Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 105,174 Bytes
afd65d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 |
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Injectives}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
In future chapters we will use the existence of injectives and
K-injective complexes to do cohomology of sheaves of modules on
ringed sites. In this chapter we explain how to produce injectives
and K-injective complexes first for modules on sites and later
more generally for Grothendieck abelian categories.
\medskip\noindent
We observe that we already know that the category of
abelian groups and the category of modules over a ring have
enough injectives, see More on Algebra, Sections
\ref{more-algebra-section-abelian-groups} and
\ref{more-algebra-section-injectives-modules}
\section{Baer's argument for modules}
\label{section-baer}
\noindent
There is another, more set-theoretic approach to showing that any $R$-module
$M$ can be imbedded in an injective module. This approach constructs
the injective module by a transfinite colimit of push-outs. While this
method is somewhat abstract and more complicated than the one of
More on Algebra, Section \ref{more-algebra-section-injectives-modules},
it is also more general. Apparently this method originates with Baer,
and was revisited by Cartan and Eilenberg in
\cite{Cartan-Eilenberg} and by Grothendieck in \cite{Tohoku}.
There Grothendieck uses it to show that
many other abelian categories have enough injectives. We will get back to
the general case later (Section \ref{section-grothendieck-categories}).
\medskip\noindent
We begin with a few set theoretic remarks.
Let $\{B_{\beta}\}_{\beta \in \alpha}$ be an inductive system of
objects in some category $\mathcal{C}$, indexed by
an ordinal $\alpha$. Assume that $\colim_{\beta \in \alpha} B_\beta$
exists in $\mathcal{C}$. If $A$ is an object of $\mathcal{C}$, then there is a
natural map
\begin{equation}
\label{equation-compare}
\colim_{\beta \in \alpha} \Mor_\mathcal{C}(A, B_\beta)
\longrightarrow
\Mor_\mathcal{C}(A, \colim_{\beta \in \alpha} B_\beta).
\end{equation}
because if one is given a map $A \to B_\beta$ for some $\beta$, one
naturally gets a map from $A$ into the colimit by composing with
$B_\beta \to \colim_{\beta \in \alpha} B_\alpha$.
Note that the left colimit is one of sets! In general, (\ref{equation-compare})
is neither injective or surjective.
\begin{example}
\label{example-not-surjective}
Consider the category of sets. Let $A = \mathbf{N}$ and
$B_n = \{1, \ldots, n\}$ be the inductive system indexed by the natural numbers
where $B_n \to B_m$ for $n \leq m$ is the obvious map. Then
$\colim B_n = \mathbf{N}$, so there is a map
$A \to \colim B_n$, which does not factor as $A \to B_m$
for any $m$. Consequently,
$\colim \Mor(A, B_n) \to \Mor(A, \colim B_n)$
is not surjective.
\end{example}
\begin{example}
\label{example-not-injective}
Next we give an example where the map fails to be injective. Let $B_n =
\mathbf{N}/\{1, 2, \ldots, n\}$, that is, the quotient set of
$\mathbf{N}$ with the first $n$ elements collapsed to one element.
There are natural maps $B_n \to B_m$ for $n \leq m$, so the
$\{B_n\}$ form a system of sets over $\mathbf{N}$. It is easy to see that
$\colim B_n = \{*\}$: it is the one-point set.
So it follows that $\Mor(A, \colim B_n)$ is a one-element set
for every set $A$.
However, $\colim \Mor(A , B_n)$ is {\bf not} a one-element set.
Consider the family of maps $A \to B_n$ which are just the natural projections
$\mathbf{N} \to \mathbf{N}/\{1, 2, \ldots, n\}$ and the family of
maps $A \to B_n$ which map the whole of $A$ to the class of $1$.
These two families of maps are distinct at each step and thus are distinct in
$\colim \Mor(A, B_n)$, but they induce the same map
$A \to \colim B_n$.
\end{example}
\noindent
Nonetheless, if we map out of a finite set then
(\ref{equation-compare}) is an isomorphism always.
\begin{lemma}
\label{lemma-out-of-finite}
Suppose that, in (\ref{equation-compare}), $\mathcal{C}$ is the category
of sets and $A$ is a {\it finite set}, then the map is a bijection.
\end{lemma}
\begin{proof}
Let $f : A \to \colim B_\beta$.
The range of $f$ is finite, containing say
elements $c_1, \ldots, c_r \in \colim B_\beta$.
These all come from some elements in $B_\beta$ for $\beta \in \alpha$
large by definition of the colimit. Thus we can define
$\widetilde{f} : A \to B_\beta$ lifting $f$ at a finite stage.
This proves that (\ref{equation-compare}) is surjective.
Next, suppose two maps $f : A \to B_\gamma, f' : A \to B_{\gamma'}$
define the same map $A \to \colim B_\beta$.
Then each of the finitely many elements of $A$ gets sent to the same point in
the colimit. By definition of the colimit for sets, there is
$\beta \geq \gamma, \gamma'$ such that the finitely many elements of
$A$ get sent to the same points in $B_\beta$ under $f$ and $f'$.
This proves that (\ref{equation-compare}) is injective.
\end{proof}
\noindent
The most interesting case of the lemma is when $\alpha = \omega$, i.e.,
when the system $\{B_\beta\}$ is a system $\{B_n\}_{n \in \mathbf{N}}$
over the natural numbers as in
Examples \ref{example-not-surjective} and
\ref{example-not-injective}.
The essential idea is that $A$ is ``small'' relative to the long chain of
compositions $B_1 \to B_2 \to \ldots$, so that it has to factor through a
finite step. A more general version of this lemma can be found in
Sets, Lemma \ref{sets-lemma-map-from-set-lifts}.
Next, we generalize this to the category of modules.
\begin{definition}
\label{definition-small}
Let $\mathcal{C}$ be a category, let $I \subset \text{Arrows}(\mathcal{C})$,
and let $\alpha$ be an ordinal. An object $A$ of $\mathcal{C}$ is said to
be {\it $\alpha$-small with respect to $I$} if whenever $\{B_\beta\}$ is
a system over $\alpha$ with transition maps in $I$, then
the map (\ref{equation-compare}) is an isomorphism.
\end{definition}
\noindent
In the rest of this section we shall restrict ourselves
to the category of $R$-modules for a fixed commutative ring $R$.
We shall also take $I$ to be the collection of injective maps, i.e., the
{\it monomorphisms} in the category of modules over $R$. In this case, for
any system $\{B_\beta\}$ as in the definition each of the maps
$$
B_\beta \to \colim_{\beta \in \alpha} B_\beta
$$
is an injection. It follows that the map (\ref{equation-compare}) is an
{\it injection}. We can in fact interpret the $B_\beta$'s as submodules
of the module $B = \colim_{\beta \in \alpha} B_\beta$, and then we
have $B = \bigcup_{\beta \in \alpha} B_\beta$. This is not an abuse of
notation if we identify $B_\alpha$ with the image in the colimit.
We now want to show that modules are always small for ``large'' ordinals
$\alpha$.
\begin{proposition}
\label{proposition-modules-are-small}
Let $R$ be a ring. Let $M$ be an $R$-module.
Let $\kappa$ the cardinality of the set of submodules of $M$.
If $\alpha$ is an ordinal whose cofinality is bigger than $\kappa$,
then $M$ is $\alpha$-small with respect to injections.
\end{proposition}
\begin{proof}
The proof is straightforward, but let us first think about a special case.
If $M$ is finite, then the claim is that for any inductive system
$\{B_\beta\}$ with injections between them, parametrized by a
limit ordinal, any map $M \to \colim B_\beta$ factors through one of
the $B_\beta$. And this we proved in
Lemma \ref{lemma-out-of-finite}.
\medskip\noindent
Now we start the proof in the general case.
We need only show that the map (\ref{equation-compare}) is a surjection.
Let $f : M \to \colim B_\beta$ be a map.
Consider the subobjects $\{f^{-1}(B_\beta)\}$ of $M$, where $B_\beta$
is considered as a subobject of the colimit $B = \bigcup_\beta B_\beta$.
If one of these, say $f^{-1}(B_\beta)$, fills $M$,
then the map factors through $B_\beta$.
\medskip\noindent
So suppose to the contrary that all of the $f^{-1}(B_\beta)$ were proper
subobjects of $M$. However, we know that
$$
\bigcup f^{-1}(B_\beta) = f^{-1}\left(\bigcup B_\beta\right) = M.
$$
Now there are at most $\kappa$ different subobjects of $M$ that occur among
the $f^{-1}(B_\alpha)$, by hypothesis.
Thus we can find a subset $S \subset \alpha$ of cardinality at most
$\kappa$ such that as $\beta'$ ranges over $S$, the
$f^{-1}(B_{\beta'})$ range over \emph{all} the $f^{-1}(B_\alpha)$.
\medskip\noindent
However, $S$ has an upper bound $\widetilde{\alpha} < \alpha$ as
$\alpha$ has cofinality bigger than $\kappa$. In particular, all the
$f^{-1}(B_{\beta'})$, $\beta' \in S$ are contained in
$f^{-1}(B_{\widetilde{\alpha}})$.
It follows that $f^{-1}(B_{\widetilde{\alpha}}) = M$.
In particular, the map $f$ factors through $B_{\widetilde{\alpha}}$.
\end{proof}
\noindent
From this lemma we will be able to deduce the existence of lots of injectives.
Let us recall Baer's criterion.
\begin{lemma}[Baer's criterion]
\label{lemma-criterion-baer}
\begin{reference}
\cite[Theorem 1]{Baer}
\end{reference}
Let $R$ be a ring. An $R$-module $Q$ is injective if and only if in every
commutative diagram
$$
\xymatrix{
\mathfrak{a} \ar[d] \ar[r] & Q \\
R \ar@{-->}[ru]
}
$$
for $\mathfrak{a} \subset R$ an ideal, the dotted arrow exists.
\end{lemma}
\begin{proof}
This is the equivalence of (1) and (3) in
More on Algebra, Lemma \ref{more-algebra-lemma-characterize-injective-bis};
please observe that the proof given there is elementary
(and does not use $\text{Ext}$ groups or the existence of injectives
or projectives in the category of $R$-modules).
\end{proof}
\noindent
If $M$ is an $R$-module, then in general we may have a semi-complete
diagram as in
Lemma \ref{lemma-criterion-baer}.
In it, we can form the \emph{push-out}
$$
\xymatrix{
\mathfrak{a} \ar[d] \ar[r] & Q \ar[d] \\
R \ar[r] & R \oplus_{\mathfrak{a}} Q.
}
$$
Here the vertical map is injective, and the diagram commutes. The point is
that we can extend $\mathfrak{a} \to Q$ to $R$ \emph{if} we extend $Q$ to the
larger module $R \oplus_{\mathfrak{a}} Q$.
\medskip\noindent
The key point of Baer's argument is to repeat this procedure
transfinitely many times. To do this we first define, given an $R$-module
$M$ the following (huge) pushout
\begin{equation}
\label{equation-huge-diagram}
\vcenter{
\xymatrix{
\bigoplus_{\mathfrak a}
\bigoplus_{\varphi \in \Hom_R(\mathfrak a, M)}
\mathfrak{a} \ar[r] \ar[d] & M \ar[d] \\
\bigoplus_{\mathfrak a}
\bigoplus_{\varphi \in \Hom_R(\mathfrak a, M)}
R \ar[r] & \mathbf{M}(M).
}
}
\end{equation}
Here the top horizontal arrow maps the element $a \in \mathfrak a$
in the summand corresponding to $\varphi$ to the element $\varphi(a) \in M$.
The left vertical arrow maps $a \in \mathfrak a$ in the summand corresponding
to $\varphi$ simply to the element $a \in R$ in the summand corresponding
to $\varphi$. The fundamental properties of this construction are
formulated in the following lemma.
\begin{lemma}
\label{lemma-construction}
Let $R$ be a ring.
\begin{enumerate}
\item The construction $M \mapsto (M \to \mathbf{M}(M))$
is functorial in $M$.
\item The map $M \to \mathbf{M}(M)$ is injective.
\item For any ideal $\mathfrak{a}$ and any $R$-module map
$\varphi : \mathfrak a \to M$ there is an $R$-module map
$\varphi' : R \to \mathbf{M}(M)$ such that
$$
\xymatrix{
\mathfrak{a} \ar[d] \ar[r]_\varphi & M \ar[d] \\
R \ar[r]^{\varphi'} & \mathbf{M}(M)
}
$$
commutes.
\end{enumerate}
\end{lemma}
\begin{proof}
Parts (2) and (3) are immediate from the construction.
To see (1), let $\chi : M \to N$ be an $R$-module map. We claim there exists
a canonical commutative diagram
$$
\xymatrix{
\bigoplus_{\mathfrak a}
\bigoplus_{\varphi \in \Hom_R(\mathfrak a, M)}
\mathfrak{a} \ar[r] \ar[d] \ar[rrd] & M \ar[rrd]^\chi \\
\bigoplus_{\mathfrak a}
\bigoplus_{\varphi \in \Hom_R(\mathfrak a, M)}
R \ar[rrd] & &
\bigoplus_{\mathfrak a}
\bigoplus_{\psi \in \Hom_R(\mathfrak a, N)}
\mathfrak{a} \ar[r] \ar[d] & N \\
& & \bigoplus_{\mathfrak a}
\bigoplus_{\psi \in \Hom_R(\mathfrak a, N)}
R
}
$$
which induces the desired map $\mathbf{M}(M) \to \mathbf{M}(N)$.
The middle east-south-east arrow maps the summand $\mathfrak a$
corresponding to $\varphi$ via $\text{id}_{\mathfrak a}$ to the
summand $\mathfrak a$ corresponding to $\psi = \chi \circ \varphi$.
Similarly for the lower east-south-east arrow. Details omitted.
\end{proof}
\noindent
The idea will now be to apply the functor $\mathbf{M}$ a transfinite number
of times. We define for each ordinal $\alpha$ a functor $\mathbf{M}_\alpha$
on the category of $R$-modules, together with a natural injection $N \to
\mathbf{M}_\alpha(N)$. We do this by transfinite recursion.
First, $\mathbf{M}_1 = \mathbf{M}$ is the functor defined above.
Now, suppose given an ordinal $\alpha$, and suppose $\mathbf{M}_{\alpha'}$
is defined for $\alpha' < \alpha$. If $\alpha$ has an immediate predecessor
$\widetilde{\alpha}$, we let
$$
\mathbf{M}_\alpha = \mathbf{M} \circ \mathbf{M}_{\widetilde{\alpha}}.
$$
If not, i.e., if $\alpha$ is a limit ordinal, we let
$$
\mathbf{M}_{\alpha}(N) =
\colim_{\alpha' < \alpha} \mathbf{M}_{\alpha'}(N).
$$
It is clear (e.g., inductively) that the $\mathbf{M}_{\alpha}(N)$
form an inductive system over ordinals, so this is reasonable.
\begin{theorem}
\label{theorem-baer-grothendieck}
Let $\kappa$ be the cardinality of the set of ideals in $R$, and
let $\alpha$ be an ordinal whose cofinality is greater than
$\kappa$. Then $\mathbf{M}_\alpha(N)$ is an injective $R$-module,
and $N \to \mathbf{M}_\alpha(N)$ is a functorial injective embedding.
