Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 167,074 Bytes
afd65d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 |
\documentclass[a4paper]{article}
\def\npart {IA}
\def\nterm {Michaelmas}
\def\nyear {2014}
\def\nlecturer {N.\ Peake}
\def\ncourse {Vectors and Matrices}
\input{header}
\begin{document}
\maketitle
{\small \noindent\textbf{Complex numbers}\\
Review of complex numbers, including complex conjugate, inverse, modulus, argument and Argand diagram. Informal treatment of complex logarithm, $n$-th roots and complex powers. de Moivre's theorem.\hspace*{\fill}[2]
\vspace{10pt}
\noindent\textbf{Vectors}\\
Review of elementary algebra of vectors in $\R^3$, including scalar product. Brief discussion of vectors in $\R^n$ and $\C^n$; scalar product and the Cauchy-Schwarz inequality. Concepts of linear span, linear independence, subspaces, basis and dimension.
\vspace{5pt}
\noindent Suffix notation: including summation convention, $\delta_{ij}$ and $\varepsilon_{ijk}$. Vector product and triple product: definition and geometrical interpretation. Solution of linear vector equations. Applications of vectors to geometry, including equations of lines, planes and spheres.\hspace*{\fill}[5]
\vspace{10pt}
\noindent\textbf{Matrices}\\
Elementary algebra of $3\times 3$ matrices, including determinants. Extension to $n\times n$ complex matrices. Trace, determinant, non-singular matrices and inverses. Matrices as linear transformations; examples of geometrical actions including rotations, reflections, dilations, shears; kernel and image.\hspace*{\fill}[4]
\vspace{5pt}
\noindent Simultaneous linear equations: matrix formulation; existence and uniqueness of solutions, geometric interpretation; Gaussian elimination.\hspace*{\fill}[3]
\vspace{5pt}
\noindent Symmetric, anti-symmetric, orthogonal, hermitian and unitary matrices. Decomposition of a general matrix into isotropic, symmetric trace-free and antisymmetric parts.\hspace*{\fill}[1]
\vspace{10pt}
\noindent\textbf{Eigenvalues and Eigenvectors}\\
Eigenvalues and eigenvectors; geometric significance.\hspace*{\fill}[2]
\vspace{5pt}
\noindent Proof that eigenvalues of hermitian matrix are real, and that distinct eigenvalues give an orthogonal basis of eigenvectors. The effect of a general change of basis (similarity transformations). Diagonalization of general matrices: sufficient conditions; examples of matrices that cannot be diagonalized. Canonical forms for $2 \times 2$ matrices.\hspace*{\fill}[5]
\vspace{5pt}
\noindent Discussion of quadratic forms, including change of basis. Classification of conics, cartesian and polar forms.\hspace*{\fill}[1]
\vspace{5pt}
\noindent Rotation matrices and Lorentz transformations as transformation groups.\hspace*{\fill}[1]}
\tableofcontents
\setcounter{section}{-1}
\section{Introduction}
Vectors and matrices is the language in which a lot of mathematics is written in. In physics, many variables such as position and momentum are expressed as vectors. Heisenberg also formulated quantum mechanics in terms of vectors and matrices. In statistics, one might pack all the results of all experiments into a single vector, and work with a large vector instead of many small quantities. In group theory, matrices are used to represent the symmetries of space (as well as many other groups).
So what is a vector? Vectors are very general objects, and can in theory represent very complex objects. However, in this course, our focus is on vectors in $\R^n$ or $\C^n$. We can think of each of these as an array of $n$ real or complex numbers. For example, $(1, 6, 4)$ is a vector in $\R^3$. These vectors are added in the obvious way. For example, $(1, 6, 4) + (3, 5, 2) = (4, 11, 6)$. We can also multiply vectors by numbers, say $2(1, 6, 4) = (2, 12, 8)$. Often, these vectors represent points in an $n$-dimensional space.
Matrices, on the other hand, represent \emph{functions} between vectors, i.e.\ a function that takes in a vector and outputs another vector. These, however, are not arbitrary functions. Instead matrices represent \emph{linear functions}. These are functions that satisfy the equality $f(\lambda \mathbf{x} + \mu \mathbf{y}) = \lambda f(\mathbf{x}) + \mu f(\mathbf{y})$ for arbitrary numbers $\lambda, \mu$ and vectors $\mathbf{x}, \mathbf{y}$. It is important to note that the function $\mathbf{x} \mapsto \mathbf{x} + \mathbf{c}$ for some constant vector $\mathbf{c}$ is \emph{not} linear according to this definition, even though it might look linear.
It turns out that for each linear function from $\R^n$ to $\R^m$, we can represent the function uniquely by an $m\times n$ array of numbers, which is what we call the \emph{matrix}. Expressing a linear function as a matrix allows us to conveniently study many of its properties, which is why we usually talk about matrices instead of the function itself.
\section{Complex numbers}
In $\R$, not every polynomial equation has a solution. For example, there does not exist any $x$ such that $x^2 + 1 = 0$, since for any $x$, $x^2$ is non-negative, and $x^2 + 1$ can never be $0$. To solve this problem, we introduce the ``number'' $i$ that satisfies $i^2 = -1$. Then $i$ is a solution to the equation $x^2 + 1 = 0$. Similarly, $-i$ is also a solution to the equation.
We can add and multiply numbers with $i$. For example, we can obtain numbers $3 + i$ or $1 + 3i$. These numbers are known as \emph{complex numbers}. It turns out that by adding this single number $i$, \emph{every} polynomial equation will have a root. In fact, for an $n$th order polynomial equation, we will later see that there will always be $n$ roots, if we account for multiplicity. We will go into details in Chapter~\ref{sec:eigen}.
Apart from solving equations, complex numbers have a lot of rather important applications. For example, they are used in electronics to represent alternating currents, and form an integral part in the formulation of quantum mechanics.
\subsection{Basic properties}
\begin{defi}[Complex number]
A \emph{complex number} is a number $z\in \C$ of the form $z = a + ib$ with $a, b\in \R$, where $i^2=-1$. We write $a = \Re(z)$ and $b = \Im(z)$.
\end{defi}
We have
\begin{align*}
z_1\pm z_2 &= (a_1 + ib_1)\pm (a_2 + ib_2)\\
&= (a_1\pm a_2) + i(b_1 \pm b_2)\\
z_1z_2 &= (a_1 + ib_1)(a_2 + ib_2)\\
&= (a_1a_2 - b_1b_2) + i(b_1a_2 + a_1b_2)\\
z^{-1} &= \frac{1}{a + ib}\\
&= \frac{a - ib}{a^2 + b^2}
\end{align*}
\begin{defi}[Complex conjugate]
The \emph{complex conjugate} of $z = a+ ib$ is $a - ib$. It is written as $\bar{z}$ or $z^*$.
\end{defi}
It is often helpful to visualize complex numbers in a diagram:
\begin{defi}[Argand diagram]
An \emph{Argand diagram} is a diagram in which a complex number $z = x + iy$ is represented by a vector $\mathbf{p}=\begin{pmatrix}x\\y\end{pmatrix}$. Addition of vectors corresponds to vector addition and $\bar{z}$ is the reflection of $z$ in the $x$-axis.
\begin{center}
\begin{tikzpicture}
\draw [->] (-0.5, 0) -- (3, 0) node [right] {Re};
\draw [->] (0, -1) -- (0, 2) node [above] {Im};
\draw [->] (0, 0) -- (.5, 1) node [above] {$z_1$};
\draw [->] (0, 0) -- (2, .7) node [above] {$z_2$};
\draw [->] (0, 0) -- (2, -.7) node [above] {$\bar z_2$};
\draw [->] (0, 0) -- (2.5, 1.7) node [anchor=south west] {$z_1 + z_2$};
\draw [dashed] (.5, 1) -- (2.5, 1.7) -- (2, .7);
\end{tikzpicture}
\end{center}
\end{defi}
\begin{defi}[Modulus and argument of complex number]
The \emph{modulus} of $z = x + iy$ is $r = |z| = \sqrt{x^2 + y^2}$. The \emph{argument} is $\theta = \arg z = \tan^{-1} (y/x)$. The modulus is the length of the vector in the Argand diagram, and the argument is the angle between $z$ and the real axis. We have
\[
z = r(\cos\theta + i\sin \theta)
\]
Clearly the pair $(r, \theta)$ uniquely describes a complex number $z$, but each complex number $z\in \C$ can be described by many different $\theta$ since $\sin (2\pi + \theta) = \sin \theta$ and $\cos(2\pi + \theta) = \cos\theta$. Often we take the \emph{principle value} $\theta \in (-\pi, \pi]$.
\end{defi}
When writing $z_i = r_i(\cos\theta_i + i\sin \theta_i)$, we have
\begin{align*}
z_1z_2 &= r_1r_2[(\cos\theta_1\cos\theta_2 - \sin\theta_1\sin\theta_2) + i(\sin\theta_1\cos\theta_2 + \sin\theta_2\cos\theta_1)]\\
&= r_1r_2[\cos(\theta_1 + \theta_2) + i\sin(\theta_1+\theta_2)]
\end{align*}
In other words, when multiplying complex numbers, the moduli multiply and the arguments add.
\begin{prop}
$z\bar{z} = a^2 + b^2 = |z|^2$.
\end{prop}
\begin{prop}
$z^{-1} = \bar{z}/|z|^2$.
\end{prop}
\begin{thm}[Triangle inequality]
For all $z_1, z_2 \in \C$, we have
\[
|z_1 + z_2| \leq |z_1| + |z_2|.
\]
Alternatively, we have $|z_1 - z_2|\geq ||z_1| - |z_2||$.
\end{thm}
\subsection{Complex exponential function}
Exponentiation was originally defined for integer powers as repeated multiplication. This is then extended to rational powers using roots. We can also extend this to any real number since real numbers can be approximated arbitrarily accurately by rational numbers. However, what does it mean to take an exponent of a complex number?
To do so, we use the Taylor series definition of the exponential function:
\begin{defi}[Exponential function]
The \emph{exponential function} is defined as
\[
\exp (z) = e^z = 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \cdots = \sum_{n = 0}^\infty \frac{z^n}{n!}.
\]
\end{defi}
This automatically allows taking exponents of arbitrary complex numbers. Having defined exponentiation this way, we want to check that it satisfies the usual properties, such as $\exp(z + w) = \exp(z)\exp(w)$. To prove this, we will first need a helpful lemma.
\begin{lemma}
\[
\sum_{n = 0}^\infty\sum_{m = 0}^\infty a_{mn} = \sum_{r = 0}^\infty\sum_{m = 0}^r a_{r - m, m}
\]
\end{lemma}
\begin{proof}
\begin{align*}
\sum_{n = 0}^\infty\sum_{m = 0}^\infty a_{mn} &= a_{00} + a_{01} + a_{02} + \cdots\\
&+ a_{10} + a_{11} + a_{12} + \cdots\\
&+ a_{20} + a_{21} + a_{22} + \cdots\\
&= (a_{00}) + (a_{10} + a_{01}) + (a_{20} + a_{11} + a_{02}) + \cdots\\
&= \sum_{r = 0}^\infty\sum_{m = 0}^r a_{r - m, m} \qedhere
\end{align*}
\end{proof}
This is not exactly a rigorous proof, since we should not hand-wave about infinite sums so casually. But in fact, we did not even show that the definition of $\exp(z)$ is well defined for all numbers $z$, since the sum might diverge. All these will be done in that IA Analysis I course.
\begin{thm}
$\exp(z_1)\exp(z_2) = \exp(z_1 + z_2)$
\end{thm}
\begin{proof}
\begin{align*}
\exp(z_1)\exp(z_2) &= \sum_{n = 0}^\infty\sum_{m = 0}^\infty \frac{z_1^m}{m!}\frac{z_2^n}{n!}\\
&= \sum_{r = 0}^\infty\sum_{m = 0}^r \frac{z_1^{r - m}}{(r - m)!}\frac{z_2^m}{m!}\\
&= \sum_{r = 0}^\infty\frac{1}{r!}\sum_{m = 0}^r \frac{r!}{(r - m)!m!}z_1^{r - m}z_2^m\\
&= \sum_{r = 0}^\infty\frac{(z_1 + z_2)^r}{r!} \qedhere
\end{align*}
\end{proof}
Again, to define the sine and cosine functions, instead of referring to ``angles'' (since it doesn't make much sense to refer to complex ``angles''), we again use a series definition.
\begin{defi}[Sine and cosine functions]
Define, for all $z\in \C$,
\begin{alignat*}{2}
\sin z &= \sum_{n=0}^\infty \frac{(-1)^n}{(2n+1)!}z^{2n+1} &\;= z - \frac{1}{3!}z^3 + \frac{1}{5!}z^5 + \cdots\\
\cos z &= \sum_{n=0}^\infty \frac{(-1)^n}{(2n)!}z^{2n} &\;= 1 - \frac{1}{2!}z^2 + \frac{1}{4!}z^4 + \cdots
\end{alignat*}
\end{defi}
One very important result is the relationship between $\exp$, $\sin$ and $\cos$.
\begin{thm}
$e^{iz} = \cos z + i\sin z$.
\end{thm}
Alternatively, since $\sin (-z) = -\sin z$ and $\cos(-z) = \cos z$, we have
\begin{align*}
\cos z &= \frac{e^{iz} + e^{-iz}}{2},\\
\sin z &= \frac{e^{iz} - e^{-iz}}{2i}.
\end{align*}
\begin{proof}
\begin{align*}
e^{iz} &= \sum_{n=0}^\infty \frac{i^n}{n!}z^n\\
&= \sum_{n=0}^\infty \frac{i^{2n}}{(2n)!}z^{2n} + \sum_{n=0}^\infty \frac{i^{2n+1}}{(2n+1)!}z^{2n+1}\\
&= \sum_{n=0}^\infty \frac{(-1)^n}{(2n)!}z^{2n} + i \sum_{n=0}^\infty \frac{(-1)^n}{(2n+1)!}z^{2n+1}\\
&= \cos z + i\sin z \qedhere
\end{align*}
\end{proof}
Thus we can write $z = r(\cos\theta + i\sin\theta) = re^{i\theta}$.
\subsection{Roots of unity}
\begin{defi}[Roots of unity]
The $n$th \emph{roots of unity} are the roots to the equation $z^n = 1$ for $n\in \N$. Since this is a polynomial of order $n$, there are $n$ roots of unity. In fact, the $n$th roots of unity are $\exp\left(2\pi i\frac{k}{n}\right)$ for $k = 0, 1, 2, 3\cdots n - 1$.
\end{defi}
\begin{prop}
If $\omega = \exp\left(\frac{2\pi i}{n}\right)$, then $1 + \omega + \omega^2 + \cdots + \omega^{n - 1} = 0$
\end{prop}
\begin{proof}
Two proofs are provided:
\begin{enumerate}
\item Consider the equation $z^n = 1$. The coefficient of $z^{n-1}$ is the sum of all roots. Since the coefficient of $z^{n-1}$ is 0, then the sum of all roots $= 1 + \omega + \omega^2 + \cdots + \omega^{n-1} = 0$.
\item Since $\omega^n - 1 = (\omega - 1)(1 + \omega + \cdots + \omega^{n - 1})$ and $\omega \not= 1$, dividing by $(\omega - 1)$, we have $1 + \omega + \cdots + \omega^{n-1} = (\omega^n - 1)/(\omega - 1) = 0$. \qedhere
\end{enumerate}
\end{proof}
\subsection{Complex logarithm and power}
\begin{defi}[Complex logarithm]
The \emph{complex logarithm} $w = \log z$ is a solution to $e^\omega = z$, i.e.\ $\omega = \log z$. Writing $z = re^{i\theta}$, we have $\log z = \log(re^{i\theta}) = \log r + i\theta$. This can be multi-valued for different values of $\theta$ and, as above, we should select the $\theta$ that satisfies $-\pi < \theta \leq \pi$.
\end{defi}
\begin{eg}
$\log 2i = \log 2 + i\frac{\pi}{2}$
\end{eg}
\begin{defi}[Complex power]
The \emph{complex power} $z^\alpha$ for $z, \alpha\in \C$ is defined as $z^\alpha = e^{\alpha\log z}$. This, again, can be multi-valued, as $z^\alpha = e^{\alpha\log|z|}e^{i\alpha\theta}e^{2in\pi\alpha}$ (there are finitely many values if $\alpha\in\Q$, infinitely many otherwise). Nevertheless, we make $z^\alpha$ single-valued by insisting $-\pi < \theta \leq \pi$.
\end{defi}
\subsection{De Moivre's theorem}
\begin{thm}[De Moivre's theorem]
\[
\cos n\theta + i\sin n\theta = (\cos\theta + i\sin\theta)^n.
\]
\end{thm}
\begin{proof}
First prove for the $n \geq 0$ case by induction. The $n = 0$ case is true since it merely reads $1 = 1$. We then have
\begin{align*}
(\cos\theta + i\sin\theta)^{n + 1} &= (\cos\theta + i\sin\theta)^n (\cos\theta + i\sin\theta)\\
&= (\cos n\theta + i\sin n\theta )(\cos\theta + i\sin\theta)\\
&= \cos(n+1)\theta + i\sin(n+1)\theta
\end{align*}
If $n < 0$, let $m = -n$. Then $m > 0$ and
\begin{align*}
(cos\theta + i\sin\theta)^{-m} &= (\cos m\theta + i\sin m\theta)^{-1}\\
&= \frac{\cos m\theta - i\sin m\theta}{(\cos m\theta + i\sin m\theta)(\cos m\theta - i\sin m\theta)}\\
&= \frac{\cos (-m\theta) + i\sin (-m\theta)}{\cos^2 m\theta + \sin^2 m\theta}\\
&= \cos (-m\theta) + i\sin (-m\theta)\\
&= \cos n\theta + i\sin n\theta \qedhere
\end{align*}
\end{proof}
Note that ``$\cos n\theta + i\sin n\theta = e^{in\theta} = (e^{i\theta})^n = (\cos \theta + i\sin \theta)^n$'' is \emph{not} a valid proof of De Moivre's theorem, since we do not know yet that $e^{in\theta} = (e^{i\theta})^n$. In fact, De Moivre's theorem tells us that this is a valid rule to apply.
\begin{eg}
We have $\cos 5\theta + i\sin5\theta = (\cos\theta + i\sin\theta)^5$. By binomial expansion of the RHS and taking real and imaginary parts, we have
\begin{align*}
\cos 5\theta &= 5\cos\theta - 20\cos^3\theta + 16\cos^5\theta\\
\sin 5\theta &= 5\sin\theta - 20\sin^3\theta + 16\sin^5\theta
\end{align*}
\end{eg}
\subsection{Lines and circles in \texorpdfstring{$\C$}{C}}
Since complex numbers can be regarded as points on the 2D plane, we can often use complex numbers to represent two dimensional objects.
Suppose that we want to represent a straight line through $z_0 \in \C$ parallel to $w\in \C$. The obvious way to do so is to let $z = z_0 + \lambda w$ where $\lambda$ can take any real value. However, this is not an optimal way of doing so, since we are not using the power of complex numbers fully. This is just the same as the vector equation for straight lines, which you may or may not know from your A levels.
Instead, we arrange the equation to give $\lambda = \frac{z - z_0}{w}$. We take the complex conjugate of this expression to obtain $\bar{\lambda} = \frac{\bar{z} - \bar{z_0}}{\bar{w}}$. The trick here is to realize that $\lambda$ is a real number. So we must have $\lambda = \bar \lambda$. This means that we must have
\begin{align*}
\frac{z - z_0}{w} &= \frac{\bar{z} - \bar{z_0}}{\bar{w}}\\
z\bar w - \bar z w &= z_0 \bar w - \bar z_0 w.
\end{align*}
\begin{thm}[Equation of straight line]
The equation of a straight line through $z_0$ and parallel to $w$ is given by
\[
z\bar w - \bar z w = z_0 \bar w - \bar z_0 w.
\]
\end{thm}
The equation of a circle, on the other hand, is rather straightforward. Suppose that we want a circle with center $c\in \C$ and radius $\rho \in \R^+$. By definition of a circle, a point $z$ is on the circle iff its distance to $c$ is $\rho$, i.e.\ $|z - c| = \rho$. Recalling that $|z|^2 = z\bar z$, we obtain,
\begin{align*}
|z - c| &= \rho\\
|z - c|^2 &= \rho^2\\
(z - c)(\bar z - \bar c) &= \rho^2\\
z\bar z - \bar c z - c\bar z &= \rho^2 - c\bar c
\end{align*}
\begin{thm}
The general equation of a circle with center $c\in \C$ and radius $\rho \in \R^+$ can be given by
\[
z\bar z - \bar c z - c\bar z = \rho^2 - c\bar c.
\]
\end{thm}
\section{Vectors}
We might have first learned vectors as arrays of numbers, and then defined addition and multiplication in terms of the individual numbers in the vector. This however, is not what we are going to do here. The array of numbers is just a \emph{representation} of the vector, instead of the vector itself.
Here, we will define vectors in terms of what they are, and then the various operations are defined axiomatically according to their properties.
\subsection{Definition and basic properties}
\begin{defi}[Vector]
A \emph{vector space} over $\R$ or $\C$ is a collection of vectors $\mathbf{v}\in V$, together with two operations: addition of two vectors and multiplication of a vector with a scalar (i.e.\ a number from $\R$ or $\C$, respectively).
\emph{Vector addition} has to satisfy the following axioms:
\begin{enumerate}
\item $\mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a}$ \hfill (commutativity)
\item $(\mathbf{a} + \mathbf{b}) + \mathbf{c} = \mathbf{a} + (\mathbf{b} + \mathbf{c})$ \hfill (associativity)
\item There is a vector $\mathbf{0}$ such that $\mathbf{a} + \mathbf{0} = \mathbf{a}$. \hfill (identity)
\item For all vectors $\mathbf{a}$, there is a vector $(-\mathbf{a})$ such that $\mathbf{a} + (-\mathbf{a}) = \mathbf{0}$ \hfill (inverse)
\end{enumerate}
\emph{Scalar multiplication} has to satisfy the following axioms:
\begin{enumerate}
\item $\lambda(\mathbf{a + b}) = \lambda\mathbf{a} + \lambda\mathbf{b}$.
\item $(\lambda + \mu)\mathbf{a} = \lambda\mathbf{a} + \mu\mathbf{a}$.
\item $\lambda(\mu\mathbf{a}) = (\lambda\mu)\mathbf{a}$.
\item $1\mathbf{a = a}$.
\end{enumerate}
\end{defi}
Often, vectors have a length and direction. The length is denoted by $|\mathbf{v}|$. In this case, we can think of a vector as an ``arrow'' in space. Note that $\lambda\mathbf{a}$ is either parallel ($\lambda \ge 0$) to or anti-parallel ($\lambda \le 0$) to $\mathbf{a}$.
\begin{defi}[Unit vector]
A \emph{unit vector} is a vector with length 1. We write a unit vector as $\hat{\mathbf{v}}$.
\end{defi}
\begin{eg}
$\R^n$ is a vector space with component-wise addition and scalar multiplication. Note that the vector space $\R$ is a line, but not all lines are vector spaces. For example, $x + y = 1$ is not a vector space since it does not contain $\mathbf{0}$.
\end{eg}
\subsection{Scalar product}
In a vector space, we can define the \emph{scalar product} of two vectors, which returns a scalar (i.e.\ a real or complex number). We will first look at the usual scalar product defined for $\R^n$, and then define the scalar product axiomatically.
\subsubsection{Geometric picture (\texorpdfstring{$\R^2$}{R2} and \texorpdfstring{$\R^3$}{R3} only)}
\begin{defi}[Scalar/dot product]
$\mathbf{a}\cdot\mathbf{b} = \mathbf{|a||b|}\cos\theta$, where $\theta$ is the angle between $\mathbf{a}$ and $\mathbf{b}$. It satisfies the following properties:
\begin{enumerate}
\item $\mathbf{a\cdot b = b\cdot a}$
\item $\mathbf{a\cdot a = |a|}^2 \geq 0$
\item $\mathbf{a\cdot a} = 0$ iff $\mathbf{a = 0}$
\item If $\mathbf{a\cdot b} = 0$ and $\mathbf{a, b}\not= \mathbf{0}$, then $\mathbf{a}$ and $\mathbf{b}$ are perpendicular.
\end{enumerate}
\end{defi}
Intuitively, this is the product of the parts of $\mathbf{a}$ and $\mathbf{b}$ that are parallel.
\begin{center}
\begin{tikzpicture}
\draw [mblue, ->] (0, 0) -- (3, 0) node [right] {$\mathbf{b}$};
\draw [mred, ->] (0, 0) -- (2, 2) node [anchor = south west] {$\mathbf{a}$} node [pos=0.5, above] {$|\mathbf{a}|$};
\draw [mred, ->] (0, 0) -- (2, 0) node [pos=0.5, below] {$|\mathbf{a}|\cos \theta$};
\draw [mred, dashed] (2, 0) -- (2, 2);
\draw [mred] (1.8, 0) -- (1.8, 0.2) -- (2, 0.2);
\end{tikzpicture}
\end{center}
Using the dot product, we can write the projection of $\mathbf{b}$ onto $\mathbf{a}$ as $(|\mathbf{b}|\cos\theta)\hat{\mathbf{a}} = \mathbf{(\hat{a}\cdot b)\hat{a}}$.
The cosine rule can be derived as follows:
\begin{align*}
|\overrightarrow{BC}|^2 &= |\overrightarrow{AC} - \overrightarrow{AB}|^2\\
&= (\overrightarrow{AC} - \overrightarrow{AB})\cdot (\overrightarrow{AC} - \overrightarrow{AB})\\
&= |\overrightarrow{AB}|^2 + |\overrightarrow{AC}|^2 - 2|\overrightarrow{AB}||\overrightarrow{AC}|\cos\theta
\end{align*}
We will later come up with a convenient algebraic way to evaluate this scalar product.
\subsubsection{General algebraic definition}
\begin{defi}[Inner/scalar product]
In a real vector space $V$, an \emph{inner product} or \emph{scalar product} is a map $V\times V\to \R$ that satisfies the following axioms. It is written as $\mathbf{x\cdot y}$ or $\bra\mathbf{x\mid y}\ket$.
\begin{enumerate}
\item $\mathbf{x\cdot y = y\cdot x}$ \hfill (symmetry)
\item $\mathbf{x}\cdot (\lambda\mathbf{y} + \mu\mathbf{z}) = \lambda\mathbf{x\cdot y} + \mu\mathbf{x\cdot z}$ \hfill (linearity in 2nd argument)
\item $\mathbf{x\cdot x}\geq 0$ with equality iff $\mathbf{x = 0}$\hfill (positive definite)
\end{enumerate}
\end{defi}
Note that this is a definition only for \emph{real} vector spaces, where the scalars are real. We will have a different set of definitions for complex vector spaces.
