $\mathbf{M}$ a transfinite number
of times. We define for each ordinal $\alpha$ a functor $\mathbf{M}_\alpha$
on the category of $R$-modules, together with a natural injection $N \to
\mathbf{M}_\alpha(N)$. We do this by transfinite recursion.
First, $\mathbf{M}_1 = \mathbf{M}$ is the functor defined above.
Now, suppose given an ordinal $\alpha$, and suppose $\mathbf{M}_{\alpha'}$
is defined for $\alpha' < \alpha$. If $\alpha$ has an immediate predecessor
$\widetilde{\alpha}$, we let
$$
\mathbf{M}_\alpha = \mathbf{M} \circ \mathbf{M}_{\widetilde{\alpha}}.
$$
If not, i.e., if $\alpha$ is a limit ordinal, we let
$$
\mathbf{M}_{\alpha}(N) =
\colim_{\alpha' < \alpha} \mathbf{M}_{\alpha'}(N).
$$
It is clear (e.g., inductively) that the $\mathbf{M}_{\alpha}(N)$
form an inductive system over ordinals, so this is reasonable.

\begin{theorem}
\label{theorem-baer-grothendieck}
Let $\kappa$ be the cardinality of the set of ideals in $R$, and
let $\alpha$ be an ordinal whose cofinality is greater than
$\kappa$. Then $\mathbf{M}_\alpha(N)$ is an injective $R$-module,
and $N \to \mathbf{M}_\alpha(N)$ is a functorial injective embedding.
\end{theorem}

\begin{proof}
By Baer's criterion
Lemma \ref{lemma-criterion-baer},
it suffices to show that if $\mathfrak{a} \subset R$ is an ideal, then
any map $f : \mathfrak{a} \to \mathbf{M}_\alpha(N)$ extends to
$R \to \mathbf{M}_\alpha(N)$. However, we know since $\alpha$ is a limit
ordinal that
$$
\mathbf{M}_{\alpha}(N) =
\colim_{\beta < \alpha} \mathbf{M}_{\beta}(N),
$$
so by
Proposition \ref{proposition-modules-are-small},
we find that
$$
\Hom_R(\mathfrak{a}, \mathbf{M}_{\alpha}(N)) =
\colim_{\beta < \alpha} \Hom_R(\mathfrak a, \mathbf{M}_{\beta}(N)).
$$
This means in particular that there is some $\beta' < \alpha$
such that $f$ factors through the submodule $\mathbf{M}_{\beta'}(N)$, as
$$
f : \mathfrak{a} \to \mathbf{M}_{\beta'}(N) \to
\mathbf{M}_{\alpha}(N).
$$
However, by the fundamental property of the functor $\mathbf{M}$,
see Lemma \ref{lemma-construction} part (3),
we know that the map $\mathfrak{a} \to \mathbf{M}_{\beta'}(N)$
can be extended to
$$
R \to \mathbf{M}( \mathbf{M}_{\beta'}(N)) =
\mathbf{M}_{\beta' + 1}(N),
$$
and the last object imbeds in $\mathbf{M}_{\alpha}(N)$ (as
$\beta' + 1 < \alpha$ since $\alpha$ is a limit ordinal).
In particular, $f$ can be extended to $\mathbf{M}_{\alpha}(N)$.
\end{proof}




\section{G-modules}
\label{section-G-modules}

\noindent
We will see later
(Differential Graded Algebra, Section \ref{dga-section-modules-noncommutative})
that the category of modules over an algebra has
functorial injective embeddings. The construction is exactly the same
as the construction in
More on Algebra, Section \ref{more-algebra-section-injectives-modules}.

\begin{lemma}
\label{lemma-G-modules}
Let $G$ be a topological group. Let $R$ be a ring.
The category $\text{Mod}_{R, G}$ of $R\text{-}G$-modules, see
\'Etale Cohomology, Definition
\ref{etale-cohomology-definition-G-module-continuous},
has functorial injective hulls. In particular this holds
for the category of discrete $G$-modules.
\end{lemma}

\begin{proof}
By the remark above the lemma the category $\text{Mod}_{R[G]}$
has functorial injective embeddings.
Consider the forgetful functor
$v : \text{Mod}_{R, G} \to \text{Mod}_{R[G]}$.
This functor is fully faithful, transforms injective maps into
injective maps and has a right adjoint, namely
$$
u : M \mapsto u(M) = \{x \in M \mid \text{stabilizer of }x\text{ is open}\}
$$
Since $v(M) = 0 \Rightarrow M = 0$ we conclude by
Homology, Lemma \ref{homology-lemma-adjoint-functorial-injectives}.
\end{proof}



\section{Abelian sheaves on a space}
\label{section-abelian-sheaves-space}


\begin{lemma}
\label{lemma-abelian-sheaves-space}
Let $X$ be a topological space.
The category of abelian sheaves on $X$ has enough injectives.
In fact it has functorial injective embeddings.
\end{lemma}

\begin{proof}
For an abelian group $A$ we denote $j : A \to J(A)$ the functorial
injective embedding constructed in
More on Algebra, Section \ref{more-algebra-section-injectives-modules}.
Let $\mathcal{F}$ be an abelian sheaf on $X$.
By Sheaves, Example \ref{sheaves-example-sheaf-product-pointwise}
the assignment
$$
\mathcal{I} : U \mapsto
\mathcal{I}(U) = \prod\nolimits_{x\in U} J(\mathcal{F}_x)
$$
is an abelian sheaf. There is a canonical map $\mathcal{F} \to \mathcal{I}$
given by mapping $s \in \mathcal{F}(U)$ to $\prod_{x \in U} j(s_x)$
where $s_x \in \mathcal{F}_x$ denotes the germ of $s$ at $x$.
This map is injective, see
Sheaves, Lemma \ref{sheaves-lemma-sheaf-subset-stalks}
for example.

\medskip\noindent
It remains to prove the following: Given a rule
$x \mapsto I_x$ which assigns to each point $x \in X$ an injective
abelian group the sheaf $\mathcal{I} : U \mapsto \prod_{x \in U} I_x$
is injective. Note that
$$
\mathcal{I} = \prod\nolimits_{x \in X} i_{x, *}I_x
$$
is the product of the skyscraper sheaves $i_{x, *}I_x$ (see
Sheaves, Section \ref{sheaves-section-skyscraper-sheaves} for notation.)
We have
$$
\Mor_{\textit{Ab}}(\mathcal{F}_x, I_x)
=
\Mor_{\textit{Ab}(X)}(\mathcal{F}, i_{x, *}I_x).
$$
see Sheaves, Lemma \ref{sheaves-lemma-stalk-skyscraper-adjoint}. Hence it is
clear that each $i_{x, *}I_x$ is injective. Hence the injectivity of
$\mathcal{I}$ follows from
Homology, Lemma \ref{homology-lemma-product-injectives}.
\end{proof}









\section{Sheaves of modules on a ringed space}
\label{section-sheaves-modules-space}


\begin{lemma}
\label{lemma-sheaves-modules-space}
Let $(X, \mathcal{O}_X)$ be a ringed space, see
Sheaves, Section \ref{sheaves-section-ringed-spaces}.
The category of sheaves of $\mathcal{O}_X$-modules on $X$
has enough injectives. In fact it has functorial injective embeddings.
\end{lemma}

\begin{proof}
For any ring $R$ and any $R$-module $M$ we denote
$j : M \to J_R(M)$ the functorial
injective embedding constructed in
More on Algebra, Section \ref{more-algebra-section-injectives-modules}.
Let $\mathcal{F}$ be a sheaf of $\mathcal{O}_X$-modules on $X$.
By Sheaves, Examples \ref{sheaves-example-sheaf-product-pointwise}
and \ref{sheaves-example-sheaf-product-pointwise-algebraic-structure}
the assignment
$$
\mathcal{I} : U \mapsto
\mathcal{I}(U) = \prod\nolimits_{x\in U} J_{\mathcal{O}_{X, x}}(\mathcal{F}_x)
$$
is an abelian sheaf.
There is a canonical map $\mathcal{F} \to \mathcal{I}$
given by mapping $s \in \mathcal{F}(U)$ to $\prod_{x \in U} j(s_x)$
where $s_x \in \mathcal{F}_x$ denotes the germ of $s$ at $x$.
This map is injective, see
Sheaves, Lemma \ref{sheaves-lemma-sheaf-subset-stalks}
for example.

\medskip\noindent
It remains to prove the following: Given a rule
$x \mapsto I_x$ which assigns to each point $x \in X$ an injective
$\mathcal{O}_{X, x}$-module
the sheaf $\mathcal{I} : U \mapsto \prod_{x \in U} I_x$
is injective. Note that
$$
\mathcal{I} = \prod\nolimits_{x \in X} i_{x, *}I_x
$$
is the product of the skyscraper sheaves $i_{x, *}I_x$ (see
Sheaves, Section \ref{sheaves-section-skyscraper-sheaves} for notation.)
We have
$$
\Hom_{\mathcal{O}_{X, x}}(\mathcal{F}_x, I_x)
=
\Hom_{\mathcal{O}_X}(\mathcal{F}, i_{x, *}I_x).
$$
see Sheaves, Lemma \ref{sheaves-lemma-stalk-skyscraper-adjoint}. Hence it is
clear that each $i_{x, *}I_x$ is an injective $\mathcal{O}_X$-module
(see Homology, Lemma \ref{homology-lemma-adjoint-preserve-injectives} or argue
directly). Hence the injectivity of $\mathcal{I}$ follows from
Homology, Lemma \ref{homology-lemma-product-injectives}.
\end{proof}













\section{Abelian presheaves on a category}
\label{section-injectives-presheaves}

\noindent
Let $\mathcal{C}$ be a category. Recall that this means that
$\Ob(\mathcal{C})$ is a set. On the one hand, consider abelian
presheaves on $\mathcal{C}$, see
Sites, Section \ref{sites-section-presheaves}.
On the other hand, consider families of abelian groups
indexed by elements of $\Ob(\mathcal{C})$; in other
words presheaves on the discrete category with underlying set
of objects $\Ob(\mathcal{C})$. Let us denote this
discrete category simply $\Ob(\mathcal{C})$.
There is a natural functor
$$
i : \Ob(\mathcal{C}) \longrightarrow \mathcal{C}
$$
and hence there is a natural restriction or forgetful functor
$$
v = i^p :
\textit{PAb}(\mathcal{C})
\longrightarrow
\textit{PAb}(\Ob(\mathcal{C}))
$$
compare Sites, Section \ref{sites-section-functoriality-PSh}.
We will denote presheaves
on $\mathcal{C}$ by $B$ and presheaves on
$\Ob(\mathcal{C})$ by $A$.

\medskip\noindent
There are also two functors, namely $i_p$ and ${}_pi$
which assign an abelian presheaf on $\mathcal{C}$
to an abelian presheaf on $\Ob(\mathcal{C})$, see
Sites, Sections \ref{sites-section-functoriality-PSh} and
\ref{sites-section-more-functoriality-PSh}.
Here we will use $u = {}_pi$ which is defined (in the case at hand)
as follows:
$$
uA(U) = \prod\nolimits_{U' \to U} A(U').
$$
So an element is a family $(a_\phi)_\phi$ with $\phi$
ranging through all morphisms in $\mathcal{C}$ with target $U$.
The restriction map on $uA$ corresponding to $g : V \to U$
maps our element $(a_\phi)_\phi$ to the element
$(a_{g \circ \psi})_\psi$.

\medskip\noindent
There is a canonical surjective map $vuA \to A$ and a canonical
injective map $B \to uvB$. We leave it to the reader to show that
$$
\Mor_{\textit{PAb}(\mathcal{C})}(B, uA)
=
\Mor_{\textit{PAb}(\Ob(\mathcal{C}))}(vB, A).
$$
in this simple case; the general case is in
Sites, Section \ref{sites-section-functoriality-PSh}.
Thus the pair $(u, v)$ is an example of a pair of adjoint
functors, see
Categories, Section \ref{categories-section-adjoint}.

\medskip\noindent
At this point we can list the following facts
about the situation above.
\begin{enumerate}
\item The functors $u$ and $v$ are exact. This follows from
the explicit description of these functors given above.
\item In particular the functor $v$ transforms injective maps
into injective maps.
\item The category $\textit{PAb}(\Ob(\mathcal{C}))$
has enough injectives.
\item In fact there is a functorial injective embedding
$A \mapsto \big(A \to J(A)\big)$ as in
Homology, Definition \ref{homology-definition-functorial-injective-embedding}.
Namely, we can take $J(A)$ to be the
presheaf $U\mapsto J(A(U))$, where
$J(-)$ is the functor constructed in
More on Algebra, Section \ref{more-algebra-section-injectives-modules}
for the ring $\mathbf{Z}$.
\end{enumerate}
Putting all of this together gives us the following procedure
for embedding objects $B$ of $\textit{PAb}(\mathcal{C}))$ into
an injective object: $B \to uJ(vB)$. See
Homology, Lemma \ref{homology-lemma-adjoint-functorial-injectives}.

\begin{proposition}
\label{proposition-presheaves-injectives}
For abelian presheaves on a category there is a functorial injective
embedding.
\end{proposition}

\begin{proof}
See discussion above.
\end{proof}












\section{Abelian Sheaves on a site}
\label{section-injectives-sheaves}

\noindent
Let $\mathcal{C}$ be a site. In this section we prove that there are
enough injectives for abelian sheaves on $\mathcal{C}$.

\medskip\noindent
Denote
$i : \textit{Ab}(\mathcal{C}) \longrightarrow \textit{PAb}(\mathcal{C})$
the forgetful functor from abelian sheaves to abelian presheaves.
Let
${}^\# : \textit{PAb}(\mathcal{C}) \longrightarrow \textit{Ab}(\mathcal{C})$
denote the sheafification functor. Recall that ${}^\#$ is a left adjoint
to $i$, that ${}^\#$ is exact, and that $i\mathcal{F}^\# = \mathcal{F}$
for any abelian sheaf $\mathcal{F}$. Finally, let
$\mathcal{G} \to J(\mathcal{G})$ denote the canonical
embedding into an injective presheaf we found in
Section \ref{section-injectives-presheaves}.

