Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 167,074 Bytes
afd65d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
\documentclass[a4paper]{article}

\def\npart {IA}
\def\nterm {Michaelmas}
\def\nyear {2014}
\def\nlecturer {N.\ Peake}
\def\ncourse {Vectors and Matrices}

\input{header}

\begin{document}
\maketitle
{\small \noindent\textbf{Complex numbers}\\
Review of complex numbers, including complex conjugate, inverse, modulus, argument and Argand diagram. Informal treatment of complex logarithm, $n$-th roots and complex powers. de Moivre's theorem.\hspace*{\fill}[2]

\vspace{10pt}
\noindent\textbf{Vectors}\\
Review of elementary algebra of vectors in $\R^3$, including scalar product. Brief discussion of vectors in $\R^n$ and $\C^n$; scalar product and the Cauchy-Schwarz inequality. Concepts of linear span, linear independence, subspaces, basis and dimension.

\vspace{5pt}
\noindent Suffix notation: including summation convention, $\delta_{ij}$ and $\varepsilon_{ijk}$. Vector product and triple product: definition and geometrical interpretation. Solution of linear vector equations. Applications of vectors to geometry, including equations of lines, planes and spheres.\hspace*{\fill}[5]

\vspace{10pt}
\noindent\textbf{Matrices}\\
Elementary algebra of $3\times 3$ matrices, including determinants. Extension to $n\times n$ complex matrices. Trace, determinant, non-singular matrices and inverses. Matrices as linear transformations; examples of geometrical actions including rotations, reflections, dilations, shears; kernel and image.\hspace*{\fill}[4]

\vspace{5pt}
\noindent Simultaneous linear equations: matrix formulation; existence and uniqueness of solutions, geometric interpretation; Gaussian elimination.\hspace*{\fill}[3]

\vspace{5pt}
\noindent Symmetric, anti-symmetric, orthogonal, hermitian and unitary matrices. Decomposition of a general matrix into isotropic, symmetric trace-free and antisymmetric parts.\hspace*{\fill}[1]

\vspace{10pt}
\noindent\textbf{Eigenvalues and Eigenvectors}\\
Eigenvalues and eigenvectors; geometric significance.\hspace*{\fill}[2]

\vspace{5pt}
\noindent Proof that eigenvalues of hermitian matrix are real, and that distinct eigenvalues give an orthogonal basis of eigenvectors. The effect of a general change of basis (similarity transformations). Diagonalization of general matrices: sufficient conditions; examples of matrices that cannot be diagonalized. Canonical forms for $2 \times 2$ matrices.\hspace*{\fill}[5]

\vspace{5pt}
\noindent Discussion of quadratic forms, including change of basis. Classification of conics, cartesian and polar forms.\hspace*{\fill}[1]

\vspace{5pt}
\noindent Rotation matrices and Lorentz transformations as transformation groups.\hspace*{\fill}[1]}

\tableofcontents

\setcounter{section}{-1}
\section{Introduction}
Vectors and matrices is the language in which a lot of mathematics is written in. In physics, many variables such as position and momentum are expressed as vectors. Heisenberg also formulated quantum mechanics in terms of vectors and matrices. In statistics, one might pack all the results of all experiments into a single vector, and work with a large vector instead of many small quantities. In group theory, matrices are used to represent the symmetries of space (as well as many other groups).

So what is a vector? Vectors are very general objects, and can in theory represent very complex objects. However, in this course, our focus is on vectors in $\R^n$ or $\C^n$. We can think of each of these as an array of $n$ real or complex numbers. For example, $(1, 6, 4)$ is a vector in $\R^3$. These vectors are added in the obvious way. For example, $(1, 6, 4) + (3, 5, 2) = (4, 11, 6)$. We can also multiply vectors by numbers, say $2(1, 6, 4) = (2, 12, 8)$. Often, these vectors represent points in an $n$-dimensional space.

Matrices, on the other hand, represent \emph{functions} between vectors, i.e.\ a function that takes in a vector and outputs another vector. These, however, are not arbitrary functions. Instead matrices represent \emph{linear functions}. These are functions that satisfy the equality $f(\lambda \mathbf{x} + \mu \mathbf{y}) = \lambda f(\mathbf{x}) + \mu f(\mathbf{y})$ for arbitrary numbers $\lambda, \mu$ and vectors $\mathbf{x}, \mathbf{y}$. It is important to note that the function $\mathbf{x} \mapsto \mathbf{x} + \mathbf{c}$ for some constant vector $\mathbf{c}$ is \emph{not} linear according to this definition, even though it might look linear.

It turns out that for each linear function from $\R^n$ to $\R^m$, we can represent the function uniquely by an $m\times n$ array of numbers, which is what we call the \emph{matrix}. Expressing a linear function as a matrix allows us to conveniently study many of its properties, which is why we usually talk about matrices instead of the function itself.

\section{Complex numbers}
In $\R$, not every polynomial equation has a solution. For example, there does not exist any $x$ such that $x^2 + 1 = 0$, since for any $x$, $x^2$ is non-negative, and $x^2 + 1$ can never be $0$. To solve this problem, we introduce the ``number'' $i$ that satisfies $i^2 = -1$. Then $i$ is a solution to the equation $x^2 + 1 = 0$. Similarly, $-i$ is also a solution to the equation.

We can add and multiply numbers with $i$. For example, we can obtain numbers $3 + i$ or $1 + 3i$. These numbers are known as \emph{complex numbers}. It turns out that by adding this single number $i$, \emph{every} polynomial equation will have a root. In fact, for an $n$th order polynomial equation, we will later see that there will always be $n$ roots, if we account for multiplicity. We will go into details in Chapter~\ref{sec:eigen}.

Apart from solving equations, complex numbers have a lot of rather important applications. For example, they are used in electronics to represent alternating currents, and form an integral part in the formulation of quantum mechanics.

\subsection{Basic properties}
\begin{defi}[Complex number]
  A \emph{complex number} is a number $z\in \C$ of the form $z = a + ib$ with $a, b\in \R$, where $i^2=-1$. We write $a = \Re(z)$ and $b = \Im(z)$.
\end{defi}

We have
\begin{align*}
  z_1\pm z_2 &= (a_1 + ib_1)\pm (a_2 + ib_2)\\
  &= (a_1\pm a_2) + i(b_1 \pm b_2)\\
  z_1z_2 &= (a_1 + ib_1)(a_2 + ib_2)\\
  &= (a_1a_2 - b_1b_2) + i(b_1a_2 + a_1b_2)\\
  z^{-1} &= \frac{1}{a + ib}\\
  &= \frac{a - ib}{a^2 + b^2}
\end{align*}
\begin{defi}[Complex conjugate]
  The \emph{complex conjugate} of $z = a+ ib$ is $a - ib$. It is written as $\bar{z}$ or $z^*$.
\end{defi}

It is often helpful to visualize complex numbers in a diagram:
\begin{defi}[Argand diagram]
  An \emph{Argand diagram} is a diagram in which a complex number $z = x + iy$ is represented by a vector $\mathbf{p}=\begin{pmatrix}x\\y\end{pmatrix}$. Addition of vectors corresponds to vector addition and $\bar{z}$ is the reflection of $z$ in the $x$-axis.
\begin{center}
  \begin{tikzpicture}
    \draw [->] (-0.5, 0) -- (3, 0) node [right] {Re};
    \draw [->] (0, -1) -- (0, 2) node [above] {Im};
    \draw [->] (0, 0) -- (.5, 1) node [above] {$z_1$};
    \draw [->] (0, 0) -- (2, .7) node [above] {$z_2$};
    \draw [->] (0, 0) -- (2, -.7) node [above] {$\bar z_2$};
    \draw [->] (0, 0) -- (2.5, 1.7) node [anchor=south west] {$z_1 + z_2$};
    \draw [dashed] (.5, 1) -- (2.5, 1.7) -- (2, .7);
  \end{tikzpicture}
\end{center}
\end{defi}

\begin{defi}[Modulus and argument of complex number]
  The \emph{modulus} of $z = x + iy$ is $r = |z| = \sqrt{x^2 + y^2}$. The \emph{argument} is $\theta = \arg z = \tan^{-1} (y/x)$. The modulus is the length of the vector in the Argand diagram, and the argument is the angle between $z$ and the real axis. We have
  \[
    z = r(\cos\theta + i\sin \theta)
  \]
  Clearly the pair $(r, \theta)$ uniquely describes a complex number $z$, but each complex number $z\in \C$ can be described by many different $\theta$ since $\sin (2\pi + \theta) = \sin \theta$ and $\cos(2\pi + \theta) = \cos\theta$. Often we take the \emph{principle value} $\theta \in (-\pi, \pi]$.
\end{defi}