\end{theorem}
\begin{proof}
By Baer's criterion
Lemma \ref{lemma-criterion-baer},
it suffices to show that if $\mathfrak{a} \subset R$ is an ideal, then
any map $f : \mathfrak{a} \to \mathbf{M}_\alpha(N)$ extends to
$R \to \mathbf{M}_\alpha(N)$. However, we know since $\alpha$ is a limit
ordinal that
$$
\mathbf{M}_{\alpha}(N) =
\colim_{\beta < \alpha} \mathbf{M}_{\beta}(N),
$$
so by
Proposition \ref{proposition-modules-are-small},
we find that
$$
\Hom_R(\mathfrak{a}, \mathbf{M}_{\alpha}(N)) =
\colim_{\beta < \alpha} \Hom_R(\mathfrak a, \mathbf{M}_{\beta}(N)).
$$
This means in particular that there is some $\beta' < \alpha$
such that $f$ factors through the submodule $\mathbf{M}_{\beta'}(N)$, as
$$
f : \mathfrak{a} \to \mathbf{M}_{\beta'}(N) \to
\mathbf{M}_{\alpha}(N).
$$
However, by the fundamental property of the functor $\mathbf{M}$,
see Lemma \ref{lemma-construction} part (3),
we know that the map $\mathfrak{a} \to \mathbf{M}_{\beta'}(N)$
can be extended to
$$
R \to \mathbf{M}( \mathbf{M}_{\beta'}(N)) =
\mathbf{M}_{\beta' + 1}(N),
$$
and the last object imbeds in $\mathbf{M}_{\alpha}(N)$ (as
$\beta' + 1 < \alpha$ since $\alpha$ is a limit ordinal).
In particular, $f$ can be extended to $\mathbf{M}_{\alpha}(N)$.
\end{proof}
\section{G-modules}
\label{section-G-modules}
\noindent
We will see later
(Differential Graded Algebra, Section \ref{dga-section-modules-noncommutative})
that the category of modules over an algebra has
functorial injective embeddings. The construction is exactly the same
as the construction in
More on Algebra, Section \ref{more-algebra-section-injectives-modules}.
\begin{lemma}
\label{lemma-G-modules}
Let $G$ be a topological group. Let $R$ be a ring.
The category $\text{Mod}_{R, G}$ of $R\text{-}G$-modules, see
\'Etale Cohomology, Definition
\ref{etale-cohomology-definition-G-module-continuous},
has functorial injective hulls. In particular this holds
for the category of discrete $G$-modules.
\end{lemma}
\begin{proof}
By the remark above the lemma the category $\text{Mod}_{R[G]}$
has functorial injective embeddings.
Consider the forgetful functor
$v : \text{Mod}_{R, G} \to \text{Mod}_{R[G]}$.
This functor is fully faithful, transforms injective maps into
injective maps and has a right adjoint, namely
$$
u : M \mapsto u(M) = \{x \in M \mid \text{stabilizer of }x\text{ is open}\}
$$
Since $v(M) = 0 \Rightarrow M = 0$ we conclude by
Homology, Lemma \ref{homology-lemma-adjoint-functorial-injectives}.
\end{proof}
\section{Abelian sheaves on a space}
\label{section-abelian-sheaves-space}
\begin{lemma}
\label{lemma-abelian-sheaves-space}
Let $X$ be a topological space.
The category of abelian sheaves on $X$ has enough injectives.
In fact it has functorial injective embeddings.
\end{lemma}
\begin{proof}
For an abelian group $A$ we denote $j : A \to J(A)$ the functorial
injective embedding constructed in
More on Algebra, Section \ref{more-algebra-section-injectives-modules}.
Let $\mathcal{F}$ be an abelian sheaf on $X$.
By Sheaves, Example \ref{sheaves-example-sheaf-product-pointwise}
the assignment
$$
\mathcal{I} : U \mapsto
\mathcal{I}(U) = \prod\nolimits_{x\in U} J(\mathcal{F}_x)
$$
is an abelian sheaf. There is a canonical map $\mathcal{F} \to \mathcal{I}$
given by mapping $s \in \mathcal{F}(U)$ to $\prod_{x \in U} j(s_x)$
where $s_x \in \mathcal{F}_x$ denotes the germ of $s$ at $x$.
This map is injective, see
Sheaves, Lemma \ref{sheaves-lemma-sheaf-subset-stalks}
for example.
\medskip\noindent
It remains to prove the following: Given a rule
$x \mapsto I_x$ which assigns to each point $x \in X$ an injective
abelian group the sheaf $\mathcal{I} : U \mapsto \prod_{x \in U} I_x$
is injective. Note that
$$
\mathcal{I} = \prod\nolimits_{x \in X} i_{x, *}I_x
$$
is the product of the skyscraper sheaves $i_{x, *}I_x$ (see
Sheaves, Section \ref{sheaves-section-skyscraper-sheaves} for notation.)
We have
$$
\Mor_{\textit{Ab}}(\mathcal{F}_x, I_x)
=
\Mor_{\textit{Ab}(X)}(\mathcal{F}, i_{x, *}I_x).
$$
see Sheaves, Lemma \ref{sheaves-lemma-stalk-skyscraper-adjoint}. Hence it is
clear that each $i_{x, *}I_x$ is injective. Hence the injectivity of
$\mathcal{I}$ follows from
Homology, Lemma \ref{homology-lemma-product-injectives}.
\end{proof}
\section{Sheaves of modules on a ringed space}
\label{section-sheaves-modules-space}
\begin{lemma}
\label{lemma-sheaves-modules-space}
Let $(X, \mathcal{O}_X)$ be a ringed space, see
Sheaves, Section \ref{sheaves-section-ringed-spaces}.
The category of sheaves of $\mathcal{O}_X$-modules on $X$
has enough injectives. In fact it has functorial injective embeddings.
\end{lemma}
\begin{proof}
For any ring $R$ and any $R$-module $M$ we denote
$j : M \to J_R(M)$ the functorial
injective embedding constructed in
More on Algebra, Section \ref{more-algebra-section-injectives-modules}.
Let $\mathcal{F}$ be a sheaf of $\mathcal{O}_X$-modules on $X$.
By Sheaves, Examples \ref{sheaves-example-sheaf-product-pointwise}
and \ref{sheaves-example-sheaf-product-pointwise-algebraic-structure}
the assignment
$$
\mathcal{I} : U \mapsto
\mathcal{I}(U) = \prod\nolimits_{x\in U} J_{\mathcal{O}_{X, x}}(\mathcal{F}_x)
$$
is an abelian sheaf.
There is a canonical map $\mathcal{F} \to \mathcal{I}$
given by mapping $s \in \mathcal{F}(U)$ to $\prod_{x \in U} j(s_x)$
where $s_x \in \mathcal{F}_x$ denotes the germ of $s$ at $x$.
This map is injective, see
Sheaves, Lemma \ref{sheaves-lemma-sheaf-subset-stalks}
for example.
\medskip\noindent
It remains to prove the following: Given a rule
$x \mapsto I_x$ which assigns to each point $x \in X$ an injective
$\mathcal{O}_{X, x}$-module
the sheaf $\mathcal{I} : U \mapsto \prod_{x \in U} I_x$
is injective. Note that
$$
\mathcal{I} = \prod\nolimits_{x \in X} i_{x, *}I_x
$$
is the product of the skyscraper sheaves $i_{x, *}I_x$ (see
Sheaves, Section \ref{sheaves-section-skyscraper-sheaves} for notation.)
We have
$$
\Hom_{\mathcal{O}_{X, x}}(\mathcal{F}_x, I_x)
=
\Hom_{\mathcal{O}_X}(\mathcal{F}, i_{x, *}I_x).
$$
see Sheaves, Lemma \ref{sheaves-lemma-stalk-skyscraper-adjoint}. Hence it is
clear that each $i_{x, *}I_x$ is an injective $\mathcal{O}_X$-module
(see Homology, Lemma \ref{homology-lemma-adjoint-preserve-injectives} or argue
directly). Hence the injectivity of $\mathcal{I}$ follows from
Homology, Lemma \ref{homology-lemma-product-injectives}.
\end{proof}
\section{Abelian presheaves on a category}
\label{section-injectives-presheaves}
\noindent
Let $\mathcal{C}$ be a category. Recall that this means that
$\Ob(\mathcal{C})$ is a set. On the one hand, consider abelian
presheaves on $\mathcal{C}$, see
Sites, Section \ref{sites-section-presheaves}.
On the other hand, consider families of abelian groups
indexed by elements of $\Ob(\mathcal{C})$; in other
words presheaves on the discrete category with underlying set
of objects $\Ob(\mathcal{C})$. Let us denote this
discrete category simply $\Ob(\mathcal{C})$.
There is a natural functor
$$
i : \Ob(\mathcal{C}) \longrightarrow \mathcal{C}
$$
and hence there is a natural restriction or forgetful functor
$$
v = i^p :
\textit{PAb}(\mathcal{C})
\longrightarrow
\textit{PAb}(\Ob(\mathcal{C}))
$$
compare Sites, Section \ref{sites-section-functoriality-PSh}.
We will denote presheaves
on $\mathcal{C}$ by $B$ and presheaves on
$\Ob(\mathcal{C})$ by $A$.
\medskip\noindent
There are also two functors, namely $i_p$ and ${}_pi$
which assign an abelian presheaf on $\mathcal{C}$
to an abelian presheaf on $\Ob(\mathcal{C})$, see
Sites, Sections \ref{sites-section-functoriality-PSh} and
\ref{sites-section-more-functoriality-PSh}.
Here we will use $u = {}_pi$ which is defined (in the case at hand)
as follows:
$$
uA(U) = \prod\nolimits_{U' \to U} A(U').
$$
So an element is a family $(a_\phi)_\phi$ with $\phi$
ranging through all morphisms in $\mathcal{C}$ with target $U$.
The restriction map on $uA$ corresponding to $g : V \to U$
maps our element $(a_\phi)_\phi$ to the element
$(a_{g \circ \psi})_\psi$.
\medskip\noindent
There is a canonical surjective map $vuA \to A$ and a canonical
injective map $B \to uvB$. We leave it to the reader to show that
$$
\Mor_{\textit{PAb}(\mathcal{C})}(B, uA)
=
\Mor_{\textit{PAb}(\Ob(\mathcal{C}))}(vB, A).
$$
in this simple case; the general case is in
Sites, Section \ref{sites-section-functoriality-PSh}.
Thus the pair $(u, v)$ is an example of a pair of adjoint
functors, see
Categories, Section \ref{categories-section-adjoint}.
\medskip\noindent
At this point we can list the following facts
about the situation above.
\begin{enumerate}
\item The functors $u$ and $v$ are exact. This follows from
the explicit description of these functors given above.
\item In particular the functor $v$ transforms injective maps
into injective maps.
\item The category $\textit{PAb}(\Ob(\mathcal{C}))$
has enough injectives.
\item In fact there is a functorial injective embedding
$A \mapsto \big(A \to J(A)\big)$ as in
Homology, Definition \ref{homology-definition-functorial-injective-embedding}.
Namely, we can take $J(A)$ to be the
presheaf $U\mapsto J(A(U))$, where
$J(-)$ is the functor constructed in
More on Algebra, Section \ref{more-algebra-section-injectives-modules}
for the ring $\mathbf{Z}$.
\end{enumerate}
Putting all of this together gives us the following procedure
for embedding objects $B$ of $\textit{PAb}(\mathcal{C}))$ into
an injective object: $B \to uJ(vB)$. See
Homology, Lemma \ref{homology-lemma-adjoint-functorial-injectives}.
\begin{proposition}
\label{proposition-presheaves-injectives}
For abelian presheaves on a category there is a functorial injective
embedding.
\end{proposition}
\begin{proof}
See discussion above.
\end{proof}
\section{Abelian Sheaves on a site}
\label{section-injectives-sheaves}
\noindent
Let $\mathcal{C}$ be a site. In this section we prove that there are
enough injectives for abelian sheaves on $\mathcal{C}$.
\medskip\noindent
Denote
$i : \textit{Ab}(\mathcal{C}) \longrightarrow \textit{PAb}(\mathcal{C})$
the forgetful functor from abelian sheaves to abelian presheaves.
Let
${}^\# : \textit{PAb}(\mathcal{C}) \longrightarrow \textit{Ab}(\mathcal{C})$
denote the sheafification functor. Recall that ${}^\#$ is a left adjoint
to $i$, that ${}^\#$ is exact, and that $i\mathcal{F}^\# = \mathcal{F}$
for any abelian sheaf $\mathcal{F}$. Finally, let
$\mathcal{G} \to J(\mathcal{G})$ denote the canonical
embedding into an injective presheaf we found in
Section \ref{section-injectives-presheaves}.
\medskip\noindent
For any sheaf $\mathcal{F}$ in $\textit{Ab}(\mathcal{C})$ and
any ordinal $\beta$ we define a sheaf
$J_\beta(\mathcal{F})$ by transfinite recursion.
We set $J_0(\mathcal{F}) = \mathcal{F}$.
We define $J_1(\mathcal{F}) = J(i\mathcal{F})^\#$.
Sheafification of the canonical map $i\mathcal{F} \to J(i\mathcal{F})$
gives a functorial map
$$
\mathcal{F} \longrightarrow J_1(\mathcal{F})
$$
which is injective as $\#$ is exact. We set
$J_{\alpha + 1}(\mathcal{F}) = J_1(J_\alpha(\mathcal{F}))$.
So that there are canonical injective maps
$J_\alpha(\mathcal{F}) \to J_{\alpha + 1}(\mathcal{F})$.
For a limit ordinal $\beta$, we define
$$
J_\beta(\mathcal{F}) = \colim_{\alpha < \beta} J_\alpha(\mathcal{F}).
$$
Note that this is a directed colimit. Hence for any ordinals $\alpha < \beta$
we have an injective map $J_\alpha(\mathcal{F}) \to J_\beta(\mathcal{F})$.
\begin{lemma}
\label{lemma-map-into-next-one}
With notation as above.
Suppose that $\mathcal{G}_1 \to \mathcal{G}_2$ is an injective
map of abelian sheaves on $\mathcal{C}$. Let $\alpha$ be an ordinal
and let $\mathcal{G}_1 \to J_\alpha(\mathcal{F})$ be a morphism
of sheaves. There exists a morphism $\mathcal{G}_2 \to
J_{\alpha + 1}(\mathcal{F})$ such that the following diagram commutes
$$
\xymatrix{
\mathcal{G}_1 \ar[d] \ar[r] & \mathcal{G}_2 \ar[d] \\
J_{\alpha}(\mathcal{F}) \ar[r] & J_{\alpha + 1}(\mathcal{F}) }
$$
\end{lemma}
\begin{proof}
This is because the map $i\mathcal{G}_1 \to i\mathcal{G}_2$ is injective
and hence $i\mathcal{G}_1 \to iJ_\alpha(\mathcal{F})$ extends to
$i\mathcal{G}_2 \to J(iJ_\alpha(\mathcal{F}))$ which gives the
desired map after applying the sheafification functor.
\end{proof}
\noindent
This lemma says that somehow the system $\{J_{\alpha}(\mathcal{F})\}$
is an injective embedding of $\mathcal{F}$. Of course
we cannot take the limit over all $\alpha$ because they form a class
and not a set. However, the idea is now that you don't have to check
injectivity on all injections $\mathcal{G}_1 \to \mathcal{G}_2$, plus
the following lemma.
\begin{lemma}
\label{lemma-map-into-smaller}
Suppose that $\mathcal{G}_i$, $i\in I$ is set of abelian sheaves
on $\mathcal{C}$. There exists an ordinal $\beta$ such that
for any sheaf $\mathcal{F}$, any $i\in I$, and any map
$\varphi : \mathcal{G}_i \to J_\beta(\mathcal{F})$ there exists an
$\alpha < \beta$ such that $ \varphi $ factors through
$J_\alpha(\mathcal{F})$.
\end{lemma}
\begin{proof}
This reduces to the case of a single sheaf $\mathcal{G}$
by taking the direct sum of all the $\mathcal{G}_i$.
\medskip\noindent
Consider the sets
$$
S = \coprod\nolimits_{U \in \Ob(\mathcal{C})} \mathcal{G}(U).
$$
and
$$
T_\beta
=
\coprod\nolimits_{U \in \Ob(\mathcal{C})} J_\beta(\mathcal{F})(U)
$$
The transition maps between the sets $T_\beta$ are injective.
If the cofinality of $\beta$ is large enough, then
$T_\beta = \colim_{\alpha < \beta} T_\alpha$, see
Sites, Lemma \ref{sites-lemma-colimit-over-ordinal-sections}.
A morphism $\mathcal{G} \to J_\beta(\mathcal{F})$ factors
through $J_\alpha(\mathcal{F})$ if and only if
the associated map $S \to T_\beta$ factors through $T_\alpha$.