\medskip\noindent
For any sheaf $\mathcal{F}$ in $\textit{Ab}(\mathcal{C})$ and
any ordinal $\beta$ we define a sheaf
$J_\beta(\mathcal{F})$ by transfinite recursion.
We set $J_0(\mathcal{F}) = \mathcal{F}$.
We define $J_1(\mathcal{F}) = J(i\mathcal{F})^\#$.
Sheafification of the canonical map $i\mathcal{F} \to J(i\mathcal{F})$
gives a functorial map
$$
\mathcal{F} \longrightarrow J_1(\mathcal{F})
$$
which is injective as $\#$ is exact. We set
$J_{\alpha + 1}(\mathcal{F}) = J_1(J_\alpha(\mathcal{F}))$.
So that there are canonical injective maps
$J_\alpha(\mathcal{F}) \to J_{\alpha + 1}(\mathcal{F})$.
For a limit ordinal $\beta$, we define
$$
J_\beta(\mathcal{F}) = \colim_{\alpha < \beta} J_\alpha(\mathcal{F}).
$$
Note that this is a directed colimit. Hence for any ordinals $\alpha < \beta$
we have an injective map $J_\alpha(\mathcal{F}) \to J_\beta(\mathcal{F})$.

\begin{lemma}
\label{lemma-map-into-next-one}
With notation as above.
Suppose that $\mathcal{G}_1 \to \mathcal{G}_2$ is an injective
map of abelian sheaves on $\mathcal{C}$. Let $\alpha$ be an ordinal
and let $\mathcal{G}_1 \to J_\alpha(\mathcal{F})$ be a morphism
of sheaves. There exists a morphism $\mathcal{G}_2 \to
J_{\alpha + 1}(\mathcal{F})$ such that the following diagram commutes
$$
\xymatrix{
\mathcal{G}_1 \ar[d] \ar[r] & \mathcal{G}_2 \ar[d] \\
J_{\alpha}(\mathcal{F}) \ar[r] & J_{\alpha + 1}(\mathcal{F}) }
$$
\end{lemma}

\begin{proof}
This is because the map $i\mathcal{G}_1 \to i\mathcal{G}_2$ is injective
and hence $i\mathcal{G}_1 \to iJ_\alpha(\mathcal{F})$ extends to
$i\mathcal{G}_2 \to J(iJ_\alpha(\mathcal{F}))$ which gives the
desired map after applying the sheafification functor.
\end{proof}

\noindent
This lemma says that somehow the system $\{J_{\alpha}(\mathcal{F})\}$
is an injective embedding of $\mathcal{F}$. Of course
we cannot take the limit over all $\alpha$ because they form a class
and not a set. However, the idea is now that you don't have to check
injectivity on all injections $\mathcal{G}_1 \to \mathcal{G}_2$, plus
the following lemma.

\begin{lemma}
\label{lemma-map-into-smaller}
Suppose that $\mathcal{G}_i$, $i\in I$ is set of abelian sheaves
on $\mathcal{C}$. There exists an ordinal $\beta$ such that
for any sheaf $\mathcal{F}$, any $i\in I$, and any map
$\varphi : \mathcal{G}_i \to J_\beta(\mathcal{F})$ there exists an
$\alpha < \beta$ such that $ \varphi $ factors through
$J_\alpha(\mathcal{F})$.
\end{lemma}

\begin{proof}
This reduces to the case of a single sheaf $\mathcal{G}$
by taking the direct sum of all the $\mathcal{G}_i$.

\medskip\noindent
Consider the sets
$$
S = \coprod\nolimits_{U \in \Ob(\mathcal{C})} \mathcal{G}(U).
$$
and
$$
T_\beta
=
\coprod\nolimits_{U \in \Ob(\mathcal{C})} J_\beta(\mathcal{F})(U)
$$
The transition maps between the sets $T_\beta$ are injective.
If the cofinality of $\beta$ is large enough, then
$T_\beta = \colim_{\alpha < \beta} T_\alpha$, see
Sites, Lemma \ref{sites-lemma-colimit-over-ordinal-sections}.
A morphism $\mathcal{G} \to J_\beta(\mathcal{F})$ factors
through $J_\alpha(\mathcal{F})$ if and only if
the associated map $S \to T_\beta$ factors through $T_\alpha$.
By
Sets, Lemma \ref{sets-lemma-map-from-set-lifts}
if the cofinality of $\beta$ is bigger than the cardinality
of $S$, then the result of the lemma is true. Hence the lemma
follows from the fact that there are ordinals with arbitrarily
large cofinality, see
Sets, Proposition \ref{sets-proposition-exist-ordinals-large-cofinality}.
\end{proof}

\noindent
Recall that for an object $X$ of $\mathcal{C}$ we denote $\mathbf{Z}_X$
the presheaf of abelian groups $\Gamma(U, \mathbf{Z}_X) =
\oplus_{U \to X} \mathbf{Z}$, see
Modules on Sites, Section \ref{sites-modules-section-free-abelian-presheaf}.
The sheaf associated to this presheaf
is denoted $\mathbf{Z}_X^\#$, see
Modules on Sites, Section \ref{sites-modules-section-free-abelian-sheaf}.
It can be characterized by
the property
\begin{equation}
\label{equation-free-sheaf-on}
\Mor_{\textit{Ab}(\mathcal{C})}(\mathbf{Z}_X^\#, \mathcal{G})
=
\mathcal{G}(X)
\end{equation}
where the element $\varphi$ of the left hand side is mapped
to $\varphi(1 \cdot \text{id}_X)$ in the right hand side. We can use these
sheaves to characterize injective abelian sheaves.

\begin{lemma}
\label{lemma-characterize-injectives}
Suppose $\mathcal{J}$ is a sheaf of abelian groups with the following
property: For all $X\in \Ob(\mathcal{C})$, for any abelian subsheaf
$\mathcal{S} \subset \mathbf{Z}_X^\#$ and any morphism
$\varphi : \mathcal{S} \to \mathcal{J}$, there exists a morphism
$\mathbf{Z}_X^\# \to \mathcal{J}$ extending $\varphi$.
Then $\mathcal{J}$ is an injective sheaf of abelian groups.
\end{lemma}

\begin{proof}
Let $\mathcal{F} \to \mathcal{G}$ be an injective map
of abelian sheaves. Suppose $\varphi : \mathcal{F} \to \mathcal{J}$
is a morphism. Arguing as in the proof of
More on Algebra, Lemma \ref{more-algebra-lemma-injective-abelian}
we see that it suffices
to prove that if $\mathcal{F} \not = \mathcal{G}$, then we
can find an abelian sheaf $\mathcal{F}'$,
$\mathcal{F} \subset \mathcal{F}' \subset \mathcal{G}$
such that (a) the inclusion $\mathcal{F} \subset \mathcal{F}'$ is strict,
and (b) $\varphi$ can be extended to $\mathcal{F}'$.
To find $\mathcal{F}'$, let $X$ be an object of $\mathcal{C}$ such
that the inclusion $\mathcal{F}(X) \subset \mathcal{G}(X)$
is strict. Pick $s \in \mathcal{G}(X)$, $s \not \in \mathcal{F}(X)$.
Let $\psi : \mathbf{Z}_X^\# \to \mathcal{G}$ be the morphism corresponding
to the section $s$ via (\ref{equation-free-sheaf-on}). Set
$\mathcal{S} = \psi^{-1}(\mathcal{F})$. By assumption the morphism
$$
\mathcal{S} \xrightarrow{\psi} \mathcal{F} \xrightarrow{\varphi} \mathcal{J}
$$
can be extended to a morphism $\varphi' : \mathbf{Z}_X^\# \to \mathcal{J}$.
Note that $\varphi'$ annihilates the kernel of $\psi$ (as this is true
for $\varphi$). Thus $\varphi'$ gives rise to a morphism
$\varphi'' : \Im(\psi) \to \mathcal{J}$
which agrees with $\varphi$ on the intersection
$\mathcal{F} \cap \Im(\psi)$ by construction.
Thus $\varphi$ and $\varphi''$ glue to give an extension
of $\varphi$ to the strictly bigger subsheaf
$\mathcal{F}' = \mathcal{F} + \Im(\psi)$.
\end{proof}

\begin{theorem}
\label{theorem-sheaves-injectives}
The category of sheaves of abelian groups on a
site has enough injectives. In fact there exists
a functorial injective embedding, see
Homology, Definition \ref{homology-definition-functorial-injective-embedding}.
\end{theorem}

\begin{proof}
Let $\mathcal{G}_i$, $i \in I$ be a set of abelian
sheaves such that every subsheaf of every $\mathbf{Z}_X^\#$
occurs as one of the $\mathcal{G}_i$. Apply
Lemma \ref{lemma-map-into-smaller} to this collection to
get an ordinal $\beta$. We claim that for any sheaf of abelian
groups $\mathcal{F}$ the map $\mathcal{F} \to J_\beta(\mathcal{F})$
is an injection of $\mathcal{F}$ into an injective.
Note that by construction the assignment
$\mathcal{F} \mapsto \big(\mathcal{F} \to J_\beta(\mathcal{F})\big)$
is indeed functorial.

\medskip\noindent
The proof of the claim comes from the fact that by
Lemma \ref{lemma-characterize-injectives} it suffices to extend any
morphism $\gamma : \mathcal{G} \to J_\beta(\mathcal{F})$
from a subsheaf $\mathcal{G}$ of some $\mathbf{Z}_X^\#$ to all of
$\mathbf{Z}_X^\#$. Then by Lemma \ref{lemma-map-into-smaller} the
map $\gamma$ lifts into $J_\alpha(\mathcal{F})$ for some
$\alpha < \beta$. Finally, we apply Lemma \ref{lemma-map-into-next-one}
to get the desired extension of $\gamma$ to a morphism
into $J_{\alpha + 1}(\mathcal{F}) \to J_\beta(\mathcal{F})$.
\end{proof}






\section{Modules on a ringed site}
\label{section-sheaves-modules}

\noindent
Let $\mathcal{C}$ be a site.
Let $\mathcal{O}$ be a sheaf of rings on $\mathcal{C}$.
By analogy with
More on Algebra, Section \ref{more-algebra-section-injectives-modules}
let us try to prove that there are enough injective
$\mathcal{O}$-modules. First of all, we pick an injective
embedding
$$
\bigoplus\nolimits_{U, \mathcal{I}}
j_{U!}\mathcal{O}_U/\mathcal{I}
\longrightarrow
\mathcal{J}
$$
where $\mathcal{J}$ is an injective abelian sheaf (which
exists by the previous section). Here the direct sum is
over all objects $U$ of $\mathcal{C}$ and over all
$\mathcal{O}$-submodules $\mathcal{I} \subset j_{U!}\mathcal{O}_U$.
Please see
Modules on Sites, Section \ref{sites-modules-section-localize}
to read about the functors restriction and
extension by $0$ for the localization functor
$j_U : \mathcal{C}/U \to \mathcal{C}$.

\medskip\noindent
For any sheaf of $\mathcal{O}$-modules $\mathcal{F}$ denote
$$
\mathcal{F}^\vee
=
\SheafHom(\mathcal{F}, \mathcal{J})
$$
with its natural $\mathcal{O}$-module structure.
Insert here future reference to internal hom.
We will also need
a canonical flat resolution of a sheaf of $\mathcal{O}$-modules.
This we can do as follows: For any $\mathcal{O}$-module
$\mathcal{F}$ we denote
$$
F(\mathcal{F})
=
\bigoplus\nolimits_{U \in \Ob(\mathcal{C}), s \in \mathcal{F}(U)}
j_{U!}\mathcal{O}_U.
$$
This is a flat sheaf of $\mathcal{O}$-modules which comes equipped
with a canonical surjection $F(\mathcal{F}) \to \mathcal{F}$, see
Modules on Sites, Lemma \ref{sites-modules-lemma-module-quotient-flat}.
Moreover the construction $\mathcal{F} \mapsto F(\mathcal{F})$
is functorial in $\mathcal{F}$.

\begin{lemma}
\label{lemma-vee-exact-sheaves}
The functor $\mathcal{F} \mapsto \mathcal{F}^\vee$ is exact.
\end{lemma}

\begin{proof}
This because $\mathcal{J}$ is an injective abelian sheaf.
\end{proof}

\noindent
There is a canonical map $ev : \mathcal{F} \to (\mathcal{F}^\vee)^\vee$
given by evaluation: given $x \in \mathcal{F}(U)$ we let
$ev(x) \in (\mathcal{F}^\vee)^\vee =
\SheafHom(\mathcal{F}^\vee, \mathcal{J})$
be the map $\varphi \mapsto \varphi(x)$.

\begin{lemma}
\label{lemma-ev-injective-sheaves}
For any $\mathcal{O}$-module $\mathcal{F}$ the evaluation map
$ev : \mathcal{F} \to (\mathcal{F}^\vee)^\vee$ is injective.
\end{lemma}

\begin{proof}
You can check this using the definition of $\mathcal{J}$.
Namely, if $s \in \mathcal{F}(U)$ is not zero, then let
$j_{U!}\mathcal{O}_U \to \mathcal{F}$ be the map of
$\mathcal{O}$-modules it corresponds to via adjunction.
Let $\mathcal{I}$ be the kernel of this map. There exists
a nonzero map $\mathcal{F} \supset j_{U!}\mathcal{O}_U/\mathcal{I}
\to \mathcal{J}$ which does not annihilate $s$. As $\mathcal{J}$ is
an injective $\mathcal{O}$-module, this extends to a map
$\varphi : \mathcal{F} \to \mathcal{J}$.
Then $ev(s)(\varphi) = \varphi(s) \not = 0$ which is what we had to prove.
\end{proof}

\noindent
The canonical surjection
$F(\mathcal{F}) \to \mathcal{F}$ of $\mathcal{O}$-modules turns into a
canonical injection, see above, of $\mathcal{O}$-modules
$$
(\mathcal{F}^\vee)^\vee \longrightarrow (F(\mathcal{F}^\vee))^\vee.
$$
Set $J(\mathcal{F}) = (F(\mathcal{F}^\vee))^\vee$.
The composition of $ev$ with this
the displayed map gives
$\mathcal{F} \to J(\mathcal{F})$ functorially in $\mathcal{F}$.