When writing $z_i = r_i(\cos\theta_i + i\sin \theta_i)$, we have
\begin{align*}
  z_1z_2 &= r_1r_2[(\cos\theta_1\cos\theta_2 - \sin\theta_1\sin\theta_2) + i(\sin\theta_1\cos\theta_2 + \sin\theta_2\cos\theta_1)]\\
  &= r_1r_2[\cos(\theta_1 + \theta_2) + i\sin(\theta_1+\theta_2)]
\end{align*}
In other words, when multiplying complex numbers, the moduli multiply and the arguments add.

\begin{prop}
  $z\bar{z} = a^2 + b^2 = |z|^2$.
\end{prop}

\begin{prop}
  $z^{-1} = \bar{z}/|z|^2$.
\end{prop}

\begin{thm}[Triangle inequality]
  For all $z_1, z_2 \in \C$, we have
  \[
    |z_1 + z_2| \leq |z_1| + |z_2|.
  \]
  Alternatively, we have $|z_1 - z_2|\geq ||z_1| - |z_2||$.
\end{thm}

\subsection{Complex exponential function}
Exponentiation was originally defined for integer powers as repeated multiplication. This is then extended to rational powers using roots. We can also extend this to any real number since real numbers can be approximated arbitrarily accurately by rational numbers. However, what does it mean to take an exponent of a complex number?

To do so, we use the Taylor series definition of the exponential function:
\begin{defi}[Exponential function]
  The \emph{exponential function} is defined as
  \[
    \exp (z) = e^z = 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \cdots = \sum_{n = 0}^\infty \frac{z^n}{n!}.
  \]
\end{defi}
This automatically allows taking exponents of arbitrary complex numbers. Having defined exponentiation this way, we want to check that it satisfies the usual properties, such as $\exp(z + w) = \exp(z)\exp(w)$. To prove this, we will first need a helpful lemma.

\begin{lemma}
  \[
    \sum_{n = 0}^\infty\sum_{m = 0}^\infty a_{mn} = \sum_{r = 0}^\infty\sum_{m = 0}^r a_{r - m, m}
  \]
\end{lemma}

\begin{proof}
  \begin{align*}
    \sum_{n = 0}^\infty\sum_{m = 0}^\infty a_{mn} &= a_{00} + a_{01} + a_{02} + \cdots\\
    &+ a_{10} + a_{11} + a_{12} + \cdots\\
    &+ a_{20} + a_{21} + a_{22} + \cdots\\
    &= (a_{00}) + (a_{10} + a_{01}) + (a_{20} + a_{11} + a_{02}) + \cdots\\
    &= \sum_{r = 0}^\infty\sum_{m = 0}^r a_{r - m, m} \qedhere
  \end{align*}
\end{proof}
This is not exactly a rigorous proof, since we should not hand-wave about infinite sums so casually. But in fact, we did not even show that the definition of $\exp(z)$ is well defined for all numbers $z$, since the sum might diverge. All these will be done in that IA Analysis I course.

\begin{thm}
  $\exp(z_1)\exp(z_2) = \exp(z_1 + z_2)$
\end{thm}

\begin{proof}
  \begin{align*}
    \exp(z_1)\exp(z_2) &= \sum_{n = 0}^\infty\sum_{m = 0}^\infty \frac{z_1^m}{m!}\frac{z_2^n}{n!}\\
    &= \sum_{r = 0}^\infty\sum_{m = 0}^r \frac{z_1^{r - m}}{(r - m)!}\frac{z_2^m}{m!}\\
    &= \sum_{r = 0}^\infty\frac{1}{r!}\sum_{m = 0}^r \frac{r!}{(r - m)!m!}z_1^{r - m}z_2^m\\
    &= \sum_{r = 0}^\infty\frac{(z_1 + z_2)^r}{r!} \qedhere
  \end{align*}
\end{proof}

Again, to define the sine and cosine functions, instead of referring to ``angles'' (since it doesn't make much sense to refer to complex ``angles''), we again use a series definition.
\begin{defi}[Sine and cosine functions]
  Define, for all $z\in \C$,
  \begin{alignat*}{2}
    \sin z &= \sum_{n=0}^\infty \frac{(-1)^n}{(2n+1)!}z^{2n+1} &\;= z - \frac{1}{3!}z^3 + \frac{1}{5!}z^5 + \cdots\\
    \cos z &= \sum_{n=0}^\infty \frac{(-1)^n}{(2n)!}z^{2n} &\;= 1 - \frac{1}{2!}z^2 + \frac{1}{4!}z^4 + \cdots
  \end{alignat*}
\end{defi}

One very important result is the relationship between $\exp$, $\sin$ and $\cos$.
\begin{thm}
  $e^{iz} = \cos z + i\sin z$.
\end{thm}
Alternatively, since $\sin (-z) = -\sin z$ and $\cos(-z) = \cos z$, we have
\begin{align*}
  \cos z &= \frac{e^{iz} + e^{-iz}}{2},\\
  \sin z &= \frac{e^{iz} - e^{-iz}}{2i}.
\end{align*}

\begin{proof}
  \begin{align*}
    e^{iz} &= \sum_{n=0}^\infty \frac{i^n}{n!}z^n\\
    &= \sum_{n=0}^\infty \frac{i^{2n}}{(2n)!}z^{2n} + \sum_{n=0}^\infty \frac{i^{2n+1}}{(2n+1)!}z^{2n+1}\\
    &= \sum_{n=0}^\infty \frac{(-1)^n}{(2n)!}z^{2n} + i \sum_{n=0}^\infty \frac{(-1)^n}{(2n+1)!}z^{2n+1}\\
    &= \cos z + i\sin z \qedhere
  \end{align*}
\end{proof}
Thus we can write $z = r(\cos\theta + i\sin\theta) = re^{i\theta}$.