By
Sets, Lemma \ref{sets-lemma-map-from-set-lifts}
if the cofinality of $\beta$ is bigger than the cardinality
of $S$, then the result of the lemma is true. Hence the lemma
follows from the fact that there are ordinals with arbitrarily
large cofinality, see
Sets, Proposition \ref{sets-proposition-exist-ordinals-large-cofinality}.
\end{proof}
\noindent
Recall that for an object $X$ of $\mathcal{C}$ we denote $\mathbf{Z}_X$
the presheaf of abelian groups $\Gamma(U, \mathbf{Z}_X) =
\oplus_{U \to X} \mathbf{Z}$, see
Modules on Sites, Section \ref{sites-modules-section-free-abelian-presheaf}.
The sheaf associated to this presheaf
is denoted $\mathbf{Z}_X^\#$, see
Modules on Sites, Section \ref{sites-modules-section-free-abelian-sheaf}.
It can be characterized by
the property
\begin{equation}
\label{equation-free-sheaf-on}
\Mor_{\textit{Ab}(\mathcal{C})}(\mathbf{Z}_X^\#, \mathcal{G})
=
\mathcal{G}(X)
\end{equation}
where the element $\varphi$ of the left hand side is mapped
to $\varphi(1 \cdot \text{id}_X)$ in the right hand side. We can use these
sheaves to characterize injective abelian sheaves.
\begin{lemma}
\label{lemma-characterize-injectives}
Suppose $\mathcal{J}$ is a sheaf of abelian groups with the following
property: For all $X\in \Ob(\mathcal{C})$, for any abelian subsheaf
$\mathcal{S} \subset \mathbf{Z}_X^\#$ and any morphism
$\varphi : \mathcal{S} \to \mathcal{J}$, there exists a morphism
$\mathbf{Z}_X^\# \to \mathcal{J}$ extending $\varphi$.
Then $\mathcal{J}$ is an injective sheaf of abelian groups.
\end{lemma}
\begin{proof}
Let $\mathcal{F} \to \mathcal{G}$ be an injective map
of abelian sheaves. Suppose $\varphi : \mathcal{F} \to \mathcal{J}$
is a morphism. Arguing as in the proof of
More on Algebra, Lemma \ref{more-algebra-lemma-injective-abelian}
we see that it suffices
to prove that if $\mathcal{F} \not = \mathcal{G}$, then we
can find an abelian sheaf $\mathcal{F}'$,
$\mathcal{F} \subset \mathcal{F}' \subset \mathcal{G}$
such that (a) the inclusion $\mathcal{F} \subset \mathcal{F}'$ is strict,
and (b) $\varphi$ can be extended to $\mathcal{F}'$.
To find $\mathcal{F}'$, let $X$ be an object of $\mathcal{C}$ such
that the inclusion $\mathcal{F}(X) \subset \mathcal{G}(X)$
is strict. Pick $s \in \mathcal{G}(X)$, $s \not \in \mathcal{F}(X)$.
Let $\psi : \mathbf{Z}_X^\# \to \mathcal{G}$ be the morphism corresponding
to the section $s$ via (\ref{equation-free-sheaf-on}). Set
$\mathcal{S} = \psi^{-1}(\mathcal{F})$. By assumption the morphism
$$
\mathcal{S} \xrightarrow{\psi} \mathcal{F} \xrightarrow{\varphi} \mathcal{J}
$$
can be extended to a morphism $\varphi' : \mathbf{Z}_X^\# \to \mathcal{J}$.
Note that $\varphi'$ annihilates the kernel of $\psi$ (as this is true
for $\varphi$). Thus $\varphi'$ gives rise to a morphism
$\varphi'' : \Im(\psi) \to \mathcal{J}$
which agrees with $\varphi$ on the intersection
$\mathcal{F} \cap \Im(\psi)$ by construction.
Thus $\varphi$ and $\varphi''$ glue to give an extension
of $\varphi$ to the strictly bigger subsheaf
$\mathcal{F}' = \mathcal{F} + \Im(\psi)$.
\end{proof}
\begin{theorem}
\label{theorem-sheaves-injectives}
The category of sheaves of abelian groups on a
site has enough injectives. In fact there exists
a functorial injective embedding, see
Homology, Definition \ref{homology-definition-functorial-injective-embedding}.
\end{theorem}
\begin{proof}
Let $\mathcal{G}_i$, $i \in I$ be a set of abelian
sheaves such that every subsheaf of every $\mathbf{Z}_X^\#$
occurs as one of the $\mathcal{G}_i$. Apply
Lemma \ref{lemma-map-into-smaller} to this collection to
get an ordinal $\beta$. We claim that for any sheaf of abelian
groups $\mathcal{F}$ the map $\mathcal{F} \to J_\beta(\mathcal{F})$
is an injection of $\mathcal{F}$ into an injective.
Note that by construction the assignment
$\mathcal{F} \mapsto \big(\mathcal{F} \to J_\beta(\mathcal{F})\big)$
is indeed functorial.
\medskip\noindent
The proof of the claim comes from the fact that by
Lemma \ref{lemma-characterize-injectives} it suffices to extend any
morphism $\gamma : \mathcal{G} \to J_\beta(\mathcal{F})$
from a subsheaf $\mathcal{G}$ of some $\mathbf{Z}_X^\#$ to all of
$\mathbf{Z}_X^\#$. Then by Lemma \ref{lemma-map-into-smaller} the
map $\gamma$ lifts into $J_\alpha(\mathcal{F})$ for some
$\alpha < \beta$. Finally, we apply Lemma \ref{lemma-map-into-next-one}
to get the desired extension of $\gamma$ to a morphism
into $J_{\alpha + 1}(\mathcal{F}) \to J_\beta(\mathcal{F})$.
\end{proof}
\section{Modules on a ringed site}
\label{section-sheaves-modules}
\noindent
Let $\mathcal{C}$ be a site.
Let $\mathcal{O}$ be a sheaf of rings on $\mathcal{C}$.
By analogy with
More on Algebra, Section \ref{more-algebra-section-injectives-modules}
let us try to prove that there are enough injective
$\mathcal{O}$-modules. First of all, we pick an injective
embedding
$$
\bigoplus\nolimits_{U, \mathcal{I}}
j_{U!}\mathcal{O}_U/\mathcal{I}
\longrightarrow
\mathcal{J}
$$
where $\mathcal{J}$ is an injective abelian sheaf (which
exists by the previous section). Here the direct sum is
over all objects $U$ of $\mathcal{C}$ and over all
$\mathcal{O}$-submodules $\mathcal{I} \subset j_{U!}\mathcal{O}_U$.
Please see
Modules on Sites, Section \ref{sites-modules-section-localize}
to read about the functors restriction and
extension by $0$ for the localization functor
$j_U : \mathcal{C}/U \to \mathcal{C}$.
\medskip\noindent
For any sheaf of $\mathcal{O}$-modules $\mathcal{F}$ denote
$$
\mathcal{F}^\vee
=
\SheafHom(\mathcal{F}, \mathcal{J})
$$
with its natural $\mathcal{O}$-module structure.
Insert here future reference to internal hom.
We will also need
a canonical flat resolution of a sheaf of $\mathcal{O}$-modules.
This we can do as follows: For any $\mathcal{O}$-module
$\mathcal{F}$ we denote
$$
F(\mathcal{F})
=
\bigoplus\nolimits_{U \in \Ob(\mathcal{C}), s \in \mathcal{F}(U)}
j_{U!}\mathcal{O}_U.
$$
This is a flat sheaf of $\mathcal{O}$-modules which comes equipped
with a canonical surjection $F(\mathcal{F}) \to \mathcal{F}$, see
Modules on Sites, Lemma \ref{sites-modules-lemma-module-quotient-flat}.
Moreover the construction $\mathcal{F} \mapsto F(\mathcal{F})$
is functorial in $\mathcal{F}$.
\begin{lemma}
\label{lemma-vee-exact-sheaves}
The functor $\mathcal{F} \mapsto \mathcal{F}^\vee$ is exact.
\end{lemma}
\begin{proof}
This because $\mathcal{J}$ is an injective abelian sheaf.
\end{proof}
\noindent
There is a canonical map $ev : \mathcal{F} \to (\mathcal{F}^\vee)^\vee$
given by evaluation: given $x \in \mathcal{F}(U)$ we let
$ev(x) \in (\mathcal{F}^\vee)^\vee =
\SheafHom(\mathcal{F}^\vee, \mathcal{J})$
be the map $\varphi \mapsto \varphi(x)$.
\begin{lemma}
\label{lemma-ev-injective-sheaves}
For any $\mathcal{O}$-module $\mathcal{F}$ the evaluation map
$ev : \mathcal{F} \to (\mathcal{F}^\vee)^\vee$ is injective.
\end{lemma}
\begin{proof}
You can check this using the definition of $\mathcal{J}$.
Namely, if $s \in \mathcal{F}(U)$ is not zero, then let
$j_{U!}\mathcal{O}_U \to \mathcal{F}$ be the map of
$\mathcal{O}$-modules it corresponds to via adjunction.
Let $\mathcal{I}$ be the kernel of this map. There exists
a nonzero map $\mathcal{F} \supset j_{U!}\mathcal{O}_U/\mathcal{I}
\to \mathcal{J}$ which does not annihilate $s$. As $\mathcal{J}$ is
an injective $\mathcal{O}$-module, this extends to a map
$\varphi : \mathcal{F} \to \mathcal{J}$.
Then $ev(s)(\varphi) = \varphi(s) \not = 0$ which is what we had to prove.
\end{proof}
\noindent
The canonical surjection
$F(\mathcal{F}) \to \mathcal{F}$ of $\mathcal{O}$-modules turns into a
canonical injection, see above, of $\mathcal{O}$-modules
$$
(\mathcal{F}^\vee)^\vee \longrightarrow (F(\mathcal{F}^\vee))^\vee.
$$
Set $J(\mathcal{F}) = (F(\mathcal{F}^\vee))^\vee$.
The composition of $ev$ with this
the displayed map gives
$\mathcal{F} \to J(\mathcal{F})$ functorially in $\mathcal{F}$.
\begin{lemma}
\label{lemma-JM-injective-sheaves}
Let $\mathcal{O}$ be a sheaf of rings.
For every $\mathcal{O}$-module $\mathcal{F}$ the
$\mathcal{O}$-module $J(\mathcal{F})$ is injective.
\end{lemma}
\begin{proof}
We have to show that the functor
$\Hom_\mathcal{O}(\mathcal{G}, J(\mathcal{F}))$
is exact. Note that
\begin{eqnarray*}
\Hom_\mathcal{O}(\mathcal{G}, J(\mathcal{F}))
& = &
\Hom_\mathcal{O}(\mathcal{G}, (F(\mathcal{F}^\vee))^\vee) \\
& = &
\Hom_\mathcal{O}
(\mathcal{G}, \SheafHom(F(\mathcal{F}^\vee), \mathcal{J})) \\
& = &
\Hom(\mathcal{G} \otimes_\mathcal{O} F(\mathcal{F}^\vee), \mathcal{J})
\end{eqnarray*}
Thus what we want follows from the fact that $F(\mathcal{F}^\vee)$
is flat and $\mathcal{J}$ is injective.
\end{proof}
\begin{theorem}
\label{theorem-sheaves-modules-injectives}
Let $\mathcal{C}$ be a site.
Let $\mathcal{O}$ be a sheaf of rings on $\mathcal{C}$.
The category of sheaves of $\mathcal{O}$-modules on a
site has enough injectives. In fact there exists
a functorial injective embedding, see
Homology, Definition \ref{homology-definition-functorial-injective-embedding}.
\end{theorem}
\begin{proof}
From the discussion in this section.
\end{proof}
\begin{proposition}
\label{proposition-presheaves-modules}
Let $\mathcal{C}$ be a category.
Let $\mathcal{O}$ be a presheaf of rings on $\mathcal{C}$.
The category $\textit{PMod}(\mathcal{O})$ of presheaves of
$\mathcal{O}$-modules has functorial injective embeddings.
\end{proposition}
\begin{proof}
We could prove this along the lines of the discussion in
Section \ref{section-injectives-presheaves}. But instead we argue using the
theorem above. Endow $\mathcal{C}$ with the structure of a site by letting the
set of coverings of an object $U$ consist of all singletons $\{f : V \to U\}$
where $f$ is an isomorphism. We omit the verification that this defines a site.
A sheaf for this topology is the same as a presheaf (proof omitted). Hence the
theorem applies.
\end{proof}
\section{Embedding abelian categories}
\label{section-embedding}
\noindent
In this section we show that an abelian category embeds in the
category of abelian sheaves on a site having enough points.
The site will be the one described in the following lemma.
\begin{lemma}
\label{lemma-site-abelian-category}
Let $\mathcal{A}$ be an abelian category.
Let
$$
\text{Cov} = \{\{f : V \to U\} \mid f\text{ is surjective}\}.
$$
Then $(\mathcal{A}, \text{Cov})$ is a site, see
Sites, Definition \ref{sites-definition-site}.
\end{lemma}
\begin{proof}
Note that $\Ob(\mathcal{A})$ is a set by our conventions
about categories. An isomorphism is a surjective morphism.
The composition of surjective morphisms is surjective.
And the base change of a surjective morphism in $\mathcal{A}$
is surjective, see
Homology, Lemma \ref{homology-lemma-epimorphism-universal-abelian-category}.
\end{proof}
\noindent
Let $\mathcal{A}$ be a pre-additive category. In this case the
Yoneda embedding $\mathcal{A} \to \textit{PSh}(\mathcal{A})$, $X \mapsto h_X$
factors through a functor $\mathcal{A} \to \textit{PAb}(\mathcal{A})$.
\begin{lemma}
\label{lemma-embedding}
Let $\mathcal{A}$ be an abelian category.
Let $\mathcal{C} = (\mathcal{A}, \text{Cov})$ be the
site defined in
Lemma \ref{lemma-site-abelian-category}.
Then $X \mapsto h_X$ defines a fully faithful, exact functor
$$
\mathcal{A} \longrightarrow \textit{Ab}(\mathcal{C}).
$$
Moreover, the site $\mathcal{C}$ has enough points.
\end{lemma}
\begin{proof}
Suppose that $f : V \to U$ is a surjective morphism of $\mathcal{A}$.
Let $K = \Ker(f)$. Recall that
$V \times_U V = \Ker((f, -f) : V \oplus V \to U)$, see
Homology, Example \ref{homology-example-fibre-product-pushouts}.
In particular there exists an injection $K \oplus K \to V \times_U V$.
Let $p, q : V \times_U V \to V$ be the two projection morphisms.
Note that $p - q : V \times_U V \to V$ is a morphism such that
$f \circ (p - q) = 0$. Hence $p - q$ factors through $K \to V$.
Let us denote this morphism by $c : V \times_U V \to K$.
And since the composition $K \oplus K \to V \times_U V \to K$
is surjective, we conclude that $c$ is surjective. It follows that
$$
V \times_U V \xrightarrow{p - q} V \to U \to 0
$$
is an exact sequence of $\mathcal{A}$.
Hence for an object $X$ of $\mathcal{A}$ the sequence
$$
0 \to
\Hom_\mathcal{A}(U, X) \to
\Hom_\mathcal{A}(V, X) \to
\Hom_\mathcal{A}(V \times_U V, X)
$$
is an exact sequence of abelian groups, see
Homology, Lemma \ref{homology-lemma-check-exactness}.
This means that $h_X$ satisfies the sheaf condition
on $\mathcal{C}$.
\medskip\noindent
The functor is fully faithful by
Categories, Lemma \ref{categories-lemma-yoneda}.
The functor is a left exact functor between abelian categories by
Homology, Lemma \ref{homology-lemma-check-exactness}.
To show that it is right exact, let $X \to Y$ be a surjective morphism
of $\mathcal{A}$. Let $U$ be an object of $\mathcal{A}$, and let
$s \in h_Y(U) = \Mor_\mathcal{A}(U, Y)$ be a section of $h_Y$
over $U$. By
Homology, Lemma \ref{homology-lemma-epimorphism-universal-abelian-category}
the projection $U \times_Y X \to U$ is surjective.