\begin{lemma}
\label{lemma-JM-injective-sheaves}
Let $\mathcal{O}$ be a sheaf of rings.
For every $\mathcal{O}$-module $\mathcal{F}$ the
$\mathcal{O}$-module $J(\mathcal{F})$ is injective.
\end{lemma}

\begin{proof}
We have to show that the functor
$\Hom_\mathcal{O}(\mathcal{G}, J(\mathcal{F}))$
is exact. Note that
\begin{eqnarray*}
\Hom_\mathcal{O}(\mathcal{G}, J(\mathcal{F}))
& = &
\Hom_\mathcal{O}(\mathcal{G}, (F(\mathcal{F}^\vee))^\vee) \\
& = &
\Hom_\mathcal{O}
(\mathcal{G}, \SheafHom(F(\mathcal{F}^\vee), \mathcal{J})) \\
& = &
\Hom(\mathcal{G} \otimes_\mathcal{O} F(\mathcal{F}^\vee), \mathcal{J})
\end{eqnarray*}
Thus what we want follows from the fact that $F(\mathcal{F}^\vee)$
is flat and $\mathcal{J}$ is injective.
\end{proof}

\begin{theorem}
\label{theorem-sheaves-modules-injectives}
Let $\mathcal{C}$ be a site.
Let $\mathcal{O}$ be a sheaf of rings on $\mathcal{C}$.
The category of sheaves of $\mathcal{O}$-modules on a
site has enough injectives. In fact there exists
a functorial injective embedding, see
Homology, Definition \ref{homology-definition-functorial-injective-embedding}.
\end{theorem}

\begin{proof}
From the discussion in this section.
\end{proof}

\begin{proposition}
\label{proposition-presheaves-modules}
Let $\mathcal{C}$ be a category.
Let $\mathcal{O}$ be a presheaf of rings on $\mathcal{C}$.
The category $\textit{PMod}(\mathcal{O})$ of presheaves of
$\mathcal{O}$-modules has functorial injective embeddings.
\end{proposition}

\begin{proof}
We could prove this along the lines of the discussion in
Section \ref{section-injectives-presheaves}. But instead we argue using the
theorem above. Endow $\mathcal{C}$ with the structure of a site by letting the
set of coverings of an object $U$ consist of all singletons $\{f : V \to U\}$
where $f$ is an isomorphism. We omit the verification that this defines a site.
A sheaf for this topology is the same as a presheaf (proof omitted). Hence the
theorem applies.
\end{proof}








\section{Embedding abelian categories}
\label{section-embedding}

\noindent
In this section we show that an abelian category embeds in the
category of abelian sheaves on a site having enough points.
The site will be the one described in the following lemma.

\begin{lemma}
\label{lemma-site-abelian-category}
Let $\mathcal{A}$ be an abelian category.
Let
$$
\text{Cov} = \{\{f : V \to U\} \mid f\text{ is surjective}\}.
$$
Then $(\mathcal{A}, \text{Cov})$ is a site, see
Sites, Definition \ref{sites-definition-site}.
\end{lemma}

\begin{proof}
Note that $\Ob(\mathcal{A})$ is a set by our conventions
about categories. An isomorphism is a surjective morphism.
The composition of surjective morphisms is surjective.
And the base change of a surjective morphism in $\mathcal{A}$
is surjective, see
Homology, Lemma \ref{homology-lemma-epimorphism-universal-abelian-category}.
\end{proof}

\noindent
Let $\mathcal{A}$ be a pre-additive category. In this case the
Yoneda embedding $\mathcal{A} \to \textit{PSh}(\mathcal{A})$, $X \mapsto h_X$
factors through a functor $\mathcal{A} \to \textit{PAb}(\mathcal{A})$.

\begin{lemma}
\label{lemma-embedding}
Let $\mathcal{A}$ be an abelian category.
Let $\mathcal{C} = (\mathcal{A}, \text{Cov})$ be the
site defined in
Lemma \ref{lemma-site-abelian-category}.
Then $X \mapsto h_X$ defines a fully faithful, exact functor
$$
\mathcal{A} \longrightarrow \textit{Ab}(\mathcal{C}).
$$
Moreover, the site $\mathcal{C}$ has enough points.
\end{lemma}

\begin{proof}
Suppose that $f : V \to U$ is a surjective morphism of $\mathcal{A}$.
Let $K = \Ker(f)$. Recall that
$V \times_U V = \Ker((f, -f) : V \oplus V \to U)$, see
Homology, Example \ref{homology-example-fibre-product-pushouts}.
In particular there exists an injection $K \oplus K \to V \times_U V$.
Let $p, q : V \times_U V \to V$ be the two projection morphisms.
Note that $p - q : V \times_U V \to V$ is a morphism such that
$f \circ (p  - q) = 0$. Hence $p - q$ factors through $K \to V$.
Let us denote this morphism by $c : V \times_U V \to K$.
And since the composition $K \oplus K \to V \times_U V \to K$
is surjective, we conclude that $c$ is surjective. It follows that
$$
V \times_U V \xrightarrow{p - q} V \to U \to 0
$$
is an exact sequence of $\mathcal{A}$.
Hence for an object $X$ of $\mathcal{A}$ the sequence
$$
0 \to
\Hom_\mathcal{A}(U, X) \to
\Hom_\mathcal{A}(V, X) \to
\Hom_\mathcal{A}(V \times_U V, X)
$$
is an exact sequence of abelian groups, see
Homology, Lemma \ref{homology-lemma-check-exactness}.
This means that $h_X$ satisfies the sheaf condition
on $\mathcal{C}$.

\medskip\noindent
The functor is fully faithful by
Categories, Lemma \ref{categories-lemma-yoneda}.
The functor is a left exact functor between abelian categories by
Homology, Lemma \ref{homology-lemma-check-exactness}.
To show that it is right exact, let $X \to Y$ be a surjective morphism
of $\mathcal{A}$. Let $U$ be an object of $\mathcal{A}$, and let
$s \in h_Y(U) = \Mor_\mathcal{A}(U, Y)$ be a section of $h_Y$
over $U$. By
Homology, Lemma \ref{homology-lemma-epimorphism-universal-abelian-category}
the projection $U \times_Y X \to U$ is surjective.
Hence $\{V = U \times_Y X \to U\}$ is a covering of $U$ such that
$s|_V$ lifts to a section of $h_X$. This proves that
$h_X \to h_Y$ is a surjection of abelian sheaves, see
Sites, Lemma \ref{sites-lemma-mono-epi-sheaves}.

\medskip\noindent
The site $\mathcal{C}$ has enough points by
Sites, Proposition \ref{sites-proposition-criterion-points}.
\end{proof}

\begin{remark}
\label{remark-embedding}
The Freyd-Mitchell embedding theorem says there exists a fully faithful
exact functor from any abelian category $\mathcal{A}$
to the category of modules over a ring.
Lemma \ref{lemma-embedding}
is not quite as strong. But the result is suitable for the
Stacks project as we have to understand sheaves of abelian groups on
sites in detail anyway. Moreover, ``diagram chasing'' works in the category
of abelian sheaves on $\mathcal{C}$, for example by working with sections over
objects, or by working on the level of stalks using that $\mathcal{C}$ has
enough points. To see how to deduce the Freyd-Mitchell embedding theorem from
Lemma \ref{lemma-embedding}
see
Remark \ref{remark-embedding-freyd}.
\end{remark}

\begin{remark}
\label{remark-embedding-big}
If $\mathcal{A}$ is a ``big'' abelian category, i.e., if $\mathcal{A}$
has a class of objects, then
Lemma \ref{lemma-embedding}
does not work. In this case, given any set of objects
$E \subset \Ob(\mathcal{A})$ there exists an abelian full subcategory
$\mathcal{A}' \subset \mathcal{A}$ such that
$\Ob(\mathcal{A}')$ is a set and $E \subset \Ob(\mathcal{A}')$.
Then one can apply
Lemma \ref{lemma-embedding}
to $\mathcal{A}'$. One can use this to prove that results depending on
a diagram chase hold in $\mathcal{A}$.
\end{remark}

\begin{remark}
\label{remark-embedding-freyd}
Let $\mathcal{C}$ be a site.
Note that $\textit{Ab}(\mathcal{C})$ has enough injectives, see
Theorem \ref{theorem-sheaves-injectives}.
(In the case that $\mathcal{C}$ has enough points this is straightforward
because  $p_*I$ is an injective sheaf if $I$ is an injective
$\mathbf{Z}$-module and $p$ is a point.)
Also, $\textit{Ab}(\mathcal{C})$ has a cogenerator (details omitted).
Hence
Lemma \ref{lemma-embedding}
proves that we have a fully faithful, exact embedding
$\mathcal{A} \to \mathcal{B}$ where $\mathcal{B}$ has a
cogenerator and enough injectives.
We can apply this to $\mathcal{A}^{opp}$ and we get a
fully faithful exact functor
$i : \mathcal{A} \to \mathcal{D} = \mathcal{B}^{opp}$
where $\mathcal{D}$ has enough projectives and a generator. Hence
$\mathcal{D}$ has a projective generator $P$.
Set $R = \Mor_\mathcal{D}(P, P)$. Then
$$
\mathcal{A} \longrightarrow \text{Mod}_R, \quad
X \longmapsto \Hom_\mathcal{D}(P, X).
$$
One can check this is a fully faithful, exact functor.
In other words, one retrieves the
Freyd-Mitchell theorem mentioned in
Remark \ref{remark-embedding}
above.
\end{remark}

\begin{remark}
\label{remark-embed-exact-category}
The arguments proving
Lemmas \ref{lemma-site-abelian-category} and
\ref{lemma-embedding}
work also for {\it exact categories}, see
\cite[Appendix A]{Buhler} and
\cite[1.1.4]{BBD}.
We quickly review this here and we add more details if we ever
need it in the Stacks project.

\medskip\noindent
Let $\mathcal{A}$ be an additive category.
A {\it kernel-cokernel} pair is a pair $(i, p)$
of morphisms of $\mathcal{A}$ with
$i : A \to B$, $p : B \to C$ such that $i$ is the kernel of
$p$ and $p$ is the cokernel of $i$.
Given a set $\mathcal{E}$ of kernel-cokernel pairs we say
$i : A \to B$ is an {\it admissible monomorphism}
if $(i, p) \in \mathcal{E}$ for some morphism $p$.
Similarly we say a morphism $p : B \to C$ is an {\it admissible epimorphism}
if $(i, p) \in \mathcal{E}$ for some morphism $i$.
The pair $(\mathcal{A}, \mathcal{E})$ is said to be an
{\it exact category} if the following axioms hold
\begin{enumerate}
\item $\mathcal{E}$ is closed under isomorphisms of kernel-cokernel
pairs,
\item for any object $A$ the morphism $1_A$ is both an admissible epimorphism
and an admissible monomorphism,
\item admissible monomorphisms are stable under composition,
\item admissible epimorphisms are stable under composition,
\item the push-out of an admissible monomorphism $i : A \to B$ via
any morphism $A \to A'$ exist and the induced morphism $i' : A' \to B'$
is an admissible monomorphism, and
\item the base change of an admissible epimorphism $p : B \to C$ via
any morphism $C' \to C$ exist and the induced morphism $p' : B' \to C'$
is an admissible epimorphism.
\end{enumerate}
Given such a structure let $\mathcal{C} = (\mathcal{A}, \text{Cov})$
where coverings (i.e., elements of $\text{Cov}$) are given by
admissible epimorphisms. The axioms listed above
immediately imply that this is a site. Consider the functor
$$
F : \mathcal{A} \longrightarrow \textit{Ab}(\mathcal{C}), \quad
X \longmapsto h_X
$$
exactly as in
Lemma \ref{lemma-embedding}.
It turns out that this functor is fully faithful, exact, and reflects
exactness. Moreover, any extension of objects in the essential image
of $F$ is in the essential image of $F$.
\end{remark}






\section{Grothendieck's AB conditions}
\label{section-grothendieck-conditions}

\noindent
This and the next few sections are mostly interesting for ``big'' abelian
categories, i.e., those categories listed in
Categories, Remark \ref{categories-remark-big-categories}.
A good case to keep in mind is the category of sheaves of modules
on a ringed site.

\medskip\noindent
Grothendieck proved the existence of injectives in great generality
in the paper \cite{Tohoku}. He used the following conditions to single
out abelian categories with special properties.

\begin{definition}
\label{definition-grothendieck-conditions}
Let $\mathcal{A}$ be an abelian category. We name some conditions
\begin{enumerate}
\item[AB3] $\mathcal{A}$ has direct sums,
\item[AB4] $\mathcal{A}$ has AB3 and direct sums are exact,
\item[AB5] $\mathcal{A}$ has AB3 and filtered colimits are exact.
\end{enumerate}
Here are the dual notions
\begin{enumerate}
\item[AB3*] $\mathcal{A}$ has products,
\item[AB4*] $\mathcal{A}$ has AB3* and products are exact,
\item[AB5*] $\mathcal{A}$ has AB3* and filtered limits are exact.
\end{enumerate}
We say an object $U$ of $\mathcal{A}$ is a {\it generator} if
for every $N \subset M$, $N \not = M$ in $\mathcal{A}$ there exists a morphism
$U \to M$ which does not factor through $N$.
We say $\mathcal{A}$ is a {\it Grothendieck abelian category} if
it has AB5 and a generator.
\end{definition}

\noindent
Discussion: A direct sum in an abelian category is a coproduct.
If an abelian category has direct sums (i.e., AB3), then it has colimits, see
Categories, Lemma \ref{categories-lemma-colimits-coproducts-coequalizers}. 
Similarly if $\mathcal{A}$ has AB3* then it has limits, see
Categories, Lemma \ref{categories-lemma-limits-products-equalizers}. 
Exactness of direct sums means the following: given an index set $I$
and short exact sequences
$$
0 \to A_i \to B_i \to C_i \to 0,\quad i \in I
$$
in $\mathcal{A}$ then the sequence
$$
0 \to
\bigoplus\nolimits_{i \in I} A_i \to
\bigoplus\nolimits_{i \in I} B_i \to
\bigoplus\nolimits_{i \in I} C_i \to 0
$$
is exact as well. Without assuming AB4 it is only true in general that
the sequence is exact on the right (i.e., taking direct sums is a right
exact functor if direct sums exist). Similarly, exactness of filtered
colimits means the following: given a directed set $I$
and a system of short exact sequences
$$
0 \to A_i \to B_i \to C_i \to 0
$$
over $I$ in $\mathcal{A}$ then the sequence
$$
0 \to
\colim_{i \in I} A_i \to
\colim_{i \in I} B_i \to
\colim_{i \in I} C_i \to 0
$$
is exact as well. Without assuming AB5 it is only true in general that
the sequence is exact on the right (i.e., taking colimits is a right
exact functor if colimits exist). A similar explanation holds for
AB4* and AB5*.