\subsection{Roots of unity}
\begin{defi}[Roots of unity]
  The $n$th \emph{roots of unity} are the roots to the equation $z^n = 1$ for $n\in \N$. Since this is a polynomial of order $n$, there are $n$ roots of unity. In fact, the $n$th roots of unity are $\exp\left(2\pi i\frac{k}{n}\right)$ for $k = 0, 1, 2, 3\cdots n - 1$.
\end{defi}

\begin{prop}
  If $\omega = \exp\left(\frac{2\pi i}{n}\right)$, then $1 + \omega + \omega^2 + \cdots + \omega^{n - 1} = 0$
\end{prop}

\begin{proof}
  Two proofs are provided:
  \begin{enumerate}
    \item Consider the equation $z^n = 1$. The coefficient of $z^{n-1}$ is the sum of all roots. Since the coefficient of $z^{n-1}$ is 0, then the sum of all roots $= 1 + \omega + \omega^2 + \cdots + \omega^{n-1} = 0$.
    \item Since $\omega^n - 1 = (\omega - 1)(1 + \omega + \cdots + \omega^{n - 1})$ and $\omega \not= 1$, dividing by $(\omega - 1)$, we have $1 + \omega + \cdots + \omega^{n-1} = (\omega^n - 1)/(\omega - 1) = 0$. \qedhere
  \end{enumerate}
\end{proof}

\subsection{Complex logarithm and power}
\begin{defi}[Complex logarithm]
  The \emph{complex logarithm} $w = \log z$ is a solution to $e^\omega = z$, i.e.\ $\omega = \log z$. Writing $z = re^{i\theta}$, we have $\log z = \log(re^{i\theta}) = \log r + i\theta$. This can be multi-valued for different values of $\theta$ and, as above, we should select the $\theta$ that satisfies $-\pi < \theta \leq \pi$.
\end{defi}
\begin{eg}
  $\log 2i = \log 2 + i\frac{\pi}{2}$
\end{eg}

\begin{defi}[Complex power]
  The \emph{complex power} $z^\alpha$ for $z, \alpha\in \C$ is defined as $z^\alpha = e^{\alpha\log z}$. This, again, can be multi-valued, as $z^\alpha = e^{\alpha\log|z|}e^{i\alpha\theta}e^{2in\pi\alpha}$ (there are finitely many values if $\alpha\in\Q$, infinitely many otherwise). Nevertheless, we make $z^\alpha$ single-valued by insisting $-\pi < \theta \leq \pi$.
\end{defi}

\subsection{De Moivre's theorem}
\begin{thm}[De Moivre's theorem]
  \[
    \cos n\theta + i\sin n\theta = (\cos\theta + i\sin\theta)^n.
  \]
\end{thm}
\begin{proof}
  First prove for the $n \geq 0$ case by induction. The $n = 0$ case is true since it merely reads $1 = 1$. We then have
  \begin{align*}
    (\cos\theta + i\sin\theta)^{n + 1} &= (\cos\theta + i\sin\theta)^n (\cos\theta + i\sin\theta)\\
    &= (\cos n\theta + i\sin n\theta )(\cos\theta + i\sin\theta)\\
    &= \cos(n+1)\theta + i\sin(n+1)\theta
  \end{align*}
  If $n < 0$, let $m = -n$. Then $m > 0$ and
  \begin{align*}
    (cos\theta + i\sin\theta)^{-m} &= (\cos m\theta + i\sin m\theta)^{-1}\\
    &= \frac{\cos m\theta - i\sin m\theta}{(\cos m\theta + i\sin m\theta)(\cos m\theta - i\sin m\theta)}\\
    &= \frac{\cos (-m\theta) + i\sin (-m\theta)}{\cos^2 m\theta + \sin^2 m\theta}\\
    &= \cos (-m\theta) + i\sin (-m\theta)\\
    &= \cos n\theta + i\sin n\theta \qedhere
  \end{align*}
\end{proof}
Note that ``$\cos n\theta + i\sin n\theta = e^{in\theta} = (e^{i\theta})^n = (\cos \theta + i\sin \theta)^n$'' is \emph{not} a valid proof of De Moivre's theorem, since we do not know yet that $e^{in\theta} = (e^{i\theta})^n$. In fact, De Moivre's theorem tells us that this is a valid rule to apply.

\begin{eg}
  We have $\cos 5\theta + i\sin5\theta = (\cos\theta + i\sin\theta)^5$. By binomial expansion of the RHS and taking real and imaginary parts, we have
  \begin{align*}
    \cos 5\theta &= 5\cos\theta - 20\cos^3\theta + 16\cos^5\theta\\
    \sin 5\theta &= 5\sin\theta - 20\sin^3\theta + 16\sin^5\theta
  \end{align*}
\end{eg}

\subsection{Lines and circles in \texorpdfstring{$\C$}{C}}
Since complex numbers can be regarded as points on the 2D plane, we can often use complex numbers to represent two dimensional objects.

Suppose that we want to represent a straight line through $z_0 \in \C$ parallel to $w\in \C$. The obvious way to do so is to let $z = z_0 + \lambda w$ where $\lambda$ can take any real value. However, this is not an optimal way of doing so, since we are not using the power of complex numbers fully. This is just the same as the vector equation for straight lines, which you may or may not know from your A levels.

Instead, we arrange the equation to give $\lambda = \frac{z - z_0}{w}$. We take the complex conjugate of this expression to obtain $\bar{\lambda} = \frac{\bar{z} - \bar{z_0}}{\bar{w}}$. The trick here is to realize that $\lambda$ is a real number. So we must have $\lambda = \bar \lambda$. This means that we must have
\begin{align*}
  \frac{z - z_0}{w} &= \frac{\bar{z} - \bar{z_0}}{\bar{w}}\\
  z\bar w - \bar z w &= z_0 \bar w - \bar z_0 w.
\end{align*}

\begin{thm}[Equation of straight line]
  The equation of a straight line through $z_0$ and parallel to $w$ is given by
  \[
    z\bar w - \bar z w = z_0 \bar w - \bar z_0 w.
  \]
\end{thm}

The equation of a circle, on the other hand, is rather straightforward. Suppose that we want a circle with center $c\in \C$ and radius $\rho \in \R^+$. By definition of a circle, a point $z$ is on the circle iff its distance to $c$ is $\rho$, i.e.\ $|z - c| = \rho$. Recalling that $|z|^2 = z\bar z$, we obtain,
\begin{align*}
  |z - c| &= \rho\\
  |z - c|^2 &= \rho^2\\
  (z - c)(\bar z - \bar c) &= \rho^2\\
  z\bar z - \bar c z - c\bar z &= \rho^2 - c\bar c
\end{align*}
\begin{thm}
  The general equation of a circle with center $c\in \C$ and radius $\rho \in \R^+$ can be given by
  \[
    z\bar z - \bar c z - c\bar z = \rho^2 - c\bar c.
  \]
\end{thm}
\section{Vectors}
We might have first learned vectors as arrays of numbers, and then defined addition and multiplication in terms of the individual numbers in the vector. This however, is not what we are going to do here. The array of numbers is just a \emph{representation} of the vector, instead of the vector itself.

Here, we will define vectors in terms of what they are, and then the various operations are defined axiomatically according to their properties.
\subsection{Definition and basic properties}
\begin{defi}[Vector]
  A \emph{vector space} over $\R$ or $\C$ is a collection of vectors $\mathbf{v}\in V$, together with two operations: addition of two vectors and multiplication of a vector with a scalar (i.e.\ a number from $\R$ or $\C$, respectively).

  \emph{Vector addition} has to satisfy the following axioms:
  \begin{enumerate}
    \item $\mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a}$ \hfill (commutativity)
    \item $(\mathbf{a} + \mathbf{b}) + \mathbf{c} = \mathbf{a} + (\mathbf{b} + \mathbf{c})$ \hfill (associativity)
    \item There is a vector $\mathbf{0}$ such that $\mathbf{a} + \mathbf{0} = \mathbf{a}$. \hfill (identity)
    \item For all vectors $\mathbf{a}$, there is a vector $(-\mathbf{a})$ such that $\mathbf{a} + (-\mathbf{a}) = \mathbf{0}$ \hfill (inverse)
  \end{enumerate}
  \emph{Scalar multiplication} has to satisfy the following axioms:
  \begin{enumerate}
    \item $\lambda(\mathbf{a + b}) = \lambda\mathbf{a} + \lambda\mathbf{b}$.
    \item $(\lambda + \mu)\mathbf{a} = \lambda\mathbf{a} + \mu\mathbf{a}$.
    \item $\lambda(\mu\mathbf{a}) = (\lambda\mu)\mathbf{a}$.
    \item $1\mathbf{a = a}$.
  \end{enumerate}
\end{defi}

Often, vectors have a length and direction. The length is denoted by $|\mathbf{v}|$. In this case, we can think of a vector as an ``arrow'' in space. Note that $\lambda\mathbf{a}$ is either parallel ($\lambda \ge 0$) to or anti-parallel ($\lambda \le 0$) to $\mathbf{a}$.
\begin{defi}[Unit vector]
  A \emph{unit vector} is a vector with length 1. We write a unit vector as $\hat{\mathbf{v}}$.
\end{defi}

\begin{eg}
  $\R^n$ is a vector space with component-wise addition and scalar multiplication. Note that the vector space $\R$ is a line, but not all lines are vector spaces. For example, $x + y = 1$ is not a vector space since it does not contain $\mathbf{0}$.
\end{eg}

\subsection{Scalar product}
In a vector space, we can define the \emph{scalar product} of two vectors, which returns a scalar (i.e.\ a real or complex number). We will first look at the usual scalar product defined for $\R^n$, and then define the scalar product axiomatically.