In particular, here we can use (i) and (ii) together to show linearity in 1st argument. However, this is generally not true for complex vector spaces.
\begin{defi}
The \emph{norm} of a vector, written as $|\mathbf{a}|$ or $\|\mathbf{a}\|$, is defined as
\[
|\mathbf{a}| = \sqrt{\mathbf{a\cdot a}}.
\]
\end{defi}
\begin{eg}
Instead of the usual $\R^n$ vector space, we can consider the set of all real (integrable) functions as a vector space. We can define the following inner product:
\[
\bra f\mid g\ket = \int_0^1f(x)g(x)\;\mathrm{d} x.
\]
\end{eg}
\subsection{Cauchy-Schwarz inequality}
\begin{thm}[Cauchy-Schwarz inequality]
For all $\mathbf{x, y}\in \R^n$,
\[
|\mathbf{x}\cdot \mathbf{y}| \leq |\mathbf{x}||\mathbf{y}|.
\]
\end{thm}
\begin{proof}
Consider the expression $|\mathbf{x} - \lambda \mathbf{y}|^2$. We must have
\begin{align*}
|\mathbf{x} - \lambda\mathbf{y}|^2 \geq 0\\
(\mathbf{x} - \lambda\mathbf{y})\cdot (\mathbf{x} - \lambda\mathbf{y}) \geq 0\\
\lambda^2 |\mathbf{y}|^2 - \lambda (2\mathbf{x\cdot y}) + |\mathbf{x}|^2 \geq 0.
\end{align*}
Viewing this as a quadratic in $\lambda$, we see that the quadratic is non-negative and thus cannot have 2 real roots. Thus the discriminant $\Delta \leq 0$. So
\begin{align*}
4(\mathbf{x\cdot y})^2 &\leq 4|\mathbf{y}|^2|\mathbf{x}|^2\\
(\mathbf{x\cdot y})^2 &\leq |\mathbf{x}|^2|\mathbf{y}|^2\\
|\mathbf{x\cdot y}| &\leq \mathbf{|x||y|}. \qedhere
\end{align*}
\end{proof}
Note that we proved this using the axioms of the scalar product. So this result holds for \emph{all} possible scalar products on \emph{any} (real) vector space.
\begin{eg}
Let $\mathbf{x} = (\alpha, \beta, \gamma)$ and $\mathbf{y} = (1, 1, 1)$. Then by the Cauchy-Schwarz inequality, we have
\begin{align*}
\alpha + \beta + \gamma &\leq \sqrt{3}\sqrt{\alpha^2 + \beta^2 + \gamma^2}\\
\alpha^2 + \beta^2 + \gamma^2 &\geq \alpha\beta + \beta\gamma + \gamma\alpha,
\end{align*}
with equality if $\alpha = \beta = \gamma$.
\end{eg}
\begin{cor}[Triangle inequality]
\[
\mathbf{|x + y|} \leq \mathbf{|x| + |y|}.
\]
\end{cor}
\begin{proof}
\begin{align*}
|\mathbf{x + y}|^2 &= \mathbf{(x + y)\cdot (x + y)}\\
&= |\mathbf{x}|^2 + 2\mathbf{x\cdot y} + |\mathbf{y}|^2\\
&\leq |\mathbf{x}|^2 + 2\mathbf{|x||y|} + |\mathbf{y}|^2\\
&= (\mathbf{|x| + |y|})^2.\\
\intertext{So}
\mathbf{|x + y|} &\leq \mathbf{|x| + |y|}. \qedhere
\end{align*}
\end{proof}
\subsection{Vector product}
Apart from the scalar product, we can also define the \emph{vector product}. However, this is defined only for $\R^3$ space, but not spaces in general.
\begin{defi}[Vector/cross product]
Consider $\mathbf{a, b}\in \R^3$. Define the \emph{vector product}
\[
\mathbf{a\times b} = \mathbf{|a||b|}\sin\theta \hat{\mathbf{n}},
\]
where $\mathbf{\hat{n}}$ is a unit vector perpendicular to both $\mathbf{a}$ and $\mathbf{b}$. Since there are two (opposite) unit vectors that are perpendicular to both of them, we pick $\mathbf{\hat{n}}$ to be the one that is perpendicular to $\mathbf{a}, \mathbf{b}$ in a \emph{right-handed} sense.
\begin{center}
\begin{tikzpicture}
\draw [mred, ->] (0, 0) -- (2, -0.7) node [right] {$\mathbf{a}$};
\draw [mblue, ->] (0, 0) -- (2, 0.7) node [right] {$\mathbf{b}$};
\draw [mgreen, ->] (0, 0) -- (0, 2) node [above] {$\mathbf{a}\times \mathbf{b}$};
\draw [mred] (0, 0.2) -- (0.2, 0.13) -- (0.2, -0.07);
\draw [mblue] (0, 0.2) -- (0.2, 0.27) -- (0.2, 0.07);
\end{tikzpicture}
\end{center}
The vector product satisfies the following properties:
\begin{enumerate}
\item $\mathbf{a\times b = -b\times a}$.
\item $\mathbf{a\times a = 0}$.
\item $\mathbf{a\times b = 0}\Rightarrow \mathbf{a} = \lambda\mathbf{b}$ for some $\lambda\in \R$ (or $\mathbf{b} = \mathbf{0})$.
\item $\mathbf{a}\times (\lambda \mathbf{b}) = \lambda(\mathbf{a\times b})$.
\item $\mathbf{a\times (b + c) = a\times b + a\times c}$.
\end{enumerate}
\end{defi}
If we have a triangle $OAB$, its area is given by $\frac{1}{2}|\overrightarrow{OA}||\overrightarrow{OB}|\sin\theta = \frac{1}{2}|\overrightarrow{OA}\times\overrightarrow{OB}|$. We define the vector area as $\frac{1}{2}\overrightarrow{OA}\times\overrightarrow{OB}$, which is often a helpful notion when we want to do calculus with surfaces.
There is a convenient way of calculating vector products:
\begin{prop}
\begin{align*}
\mathbf{a\times b} &= (a_1\hat{\mathbf{i}} + a_2\hat{\mathbf{j}} + a_3\hat{\mathbf{k}})\times(b_1\hat{\mathbf{i}} + b_2\hat{\mathbf{j}} + b_3\hat{\mathbf{k}})\\
&= (a_2b_3 - a_3b_2)\hat{\mathbf{i}} + \cdots\\
&= \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}}\\
a_1 & a_2 & a_3\\
b_1 & b_2 & b_3\\
\end{vmatrix}
\end{align*}
\end{prop}
\subsection{Scalar triple product}
\begin{defi}[Scalar triple product]
The \emph{scalar triple product} is defined as
\[
\mathbf{[a, b, c] = a\cdot (b\times c)}.
\]
\end{defi}
\begin{prop}
If a parallelepiped has sides represented by vectors $\mathbf{a, b, c}$ that form a right-handed system, then the volume of the parallelepiped is given by $\mathbf{[a, b, c]}$.
\end{prop}
\begin{center}
\begin{tikzpicture}
\draw [mblue, ->] (0, 0) -- (3, 0) node [right] {$\mathbf{b}$};
\draw [mred, dashed, ->] (0, 0) -- (2, 1) node [right] {$\mathbf{c}$};
\draw [mgreen, ->] (0, 0) -- (1, 2) node [above] {$\mathbf{a}$};
\draw [mblue, dashed] (2, 1) -- +(3, 0);
\draw [mblue] (1, 2) -- +(3, 0);
\draw [mblue] (3, 3) -- +(3, 0);
\draw [mgreen, dashed] (2, 1) -- +(1, 2);
\draw [mgreen] (5, 1) -- +(1, 2);
\draw [mgreen] (3, 0) -- +(1, 2);
\draw [mred] (3, 0) -- +(2, 1);
\draw [mred] (1, 2) -- +(2, 1);
\draw [mred] (4, 2) -- +(2, 1);
\end{tikzpicture}
\end{center}
\begin{proof}
The area of the base of the parallelepiped is given by $\mathbf{|b||c|}\sin\theta = \mathbf{|b\times c|}$. Thus the volume$ = \mathbf{|b\times c||a|}\cos\phi = \mathbf{|a\cdot(b\times c)|}$, where $\phi$ is the angle between $\mathbf{a}$ and the normal to $\mathbf{b}$ and $\mathbf{c}$. However, since $\mathbf{a, b, c}$ form a right-handed system, we have $\mathbf{a\cdot (b\times c)} \geq 0$. Therefore the volume is $\mathbf{a\cdot(b\times c)}$.
\end{proof}
Since the order of $\mathbf{a, b, c}$ doesn't affect the volume, we know that
\[
\mathbf{[a, b, c] = [b, c, a] = [c, a, b] = -[b, a, c] = -[a, c, b] = -[c, b, a]}.
\]
\begin{thm}
$\mathbf{a\times (b + c) = a\times b + a\times c}$.
\end{thm}
\begin{proof}
Let $\mathbf{d = a\times (b + c) - a\times b - a\times c}$. We have
\begin{align*}
\mathbf{d\cdot d} &= \mathbf{d\cdot[a\times (b + c)] - d\cdot(a\times b) - d\cdot(a\times c)}\\
&= \mathbf{(b+c)\cdot(d \times a) - b\cdot(d\times a) - c\cdot(d\times a)}\\
&= 0
\end{align*}
Thus $\mathbf{d = 0}$.
\end{proof}
\subsection{Spanning sets and bases}
\subsubsection{2D space}
\begin{defi}[Spanning set]
A set of vectors $\{\mathbf{a, b}\}$ \emph{spans} $\R^2$ if for all vectors $\mathbf{r}\in \R^2$, there exist some $\lambda, \mu\in \R$ such that $\mathbf{r} = \lambda\mathbf{a} + \mu\mathbf{b}$.
\end{defi}
In $\R^2$, two vectors span the space if $\mathbf{a}\times \mathbf{b} \not= \mathbf{0}$.
\begin{thm}
The coefficients $\lambda, \mu$ are unique.
\end{thm}
\begin{proof}
Suppose that $\mathbf{r} = \lambda\mathbf{a} + \mu\mathbf{b} = \lambda'\mathbf{a} + \mu'\mathbf{b}$. Take the vector product with $\mathbf{a}$ on both sides to get $(\mu - \mu')\mathbf{a\times b} = \mathbf{0}$. Since $\mathbf{a\times b}\not= \mathbf{0}$, then $\mu=\mu'$. Similarly, $\lambda = \lambda'$.
\end{proof}
\begin{defi}[Linearly independent vectors in $\R^2$]
Two vectors $\mathbf{a}$ and $\mathbf{b}$ are \emph{linearly independent} if for $\alpha, \beta\in \R$, $\alpha\mathbf{a} + \beta\mathbf{b} = \mathbf{0}$ iff $\alpha = \beta = 0$. In $\R^2$, $\mathbf{a}$ and $\mathbf{b}$ are linearly independent if $\mathbf{a\times b} \not= \mathbf{0}$.
\end{defi}
\begin{defi}[Basis of $\R^2$]
A set of vectors is a \emph{basis} of $\R^2$ if it spans $\R^2$ and are linearly independent.
\end{defi}
\begin{eg}
$\{\hat{\mathbf{i}}, \hat{\mathbf{j}}\} = \{(1, 0), (0, 1)\}$ is a basis of $\R^2$. They are the standard basis of $\R^2$.
\end{eg}
\subsubsection{3D space}
We can extend the above definitions of spanning set and linear independent set to $\R^3$. Here we have
\begin{thm}
If $\mathbf{a}, \mathbf{b}, \mathbf{c}\in\R^3$ are non-coplanar, i.e.\ $\mathbf{a}\cdot(\mathbf{b}\times \mathbf{c})\not= 0$, then they form a basis of $\R^3$.
\end{thm}
\begin{proof}
For any $\mathbf{r}$, write $\mathbf{r} = \lambda\mathbf{a} + \mu\mathbf{b} + \nu\mathbf{c}$. Performing the scalar product with $\mathbf{b\times c}$ on both sides, one obtains $\mathbf{r\cdot(b\times c)} = \lambda \mathbf{a\cdot(b\times c)} + \mu\mathbf{b\cdot (b\times c)} + \nu\mathbf{c\cdot(b\times c)} = \lambda \mathbf{[a, b, c]}$. Thus $\lambda = \mathbf{[r, b, c]/[a,b, c]}$. The values of $\mu$ and $\nu$ can be found similarly. Thus each $\mathbf{r}$ can be written as a linear combination of $\mathbf{a}, \mathbf{b}$ and $\mathbf{c}$.
By the formula derived above, it follows that if $\alpha\mathbf{a} + \beta\mathbf{b} + \gamma\mathbf{c} = \mathbf{0}$, then $\alpha = \beta = \gamma = 0$. Thus they are linearly independent.
\end{proof}
Note that while we came up with formulas for $\lambda, \mu$ and $\nu$, we did not actually prove that these coefficients indeed work. This is rather unsatisfactory. We could, of course, expand everything out and show that this indeed works, but in IB Linear Algebra, we will prove a much more general result, saying that if we have an $n$-dimensional space and a set of $n$ linear independent vectors, then they form a basis.
In $\R^3$, the standard basis is $\mathbf{\hat{i}, \hat{j}, \hat{k}}$, or $(1, 0, 0), (0, 1, 0)$ and $(0, 0, 1)$.
\subsubsection{\texorpdfstring{$\R^n$}{Rn} space}
In general, we can define
\begin{defi}[Linearly independent vectors]
A set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\cdots \mathbf{v}_m\}$ is \emph{linearly independent} if
\[
\sum_{i = 1}^m\lambda_i\mathbf{v}_i = \mathbf{0} \Rightarrow (\forall i)\,\lambda_i = 0.
\]
\end{defi}
\begin{defi}[Spanning set]
A set of vectors $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\cdots \mathbf{u}_m\}\subseteq \R^n$ is a \emph{spanning set} of $\R^n$ if
\[
(\forall \mathbf{x} \in \R^n)(\exists \lambda_i)\,\sum_{i = 1}^m\lambda_i\mathbf{u}_i = \mathbf{x}
\]
\end{defi}
\begin{defi}[Basis vectors]
A \emph{basis} of $\R^n$ is a linearly independent spanning set. The standard basis of $\R^n$ is $\mathbf{e}_1 = (1, 0, 0, \cdots 0), \mathbf{e}_2 = (0, 1, 0, \cdots 0),\cdots \mathbf{e}_n = (0, 0, 0, \cdots, 1)$.
\end{defi}
\begin{defi}[Orthonormal basis]
A basis $\{\mathbf{e}_i\}$ is \emph{orthonormal} if $\mathbf{e}_i\cdot \mathbf{e}_j = 0$ if $i\not= j$ and $\mathbf{e}_i\cdot \mathbf{e}_i = 1$ for all $i, j$.
Using the Kronecker Delta symbol, which we will define later, we can write this condition as $\mathbf{e}_i \cdot \mathbf{e}_j = \delta_{ij}$.
\end{defi}
\begin{defi}[Dimension of vector space]
The \emph{dimension} of a vector space is the number of vectors in its basis. (Exercise: show that this is well-defined)
\end{defi}
We usually denote the components of a vector $\mathbf{x}$ by $x_i$. So we have $\mathbf{x} = (x_1, x_2, \cdots, x_n)$.
\begin{defi}[Scalar product]
The \emph{scalar product} of $\mathbf{x, y}\in \R^n$ is defined as $\mathbf{x\cdot y} = \sum x_i y_i$.
\end{defi}
The reader should check that this definition coincides with the $|\mathbf{x}||\mathbf{y}|\cos\theta$ definition in the case of $\R^2$ and $\R^3$.
\subsubsection{\texorpdfstring{$\C^n$}{Cn} space}
$\C^n$ is very similar to $\R^n$, except that we have complex numbers. As a result, we need a different definition of the scalar product. If we still defined $\mathbf{u}\cdot \mathbf{v} = \sum u_i v_i$, then if we let $\mathbf{u} = (0, i)$, then $\mathbf{u}\cdot \mathbf{u} = -1 < 0$. This would be bad if we want to use the scalar product to define a norm.
\begin{defi}[$\C^n$]
$\C^n = \{(z_1, z_2, \cdots, z_n): z_i\in\C\}$. It has the same standard basis as $\R^n$ but the scalar product is defined differently. For $\mathbf{u, v}\in \C^n$, $\mathbf{u\cdot v} = \sum u_i^*v_i$. The scalar product has the following properties:
\begin{enumerate}
\item $\mathbf{u}\cdot \mathbf{v} = (\mathbf{v}\cdot \mathbf{u})^*$
\item $\mathbf{u}\cdot(\lambda\mathbf{v}+\mu\mathbf{w}) = \lambda\mathbf{(u\cdot v)} + \mu\mathbf{(u\cdot w)}$
\item $\mathbf{u\cdot u} \geq 0$ and $\mathbf{u\cdot u} = 0$ iff $\mathbf{u = 0}$
\end{enumerate}
\end{defi}
Instead of linearity in the first argument, here we have $(\lambda\mathbf{u} + \mu\mathbf{v})\cdot\mathbf{w} = \lambda^*\mathbf{u}\cdot \mathbf{w} + \mu^*\mathbf{v}\cdot \mathbf{w}$.
\begin{eg}
\begin{align*}
&\sum_{k = 1}^4 (-i)^k|\mathbf{x} + i^k\mathbf{y}|^2\\
&= \sum(-i)^k\bra\mathbf{x} + i^k \mathbf{y}\mid \mathbf{x} + i^k\mathbf{y}\ket\\
&= \sum(-i)^k (\bra\mathbf{x} + i^k\mathbf{y}\mid \mathbf{x}\ket + i^k\bra\mathbf{x} + i^k\mathbf{y} \mid \mathbf{y}\ket)\\
&= \sum(-i)^k (\bra\mathbf{x}\mid \mathbf{x}\ket + (-i)^k\bra\mathbf{y}\mid \mathbf{x}\ket + i^k\bra\mathbf{x}\mid \mathbf{y}\ket + i^k(-i)^k\bra\mathbf{y}\mid \mathbf{y}\ket)\\
&= \sum(-i)^k [(| \mathbf{x}|^2 + |\mathbf{y}|^2) + (-1)^k\bra\mathbf{y}\mid \mathbf{x}\ket + \bra\mathbf{x}\mid \mathbf{y}\ket]\\
&= (|\mathbf{x}|^2 + |\mathbf{y}|^2)\sum(-i)^k + \bra\mathbf{y}\mid \mathbf{x}\ket\sum(-1)^k + \bra\mathbf{x}\mid \mathbf{y}\ket\sum1\\
&= 4\bra\mathbf{x}\mid \mathbf{y}\ket.
\end{align*}
\end{eg}
We can prove the Cauchy-Schwarz inequality for complex vector spaces using the same proof as the real case, except that this time we have to first multiply $\mathbf{y}$ by some $e^{i\theta}$ so that $\mathbf{x} \cdot (e^{i\theta} \mathbf{y})$ is a real number. The factor of $e^{i\theta}$ will drop off at the end when we take the modulus signs.
\subsection{Vector subspaces}
\begin{defi}[Vector subspace]
A \emph{vector subspace} of a vector space $V$ is a subset of $V$ that is also a vector space under the same operations. Both $V$ and $\{\mathbf{0}\}$ are subspaces of $V$. All others are proper subspaces.
A useful criterion is that a subset $U\subseteq V$ is a subspace iff
\begin{enumerate}
\item $\mathbf{x, y}\in U \Rightarrow (\mathbf{x + y}) \in U$.
\item $\mathbf{x}\in U \Rightarrow \lambda\mathbf{x} \in U$ for all scalars $\lambda$.
\item $\mathbf{0}\in U$.
\end{enumerate}
This can be more concisely written as ``$U$ is non-empty and for all $\mathbf{x, y}\in U$, $(\lambda\mathbf{x} + \mu\mathbf{y})\in U$''.
\end{defi}
\begin{eg}\leavevmode
\begin{enumerate}
\item If $\{\mathbf{a, b, c}\}$ is a basis of $\R^3$, then $\{\mathbf{a + c, b + c}\}$ is a basis of a 2D subspace.
Suppose $\mathbf{x, y}\in \spn\{\mathbf{a + c, b + c}\}$. Let
\begin{align*}
\mathbf{x} &= \alpha_1(\mathbf{a + c}) + \beta_1(\mathbf{b + c});\\
\mathbf{y} &= \alpha_2(\mathbf{a + c}) + \beta_2(\mathbf{b + c}).
\end{align*}
Then
\[
\lambda\mathbf{x} + \mu\mathbf{y} = (\lambda\alpha_1+\mu\alpha_2)(\mathbf{a + c}) + (\lambda\beta_1 + \mu\beta_2)\mathbf{(b + c)}\in\spn\{\mathbf{a + c, b + c}\}.
\]
Thus this is a subspace of $\R^3$.
Now check that $\mathbf{a + c, b + c}$ is a basis. We only need to check linear independence. If $\alpha(\mathbf{a + c}) + \beta(\mathbf{b + c}) = \mathbf{0}$, then $\alpha\mathbf{a} + \beta\mathbf{b} + (\alpha + \beta)\mathbf{c} = \mathbf{0}$. Since $\{\mathbf{a, b, c}\}$ is a basis of $\R^3$, therefore $\mathbf{a, b, c}$ are linearly independent and $\alpha = \beta = 0$. Therefore $\mathbf{a + c, b + c}$ is a basis and the subspace has dimension $2$.
\item Given a set of numbers $\alpha_i$, let $U = \{\mathbf{x}\in \R^n: \sum_{i=1}^n \alpha_ix_i = 0\}$. We show that this is a vector subspace of $\R^n$: Take $\mathbf{x, y}\in U$, then consider $\lambda\mathbf{x} + \mu\mathbf{y}$. We have $\sum\alpha_i(\lambda x_i + \mu y_i) = \lambda\sum\alpha_ix_i + \mu\sum\alpha_iy_i = 0$. Thus $\lambda\mathbf{x} + \mu\mathbf{y} \in U$.
The dimension of the subspace is $n-1$ as we can freely choose $x_i$ for $i = 1, \cdots, n - 1$ and then $x_n$ is uniquely determined by the previous $x_i$'s.
\item Let $W = \{\mathbf{x}\in \R^n: \sum \alpha_ix_i = 1\}$. Then $\sum\alpha_i(\lambda x_i + \mu y_i) = \lambda + \mu \not= 1$. Therefore $W$ is not a vector subspace.
\end{enumerate}
\end{eg}
\subsection{Suffix notation}
Here we are going to introduce a powerful notation that can help us simplify a lot of things.
First of all, let $\mathbf{v}\in \R^3$. We can write $\mathbf{v} = v_1\mathbf{e}_1 + v_2\mathbf{e}_2 + v_3\mathbf{e}_3 = (v_1, v_2, v_3)$. So in general, the $i$th component of $\mathbf{v}$ is written as $v_i$. We can thus write vector equations in component form. For example, $\mathbf{a} = \mathbf{b} \rightarrow a_i = b_i$ or $\mathbf{c}=\alpha\mathbf{a} + \beta\mathbf{b} \rightarrow c_i = \alpha a_i + \beta b_i$. A vector has one \emph{free} suffix, $i$, while a scalar has none.
\begin{notation}[Einstein's summation convention]
Consider a sum $\mathbf{x}\cdot \mathbf{y} = \sum x_i y_i$. The \emph{summation convention} says that we can drop the $\sum$ symbol and simply write $\mathbf{x}\cdot \mathbf{y} = x_i y_i$. If suffixes are repeated once, summation is understood.
Note that $i$ is a dummy suffix and doesn't matter what it's called, i.e.\ $x_iy_i = x_jy_j = x_k y_k$ etc.
The rules of this convention are:
\begin{enumerate}
\item Suffix appears once in a term: free suffix
\item Suffix appears twice in a term: dummy suffix and is summed over
\item Suffix appears three times or more: WRONG!
\end{enumerate}
\end{notation}
\begin{eg}
$[\mathbf{(a\cdot b)c - (a \cdot c)b}]_i = a_jb_jc_i - a_jc_jb_i$ summing over $j$ understood.
\end{eg}
It is possible for an item to have more than one index. These objects are known as \emph{tensors}, which will be studied in depth in the IA Vector Calculus course.
Here we will define two important tensors:
\begin{defi}[Kronecker delta]\leavevmode
\[
\delta_{ij} =
\begin{cases}
1 & i = j\\
0 & i\not=j
\end{cases}.
\]
We have
\[
\begin{pmatrix}
\delta_{11} & \delta_{12} & \delta_{13}\\
\delta_{21} & \delta_{22} & \delta_{23}\\
\delta_{31} & \delta_{32} & \delta_{33}
\end{pmatrix} =
\begin{pmatrix}
1 & 0 & 0\\
0 & 1 & 0\\
0 & 0 & 1
\end{pmatrix}
= \mathbf{I}.
\]
So the Kronecker delta represents an identity matrix.
\end{defi}
\begin{eg}\leavevmode
\begin{enumerate}
\item $a_i\delta_{i1} = a_1$. In general, $a_i\delta_{ij} = a_j$ ($i$ is dummy, $j$ is free).
\item $\delta_{ij}\delta_{jk} = \delta_{ik}$
\item $\delta_{ii} = n$ if we are in $\R^n$.
\item $a_p\delta_{pq}b_q = a_pb_p$ with $p, q$ both dummy suffices and summed over.
\end{enumerate}
\end{eg}
\begin{defi}[Alternating symbol $\varepsilon_{ijk}$]
Consider rearrangements of $1, 2, 3$. We can divide them into even and odd permutations. Even permutations include $(1, 2, 3)$, $(2, 3, 1)$ and $(3, 1, 2)$. These are permutations obtained by performing two (or no) swaps of the elements of $(1, 2, 3)$. (Alternatively, it is any ``rotation'' of $(1, 2, 3)$)
The odd permutations are $(2, 1, 3)$, $(1, 3, 2)$ and $(3, 2, 1)$. They are the permutations obtained by one swap only.
Define
\[
\varepsilon_{ijk} =
\begin{cases}
+1 & ijk \text{ is even permutation}\\
-1 & ijk\text{ is odd permutation}\\
0 & \text{otherwise (i.e.\ repeated suffices)}
\end{cases}
\]
$\varepsilon_{ijk}$ has 3 free suffices.
We have $\varepsilon_{123} = \varepsilon_{231} = \varepsilon_{312} = +1$ and $\varepsilon_{213} = \varepsilon_{132} = \varepsilon_{321} = -1$. $\varepsilon_{112} = \varepsilon_{111} = \cdots = 0$.
\end{defi}
We have
\begin{enumerate}
\item $\varepsilon_{ijk}\delta_{jk} = \varepsilon_{ijj} = 0$
\item If $a_{jk} = a_{kj}$ (i.e.\ $a_{ij}$ is symmetric), then $\varepsilon_{ijk}a_{jk} = \varepsilon_{ijk}a_{kj} = -\varepsilon_{ikj}a_{kj}$. Since $\varepsilon_{ijk}a_{jk} = \varepsilon_{ikj}a_{kj}$ (we simply renamed dummy suffices), we have $\varepsilon_{ijk}a_{jk} = 0$.