\section{Injectives in Grothendieck categories}
\label{section-grothendieck-categories}

\noindent
The existence of a generator implies that given an object $M$ of a
Grothendieck abelian category $\mathcal{A}$ there is a set of subobjects.
(This may not be true for a general ``big'' abelian category.)

\begin{lemma}
\label{lemma-set-of-subobjects}
Let $\mathcal{A}$ be an abelian category with a generator $U$ and
$X$ and object of $\mathcal{A}$. If $\kappa$ is the cardinality of
$\Mor(U, X)$ then
\begin{enumerate}
\item There does not exist a strictly increasing
(or strictly decreasing) chain of subobjects
of $X$ indexed by a cardinal bigger than $\kappa$.
\item If $\alpha$ is an ordinal of cofinality $> \kappa$
then any increasing (or decreasing) sequence of subobjects
of $X$ indexed by $\alpha$ is eventually constant.
\item The cardinality of the set of subobjects of $X$
is $\leq 2^\kappa$.
\end{enumerate}
\end{lemma}

\begin{proof}
For (1) assume $\kappa' > \kappa$ is a cardinal and assume
$X_i$, $i \in \kappa'$ is strictly increasing. Then take for
each $i$ a $\phi_i \in \Mor(U, X)$ such that $\phi_i$ factors through
$X_{i + 1}$ but not through $X_i$. Then the morphisms $\phi_i$
are distinct, which contradicts the definition of $\kappa$.

\medskip\noindent
Part (2) follows from the definition of cofinality and (1).

\medskip\noindent
Proof of (3). For any subobject $Y \subset X$
define $S_Y \in \mathcal{P}(\Mor(U, X))$ (power set) as
$S_Y = \{\phi \in \Mor(U,X) : \phi)\text{ factors through }Y\}$.
Then $Y = Y'$ if and only if $S_Y = S_{Y'}$. Hence the cardinality
of the set of subobjects is at most the cardinality of this power set.
\end{proof}

\noindent
By Lemma \ref{lemma-set-of-subobjects} the following definition makes sense.

\begin{definition}
\label{definition-size}
Let $\mathcal{A}$ be a Grothendieck abelian category.
Let $M$ be an object of $\mathcal{A}$.
The {\it size} $|M|$ of $M$ is the cardinality of the set of subobjects
of $M$.
\end{definition}

\begin{lemma}
\label{lemma-size-goes-down}
Let $\mathcal{A}$ be a Grothendieck abelian category.
If $0 \to M' \to M \to M'' \to 0$ is a short exact sequence of
$\mathcal{A}$, then $|M'|, |M''| \leq |M|$.
\end{lemma}

\begin{proof}
Immediate from the definitions.
\end{proof}

\begin{lemma}
\label{lemma-set-iso-classes-bounded-size}
Let $\mathcal{A}$ be a Grothendieck abelian category with generator $U$.
\begin{enumerate}
\item If $|M| \leq \kappa$, then $M$ is the quotient of a direct
sum of at most $\kappa$ copies of $U$.
\item For every cardinal $\kappa$ there exists a set of isomorphism classes
of objects $M$ with $|M| \leq \kappa$.
\end{enumerate}
\end{lemma}

\begin{proof}
For (1) choose for every proper subobject $M' \subset M$ a morphism
$\varphi_{M'} : U \to M$ whose image is not contained in $M'$. Then
$\bigoplus_{M' \subset M} \varphi_{M'} : \bigoplus_{M' \subset M} U \to M$
is surjective. It is clear that (1) implies (2).
\end{proof}

\begin{proposition}
\label{proposition-objects-are-small}
Let $\mathcal{A}$ be a Grothendieck abelian category. Let $M$ be an
object of $\mathcal{A}$. Let $\kappa = |M|$.
If $\alpha$ is an ordinal whose cofinality is bigger than $\kappa$,
then $M$ is $\alpha$-small with respect to injections.
\end{proposition}

\begin{proof}
Please compare with Proposition \ref{proposition-modules-are-small}.
We need only show that the map (\ref{equation-compare}) is a surjection.
Let $f : M \to \colim B_\beta$ be a map.
Consider the subobjects $\{f^{-1}(B_\beta)\}$ of $M$, where $B_\beta$
is considered as a subobject of the colimit $B = \bigcup_\beta B_\beta$.
If one of these, say $f^{-1}(B_\beta)$, fills $M$,
then the map factors through $B_\beta$.

\medskip\noindent
So suppose to the contrary that all of the $f^{-1}(B_\beta)$ were proper
subobjects of $M$. However, because $\mathcal{A}$ has
AB5 we have
$$
\colim f^{-1}(B_\beta) = f^{-1}\left(\colim B_\beta\right) = M.
$$
Now there are at most $\kappa$ different subobjects of $M$ that occur among
the $f^{-1}(B_\alpha)$, by hypothesis.
Thus we can find a subset $S \subset \alpha$ of cardinality at most
$\kappa$ such that as $\beta'$ ranges over $S$, the
$f^{-1}(B_{\beta'})$ range over \emph{all} the $f^{-1}(B_\alpha)$.

\medskip\noindent
However, $S$ has an upper bound $\widetilde{\alpha} < \alpha$ as
$\alpha$ has cofinality bigger than $\kappa$. In particular, all the
$f^{-1}(B_{\beta'})$, $\beta' \in S$ are contained in
$f^{-1}(B_{\widetilde{\alpha}})$.
It follows that $f^{-1}(B_{\widetilde{\alpha}}) = M$.
In particular, the map $f$ factors through $B_{\widetilde{\alpha}}$.
\end{proof}

\begin{lemma}
\label{lemma-characterize-injective}
\begin{slogan}
To check that an object is injective, one only needs to check that lifting
holds for subobjects of a generator.
\end{slogan}
Let $\mathcal{A}$ be a Grothendieck abelian category with generator $U$.
An object $I$ of $\mathcal{A}$ is injective if and only if in every
commutative diagram
$$
\xymatrix{
M \ar[d] \ar[r] &  I \\
U \ar@{-->}[ru]
}
$$
for $M \subset U$ a subobject, the dotted arrow exists.
\end{lemma}

\begin{proof}
Please see Lemma \ref{lemma-criterion-baer} for the case of modules.
Choose an injection $A \subset B$ and a morphism $\varphi : A \to I$.
Consider the set $S$ of pairs $(A', \varphi')$ consisting of
subobjects $A \subset A' \subset B$ and a morphism $\varphi' : A' \to I$
extending $\varphi$. Define a partial ordering on this set in the obvious
manner. Choose a totally ordered subset $T \subset S$. Then
$$
A' = \colim_{t \in T} A_t \xrightarrow{\colim_{t \in T} \varphi_t} I
$$
is an upper bound. Hence by Zorn's lemma the set $S$ has a maximal element
$(A', \varphi')$. We claim that $A' = B$. If not, then choose a morphism
$\psi : U \to B$ which does not factor through $A'$. Set
$N = A' \cap \psi(U)$. Set $M = \psi^{-1}(N)$. Then the map
$$
M \to N \to A' \xrightarrow{\varphi'} I
$$
can be extended to a morphism $\chi : U \to I$. Since
$\chi|_{\Ker(\psi)} = 0$ we see that $\chi$ factors as
$$
U \to \Im(\psi) \xrightarrow{\varphi''} I
$$
Since $\varphi'$ and $\varphi''$ agree on $N = A' \cap \Im(\psi)$
we see that combined the define a morphism $A' + \Im(\psi) \to I$
contradicting the assumed maximality of $A'$.
\end{proof}

\begin{theorem}
\label{theorem-injective-embedding-grothendieck}
Let $\mathcal{A}$ be a Grothendieck abelian category.
Then $\mathcal{A}$ has functorial injective embeddings.
\end{theorem}

\begin{proof}
Please compare with the proof of
Theorem \ref{theorem-baer-grothendieck}.
Choose a generator $U$ of $\mathcal{A}$. For an object $M$ we define
$\mathbf{M}(M)$ by the following pushout diagram
$$
\xymatrix{
\bigoplus_{N \subset U}
\bigoplus_{\varphi \in \Hom(N, M)}
N \ar[r] \ar[d] & M \ar[d] \\
\bigoplus_{N \subset U}
\bigoplus_{\varphi \in \Hom(N, M)}
U \ar[r] &  \mathbf{M}(M).
}
$$
Note that $M \to \mathbf{M}(N)$ is a functor and that there
exist functorial injective maps $M \to \mathbf{M}(M)$. By transfinite
induction we define functors $\mathbf{M}_\alpha(M)$ for every
ordinal $\alpha$. Namely, set $\mathbf{M}_0(M) = M$. Given
$\mathbf{M}_\alpha(M)$ set
$\mathbf{M}_{\alpha + 1}(M) = \mathbf{M}(\mathbf{M}_\alpha(M))$.
For a limit ordinal $\beta$ set
$$
\mathbf{M}_\beta(M) = \colim_{\alpha < \beta} \mathbf{M}_\alpha(M).
$$
Finally, pick any ordinal $\alpha$ whose cofinality is greater than $|U|$.
Such an ordinal exists by
Sets, Proposition \ref{sets-proposition-exist-ordinals-large-cofinality}.
We claim that $M \to \mathbf{M}_\alpha(M)$ is the desired functorial
injective embedding. Namely, if $N \subset U$ is a subobject and
$\varphi : N \to \mathbf{M}_\alpha(M)$ is a morphism, then we see that
$\varphi$ factors through $\mathbf{M}_{\alpha'}(M)$ for some
$\alpha' < \alpha$ by
Proposition \ref{proposition-objects-are-small}.
By construction of $\mathbf{M}(-)$ we see that $\varphi$ extends to
a morphism from $U$ into $\mathbf{M}_{\alpha' + 1}(M)$ and hence into
$\mathbf{M}_\alpha(M)$. By
Lemma \ref{lemma-characterize-injective}
we conclude that $\mathbf{M}_\alpha(M)$ is injective.
\end{proof}













\section{K-injectives in Grothendieck categories}
\label{section-K-injective}

\noindent
The material in this section is taken from the paper \cite{serpe}
authored by Serp\'e. This paper generalizes some of the results
of \cite{Spaltenstein} by Spaltenstein to general Grothendieck abelian
categories. Our Lemma \ref{lemma-characterize-K-injective}
is only implicit in the paper by Serp\'e. Our approach is to mimic
Grothendieck's proof of
Theorem \ref{theorem-injective-embedding-grothendieck}.

\begin{lemma}
\label{lemma-surjection-bounded-size}
Let $\mathcal{A}$ be a Grothendieck abelian category with generator $U$.
Let $c$ be the function on cardinals defined by
$c(\kappa) = |\bigoplus_{\alpha \in \kappa} U|$. If $\pi : M \to N$ is a
surjection then there exists a subobject $M' \subset M$ which surjects
onto $N$ with $|N'| \leq c(|N|)$.
\end{lemma}

\begin{proof}
For every proper subobject $N' \subset N$ choose a morphism
$\varphi_{N'} : U \to M$ such that $U \to M \to N$ does not factor
through $N'$. Set
$$
N' = \Im\left(
\bigoplus\nolimits_{N' \subset N} \varphi_{N'} :
\bigoplus\nolimits_{N' \subset N} U \longrightarrow M\right)
$$
Then $N'$ works.
\end{proof}

\begin{lemma}
\label{lemma-acyclic-quotient-complexes-bounded-size}
Let $\mathcal{A}$ be a Grothendieck abelian category. There exists a cardinal
$\kappa$ such that given any acyclic complex $M^\bullet$ we have
\begin{enumerate}
\item if $M^\bullet$ is nonzero, there is a nonzero subcomplex
$N^\bullet$ which is bounded above, acyclic, and $|N^n| \leq \kappa$,
\item there exists a surjection of complexes
$$
\bigoplus\nolimits_{i \in I} M_i^\bullet \longrightarrow M^\bullet
$$
where $M_i^\bullet$ is bounded above, acyclic, and $|M_i^n| \leq \kappa$.
\end{enumerate}
\end{lemma}

\begin{proof}
Choose a generator $U$ of $\mathcal{A}$. Denote $c$ the function of
Lemma \ref{lemma-surjection-bounded-size}.
Set $\kappa = \sup \{c^n(|U|), n = 1, 2, 3, \ldots\}$.
Let $n \in \mathbf{Z}$ and let $\psi : U \to M^n$ be a morphism.
In order to prove (1) and (2) it suffices to prove there exists a subcomplex
$N^\bullet \subset M^\bullet$ which is bounded above, acyclic, and
$|N^m| \leq \kappa$, such that $\psi$ factors through $N^n$.
To do this set $N^n = \Im(\psi)$, $N^{n + 1} = \Im(U \to M^n \to M^{n + 1})$,
and $N^m = 0$ for $m \geq n + 2$.
Suppose we have constructed $N^m \subset M^m$ for all $m \geq k$ such that
\begin{enumerate}
\item $\text{d}(N^m) \subset N^{m + 1}$, $m \geq k$,
\item $\Im(N^{m - 1} \to N^m) = \Ker(N^m \to N^{m + 1})$ for
all $m \geq k + 1$, and
\item $|N^m| \leq c^{\max\{n - m, 0\}}(|U|)$.
\end{enumerate}
for some $k \leq n$. Because $M^\bullet$ is acyclic, we see that the subobject
$\text{d}^{-1}(\Ker(N^k \to N^{k + 1})) \subset M^{k - 1}$ surjects onto
$\Ker(N^k \to N^{k + 1})$. Thus we can choose $N^{k - 1} \subset M^{k - 1}$
surjecting onto $\Ker(N^k \to N^{k + 1})$ with
$|N^{k - 1}| \leq c^{n - k + 1}(|U|)$ by
Lemma \ref{lemma-surjection-bounded-size}. The proof is finished by
induction on $k$.
\end{proof}

\begin{lemma}
\label{lemma-characterize-K-injective}
Let $\mathcal{A}$ be a Grothendieck abelian category.
Let $\kappa$ be a cardinal as in
Lemma \ref{lemma-acyclic-quotient-complexes-bounded-size}.
Suppose that $I^\bullet$ is a complex such that
\begin{enumerate}
\item each $I^j$ is injective, and
\item for every bounded above acyclic complex $M^\bullet$
such that $|M^n| \leq \kappa$
we have $\Hom_{K(\mathcal{A})}(M^\bullet, I^\bullet) = 0$.
\end{enumerate}
Then $I^\bullet$ is an $K$-injective complex.
\end{lemma}