Hence $\{V = U \times_Y X \to U\}$ is a covering of $U$ such that
$s|_V$ lifts to a section of $h_X$. This proves that
$h_X \to h_Y$ is a surjection of abelian sheaves, see
Sites, Lemma \ref{sites-lemma-mono-epi-sheaves}.
\medskip\noindent
The site $\mathcal{C}$ has enough points by
Sites, Proposition \ref{sites-proposition-criterion-points}.
\end{proof}
\begin{remark}
\label{remark-embedding}
The Freyd-Mitchell embedding theorem says there exists a fully faithful
exact functor from any abelian category $\mathcal{A}$
to the category of modules over a ring.
Lemma \ref{lemma-embedding}
is not quite as strong. But the result is suitable for the
Stacks project as we have to understand sheaves of abelian groups on
sites in detail anyway. Moreover, ``diagram chasing'' works in the category
of abelian sheaves on $\mathcal{C}$, for example by working with sections over
objects, or by working on the level of stalks using that $\mathcal{C}$ has
enough points. To see how to deduce the Freyd-Mitchell embedding theorem from
Lemma \ref{lemma-embedding}
see
Remark \ref{remark-embedding-freyd}.
\end{remark}
\begin{remark}
\label{remark-embedding-big}
If $\mathcal{A}$ is a ``big'' abelian category, i.e., if $\mathcal{A}$
has a class of objects, then
Lemma \ref{lemma-embedding}
does not work. In this case, given any set of objects
$E \subset \Ob(\mathcal{A})$ there exists an abelian full subcategory
$\mathcal{A}' \subset \mathcal{A}$ such that
$\Ob(\mathcal{A}')$ is a set and $E \subset \Ob(\mathcal{A}')$.
Then one can apply
Lemma \ref{lemma-embedding}
to $\mathcal{A}'$. One can use this to prove that results depending on
a diagram chase hold in $\mathcal{A}$.
\end{remark}
\begin{remark}
\label{remark-embedding-freyd}
Let $\mathcal{C}$ be a site.
Note that $\textit{Ab}(\mathcal{C})$ has enough injectives, see
Theorem \ref{theorem-sheaves-injectives}.
(In the case that $\mathcal{C}$ has enough points this is straightforward
because $p_*I$ is an injective sheaf if $I$ is an injective
$\mathbf{Z}$-module and $p$ is a point.)
Also, $\textit{Ab}(\mathcal{C})$ has a cogenerator (details omitted).
Hence
Lemma \ref{lemma-embedding}
proves that we have a fully faithful, exact embedding
$\mathcal{A} \to \mathcal{B}$ where $\mathcal{B}$ has a
cogenerator and enough injectives.
We can apply this to $\mathcal{A}^{opp}$ and we get a
fully faithful exact functor
$i : \mathcal{A} \to \mathcal{D} = \mathcal{B}^{opp}$
where $\mathcal{D}$ has enough projectives and a generator. Hence
$\mathcal{D}$ has a projective generator $P$.
Set $R = \Mor_\mathcal{D}(P, P)$. Then
$$
\mathcal{A} \longrightarrow \text{Mod}_R, \quad
X \longmapsto \Hom_\mathcal{D}(P, X).
$$
One can check this is a fully faithful, exact functor.
In other words, one retrieves the
Freyd-Mitchell theorem mentioned in
Remark \ref{remark-embedding}
above.
\end{remark}
\begin{remark}
\label{remark-embed-exact-category}
The arguments proving
Lemmas \ref{lemma-site-abelian-category} and
\ref{lemma-embedding}
work also for {\it exact categories}, see
\cite[Appendix A]{Buhler} and
\cite[1.1.4]{BBD}.
We quickly review this here and we add more details if we ever
need it in the Stacks project.
\medskip\noindent
Let $\mathcal{A}$ be an additive category.
A {\it kernel-cokernel} pair is a pair $(i, p)$
of morphisms of $\mathcal{A}$ with
$i : A \to B$, $p : B \to C$ such that $i$ is the kernel of
$p$ and $p$ is the cokernel of $i$.
Given a set $\mathcal{E}$ of kernel-cokernel pairs we say
$i : A \to B$ is an {\it admissible monomorphism}
if $(i, p) \in \mathcal{E}$ for some morphism $p$.
Similarly we say a morphism $p : B \to C$ is an {\it admissible epimorphism}
if $(i, p) \in \mathcal{E}$ for some morphism $i$.
The pair $(\mathcal{A}, \mathcal{E})$ is said to be an
{\it exact category} if the following axioms hold
\begin{enumerate}
\item $\mathcal{E}$ is closed under isomorphisms of kernel-cokernel
pairs,
\item for any object $A$ the morphism $1_A$ is both an admissible epimorphism
and an admissible monomorphism,
\item admissible monomorphisms are stable under composition,
\item admissible epimorphisms are stable under composition,
\item the push-out of an admissible monomorphism $i : A \to B$ via
any morphism $A \to A'$ exist and the induced morphism $i' : A' \to B'$
is an admissible monomorphism, and
\item the base change of an admissible epimorphism $p : B \to C$ via
any morphism $C' \to C$ exist and the induced morphism $p' : B' \to C'$
is an admissible epimorphism.
\end{enumerate}
Given such a structure let $\mathcal{C} = (\mathcal{A}, \text{Cov})$
where coverings (i.e., elements of $\text{Cov}$) are given by
admissible epimorphisms. The axioms listed above
immediately imply that this is a site. Consider the functor
$$
F : \mathcal{A} \longrightarrow \textit{Ab}(\mathcal{C}), \quad
X \longmapsto h_X
$$
exactly as in
Lemma \ref{lemma-embedding}.
It turns out that this functor is fully faithful, exact, and reflects
exactness. Moreover, any extension of objects in the essential image
of $F$ is in the essential image of $F$.
\end{remark}
\section{Grothendieck's AB conditions}
\label{section-grothendieck-conditions}
\noindent
This and the next few sections are mostly interesting for ``big'' abelian
categories, i.e., those categories listed in
Categories, Remark \ref{categories-remark-big-categories}.
A good case to keep in mind is the category of sheaves of modules
on a ringed site.
\medskip\noindent
Grothendieck proved the existence of injectives in great generality
in the paper \cite{Tohoku}. He used the following conditions to single
out abelian categories with special properties.
\begin{definition}
\label{definition-grothendieck-conditions}
Let $\mathcal{A}$ be an abelian category. We name some conditions
\begin{enumerate}
\item[AB3] $\mathcal{A}$ has direct sums,
\item[AB4] $\mathcal{A}$ has AB3 and direct sums are exact,
\item[AB5] $\mathcal{A}$ has AB3 and filtered colimits are exact.
\end{enumerate}
Here are the dual notions
\begin{enumerate}
\item[AB3*] $\mathcal{A}$ has products,
\item[AB4*] $\mathcal{A}$ has AB3* and products are exact,
\item[AB5*] $\mathcal{A}$ has AB3* and filtered limits are exact.
\end{enumerate}
We say an object $U$ of $\mathcal{A}$ is a {\it generator} if
for every $N \subset M$, $N \not = M$ in $\mathcal{A}$ there exists a morphism
$U \to M$ which does not factor through $N$.
We say $\mathcal{A}$ is a {\it Grothendieck abelian category} if
it has AB5 and a generator.
\end{definition}
\noindent
Discussion: A direct sum in an abelian category is a coproduct.
If an abelian category has direct sums (i.e., AB3), then it has colimits, see
Categories, Lemma \ref{categories-lemma-colimits-coproducts-coequalizers}.
Similarly if $\mathcal{A}$ has AB3* then it has limits, see
Categories, Lemma \ref{categories-lemma-limits-products-equalizers}.
Exactness of direct sums means the following: given an index set $I$
and short exact sequences
$$
0 \to A_i \to B_i \to C_i \to 0,\quad i \in I
$$
in $\mathcal{A}$ then the sequence
$$
0 \to
\bigoplus\nolimits_{i \in I} A_i \to
\bigoplus\nolimits_{i \in I} B_i \to
\bigoplus\nolimits_{i \in I} C_i \to 0
$$
is exact as well. Without assuming AB4 it is only true in general that
the sequence is exact on the right (i.e., taking direct sums is a right
exact functor if direct sums exist). Similarly, exactness of filtered
colimits means the following: given a directed set $I$
and a system of short exact sequences
$$
0 \to A_i \to B_i \to C_i \to 0
$$
over $I$ in $\mathcal{A}$ then the sequence
$$
0 \to
\colim_{i \in I} A_i \to
\colim_{i \in I} B_i \to
\colim_{i \in I} C_i \to 0
$$
is exact as well. Without assuming AB5 it is only true in general that
the sequence is exact on the right (i.e., taking colimits is a right
exact functor if colimits exist). A similar explanation holds for
AB4* and AB5*.
\section{Injectives in Grothendieck categories}
\label{section-grothendieck-categories}
\noindent
The existence of a generator implies that given an object $M$ of a
Grothendieck abelian category $\mathcal{A}$ there is a set of subobjects.
(This may not be true for a general ``big'' abelian category.)
\begin{lemma}
\label{lemma-set-of-subobjects}
Let $\mathcal{A}$ be an abelian category with a generator $U$ and
$X$ and object of $\mathcal{A}$. If $\kappa$ is the cardinality of
$\Mor(U, X)$ then
\begin{enumerate}
\item There does not exist a strictly increasing
(or strictly decreasing) chain of subobjects
of $X$ indexed by a cardinal bigger than $\kappa$.
\item If $\alpha$ is an ordinal of cofinality $> \kappa$
then any increasing (or decreasing) sequence of subobjects
of $X$ indexed by $\alpha$ is eventually constant.
\item The cardinality of the set of subobjects of $X$
is $\leq 2^\kappa$.
\end{enumerate}
\end{lemma}
\begin{proof}
For (1) assume $\kappa' > \kappa$ is a cardinal and assume
$X_i$, $i \in \kappa'$ is strictly increasing. Then take for
each $i$ a $\phi_i \in \Mor(U, X)$ such that $\phi_i$ factors through
$X_{i + 1}$ but not through $X_i$. Then the morphisms $\phi_i$
are distinct, which contradicts the definition of $\kappa$.
\medskip\noindent
Part (2) follows from the definition of cofinality and (1).
\medskip\noindent
Proof of (3). For any subobject $Y \subset X$
define $S_Y \in \mathcal{P}(\Mor(U, X))$ (power set) as
$S_Y = \{\phi \in \Mor(U,X) : \phi)\text{ factors through }Y\}$.
Then $Y = Y'$ if and only if $S_Y = S_{Y'}$. Hence the cardinality
of the set of subobjects is at most the cardinality of this power set.
\end{proof}
\noindent
By Lemma \ref{lemma-set-of-subobjects} the following definition makes sense.
\begin{definition}
\label{definition-size}
Let $\mathcal{A}$ be a Grothendieck abelian category.
Let $M$ be an object of $\mathcal{A}$.
The {\it size} $|M|$ of $M$ is the cardinality of the set of subobjects
of $M$.
\end{definition}
\begin{lemma}
\label{lemma-size-goes-down}
Let $\mathcal{A}$ be a Grothendieck abelian category.
If $0 \to M' \to M \to M'' \to 0$ is a short exact sequence of
$\mathcal{A}$, then $|M'|, |M''| \leq |M|$.
\end{lemma}
\begin{proof}
Immediate from the definitions.
\end{proof}
\begin{lemma}
\label{lemma-set-iso-classes-bounded-size}
Let $\mathcal{A}$ be a Grothendieck abelian category with generator $U$.
\begin{enumerate}
\item If $|M| \leq \kappa$, then $M$ is the quotient of a direct
sum of at most $\kappa$ copies of $U$.
\item For every cardinal $\kappa$ there exists a set of isomorphism classes
of objects $M$ with $|M| \leq \kappa$.
\end{enumerate}
\end{lemma}
\begin{proof}
For (1) choose for every proper subobject $M' \subset M$ a morphism
$\varphi_{M'} : U \to M$ whose image is not contained in $M'$. Then
$\bigoplus_{M' \subset M} \varphi_{M'} : \bigoplus_{M' \subset M} U \to M$
is surjective. It is clear that (1) implies (2).
\end{proof}
\begin{proposition}
\label{proposition-objects-are-small}
Let $\mathcal{A}$ be a Grothendieck abelian category. Let $M$ be an
object of $\mathcal{A}$. Let $\kappa = |M|$.
If $\alpha$ is an ordinal whose cofinality is bigger than $\kappa$,
then $M$ is $\alpha$-small with respect to injections.
\end{proposition}
\begin{proof}
Please compare with Proposition \ref{proposition-modules-are-small}.
We need only show that the map (\ref{equation-compare}) is a surjection.
Let $f : M \to \colim B_\beta$ be a map.
Consider the subobjects $\{f^{-1}(B_\beta)\}$ of $M$, where $B_\beta$
is considered as a subobject of the colimit $B = \bigcup_\beta B_\beta$.
If one of these, say $f^{-1}(B_\beta)$, fills $M$,
then the map factors through $B_\beta$.
\medskip\noindent
So suppose to the contrary that all of the $f^{-1}(B_\beta)$ were proper
subobjects of $M$. However, because $\mathcal{A}$ has
AB5 we have
$$
\colim f^{-1}(B_\beta) = f^{-1}\left(\colim B_\beta\right) = M.
$$
Now there are at most $\kappa$ different subobjects of $M$ that occur among
the $f^{-1}(B_\alpha)$, by hypothesis.
Thus we can find a subset $S \subset \alpha$ of cardinality at most
$\kappa$ such that as $\beta'$ ranges over $S$, the
$f^{-1}(B_{\beta'})$ range over \emph{all} the $f^{-1}(B_\alpha)$.
\medskip\noindent
However, $S$ has an upper bound $\widetilde{\alpha} < \alpha$ as
$\alpha$ has cofinality bigger than $\kappa$. In particular, all the
$f^{-1}(B_{\beta'})$, $\beta' \in S$ are contained in
$f^{-1}(B_{\widetilde{\alpha}})$.
It follows that $f^{-1}(B_{\widetilde{\alpha}}) = M$.
In particular, the map $f$ factors through $B_{\widetilde{\alpha}}$.
\end{proof}
\begin{lemma}
\label{lemma-characterize-injective}
\begin{slogan}
To check that an object is injective, one only needs to check that lifting
holds for subobjects of a generator.
\end{slogan}
Let $\mathcal{A}$ be a Grothendieck abelian category with generator $U$.
An object $I$ of $\mathcal{A}$ is injective if and only if in every
commutative diagram
$$
\xymatrix{
M \ar[d] \ar[r] & I \\
U \ar@{-->}[ru]
}
$$
for $M \subset U$ a subobject, the dotted arrow exists.
\end{lemma}
\begin{proof}
Please see Lemma \ref{lemma-criterion-baer} for the case of modules.
Choose an injection $A \subset B$ and a morphism $\varphi : A \to I$.
Consider the set $S$ of pairs $(A', \varphi')$ consisting of
subobjects $A \subset A' \subset B$ and a morphism $\varphi' : A' \to I$
extending $\varphi$. Define a partial ordering on this set in the obvious
manner. Choose a totally ordered subset $T \subset S$. Then
$$
A' = \colim_{t \in T} A_t \xrightarrow{\colim_{t \in T} \varphi_t} I
$$
is an upper bound. Hence by Zorn's lemma the set $S$ has a maximal element
$(A', \varphi')$. We claim that $A' = B$. If not, then choose a morphism
$\psi : U \to B$ which does not factor through $A'$. Set
$N = A' \cap \psi(U)$. Set $M = \psi^{-1}(N)$. Then the map
$$
M \to N \to A' \xrightarrow{\varphi'} I
$$
can be extended to a morphism $\chi : U \to I$. Since
$\chi|_{\Ker(\psi)} = 0$ we see that $\chi$ factors as
$$
U \to \Im(\psi) \xrightarrow{\varphi''} I
$$
Since $\varphi'$ and $\varphi''$ agree on $N = A' \cap \Im(\psi)$
we see that combined the define a morphism $A' + \Im(\psi) \to I$
contradicting the assumed maximality of $A'$.