\end{enumerate}
\begin{prop}
$(\mathbf{a} \times \mathbf{b})_i = \varepsilon_{ijk}a_jb_k$
\end{prop}
\begin{proof}
By expansion of formula
\end{proof}
\begin{thm}
$\varepsilon_{ijk}\varepsilon_{ipq} = \delta_{jp}\delta_{kq} - \delta_{jq}\delta_{kp}$
\end{thm}
\begin{proof}
Proof by exhaustion:
\[
\text{RHS} = \begin{cases}
+1 &\text{ if } j = p \text{ and } k = q\\
-1 &\text{ if } j = q \text{ and } k = p\\
0 &\text{ otherwise}
\end{cases}
\]
LHS: Summing over $i$, the only non-zero terms are when $j, k\not=i$ and $p, q\not=i$. If $j = p$ and $k = q$, LHS is $(-1)^2$ or $(+1)^2 = 1$. If $j = q$ and $k = p$, LHS is $(+1)(-1)$ or $(-1)(+1) = -1$. All other possibilities result in 0.
\end{proof}
Equally, we have $\varepsilon_{ijk}\varepsilon_{pqk} = \delta_{ip}\delta_{jq} - \delta_{jp}\delta_{iq}$ and $\varepsilon_{ijk}\varepsilon_{pjq} = \delta_{ip}\delta_{kq} - \delta_{iq}\delta_{kp}$.
\begin{prop}
\[
\mathbf{a\cdot (b\times c) = b\cdot(c\times a)}
\]
\end{prop}
\begin{proof}
In suffix notation, we have
\[
\mathbf{a\cdot (b\times c)} = a_i\mathbf{(b\times c)}_i = \varepsilon_{ijk}b_jc_ka_i = \varepsilon_{jki}b_jc_ka_i = \mathbf{b\cdot (c\times a)}.\qedhere
\]
\end{proof}
\begin{thm}[Vector triple product]
\[
\mathbf{a\times (b\times c) = (a\cdot c)b - (a\cdot b)c}.
\]
\end{thm}
\begin{proof}
\begin{align*}
\mathbf{[a\times(b\times c)]}_i &= \varepsilon_{ijk} a_j(b\times c)_k \\
&= \varepsilon_{ijk}\varepsilon_{kpq}a_jb_pc_q\\
&= \varepsilon_{ijk}\varepsilon_{pqk} a_jb_pc_q\\
&= (\delta_{ip}\delta_{jq}-\delta_{iq}\delta_{jp})a_jb_pc_q\\
&= a_jb_ic_j - a_jc_ib_j\\
&= \mathbf{(a\cdot c)}b_i - \mathbf{(a\cdot b)}c_i\qedhere
\end{align*}
\end{proof}
Similarly, $\mathbf{(a\times b)\times c = (a\cdot c)b - (b\cdot c)a}$.
\subsubsection*{Spherical trigonometry}
\begin{prop}
$\mathbf{(a\times b)\cdot (a\times c) = (a\cdot a)(b\cdot c) - (a\cdot b)(a\cdot c)}$.
\end{prop}
\begin{proof}
\begin{align*}
\text{LHS} &= (\mathbf{a\times b})_i(\mathbf{a\times c})_i\\
&= \varepsilon_{ijk}a_jb_k\varepsilon_{ipq} a_pc_q\\
&= (\delta_{jp}\delta_{kq} - \delta_{jq}\delta_{kp})a_jb_ka_pc_q\\
&= a_jb_k a_jc_k - a_j b_k a_k c_j\\
&= \mathbf{(a\cdot a)(b\cdot c) - (a\cdot b)(a\cdot c)}\qedhere
\end{align*}
\end{proof}
Consider the unit sphere, center $O$, with $\mathbf{a, b, c}$ on the surface.
\begin{center}
\begin{tikzpicture}
\draw circle [radius = 2.5];
\pgfpathmoveto{\pgfpoint{-0.86602cm}{-0.5cm}};
\pgfpatharcto{2cm}{2cm}{0}{0}{0}{\pgfpoint{0cm}{1cm}}\pgfusepath{stroke};
\pgfpathmoveto{\pgfpoint{0cm}{1cm}};
\pgfpatharcto{2cm}{2cm}{0}{0}{0}{\pgfpoint{0.86602cm}{-0.5cm}}\pgfusepath{stroke};
\pgfpathmoveto{\pgfpoint{0.86602cm}{-0.5cm}};
\pgfpatharcto{2cm}{2cm}{0}{0}{0}{\pgfpoint{-0.86602cm}{-0.5cm}}\pgfusepath{stroke};
\draw (0, 1) node [above] {$A$} node [circ] {};
\draw (-0.86602, -0.5) node [left] {$B$} node [circ] {};
\draw (0.86602, -0.5) node [right] {$C$} node [circ] {};
\draw (-0.5, 0.5) node [left] {$\delta(A, B)$};
\pgfpathmoveto{\pgfpoint{-0.29cm}{0.77cm}};
\pgfpatharcto{0.5cm}{0.5cm}{0}{0}{1}{\pgfpoint{0.29cm}{0.77cm}}\pgfusepath{stroke};
\draw (0, 0.5) node {$\alpha$};
\end{tikzpicture}
\end{center}
Suppose we are living on the surface of the sphere. So the distance from $A$ to $B$ is the arc length on the sphere. We can imagine this to be along the circumference of the circle through $A$ and $B$ with center $O$. So the distance is $\angle AOB$, which we shall denote by $\delta (A, B)$. So $\mathbf{a}\cdot \mathbf{b} = \cos \angle AOB = \cos \delta (A, B)$. We obtain similar expressions for other dot products. Similarly, we get $|\mathbf{a}\times \mathbf{b}| = \sin \delta(A, B)$.
\begin{align*}
\cos \alpha &= \mathbf{\frac{(a\times b)\cdot(a\times c)}{|a\times b||a\times c|}}\\
&= \mathbf{\frac{b\cdot c - (a\cdot b)(a\cdot c)}{|a\times b||a\times c|}}
\end{align*}
Putting in our expressions for the dot and cross products, we obtain
\[
\cos\alpha\sin\delta(A, B)\sin\delta(A, C) = \cos\delta(B, C) - \cos\delta(A, B)\cos\delta(A, C).
\]
This is the spherical cosine rule that applies when we live on the surface of a sphere. What does this spherical geometry look like?
Consider a spherical equilateral triangle. Using the spherical cosine rule,
\[
\cos\alpha = \frac{\cos\delta - \cos^2\delta}{\sin^2\delta} = 1 - \frac{1}{1 + \cos\delta}.
\]
Since $\cos\delta\leq 1$, we have $\cos\alpha\leq \frac{1}{2}$ and $\alpha \geq 60^\circ$. Equality holds iff $\delta = 0$, i.e.\ the triangle is simply a point. So on a sphere, each angle of an equilateral triangle is greater than $60^\circ$, and the angle sum of a triangle is greater than $180^\circ$.
\subsection{Geometry}
\subsubsection{Lines}
Any line through $\mathbf{a}$ and parallel to $\mathbf{t}$ can be written as
\[
\mathbf{x} = \mathbf{a} + \lambda\mathbf{t}.
\]
By crossing both sides of the equation with $\mathbf{t}$, we have
\begin{thm} The equation of a straight line through $\mathbf{a}$ and parallel to $\mathbf{t}$ is
\[
\mathbf{(x - a)\times t = 0}\text{ or }\mathbf{x\times t = a\times t}.
\]
\end{thm}
\subsubsection{Plane}
To define a plane $\Pi$, we need a normal $\mathbf{n}$ to the plane and a fixed point $\mathbf{b}$. For any $\mathbf{x}\in \Pi$, the vector $\mathbf{x - b}$ is contained in the plane and is thus normal to $\mathbf{n}$, i.e.\ $\mathbf{(x - b)\cdot n} = 0$.
\begin{thm}
The equation of a plane through $\mathbf{b}$ with normal $\mathbf{n}$ is given by
\[
\mathbf{x\cdot n = b\cdot n}.
\]
\end{thm}
If $\mathbf{n = \hat n}$ is a unit normal, then $d = \mathbf{x\cdot\hat{n} = b\cdot\hat{n}}$ is the perpendicular distance from the origin to $\Pi$.
Alternatively, if $\mathbf{a, b, c}$ lie in the plane, then the equation of the plane is
\[
\mathbf{(x - a)\cdot [(b - a)\times (c - a)]} = 0.
\]
\begin{eg}\leavevmode
\begin{enumerate}
\item Consider the intersection between a line $\mathbf{x\times t = a\times t}$ with the plane $\mathbf{x\cdot n = b\cdot n}$. Cross $\mathbf{n}$ on the right with the line equation to obtain
\[
\mathbf{(x\cdot n)t - (t\cdot n)x = (a\times t)\times n}
\]
Eliminate $\mathbf{x\cdot n}$ using $\mathbf{x\cdot n = b\cdot n}$
\[
\mathbf{(t\cdot n)x = (b\cdot n)t - (a\times t)\times n}
\]
Provided $\mathbf{t\cdot n}$ is non-zero, the point of intersection is
\[
\mathbf{x = \frac{(b\cdot n)t - (a\times t)\times n}{t\cdot n}}.
\]
Exercise: what if $\mathbf{t\cdot n} = 0$?
\item Shortest distance between two lines. Let $L_1$ be $(\mathbf{x} - \mathbf{a}_1)\times \mathbf{t}_1 = \mathbf{0}$ and $L_2$ be $(\mathbf{x} - \mathbf{a}_2)\times \mathbf{t}_2 = \mathbf{0}$.
The distance of closest approach $s$ is along a line perpendicular to both $L_1$ and $L_2$, i.e.\ the line of closest approach is perpendicular to both lines and thus parallel to $\mathbf{t}_1\times \mathbf{t}_2$. The distance $s$ can then be found by projecting $\mathbf{a}_1 - \mathbf{a}_2$ onto $\mathbf{t}_1\times \mathbf{t}_2$. Thus $s = \left|(\mathbf{a}_1 - \mathbf{a}_2)\cdot\frac{\mathbf{t}_1\times \mathbf{t}_2}{|\mathbf{t}_1\times \mathbf{t}_2|}\right|$.
\end{enumerate}
\end{eg}
\subsection{Vector equations}
\begin{eg}
$\mathbf{x - (x\times a)\times b = c}$. Strategy: take the dot or cross of the equation with suitable vectors. The equation can be expanded to form
\begin{align*}
\mathbf{x - (x\cdot b)a + (a\cdot b)x} &= \mathbf{c}.\\
\intertext{Dot this with $\mathbf{b}$ to obtain}
\mathbf{x\cdot b - (x\cdot b)(a\cdot b) + (a\cdot b)(x\cdot b)} &= \mathbf{c\cdot b}\\
\mathbf{x\cdot b} &= \mathbf{c\cdot b}.
\end{align*}
Substituting this into the original equation, we have
\[
\mathbf{x}(1 + \mathbf{a\cdot b}) = \mathbf{c + (c\cdot b)a}
\]
If $(1 + \mathbf{a \cdot b})$ is non-zero, then
\[
\mathbf{x} = \frac{\mathbf{c + (c\cdot b)a}}{1 + \mathbf{a\cdot b}}
\]
Otherwise, when $(1 + \mathbf{a\cdot b}) = 0$, if $\mathbf{c + (c\cdot b)a \not= 0}$, then a contradiction is reached. Otherwise, $\mathbf{x\cdot b = c\cdot b}$ is the most general solution, which is a plane of solutions.
\end{eg}
\section{Linear maps}
A \emph{linear map} is a special type of function between vector spaces. In fact, most of the time, these are the only functions we actually care about. They are maps that satisfy the property $f(\lambda \mathbf{a} + \mu \mathbf{b}) = \lambda f(\mathbf{a}) + \mu f(\mathbf{b})$.
We will first look at two important examples of linear maps --- rotations and reflections, and then study their properties formally.
\subsection{Examples}
\subsubsection{Rotation in \texorpdfstring{$\R^3$}{R3}}
In $\R^3$, first consider the simple cases where we rotate about the $z$ axis by $\theta$. We call this rotation $R$ and write $\mathbf{x}' = R(\mathbf{x})$.
Suppose that initially, $\mathbf{x} = (x, y, z) = (r\cos \phi, r\sin \phi, z)$. Then after a rotation by $\theta$, we get
\begin{align*}
\mathbf{x}' &= (r\cos(\phi + \theta), r\sin (\phi + \theta), z) \\
&= (r\cos \phi \cos \theta - r\sin \phi \sin \theta, r\sin \phi \cos \theta + r \cos \phi\sin \theta, z)\\
&= (x\cos\theta - y\sin\theta, x\sin\theta + y\cos\theta, z).
\end{align*}
We can represent this by a matrix $R$ such that $x'_i = R_{ij}x_j$. Using our formula above, we obtain
\[
R = \begin{pmatrix}
\cos\theta & -\sin\theta & 0 \\
\sin\theta & \cos\theta & 0 \\
0 & 0 & 1
\end{pmatrix}
\]
Now consider the general case where we rotate by $\theta$ about $\hat {\mathbf{n}}$.
\begin{center}
\begin{tikzpicture}
\draw [->] (0, 0) node [below] {$O$} -- (0, 3.5) node [above] {$\hat{\mathbf{n}}$};
\draw [mred, ->] (0, 0) -- (3, 2) node [right] {$A$} node [pos = 0.5, anchor = north west] {$\mathbf{x}$};
\draw [mred] (0, 2) -- (3, 2);
\node at (0, 2) [left] {$B$};
\draw [mblue] (0, 2) -- (2.5, 2.75) node [anchor = south west] {$A'$};
\draw [dashed] (2.5, 2.75) -- (2.5, 2) node [below] {$C$};
\draw [mblue, dashed, ->] (0, 0) -- (2.5, 2.75) node [pos = 0.5, anchor = south east] {$\mathbf{x}'$};
\draw (2.35, 2) -- (2.35, 2.15) -- (2.5, 2.15);
\draw (5, 2) node [left] {$B$}
-- (7, 2) node [right] {$A$}
-- (6.5, 3) node [above] {$A'$}
-- cycle ;
\draw (6.5, 3) -- (6.5, 2) node [below] {$C$};
\draw (5.5, 2) arc(0:34:.5);
\draw (5.5, 2) node [anchor = south west] {$\theta$};
\draw (6.35, 2) -- (6.35, 2.15) -- (6.5, 2.15);
\end{tikzpicture}
\end{center}
We have $\mathbf{x'} = \overrightarrow{OB} + \overrightarrow{BC} + \overrightarrow{CA'}$.
We know that
\begin{align*}
\overrightarrow{OB} &= \mathbf{(\hat{n}\cdot x)\hat{n}}\\
\overrightarrow{BC} &= \overrightarrow{BA}\cos\theta\\
&= (\overrightarrow{BO} + \overrightarrow{OA})\cos\theta \\
&= \mathbf{(-(\hat{n}\cdot x)\hat{n} + x)}\cos\theta
\end{align*}
Finally, to get $\overrightarrow{CA}$, we know that $|\overrightarrow{CA'}| = |\overrightarrow{BA'}|\sin\theta = |\overrightarrow{BA}|\sin\theta = |\mathbf{\hat{n}\times x}|\sin\theta$. Also, $\overrightarrow{CA'}$ is parallel to $\hat {\mathbf{n}}\times \mathbf{x}$. So we must have $\overrightarrow{CA'} = (\hat{\mathbf{n}} \times \mathbf{x})\sin \theta$.
Thus $\mathbf{x}' = \mathbf{x}\cos\theta + (1 - \cos\theta)\mathbf{(\hat{n}\cdot x)\hat{n} + \hat{n}\times x}\sin\theta$. In components,
\[
x_i' = x_i\cos\theta + (1 - \cos\theta)n_jx_jn_i - \varepsilon_{ijk}x_jn_k\sin\theta.
\]
We want to find an $R$ such that $x_i' = R_{ij}x_j$. So
\[
R_{ij} = \delta_{ij}\cos\theta + (1 - \cos\theta)n_in_j - \varepsilon_{ijk}n_k\sin\theta.
\]
\subsubsection{Reflection in \texorpdfstring{$\R^3$}{R3}}
Suppose we want to reflect through a plane through $O$ with normal $\hat{\mathbf{n}}$. First of all the projection of $\mathbf{x}$ onto $\hat{\mathbf{n}}$ is given by $(\mathbf{x}\cdot \hat{\mathbf{n}})\hat{\mathbf{n}}$. So we get $\mathbf{x}' = \mathbf{x} - 2\mathbf{(x\cdot \hat{n})\hat{n}}$. In suffix notation, we have $x_i' = x_i - 2x_jn_jn_i$. So our reflection matrix is $R_{ij} = \delta_{ij} - 2n_in_j$.
\begin{center}
\begin{tikzpicture}
\draw [->] (4, 1.25) -- (5, -0.5) node [below] {$\mathbf{x}'$};
\draw [fill=mblue, fill opacity=0.8] (0, 0) -- (5, 0) -- (7, 2.5) -- (2, 2.5) -- cycle;
\draw [->] (3, 1.25) -- (3, 3) node [above] {$\hat{\mathbf{n}}$};
\draw [->] (4, 1.25) -- (5, 3) node [above] {$\mathbf{x}$};
\draw [dashed] (5, 3) -- (5, 1.25);
\end{tikzpicture}
\end{center}
\subsection{Linear Maps}
\begin{defi}[Domain, codomain and image of map]
Consider sets $A$ and $B$ and mapping $T:A\to B$ such that each $x\in A$ is mapped into a unique $x' = T(x)\in B$. $A$ is the \emph{domain} of $T$ and $B$ is the \emph{co-domain} of $T$. Typically, we have $T:\R^n \to \R^m$ or $T:\C^n\to \C^m$.
\end{defi}
\begin{defi}[Linear map]
Let $V, W$ be real (or complex) vector spaces, and $T: V\to W$. Then $T$ is a \emph{linear map} if
\begin{enumerate}
\item $T(\mathbf{a + b}) = T(\mathbf{a}) + T(\mathbf{b})$ for all $\mathbf{a, b}\in V$.
\item $T(\lambda\mathbf{a}) = \lambda T(\mathbf{a})$ for all $\lambda \in \R$ (or $\C$).
\end{enumerate}
Equivalently, we have $T(\lambda\mathbf{a} + \mu\mathbf{b}) = \lambda T(\mathbf{a}) + \mu T(\mathbf{b})$.
\end{defi}
\begin{eg}\leavevmode
\begin{enumerate}
\item Consider a translation $T:\R^3 \to \R^3$ with $T(\mathbf{x}) = \mathbf{x + a}$ for some fixed, given $\mathbf{a}$. This is \emph{not} a linear map since $T(\lambda\mathbf{x} + \mu\mathbf{y}) \not= \lambda \mathbf{x} + \mu \mathbf{y} + (\lambda + \mu)\mathbf{a}$.
\item Rotation, reflection and projection are linear transformations.
\end{enumerate}
\end{eg}
\begin{defi}[Image and kernel of map]
The \emph{image} of a map $f: U\to V$ is the subset of $V$ $\{f(\mathbf{u}): \mathbf{u}\in U\}$. The \emph{kernel} is the subset of $U$ $\{\mathbf{u}\in U: f(\mathbf{u}) = \mathbf{0}\}$.
\end{defi}
\begin{eg}\leavevmode
\begin{enumerate}
\item Consider $S: \R^3 \to \R^2$ with $S(x, y, z) = (x + y, 2x - z)$. Simple yet tedious algebra shows that this is linear.
Now consider the effect of $S$ on the standard basis. $S(1, 0, 0) = (1, 2)$, $S(0, 1, 0) = (1, 0)$ and $S(0, 0, 1) = (0, -1)$. Clearly these are linearly dependent, but they do span the whole of $\R^2$. We can say $S(\R^3) = \R^2$. So the image is $\R^2$.
Now solve $S(x, y, z) = \mathbf{0}$. We need $x + y = 0$ and $2x - z = 0$. Thus $\mathbf{x} = (x, -x, 2x)$, i.e.\ it is parallel to $(1, -1, 2)$. So the set $\{\lambda(1, -1, 2):\lambda\in \R\}$ is the kernel of $S$.
\item Consider a rotation in $\R^3$. The kernel is the zero vector and the image is $\R^3$.
\item Consider a projection of $\mathbf{x}$ onto a plane with normal $\mathbf{\hat n}$. The image is the plane itself, and the kernel is any vector parallel to $\mathbf{\hat n}$
\end{enumerate}
\end{eg}
\begin{thm}
Consider a linear map $f: U\to V$, where $U, V$ are vector spaces. Then $\im (f)$ is a subspace of $V$, and $\ker (f)$ is a subspace of $U$.
\end{thm}
\begin{proof}
Both are non-empty since $f(\mathbf{0}) = \mathbf{0}$.
If $\mathbf{x, y}\in \im (f)$, then $\exists \mathbf{a, b}\in U$ such that $\mathbf{x} = f(\mathbf{a}), \mathbf{y} = f(\mathbf{b})$. Then $\lambda \mathbf{x} + \mu\mathbf {y} = \lambda f(\mathbf{a}) + \mu f(\mathbf{b}) = f(\lambda\mathbf{a} + \mu\mathbf{b})$. Now $\lambda\mathbf{a} + \mu\mathbf{b}\in U$ since $U$ is a vector space, so there is an element in $U$ that maps to $\lambda\mathbf{x}+ \mu\mathbf{y}$. So $\lambda\mathbf{x}+ \mu\mathbf{y}\in \im (f)$ and $\im (f)$ is a subspace of $V$.
Suppose $\mathbf{x, y}\in \ker(f)$, i.e.\ $f(\mathbf{x}) = f(\mathbf {y}) = \mathbf{0}$. Then $f(\lambda\mathbf{x} + \mu\mathbf{y}) = \lambda f(\mathbf{x}) + \mu f(\mathbf{y}) = \lambda \mathbf{0} + \mu\mathbf{0} = \mathbf{0}$. Therefore $\lambda\mathbf{x}+ \mu\mathbf{y} \in \ker (f)$.
\end{proof}
\subsection{Rank and nullity}
\begin{defi}[Rank of linear map]
The \emph{rank} of a linear map $f: U\to V$, denoted by $r(f)$, is the dimension of the image of $f$.
\end{defi}
\begin{defi}[Nullity of linear map]
The \emph{nullity} of $f$, denoted $n(f)$ is the dimension of the kernel of $f$.
\end{defi}
\begin{eg}
For the projection onto a plane in $\R^3$, the image is the whole plane and the rank is $2$. The kernel is a line so the nullity is $1$.
\end{eg}
\begin{thm}[Rank-nullity theorem]
For a linear map $f: U \to V$,
\[
r(f) + n(f) = \dim (U).
\]
\end{thm}
\begin{proof}
(Non-examinable) Write $\dim(U) = n$ and $n(f) = m$. If $m = n$, then $f$ is the zero map, and the proof is trivial, since $r(f) = 0 $. Otherwise, assume $m < n$.
Suppose $\{\mathbf{e}_1, \mathbf{e}_2,\cdots, \mathbf{e}_m\}$ is a basis of $\ker f$, Extend this to a basis of the whole of $U$ to get $\{\mathbf{e}_1, \mathbf{e}_2, \cdots, \mathbf{e}_m, \mathbf{e}_{m+1}, \cdots, \mathbf{e}_n\}$. To prove the theorem, we need to prove that $\{f(\mathbf{e}_{m+1}), f(\mathbf{e}_{m + 2}), \cdots f({\mathbf{e}_n})\}$ is a basis of $\im (f)$.
\begin{enumerate}
\item First show that it spans $\im (f)$. Take $\mathbf{y}\in \im(f)$. Thus $\exists \mathbf{x}\in U$ such that $\mathbf{y} = f(\mathbf{x})$. Then
\[
\mathbf{y} = f(\alpha_1\mathbf{e}_1 + \alpha_2\mathbf{e}_2 + \cdots + \alpha_n \mathbf{e}_n),
\]
since $\mathbf{e}_1, \cdots \mathbf{e}_n$ is a basis of $U$. Thus
\[
\mathbf{y} = \alpha_1f(\mathbf{e}_1) + \alpha_2f(\mathbf{e}_2) + \cdots + \alpha_m f(\mathbf{e}_m) + \alpha_{m + 1}f(\mathbf{e}_{m + 1}) + \cdots + \alpha_nf(\mathbf{e}_n).
\]
The first $m$ terms map to $\mathbf{0}$, since $\mathbf{e_1, \cdots e_m}$ is the basis of the kernel of $f$. Thus
\[
\mathbf{y} = \alpha_{m + 1} f(\mathbf{e}_{m + 1}) + \cdots + \alpha_n f(\mathbf{e}_n).
\]
\item To show that they are linearly independent, suppose
\[
\alpha_{m + 1} f(\mathbf{e}_{m + 1}) + \cdots + \alpha_n f(\mathbf{e}_n) = \mathbf{0}.
\]
Then
\[
f(\alpha_{m + 1}\mathbf{e}_{m + 1} + \cdots + \alpha_n\mathbf{e}_n) = \mathbf{0}.
\]
Thus $\alpha_{m + 1}\mathbf{e}_{m + 1} + \cdots + \alpha_n\mathbf{e}_n\in \ker (f)$. Since $\{\mathbf{e}_1, \cdots, \mathbf{e}_m\}$ span $\ker (f)$, there exist some $\alpha_1, \alpha_2, \cdots \alpha_m$ such that
\[
\alpha_{m + 1}\mathbf{e}_{m + 1} + \cdots + \alpha_n\mathbf{e}_n = \alpha_1\mathbf{e_1} + \cdots + \alpha_m\mathbf{e}_m.
\]
But $\mathbf{e}_1\cdots \mathbf{e}_n$ is a basis of $U$ and are linearly independent. So $\alpha_i = 0$ for all $i$. Then the only solution to the equation $\alpha_{m + 1} f(\mathbf{e}_{m + 1}) + \cdots + \alpha_n f(\mathbf{e}_n) = \mathbf{0}$ is $\alpha_i = 0$, and they are linearly independent by definition. \qedhere
\end{enumerate}
\end{proof}
\begin{eg}
Calculate the kernel and image of $f:\R^3\to \R^3$, defined by $f(x, y, z) = (x + y + z, 2x - y+ 5z, x + 2z)$.
First find the kernel: we've got the system of equations:
\begin{align*}
x + y + z &= 0\\
2x - y + 5z &= 0\\
x + 2z &= 0
\end{align*}
Note that the first and second equation add to give $3x + 6z = 0$, which is identical to the third. Then using the first and third equation, we have $y = -x - z = z$. So the kernel is any vector in the form $(-2z, z, z)$ and is the span of $(-2, 1, 1)$.