\begin{proof}
Let $M^\bullet$ be an acyclic complex. We are going to construct by
induction on the ordinal $\alpha$ an acyclic subcomplex
$K_\alpha^\bullet \subset M^\bullet$ as follows.
For $\alpha = 0$ we set $K_0^\bullet = 0$. For $\alpha > 0$
we proceed as follows:
\begin{enumerate}
\item If $\alpha = \beta + 1$ and $K_\beta^\bullet = M^\bullet$
then we choose $K_\alpha^\bullet = K_\beta^\bullet$.
\item If $\alpha = \beta + 1$ and $K_\beta^\bullet \not = M^\bullet$
then $M^\bullet/K_\beta^\bullet$ is a nonzero acyclic complex.
We choose a subcomplex $N_\alpha^\bullet \subset M^\bullet/K_\beta^\bullet$
as in Lemma \ref{lemma-acyclic-quotient-complexes-bounded-size}.
Finally, we let $K_\alpha^\bullet \subset M^\bullet$
be the inverse image of $N_\alpha^\bullet$.
\item If $\alpha$ is a limit ordinal we set
$K_\beta^\bullet = \colim K_\alpha^\bullet$.
\end{enumerate}
It is clear that $M^\bullet = K_\alpha^\bullet$ for a suitably large
ordinal $\alpha$. We will prove that
$$
\Hom_{K(\mathcal{A})}(K_\alpha^\bullet, I^\bullet)
$$
is zero by transfinite induction on $\alpha$. It holds for $\alpha = 0$
since $K_0^\bullet$ is zero. Suppose it holds for $\beta$ and
$\alpha = \beta + 1$. In case (1) of the list above the result is clear.
In case (2) there is a short exact sequence of complexes
$$
0 \to K_\beta^\bullet \to K_\alpha^\bullet \to N_\alpha^\bullet \to 0
$$
Since each component of $I^\bullet$ is injective we see that we obtain
an exact sequence
$$
\Hom_{K(\mathcal{A})}(K_\beta^\bullet, I^\bullet) \to
\Hom_{K(\mathcal{A})}(K_\alpha^\bullet, I^\bullet) \to
\Hom_{K(\mathcal{A})}(N_\alpha^\bullet, I^\bullet)
$$
By induction the term on the left is zero and by assumption on $I^\bullet$
the term on the right is zero. Thus the middle group is zero too.
Finally, suppose that $\alpha$ is a limit ordinal. Then we see that
$$
\Hom^\bullet(K_\alpha^\bullet, I^\bullet) =
\lim_{\beta < \alpha} \Hom^\bullet(K_\beta^\bullet, I^\bullet)
$$
with notation as in
More on Algebra, Section \ref{more-algebra-section-hom-complexes}.
These complexes compute morphisms in $K(\mathcal{A})$ by
More on Algebra, Equation
(\ref{more-algebra-equation-cohomology-hom-complex}).
Note that the transition maps in the system are surjective
because $I^j$ is surjective for each $j$. Moreover, for a limit
ordinal $\alpha$ we have equality of limit and value
(see displayed formula above). Thus we may apply
Homology, Lemma \ref{homology-lemma-ML-over-ordinals}
to conclude.
\end{proof}

\begin{lemma}
\label{lemma-functorial-homotopies}
Let $\mathcal{A}$ be a Grothendieck abelian category.
Let $(K_i^\bullet)_{i \in I}$ be a set of acyclic complexes.
There exists a functor $M^\bullet \mapsto \mathbf{M}^\bullet(M^\bullet)$
and a natural transformation
$j_{M^\bullet} : M^\bullet \to \mathbf{M}^\bullet(M^\bullet)$
such
\begin{enumerate}
\item $j_{M^\bullet}$ is a (termwise) injective quasi-isomorphism, and
\item for every $i \in I$ and $w : K_i^\bullet \to M^\bullet$
the morphism $j_{M^\bullet} \circ w$ is homotopic to zero.
\end{enumerate}
\end{lemma}

\begin{proof}
For every $i \in I$ choose a (termwise) injective map of complexes
$K_i^\bullet \to L_i^\bullet$ which is homotopic to zero with
$L_i^\bullet$ quasi-isomorphic to zero. For example, take $L_i^\bullet$
to be the cone on the identity of $K_i^\bullet$.
We define $\mathbf{M}^\bullet(M^\bullet)$ by the following pushout diagram
$$
\xymatrix{
\bigoplus_{i \in I}
\bigoplus_{w : K_i^\bullet \to M^\bullet}
K_i^\bullet \ar[r] \ar[d] & M^\bullet \ar[d] \\
\bigoplus_{i \in I}
\bigoplus_{w : K_i^\bullet \to M^\bullet}
L_i^\bullet \ar[r] &  \mathbf{M}^\bullet(M^\bullet).
}
$$
Then $M^\bullet \to \mathbf{M}^\bullet(M^\bullet)$ is a functor. The right
vertical arrow defines the functorial injective map $j_{M^\bullet}$.
The cokernel of $j_{M^\bullet}$ is isomorphic to the direct sum of
the cokernels of the maps $K_i^\bullet \to L_i^\bullet$ hence acyclic.
Thus $j_{M^\bullet}$ is a quasi-isomorphism. Part (2) holds by construction.
\end{proof}

\begin{lemma}
\label{lemma-functorial-injective}
Let $\mathcal{A}$ be a Grothendieck abelian category.
There exists a functor $M^\bullet \mapsto \mathbf{N}^\bullet(M^\bullet)$
and a natural transformation
$j_{M^\bullet} : M^\bullet \to \mathbf{N}^\bullet(M^\bullet)$
such
\begin{enumerate}
\item $j_{M^\bullet}$ is a (termwise) injective quasi-isomorphism, and
\item for every $n \in \mathbf{Z}$ the map $M^n \to \mathbf{N}^n(M^\bullet)$
factors through a subobject $I^n \subset \mathbf{N}^n(M^\bullet)$ where $I^n$
is an injective object of $\mathcal{A}$.
\end{enumerate}
\end{lemma}

\begin{proof}
Choose a functorial injective embeddings $i_M : M \to I(M)$, see
Theorem \ref{theorem-injective-embedding-grothendieck}.
For every complex $M^\bullet$ denote $J^\bullet(M^\bullet)$ the complex
with terms $J^n(M^\bullet) = I(M^n) \oplus I(M^{n + 1})$ and differential
$$
d_{J^\bullet(M^\bullet)} =
\left(
\begin{matrix}
0 & 1 \\
0 & 0
\end{matrix}
\right)
$$
There exists a canonical injective map of complexes
$u_{M^\bullet} : M^\bullet \to J^\bullet(M^\bullet)$ by mapping $M^n$ to
$I(M^n) \oplus I(M^{n + 1})$ via the maps $i_{M^n} : M^n \to I(M^n)$ and
$i_{M^{n + 1}} \circ d : M^n \to M^{n + 1} \to I(M^{n + 1})$. Hence a
short exact sequence of complexes
$$
0 \to M^\bullet \xrightarrow{u_{M^\bullet}}
J^\bullet(M^\bullet) \xrightarrow{v_{M^\bullet}}
Q^\bullet(M^\bullet) \to 0
$$
functorial in $M^\bullet$. Set
$$
\mathbf{N}^\bullet(M^\bullet) = C(v_{M^\bullet})^\bullet[-1].
$$
Note that
$$
\mathbf{N}^n(M^\bullet) = Q^{n - 1}(M^\bullet) \oplus J^n(M^\bullet)
$$
with differential
$$
\left(
\begin{matrix}
- d^{n - 1}_{Q^\bullet(M^\bullet)} & - v^n_{M^\bullet} \\
0 & d^n_{J^\bullet(M)}
\end{matrix}
\right)
$$
Hence we see that there is a map of complexes
$j_{M^\bullet} : M^\bullet \to \mathbf{N}^\bullet(M^\bullet)$
induced by $u$. It is injective and factors through an injective subobject
by construction. The map $j_{M^\bullet}$ is a quasi-isomorphism as one
can prove by looking at the long exact sequence of cohomology associated
to the short exact sequences of complexes above.
\end{proof}

\begin{theorem}
\label{theorem-K-injective-embedding-grothendieck}
\begin{slogan}
Existence of K-injective complexes for Grothendieck abelian categories.
\end{slogan}
Let $\mathcal{A}$ be a Grothendieck abelian category.
For every complex $M^\bullet$ there exists a quasi-isomorphism
$M^\bullet \to I^\bullet$ such that $M^n \to I^n$ is injective and $I^n$
is an injective object of $\mathcal{A}$ for all $n$ and $I^\bullet$
is a K-injective complex. Moreover, the construction is functorial in
$M^\bullet$.
\end{theorem}

\begin{proof}
Please compare with the proof of
Theorem \ref{theorem-baer-grothendieck}
and
Theorem \ref{theorem-injective-embedding-grothendieck}.
Choose a cardinal $\kappa$ as in
Lemmas \ref{lemma-acyclic-quotient-complexes-bounded-size} and
\ref{lemma-characterize-K-injective}.
Choose a set $(K_i^\bullet)_{i \in I}$
of bounded above, acyclic complexes
such that every bounded above acyclic complex $K^\bullet$
such that $|K^n| \leq \kappa$ is isomorphic to $K_i^\bullet$ for some
$i \in I$. This is possible by
Lemma \ref{lemma-set-iso-classes-bounded-size}.
Denote $\mathbf{M}^\bullet(-)$ the functor constructed in
Lemma \ref{lemma-functorial-homotopies}.
Denote $\mathbf{N}^\bullet(-)$ the functor constructed in
Lemma \ref{lemma-functorial-injective}.
Both of these functors come with injective transformations
$\text{id} \to \mathbf{M}$ and $\text{id} \to \mathbf{N}$.

\medskip\noindent
Using transfinite recursion we define a sequence of functors
$\mathbf{T}_\alpha(-)$ and corresponding transformations
$\text{id} \to \mathbf{T}_\alpha$. Namely we set
$\mathbf{T}_0(M^\bullet) = M^\bullet$. If $\mathbf{T}_\alpha$ is
given then we set
$$
\mathbf{T}_{\alpha + 1}(M^\bullet) =
\mathbf{N}^\bullet(\mathbf{M}^\bullet(\mathbf{T}_\alpha(M^\bullet)))
$$
If $\beta$ is a limit ordinal we set
$$
\mathbf{T}_\beta(M^\bullet) =
\colim_{\alpha < \beta} \mathbf{T}_\alpha(M^\bullet)
$$
The transition maps of the system are injective quasi-isomorphisms.
By AB5 we see that the colimit is still quasi-isomorphic to $M^\bullet$.
We claim that $M^\bullet \to \mathbf{T}_\alpha(M^\bullet)$
does the job if the cofinality of $\alpha$ is larger than
$\max(\kappa, |U|)$ where $U$ is a generator of $\mathcal{A}$.
Namely, it suffices to check conditions (1) and (2) of
Lemma \ref{lemma-characterize-K-injective}.

\medskip\noindent
For (1) we use the criterion of
Lemma \ref{lemma-characterize-injective}.
Suppose that $M \subset U$ and $\varphi : M \to \mathbf{T}^n_\alpha(M^\bullet)$
is a morphism for some $n \in \mathbf{Z}$. By
Proposition \ref{proposition-objects-are-small}
we see that $\varphi$ factor through
$\mathbf{T}^n_{\alpha'}(M^\bullet)$ for some $\alpha' < \alpha$.
In particular, by the construction of the functor
$\mathbf{N}^\bullet(-)$ we see that $\varphi$ factors through
an injective object of $\mathcal{A}$ which shows that $\varphi$
lifts to a morphism on $U$.

\medskip\noindent
For (2) let $w : K^\bullet  \to \mathbf{T}_\alpha(M^\bullet)$
be a morphism of complexes where $K^\bullet$ is a bounded above acyclic
complex such that $|K^n| \leq \kappa$. Then $K^\bullet \cong K_i^\bullet$
for some $i \in I$. Moreover, by
Proposition \ref{proposition-objects-are-small}
once again we see that $w$ factor through
$\mathbf{T}^n_{\alpha'}(M^\bullet)$ for some $\alpha' < \alpha$.
In particular, by the construction of the functor
$\mathbf{M}^\bullet(-)$ we see that $w$ is homotopic to zero.
This finishes the proof.
\end{proof}







\section{Additional remarks on Grothendieck abelian categories}
\label{section-additional-Grothendieck}

\noindent
In this section we put some results on Grothendieck abelian categories
which are folklore.

\begin{lemma}
\label{lemma-grothendieck-brown}
Let $\mathcal{A}$ be a Grothendieck abelian category.
Let $F : \mathcal{A}^{opp} \to \textit{Sets}$ be a functor.
Then $F$ is representable if and only if $F$ commutes with colimits, i.e.,
$$
F(\colim_i N_i) = \lim F(N_i)
$$
for any diagram $\mathcal{I} \to \mathcal{A}$, $i \in \mathcal{I}$.
\end{lemma}

\begin{proof}
If $F$ is representable, then it commutes with colimits by definition
of colimits.

\medskip\noindent
Assume that $F$ commutes with colimits. Then $F(M \oplus N) = F(M) \times F(N)$
and we can use this to define a group structure on $F(M)$. Hence we get
$F : \mathcal{A} \to \textit{Ab}$ which is additive and right exact, i.e.,
transforms a short exact sequence $0 \to K \to L \to M \to 0$ into an exact
sequence $F(K) \leftarrow F(L) \leftarrow F(M) \leftarrow 0$ (compare with
Homology, Section \ref{homology-section-functors}).