\subsubsection{Geometric picture (\texorpdfstring{$\R^2$}{R2} and \texorpdfstring{$\R^3$}{R3} only)}
\begin{defi}[Scalar/dot product]
  $\mathbf{a}\cdot\mathbf{b} = \mathbf{|a||b|}\cos\theta$, where $\theta$ is the angle between $\mathbf{a}$ and $\mathbf{b}$. It satisfies the following properties:
  \begin{enumerate}
    \item $\mathbf{a\cdot b = b\cdot a}$
    \item $\mathbf{a\cdot a = |a|}^2 \geq 0$
    \item $\mathbf{a\cdot a} = 0$ iff $\mathbf{a = 0}$
    \item If $\mathbf{a\cdot b} = 0$ and $\mathbf{a, b}\not= \mathbf{0}$, then $\mathbf{a}$ and $\mathbf{b}$ are perpendicular.
  \end{enumerate}
\end{defi}
Intuitively, this is the product of the parts of $\mathbf{a}$ and $\mathbf{b}$ that are parallel.
\begin{center}
  \begin{tikzpicture}
    \draw [mblue, ->] (0, 0) -- (3, 0) node [right] {$\mathbf{b}$};
    \draw [mred, ->] (0, 0) -- (2, 2) node [anchor = south west] {$\mathbf{a}$} node [pos=0.5, above] {$|\mathbf{a}|$};
    \draw [mred, ->] (0, 0) -- (2, 0) node [pos=0.5, below] {$|\mathbf{a}|\cos \theta$};
    \draw [mred, dashed] (2, 0) -- (2, 2);
    \draw [mred] (1.8, 0) -- (1.8, 0.2) -- (2, 0.2);
  \end{tikzpicture}
\end{center}
Using the dot product, we can write the projection of $\mathbf{b}$ onto $\mathbf{a}$ as $(|\mathbf{b}|\cos\theta)\hat{\mathbf{a}} = \mathbf{(\hat{a}\cdot b)\hat{a}}$.

The cosine rule can be derived as follows:
\begin{align*}
  |\overrightarrow{BC}|^2 &= |\overrightarrow{AC} - \overrightarrow{AB}|^2\\
  &= (\overrightarrow{AC} - \overrightarrow{AB})\cdot (\overrightarrow{AC} - \overrightarrow{AB})\\
  &= |\overrightarrow{AB}|^2 + |\overrightarrow{AC}|^2 - 2|\overrightarrow{AB}||\overrightarrow{AC}|\cos\theta
\end{align*}
We will later come up with a convenient algebraic way to evaluate this scalar product.

\subsubsection{General algebraic definition}
\begin{defi}[Inner/scalar product]
  In a real vector space $V$, an \emph{inner product} or \emph{scalar product} is a map $V\times V\to \R$ that satisfies the following axioms. It is written as $\mathbf{x\cdot y}$ or $\bra\mathbf{x\mid y}\ket$.
  \begin{enumerate}
    \item $\mathbf{x\cdot y = y\cdot x}$ \hfill (symmetry)
    \item $\mathbf{x}\cdot (\lambda\mathbf{y} + \mu\mathbf{z}) = \lambda\mathbf{x\cdot y} + \mu\mathbf{x\cdot z}$ \hfill (linearity in 2nd argument)
    \item $\mathbf{x\cdot x}\geq 0$ with equality iff $\mathbf{x = 0}$\hfill (positive definite)
  \end{enumerate}
\end{defi}
Note that this is a definition only for \emph{real} vector spaces, where the scalars are real. We will have a different set of definitions for complex vector spaces.

In particular, here we can use (i) and (ii) together to show linearity in 1st argument. However, this is generally not true for complex vector spaces.

\begin{defi}
  The \emph{norm} of a vector, written as $|\mathbf{a}|$ or $\|\mathbf{a}\|$, is defined as
  \[
    |\mathbf{a}| = \sqrt{\mathbf{a\cdot a}}.
  \]
\end{defi}

\begin{eg}
  Instead of the usual $\R^n$ vector space, we can consider the set of all real (integrable) functions as a vector space. We can define the following inner product:
  \[
    \bra f\mid g\ket = \int_0^1f(x)g(x)\;\mathrm{d} x.
  \]
\end{eg}

\subsection{Cauchy-Schwarz inequality}
\begin{thm}[Cauchy-Schwarz inequality]
  For all $\mathbf{x, y}\in \R^n$,
  \[
    |\mathbf{x}\cdot \mathbf{y}| \leq |\mathbf{x}||\mathbf{y}|.
  \]
\end{thm}

\begin{proof}
  Consider the expression $|\mathbf{x} - \lambda \mathbf{y}|^2$. We must have
  \begin{align*}
    |\mathbf{x} - \lambda\mathbf{y}|^2 \geq 0\\
    (\mathbf{x} - \lambda\mathbf{y})\cdot (\mathbf{x} - \lambda\mathbf{y}) \geq 0\\
    \lambda^2 |\mathbf{y}|^2 - \lambda (2\mathbf{x\cdot y}) + |\mathbf{x}|^2 \geq 0.
  \end{align*}
  Viewing this as a quadratic in $\lambda$, we see that the quadratic is non-negative and thus cannot have 2 real roots. Thus the discriminant $\Delta \leq 0$. So
  \begin{align*}
    4(\mathbf{x\cdot y})^2 &\leq 4|\mathbf{y}|^2|\mathbf{x}|^2\\
    (\mathbf{x\cdot y})^2 &\leq |\mathbf{x}|^2|\mathbf{y}|^2\\
    |\mathbf{x\cdot y}| &\leq \mathbf{|x||y|}. \qedhere
  \end{align*}
\end{proof}
Note that we proved this using the axioms of the scalar product. So this result holds for \emph{all} possible scalar products on \emph{any} (real) vector space.

\begin{eg}
  Let $\mathbf{x} = (\alpha, \beta, \gamma)$ and $\mathbf{y} = (1, 1, 1)$. Then by the Cauchy-Schwarz inequality, we have
  \begin{align*}
    \alpha + \beta + \gamma &\leq \sqrt{3}\sqrt{\alpha^2 + \beta^2 + \gamma^2}\\
    \alpha^2 + \beta^2 + \gamma^2 &\geq \alpha\beta + \beta\gamma + \gamma\alpha,
  \end{align*}
  with equality if $\alpha = \beta = \gamma$.
\end{eg}

\begin{cor}[Triangle inequality]
  \[
    \mathbf{|x + y|} \leq \mathbf{|x| + |y|}.
  \]
\end{cor}
\begin{proof}
  \begin{align*}
    |\mathbf{x + y}|^2 &= \mathbf{(x + y)\cdot (x + y)}\\
    &= |\mathbf{x}|^2 + 2\mathbf{x\cdot y} + |\mathbf{y}|^2\\
    &\leq |\mathbf{x}|^2 + 2\mathbf{|x||y|} + |\mathbf{y}|^2\\
    &= (\mathbf{|x| + |y|})^2.\\
    \intertext{So}
    \mathbf{|x + y|} &\leq \mathbf{|x| + |y|}. \qedhere
  \end{align*}
\end{proof}