To find the image, extend the basis of $\ker(f)$ to a basis of the whole of $\R^3$: $\{(-2, 1, 1), (0, 1, 0), (0, 0, 1)\}$. Apply $f$ to this basis to obtain $(0, 0, 0), (1, -1, 0)$ and $(1, 5, 2)$. From the proof of the rank-nullity theorem, we know that $f(0, 1, 0)$ and $f(0, 0, 1)$ is a basis of the image.
To get the standard form of the image, we know that the normal to the plane is parallel to $(1, -1, 0)\times (1, 5, 2) \parallel (1, 1, -3)$. Since $\mathbf{0}\in \im (f)$, the equation of the plane is $x + y - 3z = 0$.
\end{eg}
\subsection{Matrices}
In the examples above, we have represented our linear maps by some object $R$ such that $x_i' = R_{ij}x_j$. We call $R$ the \emph{matrix} for the linear map. In general, let $\alpha: \R^n \to \R^m$ be a linear map, and $\mathbf{x}' = \alpha(\mathbf{x})$.
Let $\{\mathbf{e}_i\}$ be a basis of $\R^n$. Then $\mathbf{x} = x_j \mathbf{e}_j$ for some $x_j$. Then we get
\[
\mathbf{x}' = \alpha(x_j \mathbf{e}_j) = x_j \alpha(\mathbf{e}_j).
\]
So we get that
\[
x_i' = [\alpha(\mathbf{e}_j)]_i x_j.
\]
We now define $A_{ij} = [\alpha(\mathbf{e}_j)]_i$. Then $x_i' = A_{ij}x_j$. We write
\[
A = \{A_{ij}\} =
\begin{pmatrix}
A_{11} & \cdots & A_{1n}\\
\vdots & A_{ij} & \vdots\\
A_{m1} & \cdots & A_{mn}
\end{pmatrix}
\]
Here $A_{ij}$ is the entry in the $i$th row of the $j$th column. We say that $A$ is an $m\times n$ matrix, and write $\mathbf{x}' = A\mathbf{x}$.
We see that the columns of the matrix are the images of the standard basis vectors under the mapping $\alpha$.
\begin{eg}
\end{eg}
\subsubsection{Examples}
\begin{enumerate}
\item In $\R^2$, consider a reflection in a line with an angle $\theta$ to the $x$ axis. We know that $\mathbf{\hat{i}}\mapsto \cos 2\theta \mathbf{\hat{i}} + \sin 2\theta\mathbf{\hat j}$ , with $\mathbf{\hat{j}}\mapsto -\cos 2\theta \mathbf{\hat{j}} + \sin 2\theta\mathbf{\hat i}$. Then the matrix is
$\begin{pmatrix}
\cos 2\theta & \sin 2\theta\\
\sin 2\theta & -\cos 2\theta
\end{pmatrix}$.
\item In $\R^3$, as we've previously seen, a rotation by $\theta$ about the $z$ axis is given by
\[
R = \begin{pmatrix}
\cos\theta & -\sin\theta & 0 \\
\sin\theta & \cos\theta & 0 \\
0 & 0 & 1
\end{pmatrix}
\]
\item In $\R^3$, a reflection in plane with normal $\hat{\mathbf{n}}$ is given by $R_{ij} = \delta_{ij} - 2\hat n_i\hat n_j$. Written as a matrix, we have
\[
\begin{pmatrix}
1 - 2\hat n_1^2 & -2\hat n_1\hat n_2 & -2\hat n_1\hat n_3\\
-2\hat n_2\hat n_1 & 1 - 2\hat n_2^2 & -2\hat n_2\hat n_3\\
-2\hat n_3\hat n_1 & -2\hat n_3\hat n_2 & 1 - 2\hat n_3^2
\end{pmatrix}
\]
\item Dilation (``stretching'') $\alpha: \R^3 \to \R^3$ is given by a map $(x, y, z)\mapsto (\lambda x, \mu y, \nu z)$ for some $\lambda, \mu, \nu$. The matrix is
\[
\begin{pmatrix}
\lambda & 0 & 0\\
0 & \mu & 0\\
0 & 0 & \nu
\end{pmatrix}
\]
\item Shear: Consider $S:\R^3 \to \R^3$ that sheers in the $x$ direction:
\begin{center}
\begin{tikzpicture}
\draw [->] (-0.5, 0) -- (3, 0) node [right] {$x$};
\draw [->] (0, -0.5) -- (0, 2.5) node [above] {$y$};
\draw [->] (0, 0) -- (1, 1) node [above] {$\mathbf{x}$};
\draw [->] (0, 0) -- (2, 1) node [above] {$\mathbf{x}'$};
\draw [->] (1, 1.5) -- (2, 1.5) node [align=center, above] {sheer in $x$ direction};
\end{tikzpicture}
\end{center}
We have $(x, y, z)\mapsto (x + \lambda y, y, z)$. Then
\[
S =
\begin{pmatrix}
1 & \lambda & 0\\
0 & 1 & 0\\
0 & 0 & 1
\end{pmatrix}
\]
\end{enumerate}
\subsubsection{Matrix Algebra}
This part is mostly on a whole lot of definitions, saying what we can do with matrices and classifying them into different types.
\begin{defi}[Addition of matrices] Consider two linear maps $\alpha, \beta: \R^n\to \R^m$. The sum of $\alpha$ and $\beta$ is defined by
\begin{align*}
(\alpha + \beta)(\mathbf{x}) &= \alpha(\mathbf{x}) + \beta(\mathbf{x})\\
\intertext{In terms of the matrix, we have}
(A + B)_{ij}x_j &= A_{ij}x_j + B_{ij}x_j,\\
\intertext{or}
(A + B)_{ij} &= A_{ij}+B_{ij}.
\end{align*}
\end{defi}
\begin{defi}[Scalar multiplication of matrices]
Define $(\lambda\alpha)\mathbf{x} = \lambda[\alpha(\mathbf{x})]$. So $(\lambda A)_{ij} = \lambda A_{ij}$.
\end{defi}
\begin{defi}[Matrix multiplication]
Consider maps $\alpha: \R^\ell \to \R^n$ and $\beta: \R^n\to \R^m$. The composition is $\beta\alpha:\R^\ell\to\R^m$. Take $\mathbf{x}\in \R^\ell\mapsto \mathbf{x}''\in \R^m$. Then $\mathbf{x}'' = (BA)\mathbf{x} = B\mathbf{x'}$, where $\mathbf{x}' = A\mathbf{x}$. Using suffix notation, we have $x_i'' = (B\mathbf{x}')_i = b_{ik}x_k' = B_{ik}A_{kj}x_j$. But $x_i'' = (BA)_{ij}x_j$. So
\[
(BA)_{ij} = B_{ik}A_{kj}.
\]
Generally, an $m\times n$ matrix multiplied by an $n\times \ell$ matrix gives an $m\times\ell$ matrix. $(BA)_{ij}$ is given by the $i$th row of $B$ dotted with the $j$th column of $A$.
\end{defi}
Note that the number of columns of $B$ has to be equal to the number of rows of $A$ for multiplication to be defined. If $\ell = m$ as well, then both $BA$ and $AB$ make sense, but $AB\not= BA$ in general. In fact, they don't even have to have the same dimensions.
Also, since function composition is associative, we get $A(BC) = (AB)C$.
\begin{defi}[Transpose of matrix]
If $A$ is an $m\times n$ matrix, the \emph{transpose} $A^T$ is an $n\times m$ matrix defined by $(A^T)_{ij} = A_{ji}$.
\end{defi}
\begin{prop}\leavevmode
\begin{enumerate}
\item $(A^T)^T = A$.
\item If $\mathbf{x}$ is a column vector$\begin{pmatrix}x_1\\x_2\\\vdots\\x_n\end{pmatrix}$, $\mathbf{x}^T$ is a row vector $(x_1\; x_2\cdots x_n)$.
\item $(AB)^T = B^TA^T$ since $(AB)^T_{ij} = (AB)_{ji} = A_{jk}B_{ki} = B_{ki}A_{jk} $\\$= (B^T)_{ik}(A^T)_{kj} = (B^TA^T)_{ij}$.
\end{enumerate}
\end{prop}
\begin{defi}[Hermitian conjugate]
Define $A^{\dagger} = (A^T)^*$. Similarly, $(AB)^\dagger = B^\dagger A^\dagger$.
\end{defi}
\begin{defi}[Symmetric matrix]
A matrix is \emph{symmetric} if $A^T = A$.
\end{defi}
\begin{defi}[Hermitian matrix]
A matrix is \emph{Hermitian} if $A^\dagger = A$. (The diagonal of a Hermitian matrix must be real).
\end{defi}
\begin{defi}[Anti/skew symmetric matrix]
A matrix is \emph{anti-symmetric} or \emph{skew symmetric} if $A^T = -A$. The diagonals are all zero.
\end{defi}
\begin{defi}[Skew-Hermitian matrix]
A matrix is \emph{skew-Hermitian} if $A^\dagger = -A$. The diagonals are pure imaginary.
\end{defi}
\begin{defi}[Trace of matrix]
The \emph{trace} of an $n\times n$ matrix $A$ is the sum of the diagonal. $\tr(A) = A_{ii}$.
\end{defi}
\begin{eg}
Consider the reflection matrix $R_{ij} = \delta_{ij} - 2\hat n_i \hat n_j$. We have $\tr(A) = R_{ii} = 3 - 2\hat{n}\cdot \hat{n} = 3 - 2 = 1$.
\end{eg}
\begin{prop}
$\tr(BC) = \tr(CB)$
\end{prop}
\begin{proof}
$\tr(BC) = B_{ik}C_{ki} = C_{ki}B_{ik} = (CB)_{kk} = \tr(CB)$
\end{proof}
\begin{defi}[Identity matrix]
$I = \delta_{ij}$.
\end{defi}
\subsubsection{Decomposition of an \texorpdfstring{$n\times n$}{n x n} matrix}
Any $n\times n$ matrix $B$ can be split as a sum of symmetric and antisymmetric parts. Write
\[
B_{ij} = \underbrace{\frac{1}{2}(B_{ij} + B_{ji})}_{S_{ij}} + \underbrace{\frac{1}{2}(B_{ij} - B_{ji})}_{A_{ij}}.
\]
We have $S_{ij} = S_{ji}$, so $S$ is symmetric, while $A_{ji} = -A_{ij}$, and $A$ is antisymmetric. So $B = S + A$.
Furthermore , we can decompose $S$ into an isotropic part (a scalar multiple of the identity) plus a trace-less part (i.e.\ sum of diagonal $= 0$). Write
\[
S_{ij} = \underbrace{\frac{1}{n}\tr (S)\delta_{ij}}_{\text{isotropic part}} + \underbrace{(S_{ij} - \frac{1}{n}\tr(S)\delta_{ij})}_{T_{ij}}.
\]
We have $\tr(T) = T_{ii} = S_{ii} - \frac{1}{n}\tr(S)\delta_{ii} = \tr(S) - \frac{1}{n}\tr(S)(n) = 0$.
Putting all these together,
\[
B = \frac{1}{n}\tr(B)I + \left\{\frac{1}{2}(B + B^T) - \frac{1}{n}\tr(B)I\right\} + \frac{1}{2}(B - B^T).
\]
In three dimensions, we can write the antisymmetric part $A$ in terms of a single vector: we have
\[
A = \begin{pmatrix}
0 & a & -b\\
-a & 0 & c\\
b & -c & 0
\end{pmatrix}
\]
and we can consider
\[
\varepsilon_{ijk}\omega_k =
\begin{pmatrix}
0 & \omega_3 & -\omega_2\\
-\omega_3 & 0 & \omega_1\\
\omega_2 & -\omega_1 & 0
\end{pmatrix}
\]
So if we have $\mathbf{\omega} = (c, b, a)$, then $A_{ij} = \varepsilon_{ijk}\omega_k$.
This decomposition can be useful in certain physical applications. For example, if the matrix represents the stress of a system, different parts of the decomposition will correspond to different types of stresses.
\subsubsection{Matrix inverse}
\begin{defi}[Inverse of matrix]
Consider an $m\times n$ matrix $A$ and $n\times m$ matrices $B$ and $C$. If $BA = I$, then we say $B$ is the \emph{left inverse} of $A$. If $AC = I$, then we say $C$ is the \emph{right inverse} of $A$. If $A$ is square ($n\times n$), then $B = B(AC) = (BA)C = C$, i.e.\ the left and right inverses coincide. Both are denoted by $A^{-1}$, the \emph{inverse} of $A$. Therefore we have
\[
AA^{-1} = A^{-1}A = I.
\]
\end{defi}
Note that not all square matrices have inverses. For example, the zero matrix clearly has no inverse.
\begin{defi}[Invertible matrix]
If $A$ has an inverse, then $A$ is \emph{invertible}.
\end{defi}
\begin{prop}
$(AB)^{-1} = B^{-1}A^{-1}$
\end{prop}
\begin{proof}
$(B^{-1}A^{-1})(AB) = B^{-1}(A^{-1}A)B = B^{-1}B = I$.
\end{proof}
\begin{defi}[Orthogonal and unitary matrices]
A real $n\times n$ matrix is \emph{orthogonal} if $A^TA = AA^T = I$, i.e.\ $A^T = A^{-1}$. A complex $n\times n$ matrix is \emph{unitary} if $U^\dagger U = UU^\dagger = I$, i.e.\ $U^\dagger = U^{-1}$.
\end{defi}
Note that an orthogonal matrix $A$ satisfies $A_{ik}(A^T_{kj}) = \delta_{ij}$, i.e.\ $A_{ik}A_{jk} = \delta_{ij}$. We can see this as saying ``the scalar product of two distinct rows is 0, and the scalar product of a row with itself is 1''. Alternatively, the rows (and columns --- by considering $A^T$) of an orthogonal matrix form an orthonormal set.
Similarly, for a unitary matrix, $U_{ik}U_{kj}^\dagger = \delta_{ij}$, i.e.\ $u_{ik}u_{jk}^* = u_{ik}^*u_{jk} =\delta_{ij}$. i.e.\ the rows are orthonormal, using the definition of complex scalar product.
\begin{eg}\leavevmode
\begin{enumerate}
\item The reflection in a plane is an orthogonal matrix. Since $R_{ij} = \delta_{ij} - 2n_in_j$, We have
\begin{align*}
R_{ik}R_{jk} &= (\delta_{ik} - 2n_in_k)(\delta_{jk} - 2n_jn_k)\\
&= \delta_{ik}\delta_{jk} - 2\delta_{jk}n_in_k - 2\delta_{ik}n_jn_k + 2n_in_kn_jn_k\\
&= \delta_{ij} - 2n_in_j - 2n_jn_i + 4n_in_j(n_kn_k)\\
&= \delta_{ij}
\end{align*}
\item The rotation is an orthogonal matrix. We could multiply out using suffix notation, but it would be cumbersome to do so. Alternatively, denote rotation matrix by $\theta$ about $\mathbf{\hat n}$ as $R(\theta, \mathbf{\hat n})$. Clearly, $R(\theta, \mathbf{\hat n})^{-1} = R(-\theta, \mathbf{\hat n})$. We have
\begin{align*}
R_{ij}(-\theta, \mathbf{\hat n}) &= (\cos\theta)\delta_{ij} + n_in_j(1 - \cos\theta) + \varepsilon_{ijk}n_k\sin\theta\\
&= (\cos\theta)\delta_{ji} + n_jn_i(1 - \cos\theta) - \varepsilon_{jik}n_k\sin\theta\\
&= R_{ji}(\theta, \mathbf{\hat n})
\end{align*}
In other words, $R(-\theta, \mathbf{\hat n}) = R(\theta, \mathbf{\hat n})^T$. So $R(\theta, \mathbf{\hat n})^{-1} = R(\theta, \mathbf{\hat n})^T$.
\end{enumerate}
\end{eg}
\subsection{Determinants}
Consider a linear map $\alpha: \R^3\to \R^3$. The standard basis $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ is mapped to $\mathbf{e}_1', \mathbf{e}_2', \mathbf{e}_3'$ with $\mathbf{e}_i' = A\mathbf{e}_i$. Thus the unit cube formed by $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ is mapped to the parallelepiped with volume
\begin{align*}
[\mathbf{e}_1', \mathbf{e}_2', \mathbf{e}_3'] &= \varepsilon_{ijk}(e_1')_i (e_2')_j (e_3')_k\\
&= \varepsilon_{ijk} A_{i\ell} \underbrace{(e_1)_\ell}_{\delta_{1\ell}} A_{jm}\underbrace{(e_2)_m}_{\delta_{2m}} A_{kn}\underbrace{(e_3)_n}_{\delta_{3n}}\\
&= \varepsilon_{ijk} A_{i1}A_{j2}A_{k3}
\end{align*}
We call this the determinant and write as
\[
\det(A) = \begin{vmatrix} A_{11} & A_{12} & A_{13}\\A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33}\end{vmatrix}
\]
\subsubsection{Permutations}
To define the determinant for square matrices of arbitrary size, we first have to consider \emph{permutations}.
\begin{defi}[Permutation]
A \emph{permutation} of a set $S$ is a bijection $\varepsilon: S\to S$.
\end{defi}
\begin{notation}
Consider the set $S_n$ of all permutations of $1, 2, 3, \cdots , n$. $S_n$ contains $n!$ elements. Consider $\rho\in S_n$ with $i \mapsto \rho(i)$. We write
\[
\rho = \begin{pmatrix} 1 & 2 & \cdots & n\\ \rho(1) & \rho (2) &\cdots & \rho (n)\end{pmatrix}.
\]
\end{notation}
\begin{defi}[Fixed point]
A \emph{fixed point} of $\rho$ is a $k$ such that $\rho(k) = k$. e.g.\ in $\begin{pmatrix} 1 & 2 & 3 & 4\\4 & 1 & 3 & 2\end{pmatrix}$, $3$ is the fixed point. By convention, we can omit the fixed point and write as $\begin{pmatrix} 1 & 2 & 4\\ 4 & 1 & 2\end{pmatrix}$.
\end{defi}
\begin{defi}[Disjoint permutation]
Two permutations are \emph{disjoint} if numbers moved by one are fixed by the other, and vice versa. e.g.\ $\begin{pmatrix} 1 & 2 & 4 & 5 & 6\\ 5 & 6 & 1 & 4 & 2\end{pmatrix} = \begin{pmatrix}2 & 6\\ 6& 2\end{pmatrix}\begin{pmatrix}1 & 4 & 5\\5 & 1 & 4\end{pmatrix}$, and the two cycles on the right hand side are disjoint. Disjoint permutations commute, but in general non-disjoint permutations do not.
\end{defi}
\begin{defi}[Transposition and $k$-cycle]
$\begin{pmatrix} 2 & 6 \\ 6 & 2\end{pmatrix}$ is a \emph{2-cycle} or a \emph{transposition}, and we can simply write $(2\; 6)$. $\begin{pmatrix}1 & 4 & 5\\5 & 1 & 4\end{pmatrix}$ is a 3-cycle, and we can simply write $(1\; 5\; 4)$. (1 is mapped to 5; 5 is mapped to 4; 4 is mapped to 1)
\end{defi}
\begin{prop}
Any $q$-cycle can be written as a product of 2-cycles.
\end{prop}
\begin{proof}
$(1\; 2\; 3\; \cdots \; n) = (1\; 2)(2\; 3)(3\; 4)\cdots (n-1\; n)$.
\end{proof}
\begin{defi}[Sign of permutation]
The \emph{sign} of a permutation $\varepsilon(\rho)$ is $(-1)^r$, where $r$ is the number of 2-cycles when $\rho$ is written as a product of 2-cycles. If $\varepsilon(\rho) = +1$, it is an even permutation. Otherwise, it is an odd permutation. Note that $\varepsilon(\rho\sigma) = \varepsilon(\rho)\varepsilon(\sigma)$ and $\varepsilon(\rho^{-1}) = \varepsilon(\rho)$.
\end{defi}
The proof that this is well-defined can be found in IA Groups.
\begin{defi}[Levi-Civita symbol]
The \emph{Levi-Civita} symbol is defined by
\[
\varepsilon_{j_1j_2\cdots j_n} = \begin{cases}+1 & \text{ if } j_1j_2j_3\cdots j_n\text{ is an even permutation of }1, 2, \cdots n\\
-1 & \text{ if it is an odd permutation}\\
0 & \text{ if any 2 of them are equal}
\end{cases}
\]
Clearly, $\varepsilon_{\rho(1)\rho(2)\cdots \rho(n)} = \varepsilon(\rho)$.
\end{defi}
\begin{defi}[Determinant]
The \emph{determinant} of an $n\times n$ matrix $A$ is defined as:
\[
\det (A) = \sum_{\sigma\in S_n} \varepsilon(\sigma) A_{\sigma(1)1}A_{\sigma(2)2}\cdots A_{\sigma(n)n},
\]
or equivalently,
\[
\det(A) = \varepsilon_{j_1j_2\cdots j_n}A_{j_11}A_{j_22}\cdots A_{j_nn}.
\]
\end{defi}
\begin{prop}
\[
\begin{vmatrix}
a & b\\
c & d
\end{vmatrix} = ad - bc
\]
\end{prop}
\subsubsection{Properties of determinants}
\begin{prop}
$\det (A) = \det (A^T)$.
\end{prop}
\begin{proof}
Take a single term $A_{\sigma(1)1}A_{\sigma(2)2}\cdots A_{\sigma(n)n}$ and let $\rho$ be another permutation in $S_n$. We have
\[
A_{\sigma(1)1}A_{\sigma(2)2}\cdots A_{\sigma(n)n} = A_{\sigma(\rho(1))\rho(1)}A_{\sigma(\rho(2))\rho(2)}\cdots A_{\sigma(\rho(n))\rho(n)}
\]
since the right hand side is just re-ordering the order of multiplication. Choose $\rho = \sigma^{-1}$ and note that $\varepsilon(\sigma) = \varepsilon(\rho)$. Then
\[
\det(A) = \sum_{\rho\in S_n} \varepsilon(\rho) A_{1\rho(1)}A_{2\rho(2)}\cdots A_{n\rho(n)} = \det (A^T). \qedhere
\]
\end{proof}
\begin{prop}
If matrix $B$ is formed by multiplying every element in a single row of $A$ by a scalar $\lambda$, then $\det (B) = \lambda \det (A)$. Consequently, $\det (\lambda A) = \lambda^n \det(A)$.
\end{prop}
\begin{proof}
Each term in the sum is multiplied by $\lambda$, so the whole sum is multiplied by $\lambda^n$.
\end{proof}
\begin{prop}
If 2 rows (or 2 columns) of $A$ are identical, the determinant is $0$.
\end{prop}
\begin{proof}
wlog, suppose columns 1 and 2 are the same. Then
\[
\det (A) = \sum_{\sigma\in S_n} \varepsilon(\sigma) A_{\sigma(1)1}A_{\sigma(2)2}\cdots A_{\sigma(n)n}.
\]
Now write an arbitrary $\sigma$ in the form $\sigma = \rho(1\; 2)$. Then $\varepsilon(\sigma) = \varepsilon(\rho)\varepsilon((1\; 2)) = -\varepsilon(\rho)$. So
\[
\det (A) = \sum_{\rho\in S_n} -\varepsilon(\rho) A_{\rho(2)1}A_{\rho(1)2}A_{\rho(3)3}\cdots A_{\rho(n)n}.
\]
But columns 1 and 2 are identical, so $A_{\rho(2)1} = A_{\rho(2)2}$ and $A_{\rho(1)2} = A_{\rho(1)1}$. So $\det (A) = -\det (A)$ and $\det(A) = 0$.
\end{proof}
\begin{prop}
If 2 rows or 2 columns of a matrix are linearly dependent, then the determinant is zero.
\end{prop}
\begin{proof}
Suppose in $A$, $($column $r) + \lambda($column $s) = 0$. Define
\[
B_{ij} =
\begin{cases}
A_{ij} & j\not= r\\
A_{ij} + \lambda A_{is} & j = r
\end{cases}.
\]
Then $\det (B) = \det(A) + \lambda \det($matrix with column $r =$ column $s) = \det(A)$. Then we can see that the $r$th column of $B$ is all zeroes. So each term in the sum contains one zero and $\det (A) = \det (B) = 0$.
\end{proof}
Even if we don't have linearly dependent rows or columns, we can still run the exact same proof as above, and still get that $\det (B) = \det (A)$. Linear dependence is only required to show that $\det (B) = 0$. So in general, we can add a linear multiple of a column (or row) onto another column (or row) without changing the determinant.
\begin{prop}
Given a matrix $A$, if $B$ is a matrix obtained by adding a multiple of a column (or row) of $A$ to another column (or row) of $A$, then $\det A = \det B$.
\end{prop}
\begin{cor}
Swapping two rows or columns of a matrix negates the determinant.
\end{cor}
\begin{proof}
We do the column case only. Let $A = (\mathbf{a}_1 \cdots \mathbf{a}_i \cdots \mathbf{a}_j \cdots \mathbf{a}_n)$. Then
\begin{align*}
\det (\mathbf{a}_1 \cdots \mathbf{a}_i \cdots \mathbf{a}_j \cdots \mathbf{a}_n)&=\det(\mathbf{a}_1 \cdots \mathbf{a}_i + \mathbf{a}_j \cdots \mathbf{a}_j \cdots \mathbf{a}_n)\\
&=\det (\mathbf{a}_1 \cdots \mathbf{a}_i + \mathbf{a}_j \cdots \mathbf{a}_j - (\mathbf{a}_i + \mathbf{a}_j) \cdots \mathbf{a}_n)\\
&=\det (\mathbf{a}_1 \cdots \mathbf{a}_i + \mathbf{a}_j \cdots -\mathbf{a}_i \cdots \mathbf{a}_n)\\
&=\det (\mathbf{a}_1 \cdots \mathbf{a}_j \cdots -\mathbf{a}_i \cdots \mathbf{a}_n)\\
&=-\det (\mathbf{a}_1 \cdots \mathbf{a}_j \cdots \mathbf{a}_i \cdots \mathbf{a}_n)
\end{align*}
Alternatively, we can prove this from the definition directly, using the fact that the sign of a transposition is $-1$ (and that the sign is multiplicative).
\end{proof}
\begin{prop}
$\det(AB) = \det(A)\det(B)$.
\end{prop}
\begin{proof}
First note that $\sum_\sigma \varepsilon(\sigma)A_{\sigma(1)\rho(1)}A_{\sigma(2)\rho(2)} = \varepsilon(\rho)\det (A)$, i.e.\ swapping columns (or rows) an even/odd number of times gives a factor $\pm 1$ respectively. We can prove this by writing $\sigma = \mu \rho$.