\medskip\noindent
Let $U$ be a generator for $\mathcal{A}$. Set $A = \bigoplus_{s \in F(U)} U$.
Let $s_{univ} = (s)_{s \in F(U)} \in F(A) = \prod_{s \in F(U)} F(U)$. Let
$A' \subset A$ be the largest subobject such that $s_{univ}$ restricts to
zero on $A'$. This exists because $\mathcal{A}$ is a Grothendieck category
and because $F$ commutes with colimits. Because $F$ commutes with colimits
there exists a unique element $\overline{s}_{univ} \in F(A/A')$ which
maps to $s_{univ}$ in $F(A)$. We claim that $A/A'$ represents $F$, in
other words, the Yoneda map
$$
\overline{s}_{univ} : h_{A/A'} \longrightarrow F
$$
is an isomorphism. Let $M \in \Ob(\mathcal{A})$ and $s \in F(M)$. Consider
the surjection
$$
c_M :
A_M = \bigoplus\nolimits_{\varphi \in \Hom_\mathcal{A}(U, M)} U
\longrightarrow
M.
$$
This gives $F(c_M)(s) = (s_\varphi) \in \prod_\varphi F(U)$.
Consider the map
$$
\psi :
A_M = \bigoplus\nolimits_{\varphi \in \Hom_\mathcal{A}(U, M)} U
\longrightarrow
\bigoplus\nolimits_{s \in F(U)} U = A
$$
which maps the summand corresponding to $\varphi$ to the summand
corresponding to $s_\varphi$ by the identity map on $U$. Then $s_{univ}$
maps to $(s_\varphi)_\varphi$ by construction.
in other words the right square in the diagram
$$
\xymatrix{
A' \ar[r] &
A \ar@{..>}[r]_{s_{univ}} & F \\
K \ar[r] \ar[u]^{?} & A_M \ar[u]^\psi \ar[r] &
M \ar@{..>}[u]_s
}
$$
commutes. Let $K = \Ker(A_M \to M)$. Since $s$ restricts to zero
on $K$ we see that $\psi(K) \subset A'$ by definition of $A'$. Hence there
is an induced morphism $M \to A/A'$. This construction gives an inverse
to the map $h_{A/A'}(M) \to F(M)$ (details omitted).
\end{proof}

\begin{lemma}
\label{lemma-grothendieck-products}
A Grothendieck abelian category has Ab3*.
\end{lemma}

\begin{proof}
Let $M_i$, $i \in I$ be a family of objects of $\mathcal{A}$ indexed
by a set $I$. The functor $F = \prod_{i \in I} h_{M_i}$
commutes with colimits. Hence
Lemma \ref{lemma-grothendieck-brown}
applies.
\end{proof}

\begin{remark}
\label{remark-existence-D}
In the chapter on derived categories we consistently work with
``small'' abelian categories (as is the convention in the Stacks
project). For a ``big'' abelian category $\mathcal{A}$ it isn't clear
that the derived category $D(\mathcal{A})$ exists because it isn't
clear that morphisms in the derived category are sets. In general this
isn't true, see
Examples, Lemma \ref{examples-lemma-big-abelian-category}.
However, if $\mathcal{A}$ is a Grothendieck abelian category, and given
$K^\bullet, L^\bullet$ in $K(\mathcal{A})$, then by
Theorem \ref{theorem-K-injective-embedding-grothendieck}
there exists a quasi-isomorphism $L^\bullet \to I^\bullet$ to a
K-injective complex $I^\bullet$ and
Derived Categories, Lemma \ref{derived-lemma-K-injective} shows that
$$
\Hom_{D(\mathcal{A})}(K^\bullet, L^\bullet) =
\Hom_{K(\mathcal{A})}(K^\bullet, I^\bullet)
$$
which is a set. Some examples of Grothendieck abelian categories
are the category of modules over a ring, or more generally
the category of sheaves of modules on a ringed site.
\end{remark}

\begin{lemma}
\label{lemma-derived-products}
Let $\mathcal{A}$ be a Grothendieck abelian category.
Then
\begin{enumerate}
\item $D(\mathcal{A})$ has both direct sums and products,
\item direct sums are obtained by taking termwise direct sums of
any complexes,
\item products are obtained by taking termwise products of
K-injective complexes.
\end{enumerate}
\end{lemma}

\begin{proof}
Let $K^\bullet_i$, $i \in I$ be a family of objects of $D(\mathcal{A})$
indexed by a set $I$. We claim that the termwise direct sum
$\bigoplus_{i \in I} K^\bullet_i$ is a direct sum in $D(\mathcal{A})$.
Namely, let $I^\bullet$ be a K-injective complex. Then we have
\begin{align*}
\Hom_{D(\mathcal{A})}(\bigoplus\nolimits_{i \in I} K^\bullet_i, I^\bullet)
& =
\Hom_{K(\mathcal{A})}(\bigoplus\nolimits_{i \in I} K^\bullet_i, I^\bullet) \\
& =
\prod\nolimits_{i \in I} \Hom_{K(\mathcal{A})}(K^\bullet_i, I^\bullet) \\
& =
\prod\nolimits_{i \in I} \Hom_{D(\mathcal{A})}(K^\bullet_i, I^\bullet)
\end{align*}
as desired. This is sufficient since any complex can be represented
by a K-injective complex by
Theorem \ref{theorem-K-injective-embedding-grothendieck}.
To construct the product, choose a K-injective resolution
$K_i^\bullet \to I_i^\bullet$ for each $i$. Then we claim that
$\prod_{i \in I} I_i^\bullet$ is a product in $D(\mathcal{A})$.
This follows from
Derived Categories, Lemma \ref{derived-lemma-product-K-injective}.
\end{proof}

\begin{remark}
\label{remark-direct-sum-product-derived}
Let $R$ be a ring. Suppose that $M_n$, $n \in \mathbf{Z}$ are $R$-modules.
Denote $E_n = M_n[-n] \in D(R)$. We claim that $E = \bigoplus M_n[-n]$ is
{\it both} the direct sum and the product of the objects $E_n$ in $D(R)$.
To see that it is the direct sum, take a look at the proof of
Lemma \ref{lemma-derived-products}.
To see that it is the direct product, take injective resolutions
$M_n \to I_n^\bullet$. By the proof of
Lemma \ref{lemma-derived-products}
we have
$$
\prod E_n = \prod I_n^\bullet[-n]
$$
in $D(R)$. Since products in $\text{Mod}_R$ are exact, we see that
$\prod I_n^\bullet$ is quasi-isomorphic to $E$. This works more generally
in $D(\mathcal{A})$ where $\mathcal{A}$ is a Grothendieck abelian
category with Ab4*.
\end{remark}

\begin{lemma}
\label{lemma-RF-commutes-with-Rlim}
Let $F : \mathcal{A} \to \mathcal{B}$ be an additive functor of
abelian categories. Assume
\begin{enumerate}
\item $\mathcal{A}$ is a Grothendieck abelian category,
\item $\mathcal{B}$ has exact countable products, and
\item $F$ commutes with countable products.
\end{enumerate}
Then
$RF : D(\mathcal{A}) \to D(\mathcal{B})$ commutes with derived limits.
\end{lemma}

\begin{proof}
Observe that $RF$ exists as $\mathcal{A}$ has enough K-injectives
(Theorem \ref{theorem-K-injective-embedding-grothendieck}
and
Derived Categories, Lemma \ref{derived-lemma-K-injective-defined}).
The statement means that if $K = R\lim K_n$, then
$RF(K) = R\lim RF(K_n)$. See
Derived Categories, Definition \ref{derived-definition-derived-limit}
for notation. Since $RF$ is an exact functor of triangulated
categories it suffices to see that $RF$ commutes with countable
products of objects of $D(\mathcal{A})$. In the proof of
Lemma \ref{lemma-derived-products}
we have seen that products in $D(\mathcal{A})$ are computed by
taking products of K-injective complexes and moreover that a
product of K-injective complexes is K-injective.
Moreover, in Derived Categories, Lemma
\ref{derived-lemma-products}
we have seen that products in $D(\mathcal{B})$ are computed
by taking termwise products.
Since $RF$ is computed by applying $F$ to a K-injective
representative and since we've assumed $F$ commutes with
countable products, the lemma follows.
\end{proof}

\noindent
The following lemma is some kind of generalization of
the existence of Cartan-Eilenberg resolutions
(Derived Categories, Section \ref{derived-section-cartan-eilenberg}).

\begin{lemma}
\label{lemma-K-injective-embedding-filtration}
Let $\mathcal{A}$ be a Grothendieck abelian category.
Let $K^\bullet$ be a filtered complex of $\mathcal{A}$, see
Homology, Definition \ref{homology-definition-filtered-complex}.
Then there exists a morphism $j : K^\bullet \to J^\bullet$
of filtered complexes of $\mathcal{A}$ such that
\begin{enumerate}
\item $J^n$, $F^pJ^n$, $J^n/F^pJ^n$ and $F^pJ^n/F^{p'}J^n$ are injective
objects of $\mathcal{A}$,
\item $J^\bullet$, $F^pJ^\bullet$, $J^\bullet/F^pJ^\bullet$, and
$F^pJ^\bullet/F^{p'}J^\bullet$ are K-injective complexes,
\item $j$ induces quasi-isomorphisms
$K^\bullet \to J^\bullet$,
$F^pK^\bullet \to F^pJ^\bullet$,
$K^\bullet/F^pK^\bullet \to J^\bullet/F^pJ^\bullet$, and
$F^pK^\bullet/F^{p'}K^\bullet \to F^pJ^\bullet/F^{p'}J^\bullet$.
\end{enumerate}
\end{lemma}

\begin{proof}
By Theorem \ref{theorem-K-injective-embedding-grothendieck}
we obtain quasi-isomorphisms $i : K^\bullet \to I^\bullet$ and
$i^p : F^pK^\bullet \to I^{p, \bullet}$ as well as commutative diagrams
$$
\vcenter{
\xymatrix{
K^\bullet \ar[d]_i & F^pK^\bullet \ar[l] \ar[d]_{i^p} \\
I^\bullet & I^{p, \bullet} \ar[l]_{\alpha^p}
}
}
\quad\text{and}\quad
\vcenter{
\xymatrix{
F^{p'}K^\bullet \ar[d]_{i^{p'}} &
F^pK^\bullet \ar[l] \ar[d]_{i^p} \\
I^{p', \bullet} &
I^{p, \bullet} \ar[l]_{\alpha^{p p'}}
}
}
\quad\text{for }p' \leq p
$$
such that $\alpha^p \circ \alpha^{p' p} = \alpha^{p'}$
and $\alpha^{p'p''} \circ \alpha^{pp'} = \alpha^{pp''}$.
The problem is that the maps $\alpha^p : I^{p, \bullet} \to I^\bullet$
need not be injective. For each $p$ we choose an injection
$t^p : I^{p, \bullet} \to J^{p, \bullet}$ into an acyclic K-injective
complex $J^{p, \bullet}$ whose terms are injective objects of $\mathcal{A}$
(first map to the cone on the identity and then use the theorem).
Choose a map of complexes $s^p : I^\bullet \to J^{p, \bullet}$
such that the following diagram commutes
$$
\xymatrix{
K^\bullet \ar[d]_i & F^pK^\bullet \ar[l] \ar[d]_{i^p} \\
I^\bullet \ar[rd]_{s^p} & I^{p, \bullet} \ar[d]^{t^p} \\
& J^{p, \bullet}
}
$$
This is possible: the composition $F^pK^\bullet \to J^{p, \bullet}$
is homotopic to zero because $J^{p, \bullet}$ is acyclic and K-injective
(Derived Categories, Lemma \ref{derived-lemma-K-injective}).
Since the objects $J^{p, n - 1}$ are injective and since
$F^pK^n \to K^n \to I^n$ are injective morphisms, we
can lift the maps $F^pK^n \to J^{p, n - 1}$ giving the homotopy
to a map $h^n : I^n \to J^{p, n - 1}$. Then we set $s^p$
equal to $h \circ \text{d} + \text{d} \circ h$.
(Warning: It will not be the case that $t^p = s^p \circ \alpha^p$,
so we have to be careful not to use this below.)

\medskip\noindent
Consider
$$
J^\bullet = I^\bullet \times \prod\nolimits_p J^{p, \bullet}
$$
Because products in $D(\mathcal{A})$ are given by taking
products of K-injective complexes
(Lemma \ref{lemma-derived-products})
and since $J^{p, \bullet}$
is isomorphic to $0$ in $D(\mathcal{A})$ we see that
$J^\bullet \to I^\bullet$ is an isomorphism in $D(\mathcal{A})$.
Consider the map
$$
j = i \times (s^p \circ i)_{p \in \mathbf{Z}} :
K^\bullet
\longrightarrow
I^\bullet \times \prod\nolimits_p J^{p, \bullet} = J^\bullet
$$
By our remarks above this is a quasi-isomorphism. It is also injective.
For $p \in \mathbf{Z}$ we let $F^pJ^\bullet \subset J^\bullet$ be
$$
\Im\left(
\alpha^p \times (t^{p'} \circ \alpha^{pp'})_{p' \leq p} :
I^{p, \bullet}
\to
I^\bullet \times \prod\nolimits_{p' \leq p} J^{p', \bullet}
\right)
\times \prod\nolimits_{p' > p} J^{p', \bullet}
$$
This complex is isomorphic to the complex
$I^{p, \bullet} \times \prod_{p' > p} J^{p, \bullet}$
as $\alpha^{pp} = \text{id}$ and $t^p$ is injective.
Hence $F^pJ^\bullet$ is quasi-isomorphic to $I^{p, \bullet}$ (argue
as above). We have $j(F^pK^\bullet) \subset F^pJ^\bullet$ because
of the commutativity of the diagram above. The corresponding
map of complexes $F^pK^\bullet \to F^pJ^\bullet$ is a quasi-isomorphism
by what we just said. Finally, to see that
$F^{p + 1}J^\bullet \subset F^pJ^\bullet$
use that $\alpha^{p + 1p} \circ \alpha^{pp'} = \alpha^{p + 1p'}$
and the commutativity of the first displayed diagram
in the first paragraph of the proof.