\end{proof}
\begin{theorem}
\label{theorem-injective-embedding-grothendieck}
Let $\mathcal{A}$ be a Grothendieck abelian category.
Then $\mathcal{A}$ has functorial injective embeddings.
\end{theorem}
\begin{proof}
Please compare with the proof of
Theorem \ref{theorem-baer-grothendieck}.
Choose a generator $U$ of $\mathcal{A}$. For an object $M$ we define
$\mathbf{M}(M)$ by the following pushout diagram
$$
\xymatrix{
\bigoplus_{N \subset U}
\bigoplus_{\varphi \in \Hom(N, M)}
N \ar[r] \ar[d] & M \ar[d] \\
\bigoplus_{N \subset U}
\bigoplus_{\varphi \in \Hom(N, M)}
U \ar[r] & \mathbf{M}(M).
}
$$
Note that $M \to \mathbf{M}(N)$ is a functor and that there
exist functorial injective maps $M \to \mathbf{M}(M)$. By transfinite
induction we define functors $\mathbf{M}_\alpha(M)$ for every
ordinal $\alpha$. Namely, set $\mathbf{M}_0(M) = M$. Given
$\mathbf{M}_\alpha(M)$ set
$\mathbf{M}_{\alpha + 1}(M) = \mathbf{M}(\mathbf{M}_\alpha(M))$.
For a limit ordinal $\beta$ set
$$
\mathbf{M}_\beta(M) = \colim_{\alpha < \beta} \mathbf{M}_\alpha(M).
$$
Finally, pick any ordinal $\alpha$ whose cofinality is greater than $|U|$.
Such an ordinal exists by
Sets, Proposition \ref{sets-proposition-exist-ordinals-large-cofinality}.
We claim that $M \to \mathbf{M}_\alpha(M)$ is the desired functorial
injective embedding. Namely, if $N \subset U$ is a subobject and
$\varphi : N \to \mathbf{M}_\alpha(M)$ is a morphism, then we see that
$\varphi$ factors through $\mathbf{M}_{\alpha'}(M)$ for some
$\alpha' < \alpha$ by
Proposition \ref{proposition-objects-are-small}.
By construction of $\mathbf{M}(-)$ we see that $\varphi$ extends to
a morphism from $U$ into $\mathbf{M}_{\alpha' + 1}(M)$ and hence into
$\mathbf{M}_\alpha(M)$. By
Lemma \ref{lemma-characterize-injective}
we conclude that $\mathbf{M}_\alpha(M)$ is injective.
\end{proof}
\section{K-injectives in Grothendieck categories}
\label{section-K-injective}
\noindent
The material in this section is taken from the paper \cite{serpe}
authored by Serp\'e. This paper generalizes some of the results
of \cite{Spaltenstein} by Spaltenstein to general Grothendieck abelian
categories. Our Lemma \ref{lemma-characterize-K-injective}
is only implicit in the paper by Serp\'e. Our approach is to mimic
Grothendieck's proof of
Theorem \ref{theorem-injective-embedding-grothendieck}.
\begin{lemma}
\label{lemma-surjection-bounded-size}
Let $\mathcal{A}$ be a Grothendieck abelian category with generator $U$.
Let $c$ be the function on cardinals defined by
$c(\kappa) = |\bigoplus_{\alpha \in \kappa} U|$. If $\pi : M \to N$ is a
surjection then there exists a subobject $M' \subset M$ which surjects
onto $N$ with $|N'| \leq c(|N|)$.
\end{lemma}
\begin{proof}
For every proper subobject $N' \subset N$ choose a morphism
$\varphi_{N'} : U \to M$ such that $U \to M \to N$ does not factor
through $N'$. Set
$$
N' = \Im\left(
\bigoplus\nolimits_{N' \subset N} \varphi_{N'} :
\bigoplus\nolimits_{N' \subset N} U \longrightarrow M\right)
$$
Then $N'$ works.
\end{proof}
\begin{lemma}
\label{lemma-acyclic-quotient-complexes-bounded-size}
Let $\mathcal{A}$ be a Grothendieck abelian category. There exists a cardinal
$\kappa$ such that given any acyclic complex $M^\bullet$ we have
\begin{enumerate}
\item if $M^\bullet$ is nonzero, there is a nonzero subcomplex
$N^\bullet$ which is bounded above, acyclic, and $|N^n| \leq \kappa$,
\item there exists a surjection of complexes
$$
\bigoplus\nolimits_{i \in I} M_i^\bullet \longrightarrow M^\bullet
$$
where $M_i^\bullet$ is bounded above, acyclic, and $|M_i^n| \leq \kappa$.
\end{enumerate}
\end{lemma}
\begin{proof}
Choose a generator $U$ of $\mathcal{A}$. Denote $c$ the function of
Lemma \ref{lemma-surjection-bounded-size}.
Set $\kappa = \sup \{c^n(|U|), n = 1, 2, 3, \ldots\}$.
Let $n \in \mathbf{Z}$ and let $\psi : U \to M^n$ be a morphism.
In order to prove (1) and (2) it suffices to prove there exists a subcomplex
$N^\bullet \subset M^\bullet$ which is bounded above, acyclic, and
$|N^m| \leq \kappa$, such that $\psi$ factors through $N^n$.
To do this set $N^n = \Im(\psi)$, $N^{n + 1} = \Im(U \to M^n \to M^{n + 1})$,
and $N^m = 0$ for $m \geq n + 2$.
Suppose we have constructed $N^m \subset M^m$ for all $m \geq k$ such that
\begin{enumerate}
\item $\text{d}(N^m) \subset N^{m + 1}$, $m \geq k$,
\item $\Im(N^{m - 1} \to N^m) = \Ker(N^m \to N^{m + 1})$ for
all $m \geq k + 1$, and
\item $|N^m| \leq c^{\max\{n - m, 0\}}(|U|)$.
\end{enumerate}
for some $k \leq n$. Because $M^\bullet$ is acyclic, we see that the subobject
$\text{d}^{-1}(\Ker(N^k \to N^{k + 1})) \subset M^{k - 1}$ surjects onto
$\Ker(N^k \to N^{k + 1})$. Thus we can choose $N^{k - 1} \subset M^{k - 1}$
surjecting onto $\Ker(N^k \to N^{k + 1})$ with
$|N^{k - 1}| \leq c^{n - k + 1}(|U|)$ by
Lemma \ref{lemma-surjection-bounded-size}. The proof is finished by
induction on $k$.
\end{proof}
\begin{lemma}
\label{lemma-characterize-K-injective}
Let $\mathcal{A}$ be a Grothendieck abelian category.
Let $\kappa$ be a cardinal as in
Lemma \ref{lemma-acyclic-quotient-complexes-bounded-size}.
Suppose that $I^\bullet$ is a complex such that
\begin{enumerate}
\item each $I^j$ is injective, and
\item for every bounded above acyclic complex $M^\bullet$
such that $|M^n| \leq \kappa$
we have $\Hom_{K(\mathcal{A})}(M^\bullet, I^\bullet) = 0$.
\end{enumerate}
Then $I^\bullet$ is an $K$-injective complex.
\end{lemma}
\begin{proof}
Let $M^\bullet$ be an acyclic complex. We are going to construct by
induction on the ordinal $\alpha$ an acyclic subcomplex
$K_\alpha^\bullet \subset M^\bullet$ as follows.
For $\alpha = 0$ we set $K_0^\bullet = 0$. For $\alpha > 0$
we proceed as follows:
\begin{enumerate}
\item If $\alpha = \beta + 1$ and $K_\beta^\bullet = M^\bullet$
then we choose $K_\alpha^\bullet = K_\beta^\bullet$.
\item If $\alpha = \beta + 1$ and $K_\beta^\bullet \not = M^\bullet$
then $M^\bullet/K_\beta^\bullet$ is a nonzero acyclic complex.
We choose a subcomplex $N_\alpha^\bullet \subset M^\bullet/K_\beta^\bullet$
as in Lemma \ref{lemma-acyclic-quotient-complexes-bounded-size}.
Finally, we let $K_\alpha^\bullet \subset M^\bullet$
be the inverse image of $N_\alpha^\bullet$.
\item If $\alpha$ is a limit ordinal we set
$K_\beta^\bullet = \colim K_\alpha^\bullet$.
\end{enumerate}
It is clear that $M^\bullet = K_\alpha^\bullet$ for a suitably large
ordinal $\alpha$. We will prove that
$$
\Hom_{K(\mathcal{A})}(K_\alpha^\bullet, I^\bullet)
$$
is zero by transfinite induction on $\alpha$. It holds for $\alpha = 0$
since $K_0^\bullet$ is zero. Suppose it holds for $\beta$ and
$\alpha = \beta + 1$. In case (1) of the list above the result is clear.
In case (2) there is a short exact sequence of complexes
$$
0 \to K_\beta^\bullet \to K_\alpha^\bullet \to N_\alpha^\bullet \to 0
$$
Since each component of $I^\bullet$ is injective we see that we obtain
an exact sequence
$$
\Hom_{K(\mathcal{A})}(K_\beta^\bullet, I^\bullet) \to
\Hom_{K(\mathcal{A})}(K_\alpha^\bullet, I^\bullet) \to
\Hom_{K(\mathcal{A})}(N_\alpha^\bullet, I^\bullet)
$$
By induction the term on the left is zero and by assumption on $I^\bullet$
the term on the right is zero. Thus the middle group is zero too.
Finally, suppose that $\alpha$ is a limit ordinal. Then we see that
$$
\Hom^\bullet(K_\alpha^\bullet, I^\bullet) =
\lim_{\beta < \alpha} \Hom^\bullet(K_\beta^\bullet, I^\bullet)
$$
with notation as in
More on Algebra, Section \ref{more-algebra-section-hom-complexes}.
These complexes compute morphisms in $K(\mathcal{A})$ by
More on Algebra, Equation
(\ref{more-algebra-equation-cohomology-hom-complex}).
Note that the transition maps in the system are surjective
because $I^j$ is surjective for each $j$. Moreover, for a limit
ordinal $\alpha$ we have equality of limit and value
(see displayed formula above). Thus we may apply
Homology, Lemma \ref{homology-lemma-ML-over-ordinals}
to conclude.
\end{proof}
\begin{lemma}
\label{lemma-functorial-homotopies}
Let $\mathcal{A}$ be a Grothendieck abelian category.
Let $(K_i^\bullet)_{i \in I}$ be a set of acyclic complexes.
There exists a functor $M^\bullet \mapsto \mathbf{M}^\bullet(M^\bullet)$
and a natural transformation
$j_{M^\bullet} : M^\bullet \to \mathbf{M}^\bullet(M^\bullet)$
such
\begin{enumerate}
\item $j_{M^\bullet}$ is a (termwise) injective quasi-isomorphism, and
\item for every $i \in I$ and $w : K_i^\bullet \to M^\bullet$
the morphism $j_{M^\bullet} \circ w$ is homotopic to zero.
\end{enumerate}
\end{lemma}
\begin{proof}
For every $i \in I$ choose a (termwise) injective map of complexes
$K_i^\bullet \to L_i^\bullet$ which is homotopic to zero with
$L_i^\bullet$ quasi-isomorphic to zero. For example, take $L_i^\bullet$
to be the cone on the identity of $K_i^\bullet$.
We define $\mathbf{M}^\bullet(M^\bullet)$ by the following pushout diagram
$$
\xymatrix{
\bigoplus_{i \in I}
\bigoplus_{w : K_i^\bullet \to M^\bullet}
K_i^\bullet \ar[r] \ar[d] & M^\bullet \ar[d] \\
\bigoplus_{i \in I}
\bigoplus_{w : K_i^\bullet \to M^\bullet}
L_i^\bullet \ar[r] & \mathbf{M}^\bullet(M^\bullet).
}
$$
Then $M^\bullet \to \mathbf{M}^\bullet(M^\bullet)$ is a functor. The right
vertical arrow defines the functorial injective map $j_{M^\bullet}$.
The cokernel of $j_{M^\bullet}$ is isomorphic to the direct sum of
the cokernels of the maps $K_i^\bullet \to L_i^\bullet$ hence acyclic.
Thus $j_{M^\bullet}$ is a quasi-isomorphism. Part (2) holds by construction.
\end{proof}
\begin{lemma}
\label{lemma-functorial-injective}
Let $\mathcal{A}$ be a Grothendieck abelian category.
There exists a functor $M^\bullet \mapsto \mathbf{N}^\bullet(M^\bullet)$
and a natural transformation
$j_{M^\bullet} : M^\bullet \to \mathbf{N}^\bullet(M^\bullet)$
such
\begin{enumerate}
\item $j_{M^\bullet}$ is a (termwise) injective quasi-isomorphism, and
\item for every $n \in \mathbf{Z}$ the map $M^n \to \mathbf{N}^n(M^\bullet)$
factors through a subobject $I^n \subset \mathbf{N}^n(M^\bullet)$ where $I^n$
is an injective object of $\mathcal{A}$.
\end{enumerate}
\end{lemma}
\begin{proof}
Choose a functorial injective embeddings $i_M : M \to I(M)$, see
Theorem \ref{theorem-injective-embedding-grothendieck}.
For every complex $M^\bullet$ denote $J^\bullet(M^\bullet)$ the complex
with terms $J^n(M^\bullet) = I(M^n) \oplus I(M^{n + 1})$ and differential
$$
d_{J^\bullet(M^\bullet)} =
\left(
\begin{matrix}
0 & 1 \\
0 & 0
\end{matrix}
\right)
$$
There exists a canonical injective map of complexes
$u_{M^\bullet} : M^\bullet \to J^\bullet(M^\bullet)$ by mapping $M^n$ to
$I(M^n) \oplus I(M^{n + 1})$ via the maps $i_{M^n} : M^n \to I(M^n)$ and
$i_{M^{n + 1}} \circ d : M^n \to M^{n + 1} \to I(M^{n + 1})$. Hence a
short exact sequence of complexes
$$
0 \to M^\bullet \xrightarrow{u_{M^\bullet}}
J^\bullet(M^\bullet) \xrightarrow{v_{M^\bullet}}
Q^\bullet(M^\bullet) \to 0
$$
functorial in $M^\bullet$. Set
$$
\mathbf{N}^\bullet(M^\bullet) = C(v_{M^\bullet})^\bullet[-1].
$$
Note that
$$
\mathbf{N}^n(M^\bullet) = Q^{n - 1}(M^\bullet) \oplus J^n(M^\bullet)
$$
with differential
$$
\left(
\begin{matrix}
- d^{n - 1}_{Q^\bullet(M^\bullet)} & - v^n_{M^\bullet} \\
0 & d^n_{J^\bullet(M)}
\end{matrix}
\right)
$$
Hence we see that there is a map of complexes
$j_{M^\bullet} : M^\bullet \to \mathbf{N}^\bullet(M^\bullet)$
induced by $u$. It is injective and factors through an injective subobject
by construction. The map $j_{M^\bullet}$ is a quasi-isomorphism as one
can prove by looking at the long exact sequence of cohomology associated
to the short exact sequences of complexes above.
\end{proof}
\begin{theorem}
\label{theorem-K-injective-embedding-grothendieck}
\begin{slogan}
Existence of K-injective complexes for Grothendieck abelian categories.
\end{slogan}
Let $\mathcal{A}$ be a Grothendieck abelian category.
For every complex $M^\bullet$ there exists a quasi-isomorphism
$M^\bullet \to I^\bullet$ such that $M^n \to I^n$ is injective and $I^n$
is an injective object of $\mathcal{A}$ for all $n$ and $I^\bullet$
is a K-injective complex. Moreover, the construction is functorial in
$M^\bullet$.
\end{theorem}
\begin{proof}
Please compare with the proof of
Theorem \ref{theorem-baer-grothendieck}
and
Theorem \ref{theorem-injective-embedding-grothendieck}.
Choose a cardinal $\kappa$ as in
Lemmas \ref{lemma-acyclic-quotient-complexes-bounded-size} and
\ref{lemma-characterize-K-injective}.