Now
\begin{align*}
\det AB &= \sum_\sigma \varepsilon(\sigma)(AB)_{\sigma(1)1}(AB)_{\sigma(2)2}\cdots (AB)_{\sigma(n)n}\\
&= \sum_\sigma \varepsilon(\sigma) \sum_{k_1,k_2,\cdots,k_n}^{n} A_{\sigma(1)k_1}B_{k_11}\cdots A_{\sigma(n)k_n}B_{k_nn}\\
&= \sum_{k_1,\cdots,k_n}B_{k_11}\cdots B_{k_nn}\underbrace{\sum_\sigma \varepsilon(\sigma) A_{\sigma(1)k_1}A_{\sigma(2)k_2}\cdots A_{\sigma(n)k_n}}_{S}
\intertext{Now consider the many different $S$'s. If in $S$, two of $k_1$ and $k_n$ are equal, then $S$ is a determinant of a matrix with two columns the same, i.e.\ $S = 0$. So we only have to consider the sum over distinct $k_i$s. Thus the $k_i$s are are a permutation of $1, \cdots n$, say $k_i =\rho (i)$. Then we can write}
\det AB &= \sum_\rho B_{\rho(1)1}\cdots B_{\rho(n)n} \sum_\sigma \varepsilon(\sigma) A_{\sigma(1)\rho(1)} \cdots A_{\sigma(n)\rho(n)}\\
&= \sum_\rho B_{\rho(1)1}\cdots B_{\rho(n)n} (\varepsilon(\rho)\det A)\\
&= \det A\sum_\rho \varepsilon(\rho) B_{\rho(1)1}\cdots B_{\rho(n)n}\\
&= \det A\det B \qedhere
\end{align*}
\end{proof}
\begin{cor}
If $A$ is orthogonal, $\det A = \pm 1$.
\end{cor}
\begin{proof}
\begin{align*}
AA^T &= I\\
\det AA^T &= \det I\\
\det A\det A^T &= 1\\
(\det A)^2 &= 1\\
\det A &= \pm 1 \qedhere
\end{align*}
\end{proof}
\begin{cor}
If $U$ is unitary, $|\det U| = 1$.
\end{cor}
\begin{proof}
We have $\det U^\dagger = (\det U^T)^* = \det(U)^*$. Since $UU^\dagger = I$, we have $\det(U)\det(U)^* = 1$.
\end{proof}
\begin{prop}
In $\R^3$, orthogonal matrices represent either a rotation ($\det = 1$) or a reflection ($\det = -1$).
\end{prop}
\subsubsection{Minors and Cofactors}
\begin{defi}[Minor and cofactor]
For an $n\times n$ matrix $A$, define $A^{ij}$ to be the $(n - 1)\times (n - 1)$ matrix in which row $i$ and column $j$ of $A$ have been removed.
The \emph{minor} of the $ij$th element of $A$ is $M_{ij} = \det A^{ij}$
The \emph{cofactor} of the $ij$th element of $A$ is $\Delta_{ij} = (-1)^{i + j}M_{ij}$.
\end{defi}
\begin{notation}
We use $\bar \;$ to denote a symbol which has been missed out of a natural sequence.
\end{notation}
\begin{eg}
$1, 2, 3, 5 = 1, 2, 3, \bar 4, 5$.
\end{eg}
The significance of these definitions is that we can use them to provide a systematic way of evaluating determinants. We will also use them to find inverses of matrices.
\begin{thm}[Laplace expansion formula]
For any particular fixed $i$,
\[
\det A = \sum_{j = 1}^{n} A_{ji}\Delta_{ji}.
\]
\end{thm}
\begin{proof}
\[
\det A = \sum_{j_i = 1}^nA_{j_ii} \sum_{j_1, \cdots, \overline{j_i}, \cdots j_n}^n \varepsilon_{j_1j_2\cdots j_n} A_{j_11}A_{j_22}\cdots \overline{A_{j_ii}}\cdots A_{j_nn}
\]
Let $\sigma \in S_n$ be the permutation which moves $j_i$ to the $i$th position, and leave everything else in its natural order, i.e.\setcounter{MaxMatrixCols}{11}
\[
\sigma =
\begin{pmatrix}
1 &\cdots& i & i + 1 & i + 2 & \cdots &j_i - 1&j_i& j_i + 1 & \cdots & n\\
1 & \cdots & j_i & i & i + 1 & \cdots & j_i - 2 & j_i - 1 & j_i + 1 & \cdots & n
\end{pmatrix}
\]
if $j_i > i$, and similarly for other cases. To perform this permutation, $|i - j_i|$ transpositions are made. So $\varepsilon(\sigma) = (-1)^{i - j_i}$.
Now consider the permutation $\rho\in S_n$
\[
\rho =
\begin{pmatrix}
1 & \cdots & \cdots & \bar {j_i} & \cdots & n\\
j_1 & \cdots & \bar{j_i} & \cdots & \cdots & j_n\\
\end{pmatrix}
\]
The composition $\rho\sigma$ reorders $(1, \cdots, n)$ to $(j_1, j_2,\cdots, j_n)$. So $\varepsilon(\rho\sigma) = \varepsilon_{j_1\cdots j_n} = \varepsilon(\rho)\varepsilon(\sigma) = (-1)^{i - j_i} \varepsilon_{j_1\cdots \bar j_i \cdots j_n}$. Hence the original equation becomes
\begin{align*}
\det A &= \sum_{j_i = 1}^n A_{j_i i} \sum_{j_1\cdots \bar j_i\cdots j_n}(-1)^{i - j_i} \varepsilon_{j_1\cdots \bar j_i \cdots j_n} A_{j_11}\cdots \overline{A_{j_ii}} \cdots A_{j_nn}\\
&= \sum_{j_i = 1}^n A_{j_ii} (-1)^{i - j_i}M_{j_ii}\\
&= \sum_{j_i = 1}^{n} A_{j_ii}\Delta_{j_ii}\\
&= \sum_{j = 1}^{n} A_{ji}\Delta_{ji} \qedhere
\end{align*} % Check!
\end{proof}
\begin{eg}
$\det A = \begin{vmatrix}2 & 4 & 2\\ 3 & 2 & 1\\ 2 & 0 & 1\end{vmatrix}$. We can pick the first row and have
\begin{align*}
\det A&= 2\begin{vmatrix}2 & 1\\0 & 1 \end{vmatrix} - 4\begin{vmatrix} 3 & 1\\ 2 & 1\end{vmatrix} + 2\begin{vmatrix}3 & 2 \\ 2 & 0\end{vmatrix}\\
&= 2(2 - 0) - 4(3 - 2) + 2(0 - 4)\\
&= -8.
\end{align*}
Alternatively, we can pick the second column and have
\begin{align*}
\det A&= -4\begin{vmatrix}3 & 1\\2 & 1 \end{vmatrix} + 2\begin{vmatrix} 2 & 2\\ 2 & 1\end{vmatrix} - 0\begin{vmatrix}2 & 2 \\ 3 & 1\end{vmatrix}\\
&= -4(3 - 2) + 2(2 - 4) - 0\\
&= -8.
\end{align*}
\end{eg}
In practical terms, we use a combination of properties of determinants with a sensible choice of $i$ to evaluate $\det(A)$.
\begin{eg}
Consider $\begin{vmatrix}1 & a & a^2\\1 & b & b^2\\1 & c & c^2 \end{vmatrix}$. Row 1 - row 2 gives
\[
\begin{vmatrix}0 & a - b & a^2 - b^2\\1 & b & b^2\\1 & c & c^2 \end{vmatrix} = (a - b)\begin{vmatrix}0 & 1 & a + b\\1 & b & b^2\\1 & c & c^2 \end{vmatrix}.
\]
Do row 2 - row 3. We obtain
\[
(a - b)(b - c)\begin{vmatrix}0 & 1 & a + b\\0 & 1 & b + c\\1 & c & c^2 \end{vmatrix}.
\]
Row 1 - row 2 gives
\[
(a - b)(b - c)(a - c)\begin{vmatrix}0 & 0 & 1\\0 & 1 & b + c\\1 & c & c^2 \end{vmatrix} = (a - b)(b - c)(a - c).
\]
\end{eg}
\section{Matrices and linear equations}
\subsection{Simple example, \texorpdfstring{$2\times 2$}{2 x 2}}
Consider the system of equations
\begin{align*}
A_{11}x_1 + A_{12}x_2 &= d_1\tag{a}\\
A_{21}x_1 + A_{22}x_2 &= d_2\tag{b}.
\intertext{We can write this as}
A\mathbf{x} &= \mathbf{d}.
\end{align*}
If we do (a)$\times A_{22} - $(b)$\times A_{12}$ and similarly the other way round, we obtain
\begin{align*}
(A_{11}A_{22} - A_{12}A_{21})x_1 &= A_{22}d_1 - A_{12}d_2\\
\underbrace{(A_{11}A_{22} - A_{12}A_{21})}_{\det A}x_2 &= A_{11}d_2 - A_{21}d_1
\end{align*}
Dividing by $\det A$ and writing in matrix form, we have
\[
\begin{pmatrix}
x_1\\
x_2
\end{pmatrix} = \frac{1}{\det A}
\begin{pmatrix}
A_{22} & - A_{12}\\
-A_{21} & A_{11}
\end{pmatrix}
\begin{pmatrix}
d_1\\
d_2
\end{pmatrix}
\]
On the other hand, given the equation $A\mathbf{x} = \mathbf{d}$, if $A^{-1}$ exists, then by multiplying both sides on the left by $A^{-1}$, we obtain $\mathbf{x} = A^{-1}\mathbf{d}$.
Hence, we have constructed $A^{-1}$ in the $2\times 2$ case, and shown that the condition for its existence is $\det A \not= 0$, with
\[
A^{-1} =\frac{1}{\det A}\begin{pmatrix}A_{22} & - A_{12}\\-A_{21} & A_{11}\end{pmatrix}
\]
\subsection{Inverse of an \texorpdfstring{$n\times n$}{n x n} matrix}
For larger matrices, the formula for the inverse is similar, but slightly more complicated (and costly to evaluate). The key to finding the inverse is the following:
\begin{lemma}
$\sum A_{ik}\Delta_{jk} = \delta_{ij}\det A$.
\end{lemma}
\begin{proof}
If $i \not= j$, then consider an $n\times n$ matrix $B$, which is identical to $A$ except the $j$th row is replaced by the $i$th row of $A$. So $\Delta_{jk}$ of $B = \Delta_{jk}$ of $A$, since $\Delta_{jk}$ does not depend on the elements in row $j$. Since $B$ has a duplicate row, we know that
\[
0 = \det B = \sum_{k = 1}^n B_{jk}\Delta_{jk} = \sum_{k = 1}^n A_{ik}\Delta_{jk}.
\]
If $i = j$, then the expression is $\det A$ by the Laplace expansion formula.
\end{proof}
\begin{thm}
If $\det A \not =0$, then $A^{-1}$ exists and is given by
\[
(A^{-1})_{ij} = \frac{\Delta_{ji}}{\det A}.
\]
\end{thm}
\begin{proof}
\[
(A^{-1})_{ik}A_{kj} = \frac{\Delta_{ki}}{\det A} A_{kj} = \frac{\delta_{ij}\det A}{\det A} = \delta_{ij}.
\]
So $A^{-1}A = I$.
\end{proof}
The other direction is easy to prove. If $\det A = 0$, then it has no inverse, since for any matrix $B$, $\det AB = 0$, and hence $AB$ cannot be the identity.
\begin{eg}
Consider the shear matrix $S_\lambda = \begin{pmatrix} 1 & \lambda & 0 \\ 0 & 1 & 0\\ 0 & 0 & 1\end{pmatrix}$. We have $\det{S_\lambda} = 1$. The cofactors are
\begin{center}
\begin{tabular}{ccc}
$\Delta_{11} = 1$ & $\Delta_{12} = 0$ & $\Delta_{13} = 0$ \\
$\Delta_{21} - \lambda$ & $\Delta_{22} = 1$ & $\Delta_{23} = 0$ \\
$\Delta_{31} = 0$ & $\Delta_{32} = 0$ & $\Delta_{33} = 1$
\end{tabular}
\end{center}
So $S_\lambda^{-1} = \begin{pmatrix} 1 & -\lambda & 0\\ 0 & 1 & 0\\ 0 & 0 & 1\end{pmatrix}$.
\end{eg}
How many arithmetic operations are involved in calculating the inverse of an $n\times n$ matrix? We just count multiplication operations since they are the most time-consuming. Suppose that calculating $\det A$ takes $f_n$ multiplications. This involves $n$ $(n - 1)\times (n - 1)$ determinants, and you need $n$ more multiplications to put them together. So $f_n = nf_{n -1} + n$. So $f_n = O(n!)$ (in fact $f_n \approx (1 + e)n!$).
To find the inverse, we need to calculate $n^2$ cofactors. Each is a $n -1$ determinant, and each takes $O((n - 1)!)$. So the time complexity is $O(n^2 (n - 1)!) = O(n\cdot n!)$.
This is incredibly slow. Hence while it is theoretically possible to solve systems of linear equations by inverting a matrix, sane people do not do so in general. Instead, we develop certain better methods to solve the equations. In fact, the ``usual'' method people use to solve equations by hand only has complexity $O(n^3)$, which is a much better complexity.
\subsection{Homogeneous and inhomogeneous equations}
Consider $A\mathbf{x} = \mathbf{b}$ where $A$ is an $n\times n$ matrix, $\mathbf{x}$ and $\mathbf{b}$ are $n\times 1$ column vectors.
\begin{defi}[Homogeneous equation]
If $\mathbf{b} = \mathbf{0}$, then the system is \emph{homogeneous}. Otherwise, it's \emph{inhomogeneous}.
\end{defi}
Suppose $\det A\not= 0$. Then there is a unique solution $\mathbf{x} = A^{-1}\mathbf{b}$ ($\mathbf{x} = \mathbf{0}$ for homogeneous).
How can we understand this result? Recall that $\det A\not= 0$ means that the columns of $A$ are linearly independent. The columns are the images of the standard basis, $\mathbf{e}_i' = A\mathbf{e_i}$. So $\det A\not = 0$ means that $\mathbf{e}_i'$ are linearly independent and form a basis of $\R^n$. Therefore the image is the whole of $\R^n$. This automatically ensures that $\mathbf{b}$ is in the image, i.e.\ there is a solution.
To show that there is exactly one solution, suppose $\mathbf{x}$ and $\mathbf{x}'$ are both solutions. Then $A\mathbf{x} = A\mathbf{x}' = \mathbf{b}$. So $A(\mathbf{x} - \mathbf{x}') = \mathbf{0}$. So $\mathbf{x} - \mathbf{x}'$ is in the kernel of $A$. But since the rank of $A$ is $n$, by the rank-nullity theorem, the nullity is $0$. So the kernel is trivial. So $\mathbf{x} - \mathbf{x}' = \mathbf{0}$, i.e.\ $\mathbf{x} = \mathbf{x}'$.
\subsubsection{Gaussian elimination}
Consider a general solution
\begin{align*}
A_{11}x_1 + A_{12}x_2 + \cdots + A_{1n}x_n &= d_1\\
A_{21}x_1 + A_{22}x_2 + \cdots + A_{2n}x_n &= d_2\\
\vdots&\\
A_{m1}x_1 + A_{m2}x_2 + \cdots + A_{mn}x_n &= d_m
\end{align*}
So we have $m$ equations and $n$ unknowns.
Assume $A_{11}\not=0$ (if not, we can re-order the equations). We can use the first equation to eliminate $x_1$ from the remaining $(m - 1)$ equations. Then use the second equation to eliminate $x_2$ from the remaining $(m - 2)$ equations (if anything goes wrong, just re-order until things work). Repeat.
We are left with
\begin{align*}
A_{11}x_1 + A_{12}x_2 + A_{13}x_3 + \cdots + A_{1n}x_n &= d_1\\
A_{22}^{(2)}x_2 + A_{23}^{(2)}x_3 + \cdots + A_{2n}^{(2)}x_n &= d_2\\
\vdots&\\
A_{rr}^{(r)}x_r + \cdots + A_{rn}^{(r)}x_n &= d_r\\
0 &= d_{r + 1}^{(r)}\\
\vdots&\\
0 &= d_{m}^{(r)}
\end{align*}
Here $A_{ii}^{(i)} \not=0$ (which we can achieve by re-ordering), and the superfix $(i)$ refers to the ``version number'' of the coefficient, e.g.\ $A_{22}^{(2)}$ is the second version of the coefficient of $x_2$ in the second row.
Let's consider the different possibilities:
\begin{enumerate}
\item $r < m$ and at least one of $d^{(r)}_{r + 1}, \cdots d_m^{(r)} \not= 0$. Then a contradiction is reached. The system is inconsistent and has no solution. We say it is \emph{overdetermined}.
\begin{eg}
Consider the system
\begin{align*}
3x_1 + 2x_2 + x_3 &= 3\\
6x_1 + 3x_2 + 3x_3 &= 0\\
6x_1 + 2x_2 + 4x_3 &= 6
\intertext{This becomes }
3x_1 + 2x_2 + x_3 &= 3\\
0 - x_2 + x_3 &= -6\\
0 - 2x_2 + 2x_3 &= 0
\intertext{And then}
3x_1 + 2x_2 + x_3 &= 3\\
0 - x_2 + x_3 &= -6\\
0 &= 12
\end{align*}
We have $d_3^{(3)} = 12 = 0$ and there is no solution.
\end{eg}
\item If $r = n\leq m$, and all $d_{r + i}^{(r)} = 0$. Then from the $n$th equation, there is a unique solution for $x_n = d_{n}^{(n)}/A_{nn}^{(n)}$, and hence for all $x_i$ by back substitution. This system is \emph{determined}.
\begin{eg}
\begin{align*}
2x_1 + 5x_2 &= 2\\
4x_1 + 3x_2 &= 11\\
\intertext{This becomes}
2x_1 + 5x_2 &= 2\\
-7x_2 &= 7
\end{align*}
So $x_2 = -1$ and thus $x_1 = 7/2$.
\end{eg}
\item If $r < n$ and $d_{r + i}^{(r)} = 0$, then $x_{r + 1}, \cdots x_n$ can be freely chosen, and there are infinitely many solutions. System is \emph{under-determined}. e.g.
\begin{align*}
x_1 + x_2 &= 1\\
2x_1 + 2x_2 &= 2
\intertext{Which gives}
x_1 + x_2 &= 1\\
0 &= 0
\end{align*}
So $x_1 = 1 - x_2$ is a solution for any $x_2$.
\end{enumerate}
In the $n = m$ case, there are $O(n^3)$ operations involved, which is much less than inverting the matrix. So this is an efficient way of solving equations.
This is also be related to the determinant. Consider the case where $m = n$ and $A$ is square. Since row operations do not change the determinant and swapping rows give a factor of $(-1)$. So
\[
\det A = (-1)^k
\begin{vmatrix}
A_{11} &A_{12}&\cdots& \cdots& \cdots & A_{1n}\\
0 & A_{22}^{(2)} &\cdots& \cdots & \cdots & A_{2n}^{(n)} \\
\vdots & \vdots &\ddots & \vdots & \vdots & \vdots\\
0 & 0 & \cdots & A_{rr}^{(r)} & \cdots & A_{rn}^{(n)}\\
0 & 0 & \cdots & 0 & 0 & \cdots\\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots
\end{vmatrix}
\]
This determinant is an \emph{upper triangular} one (all elements below diagonal are $0$) and the determinant is the product of its diagonal elements.
Hence if $r < n$ (and $d_i^{(r)} = 0$ for $i > r$), then we have case (ii) and the $\det A = 0$. If $r = n$, then $\det A = (-1)^k A_{11}A_{22}^{(2)}\cdots A_{nn}^{(n)} \not= 0$.
\subsection{Matrix rank}
Consider a linear map $\alpha: \R^n\to \R^m$. Recall the rank $r(\alpha)$ is the dimension of the image. Suppose that the matrix $A$ is associated with the linear map. We also call $r(A)$ the \emph{rank} of $A$.
Recall that if the standard basis is $\mathbf{e}_1,\cdots \mathbf{e}_n$, then $A\mathbf{e}_1, \cdots, A\mathbf{e}_n$ span the image (but not necessarily linearly independent).
Further, $A\mathbf{e}_1, \cdots, A\mathbf{e}_n$ are the columns of the matrix $A$. Hence $r(A)$ is the number of linearly independent columns.
\begin{defi}[Column and row rank of linear map]
The \emph{column rank} of a matrix is the maximum number of linearly independent columns.
The \emph{row rank} of a matrix is the maximum number of linearly independent rows.
\end{defi}
\begin{thm}
The column rank and row rank are equal for any $m\times n$ matrix.
\end{thm}
\begin{proof}
Let $r$ be the row rank of $A$. Write the biggest set of linearly independent rows as $\mathbf{v}_1^T, \mathbf{v}_2^T, \cdots \mathbf{v}_r^T$ or in component form $\mathbf{v}_k^T = (v_{k1}, v_{k2}, \cdots, v_{kn})$ for $k = 1, 2, \cdots, r$.
Now denote the $i$th row of $A$ as $\mathbf{r}_i^T = (A_{i1}, A_{i2}, \cdots A_{in})$.
Note that every row of $A$ can be written as a linear combination of the $\mathbf{v}$'s. (If $\mathbf{r_i}$ cannot be written as a linear combination of the $\mathbf{v}$'s, then it is independent of the $\mathbf{v}$'s and $\mathbf{v}$ is not the maximum collection of linearly independent rows) Write
\[
\mathbf{r}_i^T = \sum_{k = 1}^r C_{ik}\mathbf{v}_{k}^T.
\]
For some coefficients $C_{ik}$ with $1 \leq i\leq m$ and $1 \leq k \leq r$.
Now the elements of $A$ are
\[
A_{ij} = (\mathbf{r}_i)^T_j = \sum_{k = 1}^r C_{ik}(\mathbf{v}_k)_j,
\]
or
\[
\begin{pmatrix}
A_{1j}\\
A_{2j}\\
\vdots\\
A_{mj}
\end{pmatrix} = \sum_{k = 1}^r {\mathbf{v}_k}_j
\begin{pmatrix}
C_{1k}\\
C_{2k}\\\
\vdots\\
C_{mk}
\end{pmatrix}
\]
So every column of $A$ can be written as a linear combination of the $r$ column vectors $\mathbf{c}_k$. Then the column rank of $A \leq r$, the row rank of $A$.
Apply the same argument to $A^T$ to see that the row rank is $\leq$ the column rank.
\end{proof}
\subsection{Homogeneous problem \texorpdfstring{$A\mathbf{x} = \mathbf{0}$}{Ax = 0}}
We restrict our attention to the square case, i.e.\ number of unknowns = number of equations. Here $A$ is an $n\times n$ matrix. We want to solve $A\mathbf{x} = \mathbf{0}$.
First of all, if $\det A\not=0$, then $A^{-1}$ exists and $\mathbf{x}^{-1} = A^{-1}\mathbf{0} = \mathbf{0}$, which is the unique solution. Hence if $A\mathbf{x} = \mathbf{0}$ with $\mathbf{x} \not= \mathbf{0}$, then $\det A = 0$.
\subsubsection{Geometrical interpretation}
We consider a $3\times 3$ matrix
\[
A = \begin{pmatrix} \mathbf{r}_1^T\\\mathbf{r}_2^T\\\mathbf{r}_3^T\end{pmatrix}
\]
$A\mathbf{x} = \mathbf{0}$ means that $\mathbf{r}_i\cdot \mathbf{x} = 0$ for all $i$. Each equation $\mathbf{r}_i\cdot \mathbf{x} = 0$ represents a plane through the origin. So the solution is the intersection of the three planes.
There are three possibilities:
\begin{enumerate}
\item If $\det A =[\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3] \not= 0$, span$\{\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3\} = \R^3$ and thus $r(A) = 3$. By the rank-nullity theorem, $n(A) = 0$ and the kernel is $\{\mathbf{0}\}$. So $\mathbf{x} = \mathbf{0}$ is the unique solution.
\item If $\det A = 0$, then $\dim(\spn\{\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3\}) = 1$ or $2$.
\begin{enumerate}
\item If rank $= 2$, wlog assume $\mathbf{r}_1, \mathbf{r}_2$ are linearly independent. So $\mathbf{x}$ lies on the intersection of two planes $\mathbf{x}\cdot \mathbf{r}_1 = 0$ and $\mathbf{x}\cdot \mathbf{r}_2 = 0$, which is the line $\{\mathbf{x}\in \R^3: \mathbf{x} = \lambda \mathbf{r}_1\times \mathbf{r}_2\}$ (Since $\mathbf{x}$ lies on the intersection of the two planes, it has to be normal to the normals of both planes). All such points on this line also satisfy $\mathbf{x}\cdot\mathbf{r}_3 = 0$ since $\mathbf{r}_3$ is a linear combination of $\mathbf{r}_1$ and $\mathbf{r}_2$. The kernel is a line, $n(A) = 1$.
\item If rank = 1, then $\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3$ are parallel. So $\mathbf{x}\cdot \mathbf{r}_1 = 0 \Rightarrow \mathbf{x}\cdot \mathbf{r}_2 = \mathbf{x}\cdot \mathbf{r}_3 = 0$. So all $\mathbf{x}$ that satisfy $\mathbf{x}\cdot \mathbf{r}_1 = 0$ are in the kernel, and the kernel now is a plane. $n(A) = 2$.
\end{enumerate}
\end{enumerate}
(We also have the trivial case where $r(A) = 0$, we have the zero mapping and the kernel is $\R^3$)
\subsubsection{Linear mapping view of \texorpdfstring{$A\mathbf{x} = \mathbf{0}$}{Ax = 0}}
In the general case, consider a linear map $\alpha: \R^n \to \R^n$ $\mathbf{x} \mapsto \mathbf{x}' = A\mathbf{x}$. The kernel $k(A) = \{\mathbf{x}\in \R^n: A\mathbf{x} = \mathbf{0}\}$ has dimension $n(A)$.
\begin{enumerate}
\item If $n(A) = 0$, then $A(\mathbf{e}_1), A(\mathbf{e}_2), \cdots, A(\mathbf{e}_n)$ is a linearly independent set, and $r(A) = n$.
\item If $n(A) > 0$, then the image is not the whole of $\R^n$. Let $\{\mathbf{u}_i\}, i = 1, \cdots, n(A)$ be a basis of the kernel, i.e.\ so given any solution to $A\mathbf{x} = \mathbf{0}$, $\displaystyle \mathbf{x} = \sum_{i = 1}^{n(A)} \lambda_i \mathbf{u}_i$ for some $\lambda_i$. Extend $\{\mathbf{u}_i\}$ to be a basis of $\R^n$ by introducing extra vectors $\mathbf{u}_{i}$ for $i = n(A) + 1, \cdots, n$. The vectors $A(\mathbf{u}_i)$ for $i = n(A) + 1, \cdots, n$ form a basis of the image.
\end{enumerate}
\subsection{General solution of \texorpdfstring{$A\mathbf{x} = \mathbf{d}$}{Ax = d}}
Finally consider the general equation $A\mathbf{x} = \mathbf{d}$, where $A$ is an $n\times n$ matrix and $\mathbf{x}, \mathbf{d}$ are $n \times 1$ column vectors. We can separate into two main cases.
\begin{enumerate}
\item $\det(A) \not= 0$. So $A^{-1}$ exists and $n(A) = 0$, $r(A) = n$. Then for any $\mathbf{d}\in \R^n$, a unique solution must exists and it is $\mathbf{x} = A^{-1}\mathbf{d}$.