\medskip\noindent
We claim that $j : K^\bullet \to J^\bullet$ is a solution to the
problem posed by the lemma. Namely, $F^pJ^n$ is an injective object
of $\mathcal{A}$ because it is isomorphic to
$I^{p, n} \times \prod_{p' > p} J^{p', n}$ and products of
injectives are injective. Then the injective map $F^pJ^n \to J^n$
splits and hence the quotient $J^n/F^pJ^n$ is injective as well
as a direct summand of the injective object $J^n$.
Similarly for $F^pJ^n/F^{p'}J^n$. This in particular means
that $0 \to F^pJ^\bullet \to J^\bullet \to J^\bullet/F^pJ^\bullet \to 0$
is a termwise split short exact sequence of complexes, hence defines
a distinguished triangle in $K(\mathcal{A})$ by fiat.
Since $J^\bullet$ and $F^pJ^\bullet$ are K-injective complexes
we see that the same is true for $J^\bullet/F^pJ^\bullet$
by Derived Categories, Lemma \ref{derived-lemma-triangle-K-injective}.
A similar argument shows that $F^pJ^\bullet/F^{p'}J^\bullet$
is K-injective. By construction $j : K^\bullet \to J^\bullet$
and the induced maps $F^pK^\bullet \to F^pJ^\bullet$ are
quasi-isomorphisms. Using the long exact cohomology sequences
of the complexes in play we find that the same holds for
$K^\bullet/F^pK^\bullet \to J^\bullet/F^pJ^\bullet$ and
$F^pK^\bullet/F^{p'}K^\bullet \to F^pJ^\bullet/F^{p'}J^\bullet$.
\end{proof}

\begin{remark}
\label{remark-ext-into-filtered-complex}
Let $\mathcal{A}$ be a Grothendieck abelian category.
Let $K^\bullet$ be a filtered complex of $\mathcal{A}$, see
Homology, Definition \ref{homology-definition-filtered-complex}.
For ease of notation denote $K$, $F^pK$, $\text{gr}^pK$ the
object of $D(\mathcal{A})$ represented by $K^\bullet$,
$F^pK^\bullet$, $\text{gr}^pK^\bullet$. Let $M \in D(\mathcal{A})$.
Using Lemma \ref{lemma-K-injective-embedding-filtration}
we can construct a spectral sequence $(E_r, d_r)_{r \geq 1}$
of bigraded objects of $\mathcal{A}$ with $d_r$ of bidgree
$(r, -r + 1)$ and
with
$$
E_1^{p, q} = \Ext^{p + q}(M, \text{gr}^pK)
$$
If for every $n$ we have
$$
\Ext^n(M, F^pK) = 0 \text{ for } p \gg 0
\quad\text{and}\quad
\Ext^n(M, F^pK) = \Ext^n(M, K) \text{ for } p \ll 0
$$
then the spectral sequence is bounded and converges to $\Ext^{p + q}(M, K)$.
Namely, choose any complex $M^\bullet$ representing $M$, choose
$j : K^\bullet \to J^\bullet$ as in the lemma, and consider the complex
$$
\Hom^\bullet(M^\bullet, I^\bullet)
$$
defined exactly as in
More on Algebra, Section \ref{more-algebra-section-hom-complexes}.
Setting $F^p\Hom^\bullet(M^\bullet, I^\bullet) =
\Hom^\bullet(M^\bullet, F^pI^\bullet)$ we obtain a filtered complex.
The spectral sequence of
Homology, Section \ref{homology-section-filtered-complex}
has differentials and terms as described above; details omitted.
The boundedness and convergence follows from
Homology, Lemma \ref{homology-lemma-ss-converges-trivial}.
\end{remark}

\begin{remark}
\label{remark-spectral-sequences-ext}
Let $\mathcal{A}$ be a Grothendieck abelian category.
Let $M, K$ be objects of $D(\mathcal{A})$.
For any choice of complex $K^\bullet$ representing $K$ we
can use the filtration $F^pK^\bullet = \tau_{\leq -p}K^\bullet$
and the discussion in Remark \ref{remark-ext-into-filtered-complex}
to get a spectral sequence with
$$
E_1^{p, q} = \Ext^{2p + q}(M, H^{-p}(K))
$$
This spectral sequence is independent of the choice of
complex $K^\bullet$ representing $K$. After renumbering
$p = -j$ and $q = i + 2j$ we find a spectral sequence
$(E'_r, d'_r)_{r \geq 2}$ with $d'_r$ of bidegree $(r, -r + 1)$, with
$$
(E'_2)^{i, j} = \Ext^i(M, H^j(K))
$$
If $M \in D^-(\mathcal{A})$ and $K \in D^+(\mathcal{A})$ then
both $E_r$ and $E'_r$ are bounded and converge to $\Ext^{p + q}(M, K)$.
If we use the filtration $F^pK^\bullet = \sigma_{\geq p}K^\bullet$
then we get
$$
E_1^{p, q} = \Ext^q(M, K^p)
$$
If $M \in D^-(\mathcal{A})$ and $K^\bullet$ is bounded below, then
this spectral sequence is bounded and converges to $\Ext^{p + q}(M, K)$.
\end{remark}

\begin{remark}
\label{remark-ext-from-filtered-complex}
Let $\mathcal{A}$ be a Grothendieck abelian category. Let
$K \in D(\mathcal{A})$. Let $M^\bullet$ be a filtered complex of
$\mathcal{A}$, see Homology, Definition
\ref{homology-definition-filtered-complex}.
For ease of notation denote $M$, $M/F^pM$, $\text{gr}^pM$ the
object of $D(\mathcal{A})$ represented by $M^\bullet$,
$M^\bullet/F^pM^\bullet$, $\text{gr}^pM^\bullet$.
Dually to Remark \ref{remark-ext-into-filtered-complex}
we can construct a spectral sequence $(E_r, d_r)_{r \geq 1}$
of bigraded objects of $\mathcal{A}$ with $d_r$ of bidgree
$(r, -r + 1)$ and
with
$$
E_1^{p, q} = \Ext^{p + q}(\text{gr}^{-p}M, K)
$$
If for every $n$ we have
$$
\Ext^n(M/F^pM, K) = 0 \text{ for } p \ll 0
\quad\text{and}\quad
\Ext^n(M/F^pM, K) = \Ext^n(M, K) \text{ for } p \gg 0
$$
then the spectral sequence is bounded and converges to $\Ext^{p + q}(M, K)$.
Namely, choose a K-injective complex $I^\bullet$ with injective terms
representing $K$, see Theorem \ref{theorem-K-injective-embedding-grothendieck}.
Consider the complex
$$
\Hom^\bullet(M^\bullet, I^\bullet)
$$
defined exactly as in
More on Algebra, Section \ref{more-algebra-section-hom-complexes}.
Setting
$$
F^p\Hom^\bullet(M^\bullet, I^\bullet) =
\Hom^\bullet(M^\bullet/F^{-p + 1}M^\bullet, I^\bullet)
$$
we obtain a filtered complex (note sign and shift in filtration).
The spectral sequence of
Homology, Section \ref{homology-section-filtered-complex}
has differentials and terms as described above; details omitted.
The boundedness and convergence follows from
Homology, Lemma \ref{homology-lemma-ss-converges-trivial}.
\end{remark}

\begin{remark}
\label{remark-spectral-sequences-ext-variant}
Let $\mathcal{A}$ be a Grothendieck abelian category.
Let $M, K$ be objects of $D(\mathcal{A})$.
For any choice of complex $M^\bullet$ representing $M$ we
can use the filtration $F^pM^\bullet = \tau_{\leq -p}M^\bullet$
and the discussion in Remark \ref{remark-ext-into-filtered-complex}
to get a spectral sequence with
$$
E_1^{p, q} = \Ext^{2p + q}(H^p(M), K)
$$
This spectral sequence is independent of the choice of complex $M^\bullet$
representing $M$. After renumbering $p = -j$ and $q = i + 2j$ we find a
spectral sequence $(E'_r, d'_r)_{r \geq 2}$ with $d'_r$ of bidegree
$(r, -r + 1)$, with
$$
(E'_2)^{i, j} = \Ext^i(H^{-j}(M), K)
$$
If $M \in D^-(\mathcal{A})$ and $K \in D^+(\mathcal{A})$
then $E_r$ and $E'_r$ are bounded and converge to $\Ext^{p + q}(M, K)$.
If we use the filtration $F^pM^\bullet = \sigma_{\geq p}M^\bullet$
then we get
$$
E_1^{p, q} = \Ext^q(M^{-p}, K)
$$
If $K \in D^+(\mathcal{A})$ and $M^\bullet$ is bounded above, then
this spectral sequence is bounded and converges to $\Ext^{p + q}(M, K)$.
\end{remark}

\begin{lemma}
\label{lemma-represent-by-filtered-complex}
Let $\mathcal{A}$ be a Grothendieck abelian category. Suppose given an object
$E \in D(\mathcal{A})$ and an inverse system $\{E^i\}_{i \in \mathbf{Z}}$
of objects of $D(\mathcal{A})$ over $\mathbf{Z}$ together with
a compatible system of maps $E^i \to E$. Picture:
$$
\ldots \to E^{i + 1} \to E^i \to E^{i - 1} \to \ldots \to E
$$
Then there exists a filtered complex $K^\bullet$ of $\mathcal{A}$
(Homology, Definition \ref{homology-definition-filtered-complex})
such that $K^\bullet$ represents $E$
and $F^iK^\bullet$ represents $E^i$ compatibly with the given maps.
\end{lemma}

\begin{proof}
By Theorem \ref{theorem-K-injective-embedding-grothendieck}
we can choose a K-injective complex $I^\bullet$
representing $E$ all of whose terms $I^n$ are injective
objects of $\mathcal{A}$.
Choose a complex $G^{0, \bullet}$ representing $E^0$.
Choose a map of complexes $\varphi^0 : G^{0, \bullet} \to I^\bullet$
representing $E^0 \to E$.
For $i > 0$ we inductively represent $E^i \to E^{i - 1}$
by a map of complexes
$\delta : G^{i, \bullet} \to G^{i - 1, \bullet}$
and we set $\varphi^i = \delta \circ \varphi^{i - 1}$.
For $i < 0$ we inductively represent $E^{i + 1} \to E^i$
by a termwise injective map of complexes
$\delta : G^{i + 1, \bullet} \to G^{i, \bullet}$
(for example you can use
Derived Categories, Lemma \ref{derived-lemma-make-injective}).
Claim: we can find a map of complexes
$\varphi^i : G^{i, \bullet} \to I^\bullet$
representing the map $E^i \to E$ and
fitting into the commutative diagram
$$
\xymatrix{
G^{i + 1, \bullet} \ar[r]_\delta \ar[d]_{\varphi^{i + 1}} &
G^{i, \bullet} \ar[ld]^{\varphi^i} \\
I^\bullet
}
$$
Namely, we first choose any map of complexes
$\varphi : G^{i, \bullet} \to I^\bullet$
representing the map
$E^i \to E$. Then we see that $\varphi \circ \delta$
and $\varphi^{i + 1}$ are homotopic by some homotopy
$h^p : G^{i + 1, p} \to I^{p - 1}$.
Since the terms of
$I^\bullet$ are injective and since $\delta$
is termwise injective, we can lift $h^p$ to
$(h')^p : G^{i, p} \to I^{p - 1}$.
Then we set $\varphi^i = \varphi + h' \circ d + d \circ h'$
and we get what we claimed.

\medskip\noindent
Next, we choose for every $i$ a termwise injective map of complexes
$a^i : G^{i, \bullet} \to J^{i, \bullet}$ with $J^{i, \bullet}$
acyclic, K-injective, with $J^{i, p}$ injective objects of $\mathcal{A}$.
To do this first map $G^{i, \bullet}$ to the cone on the identity
and then apply the theorem cited above.
Arguing as above we can find maps of complexes
$\delta' : J^{i, \bullet} \to J^{i - 1, \bullet}$ such that the diagrams
$$
\xymatrix{
G^{i, \bullet} \ar[r]_\delta \ar[d]_{a^i} &
G^{i - 1, \bullet} \ar[d]^{a^{i - 1}} \\
J^{i, \bullet} \ar[r]^{\delta'} &
J^{i - 1, \bullet}
}
$$
commute. (You could also use the functoriality of cones plus the
functoriality in the theorem to get this.)
Then we consider the maps
$$
\xymatrix{
G^{i + 1, \bullet} \times \prod\nolimits_{p > i + 1} J^{p, \bullet}
\ar[r] \ar[rd] &
G^{i, \bullet} \times \prod\nolimits_{p > i} J^{p, \bullet}
\ar[r] \ar[d] &
G^{i - 1, \bullet} \times \prod\nolimits_{p > i - 1} J^{p, \bullet}
\ar[ld] \\
& I^\bullet \times \prod\nolimits_p J^{p, \bullet}
}
$$
Here the arrows on $J^{p, \bullet}$ are the obvious ones
(identity or zero). On the factor $G^{i, \bullet}$ we use
$\delta : G^{i, \bullet} \to G^{i - 1, \bullet}$, the map
$\varphi^i : G^{i, \bullet} \to I^\bullet$, the zero map
$0 : G^{i, \bullet} \to J^{p, \bullet}$ for $p > i$, the map
$a^i : G^{i, \bullet} \to J^{p, \bullet}$ for $p = i$, and
$(\delta')^{i - p} \circ a^i = a^p \circ \delta^{i - p} :
G^{i, \bullet} \to J^{p, \bullet}$ for $p < i$.
We omit the verification that all the arrows
in the diagram are termwise injective. Thus we obtain a filtered
complex. Because products in $D(\mathcal{A})$ are given by
taking products of K-injective complexes
(Lemma \ref{lemma-derived-products})
and because $J^{p, \bullet}$ is zero in $D(\mathcal{A})$
we conclude this diagram represents the given diagram in the derived
category. This finishes the proof.
\end{proof}

\begin{lemma}
\label{lemma-represent-by-filtered-complex-bis}
In the situation of Lemma \ref{lemma-represent-by-filtered-complex}
assume we have a second inverse system $\{(E')^i\}_{i \in \mathbf{Z}}$
and a compatible system of maps $(E')^i \to E$.
Then there exists a bi-filtered complex $K^\bullet$ of $\mathcal{A}$
such that $K^\bullet$ represents $E$, $F^iK^\bullet$ represents $E^i$,
and $(F')^iK^\bullet$ represents $(E')^i$ compatibly with the given maps.
\end{lemma}

\begin{proof}
Using the lemma we can first choose $K^\bullet$ and $F$.
Then we can choose $(K')^\bullet$ and $F'$ which work for
$\{(E')^i\}_{i \in \mathbf{Z}}$ and the maps $(E')^i \to E$.
Using Lemma \ref{lemma-K-injective-embedding-filtration}
we can assume $K^\bullet$ is a K-injective complex.
Then we can choose a map of complexes
$(K')^\bullet \to K^\bullet$ corresponding to
the given identifications
$(K')^\bullet \cong E \cong K^\bullet$.
We can additionally choose a termwise injective
map $(K')^\bullet \to J^\bullet$ with
$J^\bullet$ acyclic and K-injective.
(To do this first map $(K')^\bullet$ to the cone on the identity
and then apply Theorem \ref{theorem-K-injective-embedding-grothendieck}.)
Then $(K')^\bullet \to K^\bullet \times J^\bullet$ and
$K^\bullet \to K^\bullet \times J^\bullet$
are both termwise injective and quasi-isomorphisms
(as the product represents $E$ by Lemma \ref{lemma-derived-products}).
Then we can simply take the images of the filtrations
on $K^\bullet$ and $(K')^\bullet$ under these maps to conclude.
\end{proof}





\section{The Gabriel-Popescu theorem}
\label{section-gabriel-popescu}

\noindent
In this section we discuss the main theorem of \cite{GP}. The method of
proof follows a write-up by Jacob Lurie and another by Akhil Mathew
who in turn follow the presentation by Kuhn in \cite{Kuhn}.
See also \cite{Takeuchi}.