\subsection{Vector product}
Apart from the scalar product, we can also define the \emph{vector product}. However, this is defined only for $\R^3$ space, but not spaces in general.
\begin{defi}[Vector/cross product]
  Consider $\mathbf{a, b}\in \R^3$. Define the \emph{vector product}
  \[
    \mathbf{a\times b} = \mathbf{|a||b|}\sin\theta \hat{\mathbf{n}},
  \]
  where $\mathbf{\hat{n}}$ is a unit vector perpendicular to both $\mathbf{a}$ and $\mathbf{b}$. Since there are two (opposite) unit vectors that are perpendicular to both of them, we pick $\mathbf{\hat{n}}$ to be the one that is perpendicular to $\mathbf{a}, \mathbf{b}$ in a \emph{right-handed} sense.
  \begin{center}
    \begin{tikzpicture}
      \draw [mred, ->] (0, 0) -- (2, -0.7) node [right] {$\mathbf{a}$};
      \draw [mblue, ->] (0, 0) -- (2, 0.7) node [right] {$\mathbf{b}$};
      \draw [mgreen, ->] (0, 0) -- (0, 2) node [above] {$\mathbf{a}\times \mathbf{b}$};

      \draw [mred] (0, 0.2) -- (0.2, 0.13) -- (0.2, -0.07);
      \draw [mblue] (0, 0.2) -- (0.2, 0.27) -- (0.2, 0.07);
    \end{tikzpicture}
  \end{center}
  The vector product satisfies the following properties:
  \begin{enumerate}
    \item $\mathbf{a\times b = -b\times a}$.
    \item $\mathbf{a\times a = 0}$.
    \item $\mathbf{a\times b = 0}\Rightarrow \mathbf{a} = \lambda\mathbf{b}$ for some $\lambda\in \R$ (or $\mathbf{b} = \mathbf{0})$.
    \item $\mathbf{a}\times (\lambda \mathbf{b}) = \lambda(\mathbf{a\times b})$.
    \item $\mathbf{a\times (b + c) = a\times b + a\times c}$.
  \end{enumerate}
\end{defi}

If we have a triangle $OAB$, its area is given by $\frac{1}{2}|\overrightarrow{OA}||\overrightarrow{OB}|\sin\theta = \frac{1}{2}|\overrightarrow{OA}\times\overrightarrow{OB}|$. We define the vector area as $\frac{1}{2}\overrightarrow{OA}\times\overrightarrow{OB}$, which is often a helpful notion when we want to do calculus with surfaces.

There is a convenient way of calculating vector products:
\begin{prop}
  \begin{align*}
    \mathbf{a\times b} &= (a_1\hat{\mathbf{i}} + a_2\hat{\mathbf{j}} + a_3\hat{\mathbf{k}})\times(b_1\hat{\mathbf{i}} + b_2\hat{\mathbf{j}} + b_3\hat{\mathbf{k}})\\
    &= (a_2b_3 - a_3b_2)\hat{\mathbf{i}} + \cdots\\
    &= \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}}\\
      a_1 & a_2 & a_3\\
      b_1 & b_2 & b_3\\
    \end{vmatrix}
  \end{align*}
\end{prop}

\subsection{Scalar triple product}
\begin{defi}[Scalar triple product]
  The \emph{scalar triple product} is defined as
  \[
    \mathbf{[a, b, c] = a\cdot (b\times c)}.
  \]
\end{defi}

\begin{prop}
  If a parallelepiped has sides represented by vectors $\mathbf{a, b, c}$ that form a right-handed system, then the volume of the parallelepiped is given by $\mathbf{[a, b, c]}$.
\end{prop}
\begin{center}
  \begin{tikzpicture}
    \draw [mblue, ->] (0, 0) -- (3, 0) node [right] {$\mathbf{b}$};
    \draw [mred, dashed, ->] (0, 0) -- (2, 1) node [right] {$\mathbf{c}$};
    \draw [mgreen, ->] (0, 0) -- (1, 2) node [above] {$\mathbf{a}$};

    \draw [mblue, dashed] (2, 1) -- +(3, 0);
    \draw [mblue] (1, 2) -- +(3, 0);
    \draw [mblue] (3, 3) -- +(3, 0);

    \draw [mgreen, dashed] (2, 1) -- +(1, 2);
    \draw [mgreen] (5, 1) -- +(1, 2);
    \draw [mgreen] (3, 0) -- +(1, 2);

    \draw [mred] (3, 0) -- +(2, 1);
    \draw [mred] (1, 2) -- +(2, 1);
    \draw [mred] (4, 2) -- +(2, 1);
  \end{tikzpicture}
\end{center}

\begin{proof}
  The area of the base of the parallelepiped is given by $\mathbf{|b||c|}\sin\theta = \mathbf{|b\times c|}$. Thus the volume$ = \mathbf{|b\times c||a|}\cos\phi = \mathbf{|a\cdot(b\times c)|}$, where $\phi$ is the angle between $\mathbf{a}$ and the normal to $\mathbf{b}$ and $\mathbf{c}$. However, since $\mathbf{a, b, c}$ form a right-handed system, we have $\mathbf{a\cdot (b\times c)} \geq 0$. Therefore the volume is $\mathbf{a\cdot(b\times c)}$.
\end{proof}
Since the order of $\mathbf{a, b, c}$ doesn't affect the volume, we know that
\[
  \mathbf{[a, b, c] = [b, c, a] = [c, a, b] = -[b, a, c] = -[a, c, b] = -[c, b, a]}.
\]

\begin{thm}
  $\mathbf{a\times (b + c) = a\times b + a\times c}$.
\end{thm}
\begin{proof}
  Let $\mathbf{d = a\times (b + c) - a\times b - a\times c}$. We have
  \begin{align*}
    \mathbf{d\cdot d} &= \mathbf{d\cdot[a\times (b + c)] - d\cdot(a\times b) - d\cdot(a\times c)}\\
    &= \mathbf{(b+c)\cdot(d \times a) - b\cdot(d\times a) - c\cdot(d\times a)}\\
    &= 0
  \end{align*}
  Thus $\mathbf{d = 0}$.
\end{proof}

\subsection{Spanning sets and bases}
\subsubsection{2D space}
\begin{defi}[Spanning set]
  A set of vectors $\{\mathbf{a, b}\}$ \emph{spans} $\R^2$ if for all vectors $\mathbf{r}\in \R^2$, there exist some $\lambda, \mu\in \R$ such that $\mathbf{r} = \lambda\mathbf{a} + \mu\mathbf{b}$.
\end{defi}

In $\R^2$, two vectors span the space if $\mathbf{a}\times \mathbf{b} \not= \mathbf{0}$.
\begin{thm}
  The coefficients $\lambda, \mu$ are unique.
\end{thm}

\begin{proof}
  Suppose that $\mathbf{r} = \lambda\mathbf{a} + \mu\mathbf{b} = \lambda'\mathbf{a} + \mu'\mathbf{b}$. Take the vector product with $\mathbf{a}$ on both sides to get $(\mu - \mu')\mathbf{a\times b} = \mathbf{0}$. Since $\mathbf{a\times b}\not= \mathbf{0}$, then $\mu=\mu'$. Similarly, $\lambda = \lambda'$.
\end{proof}

\begin{defi}[Linearly independent vectors in $\R^2$]
  Two vectors $\mathbf{a}$ and $\mathbf{b}$ are \emph{linearly independent} if for $\alpha, \beta\in \R$, $\alpha\mathbf{a} + \beta\mathbf{b} = \mathbf{0}$ iff $\alpha = \beta = 0$. In $\R^2$, $\mathbf{a}$ and $\mathbf{b}$ are linearly independent if $\mathbf{a\times b} \not= \mathbf{0}$.
\end{defi}

\begin{defi}[Basis of $\R^2$]
  A set of vectors is a \emph{basis} of $\R^2$ if it spans $\R^2$ and are linearly independent.
\end{defi}

\begin{eg}
  $\{\hat{\mathbf{i}}, \hat{\mathbf{j}}\} = \{(1, 0), (0, 1)\}$ is a basis of $\R^2$. They are the standard basis of $\R^2$.
\end{eg}