\item $\det(A) = 0$. Then $A^{-1}$ does not exist, and $n(A) > 0$, $r(A) < n$. So the image of $A$ is not the whole of $\R^n$.
\begin{enumerate}
\item If $\mathbf{d}\not\in \im A$, then there is no solution (by definition of the image)
\item If $\mathbf{d}\in \im A$, then by definition there exists at least one $\mathbf{x}$ such that $A\mathbf{x} = \mathbf{d}$. The general solution of $A\mathbf{x} = \mathbf{d}$ can be written as $\mathbf{x} = \mathbf{x}_0 + \mathbf{y}$, where $\mathbf{x}_0$ is a particular solution (i.e.\ $A\mathbf{x}_0 = \mathbf{d}$), and $\mathbf{y}$ is any vector in $\ker A$ (i.e.\ $A\mathbf{y} = \mathbf{0}$). (cf.\ Isomorphism theorem)
If $n(A) = 0$, then $\mathbf{y = 0}$ only, and then the solution is unique (i.e.\ case (i)). If $n(A) > 0$ , then $\{\mathbf{u}_i\}, i = 1, \cdots, n(A)$ is a basis of the kernel. Hence
\[
\mathbf{y} = \sum_{j = 1}^{n(A)} \mu_j \mathbf{u}_j,
\]
so
\[
\mathbf{x} = \mathbf{x}_0 + \sum_{j = 1}^{n(A)} \mu_j \mathbf{u}_j
\]
for any $\mu_j$, i.e.\ there are infinitely many solutions.
\end{enumerate}
\end{enumerate}
\begin{eg}
\[
\begin{pmatrix}
1 & 1\\
a & 1
\end{pmatrix}
\begin{pmatrix}
x_1\\
x_2
\end{pmatrix} =
\begin{pmatrix}
1\\
b
\end{pmatrix}
\]
We have $\det A = 1 - a$. If $a \not= 1$, then $A^{-1}$ exists and
\[
A^{-1} = \frac{1}{1 - a} = \frac{1}{1 - a}\begin{pmatrix}
1 & -1\\
-a & 1
\end{pmatrix}.
\]
Then
\[
\mathbf{x} = \frac{1}{1- a}\begin{pmatrix}
1 - b\\
-a + b
\end{pmatrix}.
\]
If $a = 1$, then
\[
A\mathbf{x} = \begin{pmatrix}
x_1 + x_2\\
x_1 + x_2
\end{pmatrix} = (x_1 + x_2)\begin{pmatrix}
1\\
1
\end{pmatrix}.
\]
So $\im A = \spn\left\{
\begin{pmatrix}
1\\1
\end{pmatrix}
\right\}$ and $\ker A = \spn\left\{
\begin{pmatrix}
1\\-1
\end{pmatrix}
\right\}$. If $b \not=1 $, then $\begin{pmatrix}
1\\b
\end{pmatrix}
\not\in \im A$ and there is no solution. If $b = 1$, then $
\begin{pmatrix}
1\\b
\end{pmatrix}
\in \im A$.
We find a particular solution of
$\begin{pmatrix}
1\\
0
\end{pmatrix}$. So The general solution is
\[
\mathbf{x} =
\begin{pmatrix}
1\\0
\end{pmatrix}
+ \lambda
\begin{pmatrix}
1\\-1
\end{pmatrix}.
\]
\end{eg}
\begin{eg}
Find the general solution of
\[
\begin{pmatrix}
a & a & b\\
b & a & a\\
a & b & a
\end{pmatrix}
\begin{pmatrix}
x\\y\\z
\end{pmatrix}
=\begin{pmatrix}
1\\c\\1
\end{pmatrix}
\]
We have $\det A = (a - b)^2 (2a + b)$. If $a \not= b$ and $b \not= -2a$, then the inverse exists and there is a unique solution for any $c$. Otherwise, the possible cases are
\begin{enumerate}
\item $a = b, b \not= -2a$. So $a\not= 0$. The kernel is the plane $x + y + z = 0$ which is $\spn\left\{
\begin{pmatrix}
-1\\1\\0
\end{pmatrix},
\begin{pmatrix}
-1\\ 0\\ 1
\end{pmatrix}\right\}$
We extend this basis to $\R^3$ by adding $
\begin{pmatrix}
1\\0\\0
\end{pmatrix}$.
So the image is the span of $
\begin{pmatrix}
a\\a\\a
\end{pmatrix} =
\begin{pmatrix}
1\\1\\1
\end{pmatrix}$. Hence if $c\not= 1$, then $
\begin{pmatrix}
1\\c\\1
\end{pmatrix}$ is not in the image and there is no solution. If $c = 1$, then a particular solution is $
\begin{pmatrix}
\frac{1}{a}\\0\\0
\end{pmatrix}$
and the general solution is
\[
\mathbf{x} =
\begin{pmatrix}
\frac{1}{a}\\0\\0
\end{pmatrix} + \lambda
\begin{pmatrix}
-1\\1\\0
\end{pmatrix} + \mu
\begin{pmatrix}
-1\\0\\1
\end{pmatrix}
\]
\item If $a\not= b$ and $b = -2a$, then $a \not= 0$. The kernel satisfies
\begin{align*}
x + y - 2z &= 0\\
-2x + y + z &= 0\\
x - 2y + z &= 0
\end{align*}
This can be solved to give $x = y = z$, and the kernel is $\spn\left\{
\begin{pmatrix}
1\\1\\1
\end{pmatrix}\right\}$. We add $
\begin{pmatrix}
1\\0\\0
\end{pmatrix}$ and $
\begin{pmatrix}
0\\0\\1
\end{pmatrix}$ to form a basis of $\R^3$. So the image is the span of $
\begin{pmatrix}
1\\-2\\1
\end{pmatrix},
\begin{pmatrix}
-2\\1\\1
\end{pmatrix}$.
If $
\begin{pmatrix}
1\\c\\1
\end{pmatrix}$ is in the image, then
\[
\begin{pmatrix}
1\\c\\1
\end{pmatrix} = \lambda
\begin{pmatrix}
1\\-2\\1
\end{pmatrix}
+ \mu
\begin{pmatrix}
-2\\1\\1
\end{pmatrix}.
\]
Then the only solution is $\mu = 0, \lambda = 1, c = -2$. Thus there is no solution if $c \not= -2$, and when $c = -2$, pick a particular solution $
\begin{pmatrix}
\frac{1}{a}\\0\\0
\end{pmatrix}$ and the general solution is
\[
\mathbf{x} = \begin{pmatrix}
\frac{1}{a}\\0\\0
\end{pmatrix} +\lambda
\begin{pmatrix}
1\\1\\1
\end{pmatrix}
\]
\item If $a = b$ and $b = -2a$, then $a = b = 0$ and $\ker A = \R^3$. So there is no solution for any $c$.
\end{enumerate}
\end{eg}
\section{Eigenvalues and eigenvectors}
\label{sec:eigen}
Given a matrix $A$, an eigenvector is a vector $\mathbf{x}$ that satisfies $A\mathbf{x} = \lambda \mathbf{x}$ for some $\lambda$. We call $\lambda$ the associated eigenvalue. In some sense, these vectors are not modified by the matrix, and are just scaled up by the matrix. We will look at the properties of eigenvectors and eigenvalues, and see their importance in diagonalizing matrices.
\subsection{Preliminaries and definitions}
\begin{thm}[Fundamental theorem of algebra]
Let $p(z)$ be a polynomial of degree $m \geq 1$, i.e.
\[
p(z) = \sum_{j = 0}^m c_jz^j,
\]
where $c_j\in \C$ and $c_m \not= 0$.
Then $p(z) = 0$ has precisely $m$ (not necessarily distinct) roots in the complex plane, accounting for multiplicity.
\end{thm}
Note that we have the disclaimer ``accounting for multiplicity''. For example, $x^2 - 2x + 1 = 0$ has only one distinct root, $1$, but we say that this root has multiplicity 2, and is thus counted twice. Formally, multiplicity is defined as follows:
\begin{defi}[Multiplicity of root]
The root $z = \omega$ has \emph{multiplicity} $k$ if $(z - \omega)^k$ is a factor of $p(z)$ but $(z - \omega)^{k + 1}$ is not.
\end{defi}
\begin{eg}
Let $p(z) = z^3 - z^2 - z + 1 = (z - 1)^2(z + 1)$. So $p(z) = 0$ has roots $1, 1, -1$, where $z = 1$ has multiplicity $2$.
\end{eg}
\begin{defi}[Eigenvector and eigenvalue]
Let $\alpha: \C^n\to \C^n$ be a linear map with associated matrix $A$. Then $\mathbf{x}\not= \mathbf{0}$ is an \emph{eigenvector} of $A$ if
\[
A\mathbf{x} = \lambda\mathbf{x}
\]
for some $\lambda$. $\lambda$ is the associated \emph{eigenvalue}. This means that the direction of the eigenvector is preserved by the mapping, but is scaled up by $\lambda$.
\end{defi}
There is a rather easy way of finding eigenvalues:
\begin{thm}
$\lambda$ is an eigenvalue of $A$ iff
\[
\det(A - \lambda I) = 0.
\]
\end{thm}
\begin{proof}
$(\Rightarrow)$ Suppose that $\lambda$ is an eigenvalue and $\mathbf{x}$ is the associated eigenvector. We can rearrange the equation in the definition above to
\[
(A - \lambda I)\mathbf{x} = \mathbf{0}
\]
and thus
\[
\mathbf{x}\in \ker(A - \lambda I)
\]
But $\mathbf{x}\not= \mathbf{0}$. So $\ker(A - \lambda I)$ is non-trivial and $\det(A - \lambda I) = 0$. The $(\Leftarrow)$ direction is similar.
\end{proof}
\begin{defi}[Characteristic equation of matrix]
The \emph{characteristic equation} of $A$ is
\[
\det(A - \lambda I) = 0.
\]
\end{defi}
\begin{defi}[Characteristic polynomial of matrix]
The \emph{characteristic polynomial} of $A$ is
\[
p_A(\lambda) = \det(A - \lambda I).
\]
\end{defi}
From the definition of the determinant,
\begin{align*}
p_A(\lambda) &= \det(A - \lambda I)\\
&= \varepsilon_{j_1j_2\cdots j_n} (A_{j_1 1} - \lambda\delta_{j_11})\cdots (A_{j_n n} - \lambda\delta_{j_nn})\\
&= c_0 + c_1\lambda + \cdots + c_n\lambda^n
\end{align*}
for some constants $c_0, \cdots, c_n$. From this, we see that
\begin{enumerate}
\item $p_A(\lambda)$ has degree $n$ and has $n$ roots. So an $n\times n$ matrix has $n$ eigenvalues (accounting for multiplicity).
\item If $A$ is real, then all $c_i\in \R$. So eigenvalues are either real or come in complex conjugate pairs.
\item $c_n = (-1)^n$ and $c_{n - 1} = (-1)^{n - 1}(A_{11} + A_{22} + \cdots + A_{nn}) = (-1)^{n - 1}\tr(A)$. But $c_{n -1}$ is the sum of roots, i.e.\ $c_{n - 1}= (-1)^{n - 1}(\lambda_1 + \lambda_2 + \cdots \lambda_n)$, so
\[
\tr(A) = \lambda_1 + \lambda_2 + \cdots + \lambda_n.
\]
Finally, $c_0 = p_A(0) = \det(A)$. Also $c_0$ is the product of all roots, i.e.\ $c_0 = \lambda_1\lambda_2\cdots \lambda_n$. So
\[
\det A = \lambda_1\lambda_2\cdots \lambda_n.
\]
\end{enumerate}
The kernel of the matrix $A - \lambda I$ is the set $\{\mathbf{x}: A\mathbf{x} = \lambda\mathbf{x}\}$. This is a vector subspace because the kernel of any map is always a subspace.
\begin{defi}[Eigenspace]
The \emph{eigenspace} denoted by $E_\lambda$ is the kernel of the matrix $A - \lambda I$, i.e.\ the set of eigenvectors with eigenvalue $\lambda$.
\end{defi}
\begin{defi}[Algebraic multiplicity of eigenvalue]
The \emph{algebraic multiplicity} $M(\lambda)$ or $M_\lambda$ of an eigenvalue $\lambda$ is the multiplicity of $\lambda$ in $p_A(\lambda) = 0$. By the fundamental theorem of algebra,
\[
\sum_\lambda M(\lambda) = n.
\]
If $M(\lambda) > 1$, then the eigenvalue is \emph{degenerate}.
\end{defi}
\begin{defi}[Geometric multiplicity of eigenvalue]
The \emph{geometric multiplicity} $m(\lambda)$ or $m_\lambda$ of an eigenvalue $\lambda$ is the dimension of the eigenspace, i.e.\ the maximum number of linearly independent eigenvectors with eigenvalue $\lambda$.
\end{defi}
\begin{defi}[Defect of eigenvalue]
The \emph{defect} $\Delta_\lambda$ of eigenvalue $\lambda$ is
\[
\Delta_\lambda = M(\lambda) - m(\lambda).
\]
It can be proven that $\Delta_\lambda \geq 0$, i.e.\ the geometric multiplicity is never greater than the algebraic multiplicity.
\end{defi}
\subsection{Linearly independent eigenvectors}
\begin{thm}
Suppose $n\times n$ matrix $A$ has \emph{distinct} eigenvalues $\lambda_1, \lambda_2, \cdots, \lambda_n$. Then the corresponding eigenvectors $\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_n$ are linearly independent.
\end{thm}
\begin{proof}
Proof by contradiction: Suppose $\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_n$ are linearly dependent. Then we can find non-zero constants $d_i$ for $i = 1, 2, \cdots, r$, such that
\[
d_1\mathbf{x}_1 + d_2\mathbf{x}_2 + \cdots + d_r\mathbf{x}_r = \mathbf{0}.
\]
Suppose that this is the shortest non-trivial linear combination that gives $\mathbf{0}$ (we may need to re-order $\mathbf{x}_i$).
Now apply $(A - \lambda_1 I)$ to the whole equation to obtain
\[
d_1(\lambda_1 - \lambda_1)\mathbf{x}_1 + d_2(\lambda_2 - \lambda_1)\mathbf{x}_2 + \cdots + d_r(\lambda_r - \lambda_1)\mathbf{x}_r = \mathbf{0}.
\]
We know that the first term is $\mathbf{0}$, while the others are not (since we assumed $\lambda_i \not= \lambda_j$ for $i\not= j$). So
\[
d_2(\lambda_2 - \lambda_1)\mathbf{x}_2 + \cdots + d_r(\lambda_r - \lambda_1)\mathbf{x}_r = \mathbf{0},
\]
and we have found a shorter linear combination that gives $\mathbf{0}$. Contradiction.
\end{proof}
\begin{eg}\leavevmode
\begin{enumerate}
\item $A = \begin{pmatrix} 0 & 1\\
-1 & 0
\end{pmatrix}$. Then $p_A(\lambda) = \lambda^2 + 1 = 0$. So $\lambda_1 = i$ and $\lambda_2 = -i$.
To solve $(A - \lambda_1 I)\mathbf{x} = \mathbf{0}$, we obtain
\[
\begin{pmatrix}
-i & 1\\-1 & -i
\end{pmatrix}
\begin{pmatrix}
x_1\\x_2
\end{pmatrix}
= \mathbf{0}.
\]
So we obtain
\[
\begin{pmatrix}
x_1\\x_2
\end{pmatrix} =
\begin{pmatrix}
1\\i
\end{pmatrix}
\]
to be an eigenvector. Clearly any scalar multiple of $\begin{pmatrix}
1\\i
\end{pmatrix}$ is also a solution, but still in the same eigenspace $E_i = \spn \begin{pmatrix}
1\\i
\end{pmatrix}$
Solving $(A - \lambda_2I)\mathbf{x} = \mathbf{0}$ gives
\[
\begin{pmatrix}
x_1\\x_2
\end{pmatrix} =
\begin{pmatrix}
1\\-i
\end{pmatrix}.
\]
So $E_{-i} = \spn
\begin{pmatrix}
1\\-i
\end{pmatrix}$.
Note that $M(\pm i) = m(\pm i) = 1$, so $\Delta_{\pm i} = 0$. Also note that the two eigenvectors are linearly independent and form a basis of $\C^2$.
\item Consider
\[
A = \begin{pmatrix}
-2 & 2 & -3\\
2 & 1 & -6\\
-1 & -2 & 0
\end{pmatrix}
\]
Then $\det(A - \lambda I) = 0$ gives $45 + 21\lambda - \lambda^2 - \lambda^3$. So $\lambda_1 = 5, \lambda_2 = \lambda_3 = -3$.
The eigenvector with eigenvalue $5$ is
\[
\mathbf{x} =
\begin{pmatrix}
1\\2\\-1
\end{pmatrix}
\]
We can find that the eigenvectors with eigenvalue $-3$ are
\[
\mathbf{x} =
\begin{pmatrix}
-2x_2 + 3x_3\\x_2\\x_3
\end{pmatrix}
\]
for any $x_2, x_3$. This gives two linearly independent eigenvectors, say $
\begin{pmatrix}
-2\\1\\0
\end{pmatrix},
\begin{pmatrix}
3\\0\\1
\end{pmatrix}$.
So $M(5) = m(5) = 1$ and $M(-3) = m(-3) = 2$, and there is no defect for both of them. Note that these three eigenvectors form a basis of $\C^3$.
\item Let
\[
A = \begin{pmatrix}
-3&-1&1\\
-1 & -3 & 1\\
-2 & -2 & 0
\end{pmatrix}
\]
Then $0 = p_A(\lambda) = -(\lambda+2)^4$. So $\lambda = -2, -2, -2$. To find the eigenvectors, we have
\[
(A + 2I)\mathbf{x} =
\begin{pmatrix}
-1&-1&1\\
-1 & -1 & 1\\
-2 & -2 & 2
\end{pmatrix}
\begin{pmatrix}
x_1\\x_2\\x_3
\end{pmatrix}
= \mathbf{0}
\]
The general solution is thus $x_1 + x_2 - x_3 = 0$, and the general solution is thus $x =
\begin{pmatrix}
x_1\\x_2\\x_1 + x_2
\end{pmatrix}$. The eigenspace $E_{-2} = \spn\left\{
\begin{pmatrix}
1\\0\\1
\end{pmatrix},
\begin{pmatrix}
0\\1\\1
\end{pmatrix}\right\}$.
Hence $M(-2) = 3$ and $m(-2) = 2$. Thus the defect $\Delta_{-2} = 1$. So the eigenvectors do not form a basis of $\C^3$.
\item Consider the reflection $R$ in the plane with normal $\mathbf{n}$. Clearly $R\mathbf{n} = -\mathbf{n}$. The eigenvalue is $-1$ and the eigenvector is $\mathbf{n}$. Then $E_1 = \spn\{\mathbf{n}\}$. So $M(-1) = m(-1) = 1$.
If $\mathbf{p}$ is any vector in the plane, $R\mathbf{p} = \mathbf{p}$. So this has an eigenvalue of $1$ and eigenvectors being any vector in the plane. So $M(1) = m(1) = 2$.
So the eigenvectors form a basis of $\R^3$.
\item Consider a rotation $R$ by $\theta$ about $\mathbf{n}$. Since $R\mathbf{n} = \mathbf{n}$, we have an eigenvalue of $1$ and eigenspace $E_1 = \spn\{\mathbf{n}\}$.
We know that there are no other real eigenvalues since rotation changes the direction of any other vector. The other eigenvalues turn out to be $e^{\pm i\theta}$. If $\theta \not= 0$, there are 3 distinct eigenvalues and the eigenvectors form a basis of $\C^3$.
\item Consider a shear
\[
A =
\begin{pmatrix}
1&\mu\\0&1
\end{pmatrix}
\]
The characteristic equation is $(1 - \lambda)^2 = 0$ and $\lambda = 1$. The eigenvectors corresponding to $\lambda = 1$ is $\mathbf{x} =
\begin{pmatrix}
1\\0
\end{pmatrix}$. We have $M(1) = 2$ and $m(1) = 1$. So $\Delta_1 = 1$.
\end{enumerate}
\end{eg}
If $n\times n$ matrix $A$ has $n$ distinct eigenvalues, and hence has $n$ linearly independent eigenvectors $\mathbf{v}_1, \mathbf{v}_2, \cdots \mathbf{v}_n$, then \emph{with respect to this eigenvector basis}, $A$ is diagonal.
In this basis, $v_1 = (1, 0, \cdots, 0)$ etc. We know that $A\mathbf{v}_i = \lambda_i\mathbf{v}_i$ (no summation). So the image of the $i$th basis vector is $\lambda_i$ times the $i$th basis. Since the columns of $A$ are simply the images of the basis,
\[
\begin{pmatrix}
\lambda_1 & 0 & \cdots & 0\\
0 & \lambda_2 & \cdots & 0\\
\vdots & \vdots & \ddots & \vdots\\
0 & 0 & \cdots & \lambda_n
\end{pmatrix}
\]
The fact that $A$ can be diagonalized by changing the basis is an important observation. We will now look at how we can change bases and see how we can make use of this.
\subsection{Transformation matrices}
How do the components of a vector or a matrix change when we change the basis?
Let $\{\mathbf{e}_1, \mathbf{e}_2, \cdots, \mathbf{e}_n\}$ and $\{\tilde{\mathbf{e}}_1, \tilde{\mathbf{e}}_2,\cdots, \tilde{\mathbf{e}}_n\}$ be 2 different bases of $\R^n$ or $\C^n$. Then we can write
\[
\tilde{\mathbf{e}_j} = \sum_{i = 1}^n P_{ij}\mathbf{e}_i
\]
i.e.\ $P_{ij}$ is the $i$th component of $\tilde{\mathbf{e}_j}$ with respect to the basis $\{\mathbf{e}_1, \mathbf{e}_2, \cdots, \mathbf{e}_n\}$. Note that the sum is made as $P_{ij}\mathbf{e}_i$, not $P_{ij}\mathbf{e}_j$. This is different from the formula for matrix multiplication.
Matrix $P$ has as its columns the vectors $\tilde{\mathbf{e}_j}$ relative to $\{\mathbf{e}_1, \mathbf{e}_2, \cdots, \mathbf{e}_n\}$. So $P = (\tilde{\mathbf{e}_1}\; \tilde{\mathbf{e}_2}\; \cdots \; \tilde{\mathbf{e}_n})$ and
\[
P(\mathbf{e}_i) = \tilde{\mathbf{e}_i}
\]
Similarly, we can write
\[
\mathbf{e}_i = \sum_{k = 1}^nQ_{ki} \tilde{\mathbf{e}_k}
\]
with $Q = (\mathbf{e}_1\; \mathbf{e}_2\;\cdots\;\mathbf{e}_n)$.
Substituting this into the equation for $\tilde{\mathbf{e}_j}$, we have
\begin{align*}
\tilde{\mathbf{e}_j} &= \sum_{i = 1}^n\left(\sum_{k = 1}^{n} Q_{ki}\tilde{\mathbf{e}_k}\right)P_{ij}\\
&= \sum_{k = 1}^n \tilde{\mathbf{e}_k} \left(\sum_{i = 1}^n Q_{ki}P_{ij}\right)
\end{align*}
But $\tilde{\mathbf{e}}_1, \tilde{\mathbf{e}}_2,\cdots, \tilde{\mathbf{e}}_n$ are linearly independent, so this is only possible if
\[
\sum_{i = 1}^n Q_{ki}P_{ij} = \delta_{kj},
\]
which is just a fancy way of saying $QP = I$, or $Q = P^{-1}$.
\subsubsection{Transformation law for vectors}
With respect to basis $\left\{\mathbf{e}_i\right\}$, $\mathbf{u} = \sum_{i = 1}^n u_i\mathbf{e}_i$.
With respect to basis $\left\{\tilde{\mathbf{e}_i}\right\}$, $\mathbf{u} = \sum_{i = 1}^n \tilde{u_i}\tilde{\mathbf{e}_i}$. Note that this is the \emph{same} vector $\mathbf{u}$ but has different components with respect to different bases. Using the transformation matrix above for the basis, we have
\begin{align*}
\mathbf{u} &= \sum_{j= 1}^n \tilde{u_j} \sum_{i = 1}^{n}P_{ij}\mathbf{e}_i\\
&= \sum_{i = 1}^n \left(\sum_{j = 1}^n P_{ij}\tilde{u_j}\right) \mathbf{e}_i
\end{align*}
By comparison, we know that
\[
u_i = \sum_{j = 1}^n P_{ij}\tilde{u_j}
\]
\begin{thm}
Denote vector as $\mathbf{u}$ with respect to $\{\mathbf{e}_i\}$ and $\tilde{\mathbf{u}}$ with respect to $\{\tilde{\mathbf{e}_i}\}$. Then
\[
\mathbf{u} = P\mathbf{\tilde{u}}\text{ and }\mathbf{\tilde{u}} = P^{-1}\mathbf{u}
\]
\end{thm}
\begin{eg}
Take the first basis as $\{\mathbf{e}_1 = (1, 0), \mathbf{e}_2 = (0, 1)\}$ and the second as $\{\tilde{\mathbf{e}_1} = (1, 1), \tilde{\mathbf{e}_2} = (-1, 1)\}$.
So $\tilde{\mathbf{e}_1} = \mathbf{e}_1 + \mathbf{e}_2$ and $\tilde{\mathbf{e}_2} = -\mathbf{e}_1 + \mathbf{e}_2$. We have
\[
\mathbf{P} =
\begin{pmatrix}
1 & -1\\
1 & 1
\end{pmatrix}.
\]
Then for an arbitrary vector $\mathbf{u}$, we have
\begin{align*}
\mathbf{u}&= u_1\mathbf{e}_1 + u_2\mathbf{e}_2\\
&= u_1\frac{1}{2}(\tilde{\mathbf{e}_1} - \tilde{\mathbf{e}_2}) + u_2\frac{1}{2}(\tilde{\mathbf{e}_1} + \tilde{\mathbf{e}_2})\\
&= \frac{1}{2}(u_1 + u_2)\tilde{\mathbf{e}_1} + \frac{1}{2}(-u_1 + u_2)\tilde{\mathbf{e}_2}.
\end{align*}
Alternatively, using the formula above, we obtain
\begin{align*}
\mathbf{\tilde{u}} &= P^{-1} \mathbf{u}\\
&= \frac{1}{2}
\begin{pmatrix}
1&1\\-1&1
\end{pmatrix}
\begin{pmatrix}
u_1\\u_2
\end{pmatrix}\\
&=
\begin{pmatrix}
\frac{1}{2}(u_1 + u_2)\\
\frac{1}{2}(-u_1 + u_2)
\end{pmatrix}
\end{align*}
Which agrees with the above direct expansion.