\medskip\noindent
Let $\mathcal{A}$ be a Grothendieck abelian category and let $U$ be a
generator for $\mathcal{A}$, see
Definition \ref{definition-grothendieck-conditions}.
Let $R = \Hom_\mathcal{A}(U, U)$. Consider the functor
$G : \mathcal{A} \to \text{Mod}_R$ given by
$$
G(A) = \Hom_\mathcal{A}(U, A)
$$
endowed with its canonical right $R$-module structure.

\begin{lemma}
\label{lemma-gabriel-popescu-left-adjoint}
The functor $G$ above has a left adjoint
$F : \text{Mod}_R \to \mathcal{A}$.
\end{lemma}

\begin{proof}
We will give two proofs of this lemma.

\medskip\noindent
The first proof will use the adjoint functor theorem, see
Categories, Theorem \ref{categories-theorem-adjoint-functor}.
Observe that that $G : \mathcal{A} \to \text{Mod}_R$ is left exact and sends
products to products. Hence $G$ commutes with limits. To check the set
theoretical condition in the theorem, suppose that $M$ is an object of
$\text{Mod}_R$. Choose a suitably large cardinal $\kappa$ and denote $E$
a set of objects of $\mathcal{A}$ such that every object $A$ with
$|A| \leq \kappa$ is isomorphic to an element of $E$. This is possible
by Lemma \ref{lemma-set-iso-classes-bounded-size}. Set
$I = \coprod_{A \in E} \Hom_R(M, G(A))$.
We think of an element $i \in I$ as a pair $(A_i, f_i)$.
Finally, let $A$ be an arbitrary object of $\mathcal{A}$
and $f : M \to G(A)$ arbitrary. We are going to think of
elements of $\Im(f) \subset G(A) = \Hom_\mathcal{A}(U, A)$
as maps $u : U \to A$. Set
$$
A' = \Im(\bigoplus\nolimits_{u \in \Im(f)} U \xrightarrow{u} A)
$$
Since $G$ is left exact, we see that $G(A') \subset G(A)$
contains $\Im(f)$ and we get $f' : M \to G(A')$ factoring $f$.
On the other hand, the object $A'$ is
the quotient of a direct sum of at most $|M|$ copies of $U$.
Hence if $\kappa = |\bigoplus_{|M|} U|$, then we see that $(A', f')$
is isomorphic to an element $(A_i, f_i)$ of $E$ and we conclude that $f$
factors as $M \xrightarrow{f_i} G(A_i) \to G(A)$ as desired.

\medskip\noindent
The second proof will give a construction of $F$ which will show
that ``$F(M) = M \otimes_R U$'' in some sense. Namely, for any
$R$-module $M$ we can choose a resolution
$$
\bigoplus\nolimits_{j \in J} R \to
\bigoplus\nolimits_{i \in I} R \to
M \to 0
$$
Then we define $F(M)$ by the corresponding exact sequence
$$
\bigoplus\nolimits_{j \in J} U \to
\bigoplus\nolimits_{i \in I} U \to
F(M) \to 0
$$
This construction is independent of the choice of the resolution
and is functorial; we omit the details.
For any $A$ in $\mathcal{A}$ we obtain an exact sequence
$$
0 \to \Hom_\mathcal{A}(F(M), A) \to
\prod\nolimits_{i \in I} G(A) \to
\prod\nolimits_{j \in J} G(A)
$$
which is isomorphic to the sequence
$$
0 \to \Hom_R(M, G(A)) \to
\Hom_R(\bigoplus\nolimits_{i \in I} R, G(A)) \to
\Hom_R(\bigoplus\nolimits_{j \in J} R, G(A))
$$
which shows that $F$ is the left adjoint to $G$.
\end{proof}

\begin{lemma}
\label{lemma-F-G-monos}
Let $f : M \to G(A)$ be an injective map in $\text{Mod}_R$.
Then the adjoint map $f' : F(M) \to A$ is injective too.
\end{lemma}

\begin{proof}
Choose a map $R^{\oplus n} \to M$ and consider the corresponding map
$U^{\oplus n} \to F(M)$. Consider a map $v : U \to U^{\oplus n}$
such that the composition $U \to U^{\oplus n} \to F(M) \to A$ is $0$.
Then this arrow $v : U \to U^{\oplus n}$ is an element
$v$ of $R^{\oplus n}$ mapping to zero in $G(A)$. Since $f$ is injective,
we conclude that $v$ maps to zero in $M$ which means that
$U \to U^{\oplus n} \to F(M)$ is zero by construction of $F(M)$
in the proof of Lemma \ref{lemma-gabriel-popescu-left-adjoint}.
Since $U$ is a generator we conclude that
$$
\Ker(U^{\oplus n} \to F(M) \to A) = \Ker(U^{\oplus n} \to F(M))
$$
To finish the proof we choose a surjection $\bigoplus_{i \in I} R \to M$
and we consider the corresponding surjection
$$
\pi : \bigoplus\nolimits_{i \in I} U \longrightarrow F(M)
$$
To prove $f'$ is injective it suffices to show that
$\Ker(\pi) = \Ker(f' \circ \pi)$ as subobjects of $\bigoplus_{i \in I} U$.
However, now we can write $\bigoplus_{i \in I} U$ as the filtered colimit
of its subobjects $\bigoplus_{i \in I'} U$ where $I' \subset I$
ranges over the finite subsets. Since filtered colimits are
exact by AB5 for $\mathcal{A}$, we see that
$$
\Ker(\pi) =
\colim_{I' \subset I\text{ finite}}
\left(\bigoplus\nolimits_{i \in I'} U\right)
\bigcap \Ker(\pi)
$$
and
$$
\Ker(f' \circ \pi) =
\colim_{I' \subset I\text{ finite}}
\left(\bigoplus\nolimits_{i \in I'} U\right)
\bigcap \Ker(f' \circ \pi)
$$
and we get equality because the same is true for each $I'$ by
the first displayed equality above.
\end{proof}

\begin{theorem}
\label{theorem-gabriel-popescu}
Let $\mathcal{A}$ be a Grothendieck abelian category. Then there exists
a (noncommutative) ring $R$ and functors $G : \mathcal{A} \to \text{Mod}_R$
and $F : \text{Mod}_R \to \mathcal{A}$ such that
\begin{enumerate}
\item $F$ is the left adjoint to $G$,
\item $G$ is fully faithful, and
\item $F$ is exact.
\end{enumerate}
Moreover, the functors are the ones constructed above.
\end{theorem}

\begin{proof}
We first prove $G$ is fully faithful, or equivalently that
$F \circ G \to \text{id}$ is an isomorphism, see
Categories, Lemma \ref{categories-lemma-adjoint-fully-faithful}.
First, given an object $A$ the map $F(G(A)) \to A$ is surjective,
because every map of $U \to A$ factors through $F(G(A))$ by construction.
On the other hand, the map $F(G(A)) \to A$ is the adjoint of the
map $\text{id} : G(A) \to G(A)$ and hence injective by
Lemma \ref{lemma-F-G-monos}.

\medskip\noindent
The functor $F$ is right exact as it is a left adjoint.
Since $\text{Mod}_R$ has enough projectives, to show that
$F$ is exact, it is enough to show that the first left derived
functor $L_1F$ is zero. To prove $L_1F(M) = 0$ for some $R$-module $M$
choose an exact sequence $0 \to K \to P \to M \to 0$
of $R$-modules with $P$ free. It suffices to show $F(K) \to F(P)$
is injective. Now we can write this sequence as a filtered
colimit of sequences $0 \to K_i \to P_i \to M_i \to 0$
with $P_i$ a finite free $R$-module: just write $P$ in this
manner and set $K_i = K \cap P_i$ and $M_i = \Im(P_i \to M)$.
Because $F$ is a left adjoint it commutes
with colimits and because $\mathcal{A}$ is a Grothendieck
abelian category, we find that $F(K) \to F(P)$
is injective if each $F(K_i) \to F(P_i)$ is injective.
Thus it suffices to check $F(K) \to F(P)$
is injective when $K \subset P = R^{\oplus n}$.
Thus $F(K) \to U^{\oplus n}$ is injective by an application
of Lemma \ref{lemma-F-G-monos}.
\end{proof}

\begin{lemma}
\label{lemma-gabriel-popescu}
\begin{reference}
\cite[Corollary 4.1]{serpe}
\end{reference}
Let $\mathcal{A}$ be a Grothendieck abelian category. Let
$R$, $F$, $G$ be as in the Gabriel-Popescu theorem
(Theorem \ref{theorem-gabriel-popescu}). Then we obtain
derived functors
$$
RG : D(\mathcal{A}) \to D(\text{Mod}_R)
\quad\text{and}\quad
F : D(\text{Mod}_R) \to D(\mathcal{A})
$$
such that $F$ is left adjoint to $RG$, $RG$ is fully faithful,
and $F \circ RG = \text{id}$.
\end{lemma}

\begin{proof}
The existence and adjointness of the functors follows from
Theorems \ref{theorem-gabriel-popescu} and
\ref{theorem-K-injective-embedding-grothendieck}
and
Derived Categories, Lemmas \ref{derived-lemma-K-injective-defined},
\ref{derived-lemma-right-derived-exact-functor}, and
\ref{derived-lemma-derived-adjoint-functors}.
The statement $F \circ RG = \text{id}$ follows because we can
compute $RG$ on an object of $D(\mathcal{A})$ by applying $G$
to a suitable representative complex $I^\bullet$ (for example
a K-injective one) and then $F(G(I^\bullet)) = I^\bullet$
because $F \circ G = \text{id}$. Fully faithfulness of $RG$
follows from this by
Categories, Lemma \ref{categories-lemma-adjoint-fully-faithful}.
\end{proof}





\section{Brown representability and Grothendieck abelian categories}
\label{section-brown}

\noindent
In this section we quickly prove a representability theorem for
derived categories of Grothendieck abelian categories. The reader should
first read the case of compactly generated triangulated categories in
Derived Categories, Section \ref{derived-section-brown}.
After that, instead of reading this section,
it makes sense to consult the literature for more
general results of this nature, for example see
\cite{Franke}, \cite{Neeman}, \cite{Krause}, or take
a look at Derived Categories, Section \ref{derived-section-brown-bis}.

\begin{lemma}
\label{lemma-brown}
Let $\mathcal{A}$ be a Grothendieck abelian category.
Let $H : D(\mathcal{A}) \to \textit{Ab}$ be a contravariant
cohomological functor which transforms direct sums into products.
Then $H$ is representable.
\end{lemma}

\begin{proof}
Let $R, F, G, RG$ be as in Lemma \ref{lemma-gabriel-popescu}
and consider the functor $H \circ F : D(\text{Mod}_R) \to \textit{Ab}$.
Observe that since $F$ is a left adjoint it sends direct sums to
direct sums and hence $H \circ F$ transforms direct sums into products.
On the other hand, the derived category $D(\text{Mod}_R)$ is
generated by a single compact object, namely $R$.
By Derived Categories, Lemma \ref{derived-lemma-brown}
we see that $H \circ F$ is representable, say by $L \in D(\text{Mod}_R)$.
Choose a distinguished triangle
$$
M \to L \to RG(F(L)) \to M[1]
$$
in $D(\text{Mod}_R)$. Then $F(M) = 0$ because $F \circ RG = \text{id}$.
Hence $H(F(M)) = 0$ hence $\Hom(M, L) = 0$.
It follows that $L \to RG(F(L))$ is the inclusion of a direct summand, see
Derived Categories, Lemma \ref{derived-lemma-split}.
For $A$ in $D(\mathcal{A})$ we obtain
\begin{align*}
H(A)
& =
H(F(RG(A)) \\
& =
\Hom(RG(A), L) \\
& \to
\Hom(RG(A), RG(F(L))) \\
& =
\Hom(F(RG(A)), F(L)) \\
& =
\Hom(A, F(L))
\end{align*}
where the arrow has a left inverse functorial in $A$. In other words, we find
that $H$ is the direct summand of a representable functor.
Since $D(\mathcal{A})$ is Karoubian
(Derived Categories, Lemma
\ref{derived-lemma-projectors-have-images-triangulated}) we conclude.
\end{proof}

\begin{proposition}
\label{proposition-brown}
Let $\mathcal{A}$ be a Grothendieck abelian category. Let $\mathcal{D}$
be a triangulated category. Let $F : D(\mathcal{A}) \to \mathcal{D}$ be an
exact functor of triangulated categories which transforms direct sums
into direct sums. Then $F$ has an exact right adjoint.
\end{proposition}

\begin{proof}
For an object $Y$ of $\mathcal{D}$ consider the contravariant functor
$$
D(\mathcal{A}) \to \textit{Ab},\quad
W \mapsto \Hom_\mathcal{D}(F(W), Y)
$$
This is a cohomological functor as $F$ is exact and transforms direct sums
into products as $F$ transforms direct sums into direct sums. Thus by
Lemma \ref{lemma-brown} we find an object $X$ of $D(\mathcal{A})$ such that
$\Hom_{D(\mathcal{A})}(W, X) = \Hom_\mathcal{D}(F(W), Y)$.
The existence of the adjoint follows from
Categories, Lemma \ref{categories-lemma-adjoint-exists}.
Exactness follows from
Derived Categories, Lemma \ref{derived-lemma-adjoint-is-exact}.
\end{proof}











\input{chapters}


\bibliography{my}
\bibliographystyle{amsalpha}

\end{document}