\subsubsection{3D space}
We can extend the above definitions of spanning set and linear independent set to $\R^3$. Here we have
\begin{thm}
  If $\mathbf{a}, \mathbf{b}, \mathbf{c}\in\R^3$ are non-coplanar, i.e.\ $\mathbf{a}\cdot(\mathbf{b}\times \mathbf{c})\not= 0$, then they form a basis of $\R^3$.
\end{thm}

\begin{proof}
  For any $\mathbf{r}$, write $\mathbf{r} = \lambda\mathbf{a} + \mu\mathbf{b} + \nu\mathbf{c}$. Performing the scalar product with $\mathbf{b\times c}$ on both sides, one obtains $\mathbf{r\cdot(b\times c)} = \lambda \mathbf{a\cdot(b\times c)} + \mu\mathbf{b\cdot (b\times c)} + \nu\mathbf{c\cdot(b\times c)} = \lambda \mathbf{[a, b, c]}$. Thus $\lambda = \mathbf{[r, b, c]/[a,b, c]}$. The values of $\mu$ and $\nu$ can be found similarly. Thus each $\mathbf{r}$ can be written as a linear combination of $\mathbf{a}, \mathbf{b}$ and $\mathbf{c}$.

  By the formula derived above, it follows that if $\alpha\mathbf{a} + \beta\mathbf{b} + \gamma\mathbf{c} = \mathbf{0}$, then $\alpha = \beta = \gamma = 0$. Thus they are linearly independent.
\end{proof}
Note that while we came up with formulas for $\lambda, \mu$ and $\nu$, we did not actually prove that these coefficients indeed work. This is rather unsatisfactory. We could, of course, expand everything out and show that this indeed works, but in IB Linear Algebra, we will prove a much more general result, saying that if we have an $n$-dimensional space and a set of $n$ linear independent vectors, then they form a basis.

In $\R^3$, the standard basis is $\mathbf{\hat{i}, \hat{j}, \hat{k}}$, or $(1, 0, 0), (0, 1, 0)$ and $(0, 0, 1)$.
\subsubsection{\texorpdfstring{$\R^n$}{Rn} space}
In general, we can define
\begin{defi}[Linearly independent vectors]
  A set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\cdots \mathbf{v}_m\}$ is \emph{linearly independent} if
  \[
    \sum_{i = 1}^m\lambda_i\mathbf{v}_i = \mathbf{0} \Rightarrow (\forall i)\,\lambda_i = 0.
  \]
\end{defi}
\begin{defi}[Spanning set]
  A set of vectors $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\cdots \mathbf{u}_m\}\subseteq \R^n$ is a \emph{spanning set} of $\R^n$ if
  \[
    (\forall \mathbf{x} \in \R^n)(\exists \lambda_i)\,\sum_{i = 1}^m\lambda_i\mathbf{u}_i = \mathbf{x}
  \]
\end{defi}

\begin{defi}[Basis vectors]
  A \emph{basis} of $\R^n$ is a linearly independent spanning set. The standard basis of $\R^n$ is $\mathbf{e}_1 = (1, 0, 0, \cdots 0), \mathbf{e}_2 = (0, 1, 0, \cdots 0),\cdots \mathbf{e}_n = (0, 0, 0, \cdots, 1)$.
\end{defi}

\begin{defi}[Orthonormal basis]
  A basis $\{\mathbf{e}_i\}$ is \emph{orthonormal} if $\mathbf{e}_i\cdot \mathbf{e}_j = 0$ if $i\not= j$ and $\mathbf{e}_i\cdot \mathbf{e}_i = 1$ for all $i, j$.

  Using the Kronecker Delta symbol, which we will define later, we can write this condition as $\mathbf{e}_i \cdot \mathbf{e}_j = \delta_{ij}$.
\end{defi}

\begin{defi}[Dimension of vector space]
  The \emph{dimension} of a vector space is the number of vectors in its basis. (Exercise: show that this is well-defined)
\end{defi}
We usually denote the components of a vector $\mathbf{x}$ by $x_i$. So we have $\mathbf{x} = (x_1, x_2, \cdots, x_n)$.

\begin{defi}[Scalar product]
  The \emph{scalar product} of $\mathbf{x, y}\in \R^n$ is defined as $\mathbf{x\cdot y} = \sum x_i y_i$.
\end{defi}
The reader should check that this definition coincides with the $|\mathbf{x}||\mathbf{y}|\cos\theta$ definition in the case of $\R^2$ and $\R^3$.

\subsubsection{\texorpdfstring{$\C^n$}{Cn} space}
$\C^n$ is very similar to $\R^n$, except that we have complex numbers. As a result, we need a different definition of the scalar product. If we still defined $\mathbf{u}\cdot \mathbf{v} = \sum u_i v_i$, then if we let $\mathbf{u} = (0, i)$, then $\mathbf{u}\cdot \mathbf{u} = -1 < 0$. This would be bad if we want to use the scalar product to define a norm.

\begin{defi}[$\C^n$]
  $\C^n = \{(z_1, z_2, \cdots, z_n): z_i\in\C\}$. It has the same standard basis as $\R^n$ but the scalar product is defined differently. For $\mathbf{u, v}\in \C^n$, $\mathbf{u\cdot v} = \sum u_i^*v_i$. The scalar product has the following properties:
  \begin{enumerate}
    \item $\mathbf{u}\cdot \mathbf{v} = (\mathbf{v}\cdot \mathbf{u})^*$
    \item $\mathbf{u}\cdot(\lambda\mathbf{v}+\mu\mathbf{w}) = \lambda\mathbf{(u\cdot v)} + \mu\mathbf{(u\cdot w)}$
    \item $\mathbf{u\cdot u} \geq 0$ and $\mathbf{u\cdot u} = 0$ iff $\mathbf{u = 0}$
  \end{enumerate}
\end{defi}
Instead of linearity in the first argument, here we have $(\lambda\mathbf{u} + \mu\mathbf{v})\cdot\mathbf{w} = \lambda^*\mathbf{u}\cdot \mathbf{w} + \mu^*\mathbf{v}\cdot \mathbf{w}$.

\begin{eg}
  \begin{align*}
    &\sum_{k = 1}^4 (-i)^k|\mathbf{x} + i^k\mathbf{y}|^2\\
    &= \sum(-i)^k\bra\mathbf{x} + i^k \mathbf{y}\mid \mathbf{x} + i^k\mathbf{y}\ket\\
    &= \sum(-i)^k (\bra\mathbf{x} + i^k\mathbf{y}\mid \mathbf{x}\ket + i^k\bra\mathbf{x} + i^k\mathbf{y} \mid \mathbf{y}\ket)\\
    &= \sum(-i)^k (\bra\mathbf{x}\mid \mathbf{x}\ket + (-i)^k\bra\mathbf{y}\mid \mathbf{x}\ket + i^k\bra\mathbf{x}\mid \mathbf{y}\ket + i^k(-i)^k\bra\mathbf{y}\mid \mathbf{y}\ket)\\
    &= \sum(-i)^k [(| \mathbf{x}|^2 + |\mathbf{y}|^2) + (-1)^k\bra\mathbf{y}\mid \mathbf{x}\ket + \bra\mathbf{x}\mid \mathbf{y}\ket]\\
    &= (|\mathbf{x}|^2 + |\mathbf{y}|^2)\sum(-i)^k + \bra\mathbf{y}\mid \mathbf{x}\ket\sum(-1)^k + \bra\mathbf{x}\mid \mathbf{y}\ket\sum1\\
    &= 4\bra\mathbf{x}\mid \mathbf{y}\ket.
  \end{align*}
\end{eg}

We can prove the Cauchy-Schwarz inequality for complex vector spaces using the same proof as the real case, except that this time we have to first multiply $\mathbf{y}$ by some $e^{i\theta}$ so that $\mathbf{x} \cdot (e^{i\theta} \mathbf{y})$ is a real number. The factor of $e^{i\theta}$ will drop off at the end when we take the modulus signs.