Choose a set $(K_i^\bullet)_{i \in I}$
of bounded above, acyclic complexes
such that every bounded above acyclic complex $K^\bullet$
such that $|K^n| \leq \kappa$ is isomorphic to $K_i^\bullet$ for some
$i \in I$. This is possible by
Lemma \ref{lemma-set-iso-classes-bounded-size}.
Denote $\mathbf{M}^\bullet(-)$ the functor constructed in
Lemma \ref{lemma-functorial-homotopies}.
Denote $\mathbf{N}^\bullet(-)$ the functor constructed in
Lemma \ref{lemma-functorial-injective}.
Both of these functors come with injective transformations
$\text{id} \to \mathbf{M}$ and $\text{id} \to \mathbf{N}$.
\medskip\noindent
Using transfinite recursion we define a sequence of functors
$\mathbf{T}_\alpha(-)$ and corresponding transformations
$\text{id} \to \mathbf{T}_\alpha$. Namely we set
$\mathbf{T}_0(M^\bullet) = M^\bullet$. If $\mathbf{T}_\alpha$ is
given then we set
$$
\mathbf{T}_{\alpha + 1}(M^\bullet) =
\mathbf{N}^\bullet(\mathbf{M}^\bullet(\mathbf{T}_\alpha(M^\bullet)))
$$
If $\beta$ is a limit ordinal we set
$$
\mathbf{T}_\beta(M^\bullet) =
\colim_{\alpha < \beta} \mathbf{T}_\alpha(M^\bullet)
$$
The transition maps of the system are injective quasi-isomorphisms.
By AB5 we see that the colimit is still quasi-isomorphic to $M^\bullet$.
We claim that $M^\bullet \to \mathbf{T}_\alpha(M^\bullet)$
does the job if the cofinality of $\alpha$ is larger than
$\max(\kappa, |U|)$ where $U$ is a generator of $\mathcal{A}$.
Namely, it suffices to check conditions (1) and (2) of
Lemma \ref{lemma-characterize-K-injective}.
\medskip\noindent
For (1) we use the criterion of
Lemma \ref{lemma-characterize-injective}.
Suppose that $M \subset U$ and $\varphi : M \to \mathbf{T}^n_\alpha(M^\bullet)$
is a morphism for some $n \in \mathbf{Z}$. By
Proposition \ref{proposition-objects-are-small}
we see that $\varphi$ factor through
$\mathbf{T}^n_{\alpha'}(M^\bullet)$ for some $\alpha' < \alpha$.
In particular, by the construction of the functor
$\mathbf{N}^\bullet(-)$ we see that $\varphi$ factors through
an injective object of $\mathcal{A}$ which shows that $\varphi$
lifts to a morphism on $U$.
\medskip\noindent
For (2) let $w : K^\bullet \to \mathbf{T}_\alpha(M^\bullet)$
be a morphism of complexes where $K^\bullet$ is a bounded above acyclic
complex such that $|K^n| \leq \kappa$. Then $K^\bullet \cong K_i^\bullet$
for some $i \in I$. Moreover, by
Proposition \ref{proposition-objects-are-small}
once again we see that $w$ factor through
$\mathbf{T}^n_{\alpha'}(M^\bullet)$ for some $\alpha' < \alpha$.
In particular, by the construction of the functor
$\mathbf{M}^\bullet(-)$ we see that $w$ is homotopic to zero.
This finishes the proof.
\end{proof}
\section{Additional remarks on Grothendieck abelian categories}
\label{section-additional-Grothendieck}
\noindent
In this section we put some results on Grothendieck abelian categories
which are folklore.
\begin{lemma}
\label{lemma-grothendieck-brown}
Let $\mathcal{A}$ be a Grothendieck abelian category.
Let $F : \mathcal{A}^{opp} \to \textit{Sets}$ be a functor.
Then $F$ is representable if and only if $F$ commutes with colimits, i.e.,
$$
F(\colim_i N_i) = \lim F(N_i)
$$
for any diagram $\mathcal{I} \to \mathcal{A}$, $i \in \mathcal{I}$.
\end{lemma}
\begin{proof}
If $F$ is representable, then it commutes with colimits by definition
of colimits.
\medskip\noindent
Assume that $F$ commutes with colimits. Then $F(M \oplus N) = F(M) \times F(N)$
and we can use this to define a group structure on $F(M)$. Hence we get
$F : \mathcal{A} \to \textit{Ab}$ which is additive and right exact, i.e.,
transforms a short exact sequence $0 \to K \to L \to M \to 0$ into an exact
sequence $F(K) \leftarrow F(L) \leftarrow F(M) \leftarrow 0$ (compare with
Homology, Section \ref{homology-section-functors}).
\medskip\noindent
Let $U$ be a generator for $\mathcal{A}$. Set $A = \bigoplus_{s \in F(U)} U$.
Let $s_{univ} = (s)_{s \in F(U)} \in F(A) = \prod_{s \in F(U)} F(U)$. Let
$A' \subset A$ be the largest subobject such that $s_{univ}$ restricts to
zero on $A'$. This exists because $\mathcal{A}$ is a Grothendieck category
and because $F$ commutes with colimits. Because $F$ commutes with colimits
there exists a unique element $\overline{s}_{univ} \in F(A/A')$ which
maps to $s_{univ}$ in $F(A)$. We claim that $A/A'$ represents $F$, in
other words, the Yoneda map
$$
\overline{s}_{univ} : h_{A/A'} \longrightarrow F
$$
is an isomorphism. Let $M \in \Ob(\mathcal{A})$ and $s \in F(M)$. Consider
the surjection
$$
c_M :
A_M = \bigoplus\nolimits_{\varphi \in \Hom_\mathcal{A}(U, M)} U
\longrightarrow
M.
$$
This gives $F(c_M)(s) = (s_\varphi) \in \prod_\varphi F(U)$.
Consider the map
$$
\psi :
A_M = \bigoplus\nolimits_{\varphi \in \Hom_\mathcal{A}(U, M)} U
\longrightarrow
\bigoplus\nolimits_{s \in F(U)} U = A
$$
which maps the summand corresponding to $\varphi$ to the summand
corresponding to $s_\varphi$ by the identity map on $U$. Then $s_{univ}$
maps to $(s_\varphi)_\varphi$ by construction.
in other words the right square in the diagram
$$
\xymatrix{
A' \ar[r] &
A \ar@{..>}[r]_{s_{univ}} & F \\
K \ar[r] \ar[u]^{?} & A_M \ar[u]^\psi \ar[r] &
M \ar@{..>}[u]_s
}
$$
commutes. Let $K = \Ker(A_M \to M)$. Since $s$ restricts to zero
on $K$ we see that $\psi(K) \subset A'$ by definition of $A'$. Hence there
is an induced morphism $M \to A/A'$. This construction gives an inverse
to the map $h_{A/A'}(M) \to F(M)$ (details omitted).
\end{proof}
\begin{lemma}
\label{lemma-grothendieck-products}
A Grothendieck abelian category has Ab3*.
\end{lemma}
\begin{proof}
Let $M_i$, $i \in I$ be a family of objects of $\mathcal{A}$ indexed
by a set $I$. The functor $F = \prod_{i \in I} h_{M_i}$
commutes with colimits. Hence
Lemma \ref{lemma-grothendieck-brown}
applies.
\end{proof}
\begin{remark}
\label{remark-existence-D}
In the chapter on derived categories we consistently work with
``small'' abelian categories (as is the convention in the Stacks
project). For a ``big'' abelian category $\mathcal{A}$ it isn't clear
that the derived category $D(\mathcal{A})$ exists because it isn't
clear that morphisms in the derived category are sets. In general this
isn't true, see
Examples, Lemma \ref{examples-lemma-big-abelian-category}.
However, if $\mathcal{A}$ is a Grothendieck abelian category, and given
$K^\bullet, L^\bullet$ in $K(\mathcal{A})$, then by
Theorem \ref{theorem-K-injective-embedding-grothendieck}
there exists a quasi-isomorphism $L^\bullet \to I^\bullet$ to a
K-injective complex $I^\bullet$ and
Derived Categories, Lemma \ref{derived-lemma-K-injective} shows that
$$
\Hom_{D(\mathcal{A})}(K^\bullet, L^\bullet) =
\Hom_{K(\mathcal{A})}(K^\bullet, I^\bullet)
$$
which is a set. Some examples of Grothendieck abelian categories
are the category of modules over a ring, or more generally
the category of sheaves of modules on a ringed site.
\end{remark}
\begin{lemma}
\label{lemma-derived-products}
Let $\mathcal{A}$ be a Grothendieck abelian category.
Then
\begin{enumerate}
\item $D(\mathcal{A})$ has both direct sums and products,
\item direct sums are obtained by taking termwise direct sums of
any complexes,
\item products are obtained by taking termwise products of
K-injective complexes.
\end{enumerate}
\end{lemma}
\begin{proof}
Let $K^\bullet_i$, $i \in I$ be a family of objects of $D(\mathcal{A})$
indexed by a set $I$. We claim that the termwise direct sum
$\bigoplus_{i \in I} K^\bullet_i$ is a direct sum in $D(\mathcal{A})$.
Namely, let $I^\bullet$ be a K-injective complex. Then we have
\begin{align*}
\Hom_{D(\mathcal{A})}(\bigoplus\nolimits_{i \in I} K^\bullet_i, I^\bullet)
& =
\Hom_{K(\mathcal{A})}(\bigoplus\nolimits_{i \in I} K^\bullet_i, I^\bullet) \\
& =
\prod\nolimits_{i \in I} \Hom_{K(\mathcal{A})}(K^\bullet_i, I^\bullet) \\
& =
\prod\nolimits_{i \in I} \Hom_{D(\mathcal{A})}(K^\bullet_i, I^\bullet)
\end{align*}
as desired. This is sufficient since any complex can be represented
by a K-injective complex by
Theorem \ref{theorem-K-injective-embedding-grothendieck}.
To construct the product, choose a K-injective resolution
$K_i^\bullet \to I_i^\bullet$ for each $i$. Then we claim that
$\prod_{i \in I} I_i^\bullet$ is a product in $D(\mathcal{A})$.
This follows from
Derived Categories, Lemma \ref{derived-lemma-product-K-injective}.
\end{proof}
\begin{remark}
\label{remark-direct-sum-product-derived}
Let $R$ be a ring. Suppose that $M_n$, $n \in \mathbf{Z}$ are $R$-modules.
Denote $E_n = M_n[-n] \in D(R)$. We claim that $E = \bigoplus M_n[-n]$ is
{\it both} the direct sum and the product of the objects $E_n$ in $D(R)$.
To see that it is the direct sum, take a look at the proof of
Lemma \ref{lemma-derived-products}.
To see that it is the direct product, take injective resolutions
$M_n \to I_n^\bullet$. By the proof of
Lemma \ref{lemma-derived-products}
we have
$$
\prod E_n = \prod I_n^\bullet[-n]
$$
in $D(R)$. Since products in $\text{Mod}_R$ are exact, we see that
$\prod I_n^\bullet$ is quasi-isomorphic to $E$. This works more generally
in $D(\mathcal{A})$ where $\mathcal{A}$ is a Grothendieck abelian
category with Ab4*.
\end{remark}
\begin{lemma}
\label{lemma-RF-commutes-with-Rlim}
Let $F : \mathcal{A} \to \mathcal{B}$ be an additive functor of
abelian categories. Assume
\begin{enumerate}
\item $\mathcal{A}$ is a Grothendieck abelian category,
\item $\mathcal{B}$ has exact countable products, and
\item $F$ commutes with countable products.
\end{enumerate}
Then
$RF : D(\mathcal{A}) \to D(\mathcal{B})$ commutes with derived limits.
\end{lemma}
\begin{proof}
Observe that $RF$ exists as $\mathcal{A}$ has enough K-injectives
(Theorem \ref{theorem-K-injective-embedding-grothendieck}
and
Derived Categories, Lemma \ref{derived-lemma-K-injective-defined}).
The statement means that if $K = R\lim K_n$, then
$RF(K) = R\lim RF(K_n)$. See
Derived Categories, Definition \ref{derived-definition-derived-limit}
for notation. Since $RF$ is an exact functor of triangulated
categories it suffices to see that $RF$ commutes with countable
products of objects of $D(\mathcal{A})$. In the proof of
Lemma \ref{lemma-derived-products}
we have seen that products in $D(\mathcal{A})$ are computed by
taking products of K-injective complexes and moreover that a
product of K-injective complexes is K-injective.
Moreover, in Derived Categories, Lemma
\ref{derived-lemma-products}
we have seen that products in $D(\mathcal{B})$ are computed
by taking termwise products.
Since $RF$ is computed by applying $F$ to a K-injective
representative and since we've assumed $F$ commutes with
countable products, the lemma follows.
\end{proof}
\noindent
The following lemma is some kind of generalization of
the existence of Cartan-Eilenberg resolutions
(Derived Categories, Section \ref{derived-section-cartan-eilenberg}).
\begin{lemma}
\label{lemma-K-injective-embedding-filtration}
Let $\mathcal{A}$ be a Grothendieck abelian category.
Let $K^\bullet$ be a filtered complex of $\mathcal{A}$, see
Homology, Definition \ref{homology-definition-filtered-complex}.
Then there exists a morphism $j : K^\bullet \to J^\bullet$
of filtered complexes of $\mathcal{A}$ such that
\begin{enumerate}
\item $J^n$, $F^pJ^n$, $J^n/F^pJ^n$ and $F^pJ^n/F^{p'}J^n$ are injective
objects of $\mathcal{A}$,
\item $J^\bullet$, $F^pJ^\bullet$, $J^\bullet/F^pJ^\bullet$, and
$F^pJ^\bullet/F^{p'}J^\bullet$ are K-injective complexes,
\item $j$ induces quasi-isomorphisms
$K^\bullet \to J^\bullet$,
$F^pK^\bullet \to F^pJ^\bullet$,
$K^\bullet/F^pK^\bullet \to J^\bullet/F^pJ^\bullet$, and
$F^pK^\bullet/F^{p'}K^\bullet \to F^pJ^\bullet/F^{p'}J^\bullet$.
\end{enumerate}
\end{lemma}
\begin{proof}
By Theorem \ref{theorem-K-injective-embedding-grothendieck}
we obtain quasi-isomorphisms $i : K^\bullet \to I^\bullet$ and
$i^p : F^pK^\bullet \to I^{p, \bullet}$ as well as commutative diagrams
$$
\vcenter{
\xymatrix{
K^\bullet \ar[d]_i & F^pK^\bullet \ar[l] \ar[d]_{i^p} \\
I^\bullet & I^{p, \bullet} \ar[l]_{\alpha^p}
}
}
\quad\text{and}\quad
\vcenter{
\xymatrix{
F^{p'}K^\bullet \ar[d]_{i^{p'}} &
F^pK^\bullet \ar[l] \ar[d]_{i^p} \\
I^{p', \bullet} &
I^{p, \bullet} \ar[l]_{\alpha^{p p'}}
}
}
\quad\text{for }p' \leq p
$$
such that $\alpha^p \circ \alpha^{p' p} = \alpha^{p'}$
and $\alpha^{p'p''} \circ \alpha^{pp'} = \alpha^{pp''}$.
The problem is that the maps $\alpha^p : I^{p, \bullet} \to I^\bullet$
need not be injective. For each $p$ we choose an injection
$t^p : I^{p, \bullet} \to J^{p, \bullet}$ into an acyclic K-injective
complex $J^{p, \bullet}$ whose terms are injective objects of $\mathcal{A}$
(first map to the cone on the identity and then use the theorem).
Choose a map of complexes $s^p : I^\bullet \to J^{p, \bullet}$
such that the following diagram commutes
$$
\xymatrix{
K^\bullet \ar[d]_i & F^pK^\bullet \ar[l] \ar[d]_{i^p} \\
I^\bullet \ar[rd]_{s^p} & I^{p, \bullet} \ar[d]^{t^p} \\
& J^{p, \bullet}
}
$$
This is possible: the composition $F^pK^\bullet \to J^{p, \bullet}$
is homotopic to zero because $J^{p, \bullet}$ is acyclic and K-injective
(Derived Categories, Lemma \ref{derived-lemma-K-injective}).