\end{eg}
\subsubsection{Transformation law for matrix}
Consider a linear map $\alpha: \C^n \to \C^n$ with associated $n\times n$ matrix $A$. We have
\[
\mathbf{u}' = \alpha(\mathbf{u}) = A\mathbf{u}.
\]
Denote $\mathbf{u}$ and $\mathbf{u}'$ as being with respect to basis $\{\mathbf{e}_i\}$ (i.e.\ same basis in both spaces), and $\mathbf{\tilde{u}, \tilde{u}'}$ with respect to $\{\tilde{\mathbf{e}_i}\}$.
Using what we've got above, we have
\begin{align*}
\mathbf{u}' &= A\mathbf{u}\\
P\mathbf{\tilde{u}'} &= AP\tilde{\mathbf{u}}\\
\mathbf{\tilde{u}'} &= P^{-1}AP\mathbf{\tilde{u}}\\
&= \tilde{A}\tilde{\mathbf{u}}
\end{align*}
So
\begin{thm}
\[
\tilde{A} = P^{-1}AP.
\]
\end{thm}
\begin{eg}
Consider the shear $S_\lambda =
\begin{pmatrix}
1 & \lambda & 0\\
0 & 1 & 0\\
0 & 0 & 1
\end{pmatrix}$ with respect to the standard basis. Choose a new set of basis vectors by rotating by $\theta$ about the $\mathbf{e}_3$ axis:
\begin{align*}
\tilde{\mathbf{e}_1} &= \cos\theta \mathbf{e}_1 + \sin\theta \mathbf{e}_2\\
\tilde{\mathbf{e}_2} &= -\sin\theta \mathbf{e}_1 + \cos\theta \mathbf{e}_2\\
\tilde{\mathbf{e}_3} &= \mathbf{e}_3
\end{align*}
So we have
\[
P =
\begin{pmatrix}
\cos\theta & -\sin\theta & 0\\
\sin\theta & \cos\theta & 0\\
0 & 0 & 1
\end{pmatrix}, P^{-1} =
\begin{pmatrix}
\cos\theta & \sin\theta & 0\\
-\sin\theta & \cos\theta & 0\\
0 & 0 & 1
\end{pmatrix}
\]
Now use the basis transformation laws to obtain
\[
\tilde{S}_\lambda =
\begin{pmatrix}
1 + \lambda\sin\theta\cos\theta & \lambda \cos^2\theta & 0\\
-\lambda \sin^2\theta & 1 - \lambda\sin\theta\cos\theta & 0\\
0 & 0 & 1
\end{pmatrix}
\]
Clearly this is much more complicated than our original basis. This shows that choosing a sensible basis is important.
\end{eg}
More generally, given $\alpha: \C^m \to \C^n$, given $\mathbf{x}\in \C^m$, $\mathbf{x}'\in \C^n$ with $\mathbf{x}' = A\mathbf{x}$. We know that $A$ is an $n\times m$ matrix.
Suppose $\C^m$ has a basis $\{\mathbf{e}_i\}$ and $\C^n$ has a basis $\{\mathbf{f}_i\}$. Now change bases to $\{\tilde{\mathbf{e}_i}\}$ and $\{\tilde{\mathbf{f}_i}\}$.
We know that $\mathbf{x} = P\mathbf{\tilde{x}}$ with $P$ being an $m\times m$ matrix, with $\mathbf{x}' = R\tilde{\mathbf{x}}'$ with $R$ being an $n\times n$ matrix.
Combining both of these, we have
\begin{align*}
R\tilde{\mathbf{x}}' &= AP\tilde{\mathbf{x}}\\
\tilde{\mathbf{x}}' &= R^{-1}AP\mathbf{\tilde{x}}
\end{align*}
Therefore $\tilde{A} = R^{-1}AP$.
\begin{eg}
Consider $\alpha: \R^3 \to \R^2$, with respect to the standard bases in both spaces,
\[
A =
\begin{pmatrix}
2 & 3 & 4\\
1 & 6 & 3
\end{pmatrix}
\]
Use a new basis $
\begin{pmatrix}
2\\1
\end{pmatrix},
\begin{pmatrix}
1\\5
\end{pmatrix}$ in $\R^2$ and keep the standard basis in $\R^3$. The basis change matrix in $\R^3$ is simply $I$, while
\[
R =
\begin{pmatrix}
2& 1\\
1 & 5
\end{pmatrix}, R^{-1} = \frac{1}{9}
\begin{pmatrix}
5 & -1\\
-1 & 2
\end{pmatrix}
\]
is the transformation matrix for $\R^2$. So
\begin{align*}
\tilde{A} &=
\begin{pmatrix}
2 & 1\\1 & 5
\end{pmatrix}
\begin{pmatrix}
2 & 3 & 4\\1 & 6 & 3
\end{pmatrix}I\\
&= \frac{1}{9}
\begin{pmatrix}
5 & -1\\
-1 & 2
\end{pmatrix}
\begin{pmatrix}
2 & 3 & 4\\1 & 6 & 3
\end{pmatrix}\\
&=
\begin{pmatrix}
1 & 1 & 17/9\\
0 & 1 & 2/9
\end{pmatrix}
\end{align*}
We can alternatively do it this way: we know that $\tilde{\mathbf{f}_1} =
\begin{pmatrix}
2\\1
\end{pmatrix}, \tilde{\mathbf{f}_2} =
\begin{pmatrix}
1\\5
\end{pmatrix}$
Then we know that
\begin{align*}
\tilde{\mathbf{e}_1} = \mathbf{e}_1 &\mapsto 2\mathbf{f}_1 + \mathbf{f}_2 = \mathbf{f}_1\\
\tilde{\mathbf{e}_2} = \mathbf{e}_2 &\mapsto 3\mathbf{f}_1 + 6\mathbf{f}_2 = \tilde{\mathbf{f}_1} + \tilde{\mathbf{f}_2}\\
\tilde{\mathbf{e}_3} = \mathbf{e}_3 &\mapsto 4\mathbf{f}_1 + 3\mathbf{f}_2 = \frac{17}{9} \tilde{\mathbf{f}_1} + \frac{2}{9}\tilde{\mathbf{f}_2}
\end{align*}
and we can construct the matrix correspondingly.
\end{eg}
\subsection{Similar matrices}
\begin{defi}[Similar matrices]
Two $n\times n$ matrices $A$ and $B$ are \emph{similar} if there exists an invertible matrix $P$ such that
\[
B = P^{-1}AP,
\]
i.e.\ they represent the same map under different bases. Alternatively, using the language from IA Groups, we say that they are in the same conjugacy class.
\end{defi}
\begin{prop}
Similar matrices have the following properties:
\begin{enumerate}
\item Similar matrices have the same determinant.
\item Similar matrices have the same trace.
\item Similar matrices have the same characteristic polynomial.
\end{enumerate}
\end{prop}
Note that (iii) implies (i) and (ii) since the determinant and trace are the coefficients of the characteristic polynomial
\begin{proof}
They are proven as follows:
\begin{enumerate}
\item $\det B =\det (P^{-1}AP) = (\det A) (\det P)^{-1} (\det P) = \det A$
\item
\begin{align*}
\tr B &= B_{ii}\\
&= P_{ij}^{-1} A_{jk} P_{ki}\\
&= A_{jk} P_{ki}P_{ij}^{-1}\\
&= A_{jk}(PP^{-1})_{kj}\\
&= A_{jk}\delta_{kj}\\
&= A_{jj}\\
&= \tr A
\end{align*}
\item
\begin{align*}
p_B(\lambda) &= \det(B - \lambda I)\\
&= \det(P^{-1}AP - \lambda I)\\
&= \det(P^{-1}AP - \lambda P^{-1}IP)\\
&= \det(P^{-1}(A - \lambda I)P)\\
&= \det(A - \lambda I)\\
&= p_A(\lambda)\qedhere
\end{align*}%\qedhere
\end{enumerate}
\end{proof}
\subsection{Diagonalizable matrices}
\begin{defi}[Diagonalizable matrices]
An $n\times n$ matrix $A$ is \emph{diagonalizable} if it is similar to a diagonal matrix. We showed above that this is equivalent to saying the eigenvectors form a basis of $\C^n$.
\end{defi}
The requirement that matrix $A$ has $n$ distinct eigenvalues is a \emph{sufficient} condition for diagonalizability as shown above. However, it is \emph{not} necessary.
Consider the second example in Section 5.2,
\[
A = \begin{pmatrix}
-2 & 2 & -3\\
2 & 1 & -6\\
-1 & -2 & 0
\end{pmatrix}
\]
We found three linear eigenvectors
\[
\tilde{\mathbf{e}_1} =
\begin{pmatrix}
1\\2\\1
\end{pmatrix}, \tilde{\mathbf{e}_2} =
\begin{pmatrix}
-2\\1\\0
\end{pmatrix}, \tilde{\mathbf{e}_3} =
\begin{pmatrix}
3\\0\\1
\end{pmatrix}
\]
If we let
\[
P =
\begin{pmatrix}
1 & -2 & 3\\
2 & 1 & 0\\
1 & 0 & 1
\end{pmatrix}, P^{-1} = \frac{1}{8}
\begin{pmatrix}
1 & 2 & -3\\
-2 & 4 & 6\\
1 & 2 & 5
\end{pmatrix},
\]
then
\[
\tilde{A} = P^{-1}AP =
\begin{pmatrix}
5 & 0 & 0\\
0 & -3 & 0\\
0 & 0 & -3
\end{pmatrix},
\]
so $A$ is diagonalizable.
\begin{thm}
Let $\lambda_1, \lambda_2, \cdots, \lambda_r$, with $r \leq n$ be the distinct eigenvalues of $A$. Let $B_1, B_2, \cdots B_r$ be the bases of the eigenspaces $E_{\lambda_1}, E_{\lambda_2}, \cdots, E_{\lambda_r}$ correspondingly. Then the set $\displaystyle B = \bigcup_{i= 1}^r B_i$ is linearly independent.
\end{thm}
This is similar to the proof we had for the case where the eigenvalues are distinct. However, we are going to do it much concisely, and the actual meat of the proof is actually just a single line.
\begin{proof}
Write $B_1 = \{\mathbf{x}_1^{(1)}, \mathbf{x}_2^{(1)}, \cdots \mathbf{x}_{m(\lambda_1)}^{(1)}\}$. Then $m(\lambda_1) = \dim (E_{\lambda_1})$, and similarly for all $B_i$.
Consider the following general linear combination of all elements in $B$. Consider the equation
\[
\sum_{i = 1}^r\sum_{j = 1}^{m(\lambda_i)} \alpha_{ij} \mathbf{x}_j^{(i)} = 0.
\]
The first sum is summing over all eigenspaces, and the second sum sums over the basis vectors in $B_i$. Now apply the matrix
\[
\prod_{k = 1, 2, \cdots, \bar{K}, \cdots, r} (A - \lambda_kI)
\]
to the above sum, for some arbitrary $K$. We obtain
\[
\sum_{j = 1}^{m(\lambda_K)}\alpha_{Kj}\left[\prod_{k = 1, 2, \cdots, \bar{K}, \cdots, r}(\lambda_K - \lambda_k)\right]\mathbf{x}_j^{(K)} = 0.
\]
Since the $\mathbf{x}^{(K)}_j$ are linearly independent ($B_K$ is a basis), $\alpha_{Kj} = 0$ for all $j$. Since $K$ was arbitrary, all $\alpha_{ij}$ must be zero. So $B$ is linearly independent.
\end{proof}
\begin{prop}
$A$ is diagonalizable iff all its eigenvalues have zero defect.
\end{prop}
\subsection{Canonical (Jordan normal) form}
Given a matrix $A$, if its eigenvalues all have non-zero defect, then we can find a basis in which it is diagonal. However, if some eigenvalue \emph{does} have defect, we can still put it into an almost-diagonal form. This is known as the \emph{Jordan normal form}.
\begin{thm}
Any $2\times 2$ complex matrix $A$ is similar to exactly one of
\[
\begin{pmatrix}
\lambda_1 & 0\\
0 & \lambda_2
\end{pmatrix},
\begin{pmatrix}
\lambda & 0\\
0 & \lambda
\end{pmatrix},
\begin{pmatrix}
\lambda & 1\\
0 & \lambda
\end{pmatrix}
\]
\end{thm}
\begin{proof}
For each case:
\begin{enumerate}
\item If $A$ has two distinct eigenvalues, then eigenvectors are linearly independent. Then we can use $P$ formed from eigenvectors as its columns
\item If $\lambda_1=\lambda_2 = \lambda$ and $\dim E_\lambda = 2$, then write $E_\lambda = \spn\{\mathbf{u}, \mathbf{v}\}$, with $\mathbf{u}, \mathbf{v}$ linearly independent. Now use $\{\mathbf{u}, \mathbf{v}\}$ as a new basis of $\C^2$ and $\tilde{A} = P^{-1}AP =
\begin{pmatrix}
\lambda & 0\\
0 & \lambda
\end{pmatrix} = \lambda I$
Note that since $P^{-1}AP = \lambda I$, we have $A = P(\lambda I)P^{-1} = \lambda I$. So $A$ is \emph{isotropic}, i.e.\ the same with respect to any basis.
\item If $\lambda_1 = \lambda_2 = \lambda$ and $\dim (E_\lambda) = 1$, then $E_\lambda = \spn\{\mathbf{v}\}$. Now choose basis of $\C^2$ as $\{\mathbf{v}, \mathbf{w}\}$, where $\mathbf{w}\in \C^2\setminus E_\lambda$.
We know that $A\mathbf{w}\in \C^2$. So $A\mathbf{w} = \alpha \mathbf{v} + \beta \mathbf{w}$. Hence, if we change basis to $\{\mathbf{v}, \mathbf{w}\}$, then $\tilde{A} = P^{-1}AP =
\begin{pmatrix}
\lambda & \alpha\\
0 & \beta
\end{pmatrix}$.
However, $A$ and $\tilde{A}$ both have eigenvalue $\lambda$ with algebraic multiplicity $2$. So we must have $\beta = \lambda$. To make $\alpha = 1$, let $\mathbf{u} = (\tilde{A} - \lambda I)\mathbf{w}$. We know $\mathbf{u}\not= \mathbf{0}$ since $\mathbf{w}$ is not in the eigenspace. Then
\[
(\tilde{A} - \lambda I)\mathbf{u} = (\tilde{A} - \lambda I)^2 \mathbf{w} =
\begin{pmatrix}
0 & \alpha\\
0 & 0
\end{pmatrix}
\begin{pmatrix}
0 & \alpha\\
0 & 0
\end{pmatrix}\mathbf{w} = \mathbf{0}.
\]
So $\mathbf{u}$ is an eigenvector of $\tilde{A}$ with eigenvalue $\lambda$.
We have $\mathbf{u} = \tilde A\mathbf{w} - \lambda\mathbf{w}$. So $\tilde A\mathbf{w} = \mathbf{u} + \lambda\mathbf{w}$.
Change basis to $\{\mathbf{u}, \mathbf{w}\}$. Then $A$ with respect to this basis is $
\begin{pmatrix}
\lambda & 1\\
0 & \lambda
\end{pmatrix}$.
This is a two-stage process: $P$ sends basis to $\{\mathbf{v}, \mathbf{w}\}$ and then matrix $Q$ sends to basis $\{\mathbf{u}, \mathbf{w}\}$. So the similarity transformation is $Q^{-1}(P^{-1}AP)Q = (PQ)^{-1}A(PQ)$.\qedhere
\end{enumerate}
\end{proof}
\begin{prop}
(Without proof) The canonical form, or Jordan normal form, exists for any $n\times n$ matrix $A$. Specifically, there exists a similarity transform such that $A$ is similar to a matrix to $\tilde{A}$ that satisfies the following properties:
\begin{enumerate}
\item $\tilde{A}_{\alpha\alpha} = \lambda_\alpha$, i.e.\ the diagonal composes of the eigenvalues.
\item $\tilde{A}_{\alpha, \alpha + 1} = 0$ or $1$.
\item $\tilde{A}_{ij} = 0$ otherwise.
\end{enumerate}
\end{prop}
The actual theorem is actually stronger than this, and the Jordan normal form satisfies some additional properties in addition to the above. However, we shall not go into details, and this is left for the IB Linear Algebra course.
\begin{eg}
Let
\[
A = \begin{pmatrix}
-3 & -1 & 1\\
-1 & -3 & 1\\
-2 & -2 & 0
\end{pmatrix}
\]
The eigenvalues are $-2, -2, -2$ and the eigenvectors are $
\begin{pmatrix}
-1 \\1 \\ 0
\end{pmatrix},
\begin{pmatrix}
1 \\ 0 \\1
\end{pmatrix}$. Pick $\mathbf{w} =
\begin{pmatrix}
1\\0\\0
\end{pmatrix}$. Write $\mathbf{u} = (A - \lambda I)\mathbf{w} =
\begin{pmatrix}
-1 & -1 & 1\\
-1 & -1 & 1\\
-2 & -2 & 2
\end{pmatrix}
\begin{pmatrix}
1\\0\\0
\end{pmatrix} =
\begin{pmatrix}
-1\\-1\\-2
\end{pmatrix}$. Note that $A\mathbf{u} = -2\mathbf{u}$. We also have $A\mathbf{w} = \mathbf{u} - 2\mathbf{w}$. Form a basis $\{\mathbf{u}, \mathbf{w}, \mathbf{v}\}$, where $\mathbf{v}$ is another eigenvector linearly independent from $\mathbf{u}$, say $
\begin{pmatrix}
1\\0\\1
\end{pmatrix}$.
Now change to this basis with
$P = \begin{pmatrix}
-1 & 1 & 1\\
-1 & 0 & 0\\
-2 & 0 & 1
\end{pmatrix}$. Then the Jordan normal form is $P^{-1}AP =
\begin{pmatrix}
-2 & 1 & 0\\
0 & -2 & 0\\
0 & 0 & -2
\end{pmatrix}$
\end{eg}
\subsection{Cayley-Hamilton Theorem}
\begin{thm}[Cayley-Hamilton theorem]
Every $n\times n$ complex matrix satisfies its own characteristic equation.
\end{thm}
\begin{proof}
We will only prove for diagonalizable matrices here. So suppose for our matrix $A$, there is some $P$ such that $D = \mathrm{diag}(\lambda_1, \lambda_2, \cdots, \lambda_n) = P^{-1}AP$.
Note that
\[
D^i = (P^{-1}AP)(P^{-1}AP)\cdots(P^{-1}AP) = P^{-1}A^iP.
\]
Hence
\[
p_D(D) = p_D(P^{-1}AP) = P^{-1}[p_D(A)]P.
\]
Since similar matrices have the same characteristic polynomial. So
\[
p_A(D) = P^{-1}[p_A(A)]P.
\]
However, we also know that $D^i = \mathrm{diag}(\lambda_1^i, \lambda_2^i, \cdots \lambda_n^i)$. So
\[
p_A(D) = \mathrm{diag}(p_A(\lambda_1), p_A(\lambda_2), \cdots, p_A(\lambda_n)) = \mathrm{diag}(0, 0, \cdots, 0)
\]
since the eigenvalues are roots of $p_A(\lambda) = 0$. So $0 = p_A(D) = P^{-1}p_A(A)P$ and thus $p_A(A) = 0$.
\end{proof}
There are a few things to note.
\begin{enumerate}
\item If $A^{-1}$ exists, then $A^{-1} p_A(A) = A^{-1}(c_0 + c_1A + c_2A^2 + \cdots + c_n A^n) = 0$. So $c_0 A^{-1} + c_1 + c_2A + \cdots + c_n A^{n - 1}$. Since $A^{-1}$ exists, $c_0 = \pm \det A \not= 0$. So
\[
A^{-1} = \frac{-1}{c_0}(c_1 + c_2 A + \cdots + c_n A^{n -1}).
\]
So we can calculate $A^{-1}$ from positive powers of $A$.
\item We can define matrix exponentiation by
\[
e^A = I + A + \frac{1}{2!}A^2 + \cdots + \frac{1}{n!}A^n + \cdots.
\]
It is a fact that this always converges.
If $A$ is diagonalizable with $P$ with $D = P^{-1}AP = \mathrm{diag}(\lambda_1, \lambda_2, \cdots, \lambda_n)$, then
\begin{align*}
P^{-1}e^A P &= P^{-1}IP + P^{-1}AP + \frac{1}{2!}P^{-1}A^2P + \cdots\\
&= I + D + \frac{1}{2!}D^{2} + \cdots\\
&= \mathrm{diag}(e^{\lambda_1}, e^{\lambda_2}, \cdots e^{\lambda_n})
\end{align*}
So
\[
e^A = P[\mathrm{diag}(e^{\lambda_1}, e^{\lambda_2}, \cdots, e^{\lambda_n})]P^{-1}.
\]
\item For $2\times 2$ matrices which are similar to $B =
\begin{pmatrix}
\lambda & 1\\
0 & \lambda
\end{pmatrix}$
We see that the characteristic polynomial $p_B(z) = \det (B - zI) = (\lambda - z)^2$. Then $p_B(B) = (\lambda I - B)^2 =
\begin{pmatrix}
0 & -1\\
0 & 0
\end{pmatrix}^2 =
\begin{pmatrix}
0 & 0\\
0 & 0
\end{pmatrix}$.
Since we have proved for the diagonalizable matrices above, we now know that \emph{any} $2\times 2$ matrix satisfies Cayley-Hamilton theorem.
\end{enumerate}
In IB Linear Algebra, we will prove the Cayley Hamilton theorem properly for all matrices without assuming diagonalizability.
\subsection{Eigenvalues and eigenvectors of a Hermitian matrix}
\subsubsection{Eigenvalues and eigenvectors}
\begin{thm}
The eigenvalues of a Hermitian matrix $H$ are real.
\end{thm}
\begin{proof}
Suppose that $H$ has eigenvalue $\lambda$ with eigenvector $\mathbf{v}\not= 0$. Then
\[
H\mathbf{v} = \lambda\mathbf{v}.
\]
We pre-multiply by $\mathbf{v}^\dagger$, a $1\times n$ row vector, to obtain
\[
\mathbf{v}^\dagger H\mathbf{v} = \lambda \mathbf{v}^\dagger \mathbf{v}\tag{$*$}\]
We take the Hermitian conjugate of both sides. The left hand side is
\[
(\mathbf{v}^\dagger H\mathbf{v})^\dagger = \mathbf{v}^\dagger H^\dagger \mathbf{v} = \mathbf{v}^\dagger H \mathbf{v}
\]
since $H$ is Hermitian. The right hand side is
\[
(\lambda\mathbf{v}^\dagger\mathbf{v})^\dagger = \lambda^* \mathbf{v}^\dagger \mathbf{v}
\]
So we have
\[
\mathbf{v}^\dagger H\mathbf{v} = \lambda^* \mathbf{v}^\dagger \mathbf{v}.
\]
From $(*)$, we know that $\lambda \mathbf{v}^\dagger \mathbf{v} = \lambda^* \mathbf{v}^\dagger \mathbf{v}$. Since $\mathbf{v} \not= 0$, we know that $\mathbf{v}^\dagger \mathbf{v} = \mathbf{v}\cdot \mathbf{v} \not =0$. So $\lambda = \lambda^*$ and $\lambda$ is real.
\end{proof}
\begin{thm}
The eigenvectors of a Hermitian matrix $H$ corresponding to distinct eigenvalues are orthogonal.
\end{thm}
\begin{proof}
Let
\begin{align*}
H\mathbf{v}_i &= \lambda_i\mathbf{v}_i\tag{i}\\
H\mathbf{v}_j &= \lambda_j\mathbf{v}_j\tag{ii}.
\end{align*}
Pre-multiply (i) by $\mathbf{v}_j^\dagger$ to obtain
\[
\mathbf{v}_j^\dagger H\mathbf{v}_i = \lambda_i \mathbf{v}_j^\dagger \mathbf{v}_i\tag{iii}.
\]
Pre-multiply (ii) by $\mathbf{v}_i^\dagger$ and take the Hermitian conjugate to obtain
\[
\mathbf{v}_j^\dagger H\mathbf{v}_i = \lambda_j \mathbf{v}_j^\dagger \mathbf{v}_i\tag{iv}.
\]
Equating (iii) and (iv) yields
\[
\lambda_i \mathbf{v}_j^\dagger \mathbf{v}_i = \lambda_j \mathbf{v}_j^\dagger \mathbf{v}_i.
\]
Since $\lambda_i\not= \lambda_j$, we must have $\mathbf{v}_j^\dagger\mathbf{v}_i = 0$. So their inner product is zero and are orthogonal.
\end{proof}
So we know that if a Hermitian matrix has $n$ distinct eigenvalues, then the eigenvectors form an orthonormal basis. However, if there are degenerate eigenvalues, it is more difficult, and requires the Gram-Schmidt process.
\subsubsection{Gram-Schmidt orthogonalization (non-examinable)}
Suppose we have a set $B = \{\mathbf{w}_1, \mathbf{w}_2, \cdots, \mathbf{w}_r\}$ of linearly independent vectors. We want to find an orthogonal set $\tilde{\mathbf{B}} = \{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_r\}$.
Define the projection of $\mathbf{w}$ onto $\mathbf{v}$ by $\mathcal{P}_\mathbf{v}(\mathbf{w}) = \frac{\bra \mathbf{v}\mid \mathbf{w}\ket}{\bra \mathbf{v}\mid \mathbf{v}\ket} \mathbf{v}$. Now construct $\tilde{\mathbf{B}}$ iteratively:
\begin{enumerate}
\item $\mathbf{v}_1 = \mathbf{w}_1$
\item $\mathbf{v}_2 = \mathbf{w}_2 - \mathcal{P}_{\mathbf{v}_1}(\mathbf{w})$
Then we get that $\bra \mathbf{v}_1\mid \mathbf{v}_2\ket = \bra \mathbf{v}_1\mid \mathbf{w}_2\ket - \left(\frac{\bra \mathbf{v}_1\mid \mathbf{w}_2\ket}{\bra \mathbf{v}_1 \mid \mathbf{v}_1\ket}\right) \bra \mathbf{v}_1\mid \mathbf{v}_1\ket = 0$
\item $\mathbf{v}_3 = \mathbf{w}_3 - \mathcal{P}_{\mathbf{v}_1}(\mathbf{w}_3) - \mathcal{P}_{\mathbf{v}_2}(\mathbf{w}_3)$
\item $\vdots$
\item $\displaystyle \mathbf{v}_r = \mathbf{w}_r - \sum_{j = 1}^{r - 1} \mathcal{P}_{\mathbf{v}_j}(\mathbf{w}_r)$
\end{enumerate}
At each step, we subtract out the components of $\mathbf{v}_i$ that belong to the space of $\{\mathbf{v}_1, \cdots, \mathbf{v}_{k - 1}\}$. This ensures that all the vectors are orthogonal. Finally, we normalize each basis vector individually to obtain an orthonormal basis.