\subsection{Vector subspaces}
\begin{defi}[Vector subspace]
  A \emph{vector subspace} of a vector space $V$ is a subset of $V$ that is also a vector space under the same operations. Both $V$ and $\{\mathbf{0}\}$ are subspaces of $V$. All others are proper subspaces.

  A useful criterion is that a subset $U\subseteq V$ is a subspace iff
  \begin{enumerate}
    \item $\mathbf{x, y}\in U \Rightarrow (\mathbf{x + y}) \in U$.
    \item $\mathbf{x}\in U \Rightarrow \lambda\mathbf{x} \in U$ for all scalars $\lambda$.
    \item $\mathbf{0}\in U$.
  \end{enumerate}
  This can be more concisely written as ``$U$ is non-empty and for all $\mathbf{x, y}\in U$, $(\lambda\mathbf{x} + \mu\mathbf{y})\in U$''.
\end{defi}

\begin{eg}\leavevmode
  \begin{enumerate}
    \item If $\{\mathbf{a, b, c}\}$ is a basis of $\R^3$, then $\{\mathbf{a + c, b + c}\}$ is a basis of a 2D subspace.

      Suppose $\mathbf{x, y}\in \spn\{\mathbf{a + c, b + c}\}$. Let
      \begin{align*}
        \mathbf{x} &= \alpha_1(\mathbf{a + c}) + \beta_1(\mathbf{b + c});\\
        \mathbf{y} &= \alpha_2(\mathbf{a + c}) + \beta_2(\mathbf{b + c}).
      \end{align*}
      Then
      \[
        \lambda\mathbf{x} + \mu\mathbf{y} = (\lambda\alpha_1+\mu\alpha_2)(\mathbf{a + c}) + (\lambda\beta_1 + \mu\beta_2)\mathbf{(b + c)}\in\spn\{\mathbf{a + c, b + c}\}.
      \]
      Thus this is a subspace of $\R^3$.

      Now check that $\mathbf{a + c, b + c}$ is a basis. We only need to check linear independence. If $\alpha(\mathbf{a + c}) + \beta(\mathbf{b + c}) = \mathbf{0}$, then $\alpha\mathbf{a} + \beta\mathbf{b} + (\alpha + \beta)\mathbf{c} = \mathbf{0}$. Since $\{\mathbf{a, b, c}\}$ is a basis of $\R^3$, therefore $\mathbf{a, b, c}$ are linearly independent and $\alpha = \beta = 0$. Therefore $\mathbf{a + c, b + c}$ is a basis and the subspace has dimension $2$.
    \item Given a set of numbers $\alpha_i$, let $U = \{\mathbf{x}\in \R^n: \sum_{i=1}^n \alpha_ix_i = 0\}$. We show that this is a vector subspace of $\R^n$: Take $\mathbf{x, y}\in U$, then consider $\lambda\mathbf{x} + \mu\mathbf{y}$. We have $\sum\alpha_i(\lambda x_i + \mu y_i) = \lambda\sum\alpha_ix_i + \mu\sum\alpha_iy_i = 0$. Thus $\lambda\mathbf{x} + \mu\mathbf{y} \in U$.

      The dimension of the subspace is $n-1$ as we can freely choose $x_i$ for $i = 1, \cdots, n - 1$ and then $x_n$ is uniquely determined by the previous $x_i$'s.
    \item Let $W = \{\mathbf{x}\in \R^n: \sum \alpha_ix_i = 1\}$. Then $\sum\alpha_i(\lambda x_i + \mu y_i) = \lambda + \mu \not= 1$. Therefore $W$ is not a vector subspace.
  \end{enumerate}
\end{eg}

\subsection{Suffix notation}
Here we are going to introduce a powerful notation that can help us simplify a lot of things.

First of all, let $\mathbf{v}\in \R^3$. We can write $\mathbf{v} = v_1\mathbf{e}_1 + v_2\mathbf{e}_2 + v_3\mathbf{e}_3 = (v_1, v_2, v_3)$. So in general, the $i$th component of $\mathbf{v}$ is written as $v_i$. We can thus write vector equations in component form. For example, $\mathbf{a} = \mathbf{b} \rightarrow a_i = b_i$ or $\mathbf{c}=\alpha\mathbf{a} + \beta\mathbf{b} \rightarrow c_i = \alpha a_i + \beta b_i$. A vector has one \emph{free} suffix, $i$, while a scalar has none.

\begin{notation}[Einstein's summation convention]
  Consider a sum $\mathbf{x}\cdot \mathbf{y} = \sum x_i y_i$. The \emph{summation convention} says that we can drop the $\sum$ symbol and simply write $\mathbf{x}\cdot \mathbf{y} = x_i y_i$. If suffixes are repeated once, summation is understood.

  Note that $i$ is a dummy suffix and doesn't matter what it's called, i.e.\ $x_iy_i = x_jy_j = x_k y_k$ etc.

  The rules of this convention are:
  \begin{enumerate}
    \item Suffix appears once in a term: free suffix
    \item Suffix appears twice in a term: dummy suffix and is summed over
    \item Suffix appears three times or more: WRONG!
  \end{enumerate}
\end{notation}

\begin{eg}
  $[\mathbf{(a\cdot b)c - (a \cdot c)b}]_i = a_jb_jc_i - a_jc_jb_i$ summing over $j$ understood.
\end{eg}

It is possible for an item to have more than one index. These objects are known as \emph{tensors}, which will be studied in depth in the IA Vector Calculus course.

Here we will define two important tensors:
\begin{defi}[Kronecker delta]\leavevmode
  \[
    \delta_{ij} =
    \begin{cases}
      1 & i = j\\
      0 & i\not=j
    \end{cases}.
  \]
  We have
  \[
    \begin{pmatrix}
      \delta_{11} & \delta_{12} & \delta_{13}\\
      \delta_{21} & \delta_{22} & \delta_{23}\\
      \delta_{31} & \delta_{32} & \delta_{33}
    \end{pmatrix} =
    \begin{pmatrix}
      1 & 0 & 0\\
      0 & 1 & 0\\
      0 & 0 & 1
    \end{pmatrix}
    = \mathbf{I}.
  \]
  So the Kronecker delta represents an identity matrix.
\end{defi}

\begin{eg}\leavevmode
  \begin{enumerate}
    \item $a_i\delta_{i1} = a_1$. In general, $a_i\delta_{ij} = a_j$ ($i$ is dummy, $j$ is free).
    \item $\delta_{ij}\delta_{jk} = \delta_{ik}$
    \item $\delta_{ii} = n$ if we are in $\R^n$.
    \item $a_p\delta_{pq}b_q = a_pb_p$ with $p, q$ both dummy suffices and summed over.
  \end{enumerate}
\end{eg}

\begin{defi}[Alternating symbol $\varepsilon_{ijk}$]
  Consider rearrangements of $1, 2, 3$. We can divide them into even and odd permutations. Even permutations include $(1, 2, 3)$, $(2, 3, 1)$ and $(3, 1, 2)$. These are permutations obtained by performing two (or no) swaps of the elements of $(1, 2, 3)$. (Alternatively, it is any ``rotation'' of $(1, 2, 3)$)

  The odd permutations are $(2, 1, 3)$, $(1, 3, 2)$ and $(3, 2, 1)$. They are the permutations obtained by one swap only.