Since the objects $J^{p, n - 1}$ are injective and since
$F^pK^n \to K^n \to I^n$ are injective morphisms, we
can lift the maps $F^pK^n \to J^{p, n - 1}$ giving the homotopy
to a map $h^n : I^n \to J^{p, n - 1}$. Then we set $s^p$
equal to $h \circ \text{d} + \text{d} \circ h$.
(Warning: It will not be the case that $t^p = s^p \circ \alpha^p$,
so we have to be careful not to use this below.)
\medskip\noindent
Consider
$$
J^\bullet = I^\bullet \times \prod\nolimits_p J^{p, \bullet}
$$
Because products in $D(\mathcal{A})$ are given by taking
products of K-injective complexes
(Lemma \ref{lemma-derived-products})
and since $J^{p, \bullet}$
is isomorphic to $0$ in $D(\mathcal{A})$ we see that
$J^\bullet \to I^\bullet$ is an isomorphism in $D(\mathcal{A})$.
Consider the map
$$
j = i \times (s^p \circ i)_{p \in \mathbf{Z}} :
K^\bullet
\longrightarrow
I^\bullet \times \prod\nolimits_p J^{p, \bullet} = J^\bullet
$$
By our remarks above this is a quasi-isomorphism. It is also injective.
For $p \in \mathbf{Z}$ we let $F^pJ^\bullet \subset J^\bullet$ be
$$
\Im\left(
\alpha^p \times (t^{p'} \circ \alpha^{pp'})_{p' \leq p} :
I^{p, \bullet}
\to
I^\bullet \times \prod\nolimits_{p' \leq p} J^{p', \bullet}
\right)
\times \prod\nolimits_{p' > p} J^{p', \bullet}
$$
This complex is isomorphic to the complex
$I^{p, \bullet} \times \prod_{p' > p} J^{p, \bullet}$
as $\alpha^{pp} = \text{id}$ and $t^p$ is injective.
Hence $F^pJ^\bullet$ is quasi-isomorphic to $I^{p, \bullet}$ (argue
as above). We have $j(F^pK^\bullet) \subset F^pJ^\bullet$ because
of the commutativity of the diagram above. The corresponding
map of complexes $F^pK^\bullet \to F^pJ^\bullet$ is a quasi-isomorphism
by what we just said. Finally, to see that
$F^{p + 1}J^\bullet \subset F^pJ^\bullet$
use that $\alpha^{p + 1p} \circ \alpha^{pp'} = \alpha^{p + 1p'}$
and the commutativity of the first displayed diagram
in the first paragraph of the proof.
\medskip\noindent
We claim that $j : K^\bullet \to J^\bullet$ is a solution to the
problem posed by the lemma. Namely, $F^pJ^n$ is an injective object
of $\mathcal{A}$ because it is isomorphic to
$I^{p, n} \times \prod_{p' > p} J^{p', n}$ and products of
injectives are injective. Then the injective map $F^pJ^n \to J^n$
splits and hence the quotient $J^n/F^pJ^n$ is injective as well
as a direct summand of the injective object $J^n$.
Similarly for $F^pJ^n/F^{p'}J^n$. This in particular means
that $0 \to F^pJ^\bullet \to J^\bullet \to J^\bullet/F^pJ^\bullet \to 0$
is a termwise split short exact sequence of complexes, hence defines
a distinguished triangle in $K(\mathcal{A})$ by fiat.
Since $J^\bullet$ and $F^pJ^\bullet$ are K-injective complexes
we see that the same is true for $J^\bullet/F^pJ^\bullet$
by Derived Categories, Lemma \ref{derived-lemma-triangle-K-injective}.
A similar argument shows that $F^pJ^\bullet/F^{p'}J^\bullet$
is K-injective. By construction $j : K^\bullet \to J^\bullet$
and the induced maps $F^pK^\bullet \to F^pJ^\bullet$ are
quasi-isomorphisms. Using the long exact cohomology sequences
of the complexes in play we find that the same holds for
$K^\bullet/F^pK^\bullet \to J^\bullet/F^pJ^\bullet$ and
$F^pK^\bullet/F^{p'}K^\bullet \to F^pJ^\bullet/F^{p'}J^\bullet$.
\end{proof}
\begin{remark}
\label{remark-ext-into-filtered-complex}
Let $\mathcal{A}$ be a Grothendieck abelian category.
Let $K^\bullet$ be a filtered complex of $\mathcal{A}$, see
Homology, Definition \ref{homology-definition-filtered-complex}.
For ease of notation denote $K$, $F^pK$, $\text{gr}^pK$ the
object of $D(\mathcal{A})$ represented by $K^\bullet$,
$F^pK^\bullet$, $\text{gr}^pK^\bullet$. Let $M \in D(\mathcal{A})$.
Using Lemma \ref{lemma-K-injective-embedding-filtration}
we can construct a spectral sequence $(E_r, d_r)_{r \geq 1}$
of bigraded objects of $\mathcal{A}$ with $d_r$ of bidgree
$(r, -r + 1)$ and
with
$$
E_1^{p, q} = \Ext^{p + q}(M, \text{gr}^pK)
$$
If for every $n$ we have
$$
\Ext^n(M, F^pK) = 0 \text{ for } p \gg 0
\quad\text{and}\quad
\Ext^n(M, F^pK) = \Ext^n(M, K) \text{ for } p \ll 0
$$
then the spectral sequence is bounded and converges to $\Ext^{p + q}(M, K)$.
Namely, choose any complex $M^\bullet$ representing $M$, choose
$j : K^\bullet \to J^\bullet$ as in the lemma, and consider the complex
$$
\Hom^\bullet(M^\bullet, I^\bullet)
$$
defined exactly as in
More on Algebra, Section \ref{more-algebra-section-hom-complexes}.
Setting $F^p\Hom^\bullet(M^\bullet, I^\bullet) =
\Hom^\bullet(M^\bullet, F^pI^\bullet)$ we obtain a filtered complex.
The spectral sequence of
Homology, Section \ref{homology-section-filtered-complex}
has differentials and terms as described above; details omitted.
The boundedness and convergence follows from
Homology, Lemma \ref{homology-lemma-ss-converges-trivial}.
\end{remark}
\begin{remark}
\label{remark-spectral-sequences-ext}
Let $\mathcal{A}$ be a Grothendieck abelian category.
Let $M, K$ be objects of $D(\mathcal{A})$.
For any choice of complex $K^\bullet$ representing $K$ we
can use the filtration $F^pK^\bullet = \tau_{\leq -p}K^\bullet$
and the discussion in Remark \ref{remark-ext-into-filtered-complex}
to get a spectral sequence with
$$
E_1^{p, q} = \Ext^{2p + q}(M, H^{-p}(K))
$$
This spectral sequence is independent of the choice of
complex $K^\bullet$ representing $K$. After renumbering
$p = -j$ and $q = i + 2j$ we find a spectral sequence
$(E'_r, d'_r)_{r \geq 2}$ with $d'_r$ of bidegree $(r, -r + 1)$, with
$$
(E'_2)^{i, j} = \Ext^i(M, H^j(K))
$$
If $M \in D^-(\mathcal{A})$ and $K \in D^+(\mathcal{A})$ then
both $E_r$ and $E'_r$ are bounded and converge to $\Ext^{p + q}(M, K)$.
If we use the filtration $F^pK^\bullet = \sigma_{\geq p}K^\bullet$
then we get
$$
E_1^{p, q} = \Ext^q(M, K^p)
$$
If $M \in D^-(\mathcal{A})$ and $K^\bullet$ is bounded below, then
this spectral sequence is bounded and converges to $\Ext^{p + q}(M, K)$.
\end{remark}
\begin{remark}
\label{remark-ext-from-filtered-complex}
Let $\mathcal{A}$ be a Grothendieck abelian category. Let
$K \in D(\mathcal{A})$. Let $M^\bullet$ be a filtered complex of
$\mathcal{A}$, see Homology, Definition
\ref{homology-definition-filtered-complex}.
For ease of notation denote $M$, $M/F^pM$, $\text{gr}^pM$ the
object of $D(\mathcal{A})$ represented by $M^\bullet$,
$M^\bullet/F^pM^\bullet$, $\text{gr}^pM^\bullet$.
Dually to Remark \ref{remark-ext-into-filtered-complex}
we can construct a spectral sequence $(E_r, d_r)_{r \geq 1}$
of bigraded objects of $\mathcal{A}$ with $d_r$ of bidgree
$(r, -r + 1)$ and
with
$$
E_1^{p, q} = \Ext^{p + q}(\text{gr}^{-p}M, K)
$$
If for every $n$ we have
$$
\Ext^n(M/F^pM, K) = 0 \text{ for } p \ll 0
\quad\text{and}\quad
\Ext^n(M/F^pM, K) = \Ext^n(M, K) \text{ for } p \gg 0
$$
then the spectral sequence is bounded and converges to $\Ext^{p + q}(M, K)$.
Namely, choose a K-injective complex $I^\bullet$ with injective terms
representing $K$, see Theorem \ref{theorem-K-injective-embedding-grothendieck}.
Consider the complex
$$
\Hom^\bullet(M^\bullet, I^\bullet)
$$
defined exactly as in
More on Algebra, Section \ref{more-algebra-section-hom-complexes}.
Setting
$$
F^p\Hom^\bullet(M^\bullet, I^\bullet) =
\Hom^\bullet(M^\bullet/F^{-p + 1}M^\bullet, I^\bullet)
$$
we obtain a filtered complex (note sign and shift in filtration).
The spectral sequence of
Homology, Section \ref{homology-section-filtered-complex}
has differentials and terms as described above; details omitted.
The boundedness and convergence follows from
Homology, Lemma \ref{homology-lemma-ss-converges-trivial}.
\end{remark}
\begin{remark}
\label{remark-spectral-sequences-ext-variant}
Let $\mathcal{A}$ be a Grothendieck abelian category.
Let $M, K$ be objects of $D(\mathcal{A})$.
For any choice of complex $M^\bullet$ representing $M$ we
can use the filtration $F^pM^\bullet = \tau_{\leq -p}M^\bullet$
and the discussion in Remark \ref{remark-ext-into-filtered-complex}
to get a spectral sequence with
$$
E_1^{p, q} = \Ext^{2p + q}(H^p(M), K)
$$
This spectral sequence is independent of the choice of complex $M^\bullet$
representing $M$. After renumbering $p = -j$ and $q = i + 2j$ we find a
spectral sequence $(E'_r, d'_r)_{r \geq 2}$ with $d'_r$ of bidegree
$(r, -r + 1)$, with
$$
(E'_2)^{i, j} = \Ext^i(H^{-j}(M), K)
$$
If $M \in D^-(\mathcal{A})$ and $K \in D^+(\mathcal{A})$
then $E_r$ and $E'_r$ are bounded and converge to $\Ext^{p + q}(M, K)$.
If we use the filtration $F^pM^\bullet = \sigma_{\geq p}M^\bullet$
then we get
$$
E_1^{p, q} = \Ext^q(M^{-p}, K)
$$
If $K \in D^+(\mathcal{A})$ and $M^\bullet$ is bounded above, then
this spectral sequence is bounded and converges to $\Ext^{p + q}(M, K)$.
\end{remark}
\begin{lemma}
\label{lemma-represent-by-filtered-complex}
Let $\mathcal{A}$ be a Grothendieck abelian category. Suppose given an object
$E \in D(\mathcal{A})$ and an inverse system $\{E^i\}_{i \in \mathbf{Z}}$
of objects of $D(\mathcal{A})$ over $\mathbf{Z}$ together with
a compatible system of maps $E^i \to E$. Picture:
$$
\ldots \to E^{i + 1} \to E^i \to E^{i - 1} \to \ldots \to E
$$
Then there exists a filtered complex $K^\bullet$ of $\mathcal{A}$
(Homology, Definition \ref{homology-definition-filtered-complex})
such that $K^\bullet$ represents $E$
and $F^iK^\bullet$ represents $E^i$ compatibly with the given maps.
\end{lemma}
\begin{proof}
By Theorem \ref{theorem-K-injective-embedding-grothendieck}
we can choose a K-injective complex $I^\bullet$
representing $E$ all of whose terms $I^n$ are injective
objects of $\mathcal{A}$.
Choose a complex $G^{0, \bullet}$ representing $E^0$.
Choose a map of complexes $\varphi^0 : G^{0, \bullet} \to I^\bullet$
representing $E^0 \to E$.
For $i > 0$ we inductively represent $E^i \to E^{i - 1}$
by a map of complexes
$\delta : G^{i, \bullet} \to G^{i - 1, \bullet}$
and we set $\varphi^i = \delta \circ \varphi^{i - 1}$.
For $i < 0$ we inductively represent $E^{i + 1} \to E^i$
by a termwise injective map of complexes
$\delta : G^{i + 1, \bullet} \to G^{i, \bullet}$
(for example you can use
Derived Categories, Lemma \ref{derived-lemma-make-injective}).
Claim: we can find a map of complexes
$\varphi^i : G^{i, \bullet} \to I^\bullet$
representing the map $E^i \to E$ and
fitting into the commutative diagram
$$
\xymatrix{
G^{i + 1, \bullet} \ar[r]_\delta \ar[d]_{\varphi^{i + 1}} &
G^{i, \bullet} \ar[ld]^{\varphi^i} \\
I^\bullet
}
$$
Namely, we first choose any map of complexes
$\varphi : G^{i, \bullet} \to I^\bullet$
representing the map
$E^i \to E$. Then we see that $\varphi \circ \delta$
and $\varphi^{i + 1}$ are homotopic by some homotopy
$h^p : G^{i + 1, p} \to I^{p - 1}$.
Since the terms of
$I^\bullet$ are injective and since $\delta$
is termwise injective, we can lift $h^p$ to
$(h')^p : G^{i, p} \to I^{p - 1}$.
Then we set $\varphi^i = \varphi + h' \circ d + d \circ h'$
and we get what we claimed.
\medskip\noindent
Next, we choose for every $i$ a termwise injective map of complexes
$a^i : G^{i, \bullet} \to J^{i, \bullet}$ with $J^{i, \bullet}$
acyclic, K-injective, with $J^{i, p}$ injective objects of $\mathcal{A}$.
To do this first map $G^{i, \bullet}$ to the cone on the identity
and then apply the theorem cited above.
Arguing as above we can find maps of complexes
$\delta' : J^{i, \bullet} \to J^{i - 1, \bullet}$ such that the diagrams
$$
\xymatrix{
G^{i, \bullet} \ar[r]_\delta \ar[d]_{a^i} &
G^{i - 1, \bullet} \ar[d]^{a^{i - 1}} \\
J^{i, \bullet} \ar[r]^{\delta'} &
J^{i - 1, \bullet}
}
$$
commute. (You could also use the functoriality of cones plus the
functoriality in the theorem to get this.)
Then we consider the maps
$$
\xymatrix{
G^{i + 1, \bullet} \times \prod\nolimits_{p > i + 1} J^{p, \bullet}
\ar[r] \ar[rd] &
G^{i, \bullet} \times \prod\nolimits_{p > i} J^{p, \bullet}
\ar[r] \ar[d] &
G^{i - 1, \bullet} \times \prod\nolimits_{p > i - 1} J^{p, \bullet}
\ar[ld] \\
& I^\bullet \times \prod\nolimits_p J^{p, \bullet}
}
$$
Here the arrows on $J^{p, \bullet}$ are the obvious ones
(identity or zero). On the factor $G^{i, \bullet}$ we use
$\delta : G^{i, \bullet} \to G^{i - 1, \bullet}$, the map
$\varphi^i : G^{i, \bullet} \to I^\bullet$, the zero map
$0 : G^{i, \bullet} \to J^{p, \bullet}$ for $p > i$, the map
$a^i : G^{i, \bullet} \to J^{p, \bullet}$ for $p = i$, and
$(\delta')^{i - p} \circ a^i = a^p \circ \delta^{i - p} :
G^{i, \bullet} \to J^{p, \bullet}$ for $p < i$.