\subsubsection{Unitary transformation}
Suppose $U$ is the transformation between one orthonormal basis and a new orthonormal basis $\{\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_n\}$, i.e.\ $\bra \mathbf{u}_i\mid \mathbf{u}_j\ket = \delta_{ij}$. Then
\[
U =
\begin{pmatrix}
(\mathbf{u}_1)_1 & (\mathbf{u}_2)_1 & \cdots & (\mathbf{u}_n)_1\\
(\mathbf{u}_1)_2 & (\mathbf{u}_2)_2 & \cdots & (\mathbf{u}_n)_2\\
\vdots & \vdots & \ddots & \vdots\\
(\mathbf{u}_1)_n & (\mathbf{u}_2)_n & \cdots & (\mathbf{u}_n)_n
\end{pmatrix}
\]
Then
\begin{align*}
(U^\dagger U)_{ij} &= (U^\dagger)_{ik}U_{kj}\\
&= U_{ki}^* U_{kj}\\
&= (\mathbf{u}_i)^*_k(\mathbf{u}_j)_k\\
&= \bra \mathbf{u}_i \mid \mathbf{u}_j \ket\\
&= \delta_{ij}
\end{align*}
So $U$ is a unitary matrix.
\subsubsection{Diagonalization of \texorpdfstring{$n\times n$}{n x n} Hermitian matrices}
\begin{thm}
An $n\times n$ Hermitian matrix has precisely $n$ orthogonal eigenvectors.
\end{thm}
\begin{proof}
(Non-examinable) Let $\lambda_1,\lambda_2, \cdots, \lambda_r$ be the distinct eigenvalues of $H$ ($r \leq n$), with a set of corresponding orthonormal eigenvectors $B = \{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_r\}$. Extend to a basis of the whole of $\C^n$
\[
B' = \{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_r, \mathbf{w}_1, \mathbf{w}_2,\cdots, \mathbf{w}_{n - r}\}
\]
Now use Gram-Schmidt to create an orthonormal basis
\[
\tilde{B} = \{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_r, \mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_{n - r}\}.
\]
Now write
\[
P =
\begin{pmatrix}
\uparrow & \uparrow & & \uparrow & \uparrow & & \uparrow\\
\mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_r & \mathbf{u}_1 & \cdots & \mathbf{u}_{n - r}\\
\downarrow & \downarrow & & \downarrow & \downarrow & & \downarrow\\
\end{pmatrix}
\]
We have shown above that this is a unitary matrix, i.e.\ $P^{-1} = P^\dagger$. So if we change basis, we have
\begin{align*}
P^{-1}HP &= P^\dagger HP\\
&= \begin{pmatrix}
\lambda_1 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0\\
0 & \lambda_2 & \cdots & 0 & 0 & 0 & \cdots & 0\\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & 0\\
0 & 0 & \cdots & \lambda_r & 0 & 0 & \cdots & 0\\
0 & 0 & \cdots & 0 & c_{11} & c_{12} & \cdots & c_{1, n - r}\\
0 & 0 & \cdots & 0 & c_{21} & c_{22} & \cdots & c_{2, n - r}\\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & c_{n - r,1} & c_{n - r,2} & \cdots & c_{n - r, n - r}
\end{pmatrix}
\end{align*}
Here $C$ is an $(n - r)\times (n - r)$ Hermitian matrix. The eigenvalues of $C$ are also eigenvalues of $H$ because $\det (H - \lambda I) = \det(P^\dagger HP - \lambda I) = (\lambda_1 - \lambda)\cdots (\lambda_r - \lambda)\det (C - \lambda I)$. So the eigenvalues of $C$ are the eigenvalues of $H$.
We can keep repeating the process on $C$ until we finish all rows. For example, if the eigenvalues of $C$ are all distinct, there are $n - r$ orthonormal eigenvectors $\mathbf{w}_j$ (for $j = r + 1, \cdots, n$) of $C$. Let
\[
Q =
\begin{pmatrix}
1 \\
& 1\\
&& \ddots\\
&&& 1\\
&&&& \uparrow & \uparrow & &\uparrow\\
&&&& \mathbf{w}_{r+1} & \mathbf{w}_{r + 2} & \cdots & \mathbf{w}_n\\
&&&& \downarrow & \downarrow & &\downarrow\\
\end{pmatrix}
\]
with other entries $0$. (where we have a $r\times r$ identity matrix block on the top left corner and a $(n - r) \times (n -r)$ with columns formed by $\mathbf{w}_j$)
Since the columns of $Q$ are orthonormal, $Q$ is unitary. So $Q^\dagger P^\dagger HPQ = \mathrm{diag}(\lambda_1, \lambda_2, \cdots, \lambda_r, \lambda_{r + 1}, \cdots, \lambda_n)$, where the first $r$ $\lambda$s are distinct and the remaining ones are copies of previous ones.
The $n$ linearly-independent eigenvectors are the columns of $PQ$.
\end{proof}
So it now follows that $H$ is diagonalizable via transformation $U (=PQ)$. $U$ is a unitary matrix because $P$ and $Q$ are. We have
\begin{align*}
D &= U^\dagger HU\\
H &= UDU^\dagger
\end{align*}
Note that a real symmetric matrix $S$ is a special case of Hermitian matrices. So we have
\begin{align*}
D &= Q^T SQ\\
S &= QDQ^T
\end{align*}
\begin{eg}
Find the orthogonal matrix which diagonalizes the following real symmetric matrix: $S =
\begin{pmatrix}
1 & \beta\\
\beta & 1
\end{pmatrix}$ with $\beta \not= 0 \in \R$.
We find the eigenvalues by solving the characteristic equation: $\det(S - \lambda I) = 0$, and obtain $\lambda = 1\pm \beta$.
The corresponding eigenvectors satisfy $(S - \lambda I)\mathbf{x} = 0$, which gives $\displaystyle \mathbf{x} = \frac{1}{\sqrt{2}}
\begin{pmatrix}
1\\
\pm1
\end{pmatrix}$
We change the basis from the standard basis to $
\displaystyle
\frac{1}{\sqrt{2}}\begin{pmatrix}
1\\1
\end{pmatrix},
\frac{1}{\sqrt{2}}
\begin{pmatrix}
1\\-1
\end{pmatrix}$ (which is just a rotation by $\pi/4$).
The transformation matrix is $
Q = \begin{pmatrix}
1/\sqrt{2} & 1/\sqrt{2}\\
1/\sqrt{2} & -1/\sqrt{2}
\end{pmatrix}$. Then we know that $S = QDQ^T$ with $D = \mathrm{diag}(1, -1)$
\end{eg}
\subsubsection{Normal matrices}
We have seen that the eigenvalues and eigenvectors of Hermitian matrices satisfy some nice properties. More generally, we can define the following:
\begin{defi}[Normal matrix]
A \emph{normal matrix} as a matrix that commutes with its own Hermitian conjugate, i.e.
\[
NN^\dagger = N^\dagger N
\]
\end{defi}
Hermitian, real symmetric, skew-Hermitian, real anti-symmetric, orthogonal, unitary matrices are all special cases of normal matrices.
It can be shown that:
\begin{prop}\leavevmode
\begin{enumerate}
\item If $\lambda$ is an eigenvalue of $N$, then $\lambda^*$ is an eigenvalue of $N^\dagger$.
\item The eigenvectors of distinct eigenvalues are orthogonal.
\item A normal matrix can always be diagonalized with an orthonormal basis of eigenvectors.
\end{enumerate}
\end{prop}
\section{Quadratic forms and conics}
We want to study quantities like $x_1^2 + x_2^2$ and $3x_1^2 + 2x_1x_2 + 4x_2^2$. For example, conic sections generally take this form. The common characteristic of these is that each term has degree 2. Consequently, we can write it in the form $\mathbf{x}^\dagger A\mathbf{x}$ for some matrix $A$.
\begin{defi}[Sesquilinear, Hermitian and quadratic forms]
A \emph{sesquilinear form} is a quantity $F = \mathbf{x}^\dagger A\mathbf{x} = x_i^*A_{ij}x_j$. If $A$ is Hermitian, then $F$ is a \emph{Hermitian form}. If $A$ is real symmetric, then $F$ is a \emph{quadratic form}.
\end{defi}
\begin{thm}
Hermitian forms are real.
\end{thm}
\begin{proof}
$(\mathbf{x}^\dagger H\mathbf{x})^* = (\mathbf{x}^\dagger H\mathbf{x})^\dagger = \mathbf{x}^\dagger H^\dagger\mathbf{x} = \mathbf{x}^\dagger H\mathbf{x}$. So $(\mathbf{x}^\dagger H\mathbf{x})^* = \mathbf{x}^\dagger H\mathbf{x}$ and it is real.
\end{proof}
We know that any Hermitian matrix can be diagonalized with a unitary transformation. So $F(\mathbf{x}) = \mathbf{x}^\dagger H\mathbf{x} = \mathbf{x}^\dagger UDU^\dagger \mathbf{x}$. Write $\mathbf{x}' = U^\dagger \mathbf{x}$. So $F = (\mathbf{x}')^\dagger D\mathbf{x}'$, where $D = \mathrm{diag}(\lambda_1,\cdots,\lambda_n)$.
We know that $\mathbf{x}'$ is the vector $\mathbf{x}$ relative to the eigenvector basis. So
\[
F(\mathbf{x}) = \sum_{i = 1}^n \lambda_i |x_i'|^2
\]
The eigenvectors are known as the principal axes.
\begin{eg}
Take $F = 2x^2 - 4xy + 5y^2 = \mathbf{x}^TS\mathbf{x}$, where $\mathbf{x} =
\begin{pmatrix}
x\\y
\end{pmatrix}$ and $S =
\begin{pmatrix}
2 & -2\\
-2 & 5
\end{pmatrix}$.
Note that we can always choose the matrix to be symmetric. This is since for any antisymmetric $A$, we have $\mathbf{x}^\dagger A\mathbf{x} = 0$. So we can just take the symmetric part.
The eigenvalues are $1, 6$ with corresponding eigenvectors $
\displaystyle \frac{1}{\sqrt{5}}\begin{pmatrix}
2\\1
\end{pmatrix},\frac{1}{\sqrt{5}}
\begin{pmatrix}
1\\-2
\end{pmatrix}$. Now change basis with
\[
Q = \frac{1}{\sqrt{5}}
\begin{pmatrix}
2 & 1\\
1 & -2
\end{pmatrix}
\]
Then $\mathbf{x}' = Q^T\mathbf{x} =
\frac{1}{\sqrt{5}}\begin{pmatrix}
2x + y\\x - 2y
\end{pmatrix}$. Then $F = (x')^2 + 6(y')^2$.
So $F = c$ is an ellipse.
\end{eg}
\subsection{Quadrics and conics}
\subsubsection{Quadrics}
\begin{defi}[Quadric]
A \emph{quadric} is an $n$-dimensional surface defined by the zero of a real quadratic polynomial, i.e.
\[
\mathbf{x}^T A\mathbf{x} + \mathbf{b}^T\mathbf{x} + c = 0,
\]
where $A$ is a real $n\times n$ matrix, $\mathbf{x}, \mathbf{b}$ are $n$-dimensional column vectors and $c$ is a constant scalar.
\end{defi}
As noted in example, anti-symmetric matrix has $\mathbf{x}^TA\mathbf{x} = 0$, so for any $A$, we can split it into symmetric and anti-symmetric parts, and just retain the symmetric part $S = (A + A^T)/2$. So we can have
\[
\mathbf{x}^T S\mathbf{x} + \mathbf{b}^T\mathbf{x} + c = 0
\]
with $S$ symmetric.
Since $S$ is real and symmetric, we can diagonalize it using $S = QDQ^T$ with $D$ diagonal. We write $\mathbf{x}' = Q^T \mathbf{x}$ and $\mathbf{b}' = Q^T \mathbf{b}$. So we have
\[
(\mathbf{x}')^TD\mathbf{x}' + (\mathbf{b}')^T \mathbf{x}' + c = 0.
\]
If $S$ is invertible, i.e.\ with no zero eigenvalues, then write $\mathbf{x}'' = \mathbf{x}' + \frac{1}{2}D^{-1}\mathbf{b}'$ which shifts the origin to eliminate the linear term $(\mathbf{b}')^T\mathbf{x}'$ and finally have (dropping the prime superfixes)
\[
\mathbf{x}^TD\mathbf{x} = k.
\]
So through two transformations, we have ended up with a simple quadratic form.
\subsubsection{Conic sections \texorpdfstring{$(n = 2)$}{(n = 2)}}
From the equation above, we obtain
\[
\lambda_1x_1^2 + \lambda_2x_2^2 = k.
\]
We have the following cases:
\begin{enumerate}
\item $\lambda_1\lambda_2 > 0$: we have ellipses with axes coinciding with eigenvectors of $S$. (We require $\mathrm{sgn}(k) = \mathrm{sgn}(\lambda_1,\lambda_2)$, or else we would have no solutions at all)
\item $\lambda_1\lambda_2 < 0$: say $\lambda_1 = k/a^2 > 0$, $\lambda_2 = -k/b^2 < 0$. So we obtain
\[
\frac{x_1^2}{a^2} - \frac{x_2^2}{b^2} = 1,
\]
which is a hyperbola.
\item $\lambda_1\lambda_2 = 0$: Say $\lambda_2 = 0$, $\lambda_1\not= 0$. Note that in this case, our symmetric matrix $S$ is not invertible and we cannot shift our origin using as above.
From our initial equation, we have
\[
\lambda_1(x_1')^2 + b_1'x_1' + b_2' x_2' + c = 0.
\]
We perform the coordinate transform (which is simply completing the square!)
\begin{align*}
x_1'' &= x_1' + \frac{b_1'}{2\lambda_1}\\
x_2'' &= x_2' + \frac{c}{b_2'} - \frac{(b_1')^2}{4\lambda_1b_2'}
\end{align*}
to remove the $x_1'$ and constant term. Dropping the primes, we have
\[
\lambda_1 x_1^2 + b_2 x_2 = 0,
\]
which is a parabola.
Note that above we assumed $b_2'\not= 0$. If $b_2' = 0$, we have $\lambda_1(x_1')^2 + b_1' x_1' + c = 0$. If we solve this quadratic for $x_1'$, we obtain 0, 1 or 2 solutions for $x_1$ (and $x_2$ can be any value). So we have 0, 1 or 2 straight lines.
\end{enumerate}
These are known as conic sections. As you will see in IA Dynamics and Relativity, this are the trajectories of planets under the influence of gravity.
\subsection{Focus-directrix property}
Conic sections can be defined in a different way, in terms of
\begin{defi}[Conic sections]
The \emph{eccentricity} and \emph{scale} are properties of a conic section that satisfy the following:
Let the \emph{foci} of a conic section be $(\pm ae, 0)$ and the \emph{directrices} be $x = \pm a/e$.
A \emph{conic section} is the set of points whose distance from focus is $e \times$ distance from directrix which is closer to that of focus (unless $e = 1$, where we take the distance to the other directrix).
\end{defi}
Now consider the different cases of $e$:
\begin{enumerate}
\item $e < 1$. By definition,
\begin{center}
\begin{tikzpicture}
\draw [->] (-2.5, 0) -- (4, 0) node [right] {$x$};
\draw [->] (0, -2) -- (0, 2.5) node [above] {$y$};
\draw (0, 0) node [anchor = north east] {$O$};
\draw [dashed] (3.333, -2) -- (3.333, 2) node [above] {$x = a/e$};
\draw [dashed] (1.2, 0) node [anchor = south east] {$ae$} node [circ] {}
-- (1.6, 0.96) node [anchor = south west] {$(x, y)$} node [circ] {}
-- (3.333, 0.96);
\draw (0, 0) circle [x radius = 2, y radius = 1.6];
\end{tikzpicture}
\end{center}
\begin{align*}
\sqrt{(x - ae)^2 + y^2} &= e\left(\frac{a}{e} - x\right)\\
\frac{x^2}{a^2} + \frac{y^2}{a^2(1 - e^2)} = 1
\end{align*}
Which is an ellipse with semi-major axis $a$ and semi-minor axis $a\sqrt{1 - e^2}$. (if $e = 0$, then we have a circle)
\item $e > 1$. So
\begin{center}
\begin{tikzpicture}
\draw [->] (-4, 0) -- (4, 0) node [right] {$x$};
\draw [->] (0, -3) -- (0, 3) node [above] {$y$};
\draw (0, 0) node [anchor = north east] {$O$};
\draw [dashed] (1.333, -3) -- (1.333, 2.5) node [above] {$x = a/e$};
\draw [dashed] (3, 0) node [anchor = south west] {$ae$} node [circ] {}
-- (2.41, 1.5) node [right] {$(x, y)$} node [circ] {}
-- (1.333, 1.5);
\draw plot[domain = -1:1] ({2*cosh(\x)},{2.23607*sinh(\x)});
\draw plot[domain = -1:1] ({-2*cosh(\x)},{2.23607*sinh(\x)});
\end{tikzpicture}
\end{center}
\begin{align*}
\sqrt{(x - ae)^2 + y^2} &= e\left(x - \frac{a}{e}\right)\\
\frac{x^2}{a^2} - \frac{y^2}{a^2(e^2 - 1)} &= 1
\end{align*}
and we have a hyperbola.
\item $e = 1$: Then
\begin{center}
\begin{tikzpicture}[yscale=0.4]
\draw [->] (-2.5, 0) -- (4, 0) node [right] {$x$};
\draw [->] (0, -6) -- (0, 6) node [above] {$y$};
\draw (0, 0) node [anchor = north east] {$O$};
\draw [dashed] (-2, -6) -- (-2, 5) node [above] {$x = a$};
\draw [dashed] (2, 0) node [anchor = south west] {$a$} node [circ] {}
-- (1.2, 3.1) node [right] {$(x, y)$} node [circ] {}
-- (-2, 3.1);
\draw plot[domain = -5:5] ({\x*\x/8,\x});
\end{tikzpicture}
\end{center}
\begin{align*}
\sqrt{(x - a)^2 + y^2} &= (x + 1)\\
y^2 &= 4ax
\end{align*}
and we have a parabola.
\end{enumerate}
Conics also work in polar coordinates. We introduce a new parameter $l$ such that $l/e$ is the distance from the focus to the directrix. So
\[
l = a|1 - e^2|.
\]
We use polar coordinates $(r, \theta)$ centered on a focus. So the focus-directrix property is
\begin{align*}
r &= e\left(\frac{l}{e} - r\cos\theta\right)\\
r &= \frac{l}{1 + e\cos\theta}
\end{align*}
We see that $r\to \infty$ if $\theta \to \cos^{-1}(-1/e)$, which is only possible if $e\geq 1$, i.e.\ hyperbola or parabola. But ellipses have $e < 1$. So $r$ is bounded, as expected.
\section{Transformation groups}
We have previously seen that orthogonal matrices are used to transform between orthonormal bases. Alternatively, we can see them as transformations of space itself that preserve distances, which is something we will prove shortly.
Using this as the definition of an orthogonal matrix, we see that our definition of orthogonal matrices is dependent on our choice of the notion of distance, or metric. In special relativity, we will need to use a different metric, which will lead to the \emph{Lorentz matrices}, the matrices that conserve distances in special relativity. We will have a brief look at these as well.
\subsection{Groups of orthogonal matrices}
\begin{prop}
The set of all $n\times n$ orthogonal matrices $P$ forms a group under matrix multiplication.
\end{prop}
\begin{proof}\leavevmode
\begin{enumerate}[label=\arabic{*}.]
\setcounter{enumi}{-1}
\item If $P, Q$ are orthogonal, then consider $R = PQ$. $RR^T = (PQ)(PQ)^T = P(QQ^T)P^T = PP^T = I$. So $R$ is orthogonal.
\item $I$ satisfies $II^T = I$. So $I$ is orthogonal and is an identity of the group.
\item Inverse: if $P$ is orthogonal, then $P^{-1}=P^T$ by definition, which is also orthogonal.
\item Matrix multiplication is associative since function composition is associative.\qedhere
\end{enumerate}
\end{proof}
\begin{defi}[Orthogonal group]
The \emph{orthogonal group} $O(n)$ is the group of orthogonal matrices.
\end{defi}
\begin{defi}[Special orthogonal group]
The \emph{special orthogonal group} is the subgroup of $O(n)$ that consists of all orthogonal matrices with determinant $1$.
\end{defi}
In general, we can show that any matrix in $O(2)$ is of the form
\[
\begin{pmatrix}
\cos\theta & -\sin\theta\\
\sin\theta & \cos\theta
\end{pmatrix}\text{ or }
\begin{pmatrix}
\cos\theta & \sin\theta\\
\sin\theta & -\cos\theta
\end{pmatrix}
\]
\subsection{Length preserving matrices}
\begin{thm}
Let $P\in O(n)$. Then the following are equivalent:
\begin{enumerate}
\item $P$ is orthogonal
\item $|P\mathbf{x}| = |\mathbf{x}|$
\item $(P\mathbf{x})^T(P\mathbf{y}) = \mathbf{x}^T\mathbf{y}$, i.e.\ $(P\mathbf{x})\cdot(P\mathbf{y}) = \mathbf{x}\cdot \mathbf{y}$.
\item If $(\mathbf{v}_1, \mathbf{v_2}, \cdots, \mathbf{v}_n)$ are orthonormal, so are $(P\mathbf{v}_1, P\mathbf{v}_2, \cdots, P\mathbf{v}_n)$
\item The columns of $P$ are orthonormal.
\end{enumerate}
\end{thm}
\begin{proof}
We do them one by one:
\begin{enumerate}
\item $\Rightarrow$ (ii): $|P\mathbf{x}|^2 = (P\mathbf{x})^T(P\mathbf{x}) = \mathbf{x}^TP^TP\mathbf{x} = \mathbf{x}^T\mathbf{x} = |\mathbf{x}|^2$
\item $\Rightarrow$ (iii): $|P(\mathbf{x} + \mathbf{y})|^2 = |\mathbf{x + y}|^2$. The right hand side is
\[
(\mathbf{x}^T + \mathbf{y}^T)(\mathbf{x + y}) = \mathbf{x}^T\mathbf{x} + y^T\mathbf{y} + \mathbf{y}^T\mathbf{x} + \mathbf{x}^T\mathbf{y} = |\mathbf{x}|^2 + |\mathbf{y}|^2 + 2\mathbf{x}^T\mathbf{y}.
\]
Similarly, the left hand side is
\[
|P\mathbf{x} + P\mathbf{y}|^2 = |P\mathbf{x}|^2 + |P\mathbf{y}| + 2(P\mathbf{x})^TP\mathbf{y} = |\mathbf{x}|^2 + |\mathbf{y}|^2 + 2(P\mathbf{x})^TP\mathbf{y}.
\]
So $(P\mathbf{x})^TP\mathbf{y} = \mathbf{x}^T\mathbf{y}$.
\item $\Rightarrow$ (iv): $(P\mathbf{v}_i)^TP\mathbf{v}_j = \mathbf{v}_i^T\mathbf{v}_j = \delta_{ij}$. So $P\mathbf{v}_i$'s are also orthonormal.
\item $\Rightarrow$ (v): Take the $\mathbf{v}_i$'s to be the standard basis. So the columns of $P$, being $P\mathbf{e}_i$, are orthonormal.
\item $\Rightarrow$ (i): The columns of $P$ are orthonormal. Then $(PP^T)_{ij} = P_{ik}P_{jk} = (P_i)\cdot (P_j) = \delta_{ij}$, viewing $P_i$ as the $i$th column of $P$. So $PP^T = I$.\qedhere
\end{enumerate}
\end{proof}
Therefore the set of length-preserving matrices is precisely $O(n)$.
\subsection{Lorentz transformations}
Consider the \emph{Minkowski} 1 + 1 dimension spacetime (i.e.\ 1 space dimension and 1 time dimension)
\begin{defi}[Minkowski inner product]
The \emph{Minkowski} inner product of 2 vectors $\mathbf{x}$ and $\mathbf{y}$ is
\[
\bra \mathbf{x}\mid \mathbf{y}\ket = \mathbf{x}^TJ\mathbf{y},
\]
where
\[
J =
\begin{pmatrix}
1 & 0\\
0 & -1
\end{pmatrix}
\]
Then $\bra \mathbf{x}\mid \mathbf{y}\ket = x_1y_1 - x_2y_2$.
\end{defi}
This is to be compared to the usual \emph{Euclidean} inner product of $\mathbf{x}, \mathbf{y}\in \R^2$, given by
\[
\bra \mathbf{x}\mid \mathbf{y}\ket = \mathbf{x}^T\mathbf{y} = \mathbf{x}^TI\mathbf{y} = x_1y_1 + x_2y_2.
\]
\begin{defi}[Preservation of inner product]
A transformation matrix $M$ preserves the Minkowski inner product if
\[
\bra \mathbf{x}|\mathbf{y}\ket = \bra M\mathbf{x} | M\mathbf{y}\ket
\]
for all $\mathbf{x}, \mathbf{y}$.
\end{defi}
We know that $\mathbf{x}^TJ\mathbf{y} = (M\mathbf{x})^TJM\mathbf{y} = \mathbf{x}^T M^TJM\mathbf{y}$. Since this has to be true for all $\mathbf{x}$ and $\mathbf{y}$, we must have
\[
J = M^TJM.
\]
We can show that $M$ takes the form of
\[
H_\alpha = \begin{pmatrix}
\cosh \alpha & \sinh \alpha\\
\sinh \alpha & \cosh \alpha
\end{pmatrix}\text{ or } K_{\alpha/2} =
\begin{pmatrix}
\cosh\alpha & -\sinh\alpha\\
\sinh\alpha & -\cosh\alpha
\end{pmatrix}
\]
where $H_\alpha$ is a \emph{hyperbolic rotation}, and $K_{\alpha/2}$ is a \emph{hyperbolic reflection}.
This is technically \emph{all} matrices that preserve the metric, since these only include matrices with $M_{11} > 0$. In physics, these are the matrices we want, since $M_{11} < 0$ corresponds to inverting time, which is frowned upon.
\begin{defi}[Lorentz matrix]
A \emph{Lorentz matrix} or a \emph{Lorentz boost} is a matrix in the form
\[
B_v = \frac{1}{\sqrt{1 - v^2}}
\begin{pmatrix}
1 & v\\
v & 1
\end{pmatrix}.
\]
Here $|v| < 1$, where we have chosen units in which the speed of light is equal to $1$. We have $B_v = H_{\tanh^{-1}v}$
\end{defi}
\begin{defi}[Lorentz group]
The \emph{Lorentz group} is a group of all Lorentz matrices under matrix multiplication.
\end{defi}
It is easy to prove that this is a group. For the closure axiom, we have $B_{v_1}B_{v_2} = B_{v_3}$, where
\[
v_3 = \tanh(\tanh^{-1} v_1 + \tanh^{-1} v_2) = \frac{v_1 + v_2}{1 + v_1v_2}
\]
The set of all $B_v$ is a group of transformations which preserve the Minkowski inner product.
\end{document}
|