We omit the verification that all the arrows
in the diagram are termwise injective. Thus we obtain a filtered
complex. Because products in $D(\mathcal{A})$ are given by
taking products of K-injective complexes
(Lemma \ref{lemma-derived-products})
and because $J^{p, \bullet}$ is zero in $D(\mathcal{A})$
we conclude this diagram represents the given diagram in the derived
category. This finishes the proof.
\end{proof}
\begin{lemma}
\label{lemma-represent-by-filtered-complex-bis}
In the situation of Lemma \ref{lemma-represent-by-filtered-complex}
assume we have a second inverse system $\{(E')^i\}_{i \in \mathbf{Z}}$
and a compatible system of maps $(E')^i \to E$.
Then there exists a bi-filtered complex $K^\bullet$ of $\mathcal{A}$
such that $K^\bullet$ represents $E$, $F^iK^\bullet$ represents $E^i$,
and $(F')^iK^\bullet$ represents $(E')^i$ compatibly with the given maps.
\end{lemma}
\begin{proof}
Using the lemma we can first choose $K^\bullet$ and $F$.
Then we can choose $(K')^\bullet$ and $F'$ which work for
$\{(E')^i\}_{i \in \mathbf{Z}}$ and the maps $(E')^i \to E$.
Using Lemma \ref{lemma-K-injective-embedding-filtration}
we can assume $K^\bullet$ is a K-injective complex.
Then we can choose a map of complexes
$(K')^\bullet \to K^\bullet$ corresponding to
the given identifications
$(K')^\bullet \cong E \cong K^\bullet$.
We can additionally choose a termwise injective
map $(K')^\bullet \to J^\bullet$ with
$J^\bullet$ acyclic and K-injective.
(To do this first map $(K')^\bullet$ to the cone on the identity
and then apply Theorem \ref{theorem-K-injective-embedding-grothendieck}.)
Then $(K')^\bullet \to K^\bullet \times J^\bullet$ and
$K^\bullet \to K^\bullet \times J^\bullet$
are both termwise injective and quasi-isomorphisms
(as the product represents $E$ by Lemma \ref{lemma-derived-products}).
Then we can simply take the images of the filtrations
on $K^\bullet$ and $(K')^\bullet$ under these maps to conclude.
\end{proof}
\section{The Gabriel-Popescu theorem}
\label{section-gabriel-popescu}
\noindent
In this section we discuss the main theorem of \cite{GP}. The method of
proof follows a write-up by Jacob Lurie and another by Akhil Mathew
who in turn follow the presentation by Kuhn in \cite{Kuhn}.
See also \cite{Takeuchi}.
\medskip\noindent
Let $\mathcal{A}$ be a Grothendieck abelian category and let $U$ be a
generator for $\mathcal{A}$, see
Definition \ref{definition-grothendieck-conditions}.
Let $R = \Hom_\mathcal{A}(U, U)$. Consider the functor
$G : \mathcal{A} \to \text{Mod}_R$ given by
$$
G(A) = \Hom_\mathcal{A}(U, A)
$$
endowed with its canonical right $R$-module structure.
\begin{lemma}
\label{lemma-gabriel-popescu-left-adjoint}
The functor $G$ above has a left adjoint
$F : \text{Mod}_R \to \mathcal{A}$.
\end{lemma}
\begin{proof}
We will give two proofs of this lemma.
\medskip\noindent
The first proof will use the adjoint functor theorem, see
Categories, Theorem \ref{categories-theorem-adjoint-functor}.
Observe that that $G : \mathcal{A} \to \text{Mod}_R$ is left exact and sends
products to products. Hence $G$ commutes with limits. To check the set
theoretical condition in the theorem, suppose that $M$ is an object of
$\text{Mod}_R$. Choose a suitably large cardinal $\kappa$ and denote $E$
a set of objects of $\mathcal{A}$ such that every object $A$ with
$|A| \leq \kappa$ is isomorphic to an element of $E$. This is possible
by Lemma \ref{lemma-set-iso-classes-bounded-size}. Set
$I = \coprod_{A \in E} \Hom_R(M, G(A))$.
We think of an element $i \in I$ as a pair $(A_i, f_i)$.
Finally, let $A$ be an arbitrary object of $\mathcal{A}$
and $f : M \to G(A)$ arbitrary. We are going to think of
elements of $\Im(f) \subset G(A) = \Hom_\mathcal{A}(U, A)$
as maps $u : U \to A$. Set
$$
A' = \Im(\bigoplus\nolimits_{u \in \Im(f)} U \xrightarrow{u} A)
$$
Since $G$ is left exact, we see that $G(A') \subset G(A)$
contains $\Im(f)$ and we get $f' : M \to G(A')$ factoring $f$.
On the other hand, the object $A'$ is
the quotient of a direct sum of at most $|M|$ copies of $U$.
Hence if $\kappa = |\bigoplus_{|M|} U|$, then we see that $(A', f')$
is isomorphic to an element $(A_i, f_i)$ of $E$ and we conclude that $f$
factors as $M \xrightarrow{f_i} G(A_i) \to G(A)$ as desired.
\medskip\noindent
The second proof will give a construction of $F$ which will show
that ``$F(M) = M \otimes_R U$'' in some sense. Namely, for any
$R$-module $M$ we can choose a resolution
$$
\bigoplus\nolimits_{j \in J} R \to
\bigoplus\nolimits_{i \in I} R \to
M \to 0
$$
Then we define $F(M)$ by the corresponding exact sequence
$$
\bigoplus\nolimits_{j \in J} U \to
\bigoplus\nolimits_{i \in I} U \to
F(M) \to 0
$$
This construction is independent of the choice of the resolution
and is functorial; we omit the details.
For any $A$ in $\mathcal{A}$ we obtain an exact sequence
$$
0 \to \Hom_\mathcal{A}(F(M), A) \to
\prod\nolimits_{i \in I} G(A) \to
\prod\nolimits_{j \in J} G(A)
$$
which is isomorphic to the sequence
$$
0 \to \Hom_R(M, G(A)) \to
\Hom_R(\bigoplus\nolimits_{i \in I} R, G(A)) \to
\Hom_R(\bigoplus\nolimits_{j \in J} R, G(A))
$$
which shows that $F$ is the left adjoint to $G$.
\end{proof}
\begin{lemma}
\label{lemma-F-G-monos}
Let $f : M \to G(A)$ be an injective map in $\text{Mod}_R$.
Then the adjoint map $f' : F(M) \to A$ is injective too.
\end{lemma}
\begin{proof}
Choose a map $R^{\oplus n} \to M$ and consider the corresponding map
$U^{\oplus n} \to F(M)$. Consider a map $v : U \to U^{\oplus n}$
such that the composition $U \to U^{\oplus n} \to F(M) \to A$ is $0$.
Then this arrow $v : U \to U^{\oplus n}$ is an element
$v$ of $R^{\oplus n}$ mapping to zero in $G(A)$. Since $f$ is injective,
we conclude that $v$ maps to zero in $M$ which means that
$U \to U^{\oplus n} \to F(M)$ is zero by construction of $F(M)$
in the proof of Lemma \ref{lemma-gabriel-popescu-left-adjoint}.
Since $U$ is a generator we conclude that
$$
\Ker(U^{\oplus n} \to F(M) \to A) = \Ker(U^{\oplus n} \to F(M))
$$
To finish the proof we choose a surjection $\bigoplus_{i \in I} R \to M$
and we consider the corresponding surjection
$$
\pi : \bigoplus\nolimits_{i \in I} U \longrightarrow F(M)
$$
To prove $f'$ is injective it suffices to show that
$\Ker(\pi) = \Ker(f' \circ \pi)$ as subobjects of $\bigoplus_{i \in I} U$.
However, now we can write $\bigoplus_{i \in I} U$ as the filtered colimit
of its subobjects $\bigoplus_{i \in I'} U$ where $I' \subset I$
ranges over the finite subsets. Since filtered colimits are
exact by AB5 for $\mathcal{A}$, we see that
$$
\Ker(\pi) =
\colim_{I' \subset I\text{ finite}}
\left(\bigoplus\nolimits_{i \in I'} U\right)
\bigcap \Ker(\pi)
$$
and
$$
\Ker(f' \circ \pi) =
\colim_{I' \subset I\text{ finite}}
\left(\bigoplus\nolimits_{i \in I'} U\right)
\bigcap \Ker(f' \circ \pi)
$$
and we get equality because the same is true for each $I'$ by
the first displayed equality above.
\end{proof}
\begin{theorem}
\label{theorem-gabriel-popescu}
Let $\mathcal{A}$ be a Grothendieck abelian category. Then there exists
a (noncommutative) ring $R$ and functors $G : \mathcal{A} \to \text{Mod}_R$
and $F : \text{Mod}_R \to \mathcal{A}$ such that
\begin{enumerate}
\item $F$ is the left adjoint to $G$,
\item $G$ is fully faithful, and
\item $F$ is exact.
\end{enumerate}
Moreover, the functors are the ones constructed above.
\end{theorem}
\begin{proof}
We first prove $G$ is fully faithful, or equivalently that
$F \circ G \to \text{id}$ is an isomorphism, see
Categories, Lemma \ref{categories-lemma-adjoint-fully-faithful}.
First, given an object $A$ the map $F(G(A)) \to A$ is surjective,
because every map of $U \to A$ factors through $F(G(A))$ by construction.
On the other hand, the map $F(G(A)) \to A$ is the adjoint of the
map $\text{id} : G(A) \to G(A)$ and hence injective by
Lemma \ref{lemma-F-G-monos}.
\medskip\noindent
The functor $F$ is right exact as it is a left adjoint.
Since $\text{Mod}_R$ has enough projectives, to show that
$F$ is exact, it is enough to show that the first left derived
functor $L_1F$ is zero. To prove $L_1F(M) = 0$ for some $R$-module $M$
choose an exact sequence $0 \to K \to P \to M \to 0$
of $R$-modules with $P$ free. It suffices to show $F(K) \to F(P)$
is injective. Now we can write this sequence as a filtered
colimit of sequences $0 \to K_i \to P_i \to M_i \to 0$
with $P_i$ a finite free $R$-module: just write $P$ in this
manner and set $K_i = K \cap P_i$ and $M_i = \Im(P_i \to M)$.
Because $F$ is a left adjoint it commutes
with colimits and because $\mathcal{A}$ is a Grothendieck
abelian category, we find that $F(K) \to F(P)$
is injective if each $F(K_i) \to F(P_i)$ is injective.
Thus it suffices to check $F(K) \to F(P)$
is injective when $K \subset P = R^{\oplus n}$.
Thus $F(K) \to U^{\oplus n}$ is injective by an application
of Lemma \ref{lemma-F-G-monos}.
\end{proof}
\begin{lemma}
\label{lemma-gabriel-popescu}
\begin{reference}
\cite[Corollary 4.1]{serpe}
\end{reference}
Let $\mathcal{A}$ be a Grothendieck abelian category. Let
$R$, $F$, $G$ be as in the Gabriel-Popescu theorem
(Theorem \ref{theorem-gabriel-popescu}). Then we obtain
derived functors
$$
RG : D(\mathcal{A}) \to D(\text{Mod}_R)
\quad\text{and}\quad
F : D(\text{Mod}_R) \to D(\mathcal{A})
$$
such that $F$ is left adjoint to $RG$, $RG$ is fully faithful,
and $F \circ RG = \text{id}$.
\end{lemma}
\begin{proof}
The existence and adjointness of the functors follows from
Theorems \ref{theorem-gabriel-popescu} and
\ref{theorem-K-injective-embedding-grothendieck}
and
Derived Categories, Lemmas \ref{derived-lemma-K-injective-defined},
\ref{derived-lemma-right-derived-exact-functor}, and
\ref{derived-lemma-derived-adjoint-functors}.
The statement $F \circ RG = \text{id}$ follows because we can
compute $RG$ on an object of $D(\mathcal{A})$ by applying $G$
to a suitable representative complex $I^\bullet$ (for example
a K-injective one) and then $F(G(I^\bullet)) = I^\bullet$
because $F \circ G = \text{id}$. Fully faithfulness of $RG$
follows from this by
Categories, Lemma \ref{categories-lemma-adjoint-fully-faithful}.
\end{proof}
\section{Brown representability and Grothendieck abelian categories}
\label{section-brown}
\noindent
In this section we quickly prove a representability theorem for
derived categories of Grothendieck abelian categories. The reader should
first read the case of compactly generated triangulated categories in
Derived Categories, Section \ref{derived-section-brown}.
After that, instead of reading this section,
it makes sense to consult the literature for more
general results of this nature, for example see
\cite{Franke}, \cite{Neeman}, \cite{Krause}, or take
a look at Derived Categories, Section \ref{derived-section-brown-bis}.
\begin{lemma}
\label{lemma-brown}
Let $\mathcal{A}$ be a Grothendieck abelian category.
Let $H : D(\mathcal{A}) \to \textit{Ab}$ be a contravariant
cohomological functor which transforms direct sums into products.
Then $H$ is representable.
\end{lemma}
\begin{proof}
Let $R, F, G, RG$ be as in Lemma \ref{lemma-gabriel-popescu}
and consider the functor $H \circ F : D(\text{Mod}_R) \to \textit{Ab}$.
Observe that since $F$ is a left adjoint it sends direct sums to
direct sums and hence $H \circ F$ transforms direct sums into products.
On the other hand, the derived category $D(\text{Mod}_R)$ is
generated by a single compact object, namely $R$.
By Derived Categories, Lemma \ref{derived-lemma-brown}
we see that $H \circ F$ is representable, say by $L \in D(\text{Mod}_R)$.
Choose a distinguished triangle
$$
M \to L \to RG(F(L)) \to M[1]
$$
in $D(\text{Mod}_R)$. Then $F(M) = 0$ because $F \circ RG = \text{id}$.
Hence $H(F(M)) = 0$ hence $\Hom(M, L) = 0$.
It follows that $L \to RG(F(L))$ is the inclusion of a direct summand, see
Derived Categories, Lemma \ref{derived-lemma-split}.
For $A$ in $D(\mathcal{A})$ we obtain
\begin{align*}
H(A)
& =
H(F(RG(A)) \\
& =
\Hom(RG(A), L) \\
& \to
\Hom(RG(A), RG(F(L))) \\
& =
\Hom(F(RG(A)), F(L)) \\
& =
\Hom(A, F(L))
\end{align*}
where the arrow has a left inverse functorial in $A$. In other words, we find
that $H$ is the direct summand of a representable functor.
Since $D(\mathcal{A})$ is Karoubian
(Derived Categories, Lemma
\ref{derived-lemma-projectors-have-images-triangulated}) we conclude.
\end{proof}
\begin{proposition}
\label{proposition-brown}
Let $\mathcal{A}$ be a Grothendieck abelian category. Let $\mathcal{D}$
be a triangulated category. Let $F : D(\mathcal{A}) \to \mathcal{D}$ be an
exact functor of triangulated categories which transforms direct sums
into direct sums. Then $F$ has an exact right adjoint.
\end{proposition}
\begin{proof}
For an object $Y$ of $\mathcal{D}$ consider the contravariant functor
$$
D(\mathcal{A}) \to \textit{Ab},\quad
W \mapsto \Hom_\mathcal{D}(F(W), Y)
$$
This is a cohomological functor as $F$ is exact and transforms direct sums
into products as $F$ transforms direct sums into direct sums. Thus by
Lemma \ref{lemma-brown} we find an object $X$ of $D(\mathcal{A})$ such that
$\Hom_{D(\mathcal{A})}(W, X) = \Hom_\mathcal{D}(F(W), Y)$.
The existence of the adjoint follows from
Categories, Lemma \ref{categories-lemma-adjoint-exists}.
Exactness follows from
Derived Categories, Lemma \ref{derived-lemma-adjoint-is-exact}.
\end{proof}
\input{chapters}
\bibliography{my}
\bibliographystyle{amsalpha}
\end{document}
|