  Define
  \[
    \varepsilon_{ijk} =
    \begin{cases}
      +1 & ijk \text{ is even permutation}\\
      -1 & ijk\text{ is odd permutation}\\
      0 & \text{otherwise (i.e.\ repeated suffices)}
    \end{cases}
  \]
  $\varepsilon_{ijk}$ has 3 free suffices.

  We have $\varepsilon_{123} = \varepsilon_{231} = \varepsilon_{312} = +1$ and $\varepsilon_{213} = \varepsilon_{132} = \varepsilon_{321} = -1$. $\varepsilon_{112} = \varepsilon_{111} = \cdots = 0$.
\end{defi}

We have
\begin{enumerate}
  \item $\varepsilon_{ijk}\delta_{jk} = \varepsilon_{ijj} = 0$
  \item If $a_{jk} = a_{kj}$ (i.e.\ $a_{ij}$ is symmetric), then $\varepsilon_{ijk}a_{jk} = \varepsilon_{ijk}a_{kj} = -\varepsilon_{ikj}a_{kj}$. Since $\varepsilon_{ijk}a_{jk} = \varepsilon_{ikj}a_{kj}$ (we simply renamed dummy suffices), we have $\varepsilon_{ijk}a_{jk} = 0$.
\end{enumerate}

\begin{prop}
  $(\mathbf{a} \times \mathbf{b})_i = \varepsilon_{ijk}a_jb_k$
\end{prop}

\begin{proof}
  By expansion of formula
\end{proof}

\begin{thm}
  $\varepsilon_{ijk}\varepsilon_{ipq} = \delta_{jp}\delta_{kq} - \delta_{jq}\delta_{kp}$
\end{thm}

\begin{proof}
  Proof by exhaustion:
  \[
    \text{RHS} = \begin{cases}
      +1 &\text{ if } j = p \text{ and } k = q\\
      -1 &\text{ if } j = q \text{ and } k = p\\
      0 &\text{ otherwise}
    \end{cases}
  \]
  LHS: Summing over $i$, the only non-zero terms are when $j, k\not=i$ and $p, q\not=i$. If $j = p$ and $k = q$, LHS is $(-1)^2$ or $(+1)^2 = 1$. If $j = q$ and $k = p$, LHS is $(+1)(-1)$ or $(-1)(+1) = -1$. All other possibilities result in 0.
\end{proof}
Equally, we have $\varepsilon_{ijk}\varepsilon_{pqk} = \delta_{ip}\delta_{jq} - \delta_{jp}\delta_{iq}$ and $\varepsilon_{ijk}\varepsilon_{pjq} = \delta_{ip}\delta_{kq} - \delta_{iq}\delta_{kp}$.

\begin{prop}
  \[
    \mathbf{a\cdot (b\times c) = b\cdot(c\times a)}
  \]
\end{prop}
\begin{proof}
  In suffix notation, we have
  \[
    \mathbf{a\cdot (b\times c)} = a_i\mathbf{(b\times c)}_i = \varepsilon_{ijk}b_jc_ka_i = \varepsilon_{jki}b_jc_ka_i = \mathbf{b\cdot (c\times a)}.\qedhere
  \]
\end{proof}

\begin{thm}[Vector triple product]
  \[
    \mathbf{a\times (b\times c) = (a\cdot c)b - (a\cdot b)c}.
  \]
\end{thm}
\begin{proof}
  \begin{align*}
    \mathbf{[a\times(b\times c)]}_i &= \varepsilon_{ijk} a_j(b\times c)_k \\
    &= \varepsilon_{ijk}\varepsilon_{kpq}a_jb_pc_q\\
    &= \varepsilon_{ijk}\varepsilon_{pqk} a_jb_pc_q\\
    &= (\delta_{ip}\delta_{jq}-\delta_{iq}\delta_{jp})a_jb_pc_q\\
    &= a_jb_ic_j - a_jc_ib_j\\
    &= \mathbf{(a\cdot c)}b_i - \mathbf{(a\cdot b)}c_i\qedhere
  \end{align*}
\end{proof}
Similarly, $\mathbf{(a\times b)\times c = (a\cdot c)b - (b\cdot c)a}$.

\subsubsection*{Spherical trigonometry}
\begin{prop}
  $\mathbf{(a\times b)\cdot (a\times c) = (a\cdot a)(b\cdot c) - (a\cdot b)(a\cdot c)}$.
\end{prop}
\begin{proof}
  \begin{align*}
    \text{LHS} &= (\mathbf{a\times b})_i(\mathbf{a\times c})_i\\
    &= \varepsilon_{ijk}a_jb_k\varepsilon_{ipq} a_pc_q\\
    &= (\delta_{jp}\delta_{kq} - \delta_{jq}\delta_{kp})a_jb_ka_pc_q\\
    &= a_jb_k a_jc_k - a_j b_k a_k c_j\\
    &= \mathbf{(a\cdot a)(b\cdot c) - (a\cdot b)(a\cdot c)}\qedhere
  \end{align*}
\end{proof}

Consider the unit sphere, center $O$, with $\mathbf{a, b, c}$ on the surface.
\begin{center}
  \begin{tikzpicture}
    \draw circle [radius = 2.5];
    \pgfpathmoveto{\pgfpoint{-0.86602cm}{-0.5cm}};
    \pgfpatharcto{2cm}{2cm}{0}{0}{0}{\pgfpoint{0cm}{1cm}}\pgfusepath{stroke};
    \pgfpathmoveto{\pgfpoint{0cm}{1cm}};
    \pgfpatharcto{2cm}{2cm}{0}{0}{0}{\pgfpoint{0.86602cm}{-0.5cm}}\pgfusepath{stroke};
    \pgfpathmoveto{\pgfpoint{0.86602cm}{-0.5cm}};
    \pgfpatharcto{2cm}{2cm}{0}{0}{0}{\pgfpoint{-0.86602cm}{-0.5cm}}\pgfusepath{stroke};

    \draw (0, 1) node [above] {$A$} node [circ] {};
    \draw (-0.86602, -0.5) node [left] {$B$} node [circ] {};
    \draw (0.86602, -0.5) node [right] {$C$} node [circ] {};
    \draw (-0.5, 0.5) node [left] {$\delta(A, B)$};

    \pgfpathmoveto{\pgfpoint{-0.29cm}{0.77cm}};
    \pgfpatharcto{0.5cm}{0.5cm}{0}{0}{1}{\pgfpoint{0.29cm}{0.77cm}}\pgfusepath{stroke};
    \draw (0, 0.5) node {$\alpha$};
  \end{tikzpicture}
\end{center}
Suppose we are living on the surface of the sphere. So the distance from $A$ to $B$ is the arc length on the sphere. We can imagine this to be along the circumference of the circle through $A$ and $B$ with center $O$. So the distance is $\angle AOB$, which we shall denote by $\delta (A, B)$. So $\mathbf{a}\cdot \mathbf{b} = \cos \angle AOB = \cos \delta (A, B)$. We obtain similar expressions for other dot products. Similarly, we get $|\mathbf{a}\times \mathbf{b}| = \sin \delta(A, B)$.
\begin{align*}
  \cos \alpha &= \mathbf{\frac{(a\times b)\cdot(a\times c)}{|a\times b||a\times c|}}\\
  &= \mathbf{\frac{b\cdot c - (a\cdot b)(a\cdot c)}{|a\times b||a\times c|}}
\end{align*}
Putting in our expressions for the dot and cross products, we obtain
\[
  \cos\alpha\sin\delta(A, B)\sin\delta(A, C) = \cos\delta(B, C) - \cos\delta(A, B)\cos\delta(A, C).
\]
This is the spherical cosine rule that applies when we live on the surface of a sphere. What does this spherical geometry look like?

Consider a spherical equilateral triangle. Using the spherical cosine rule,
\[
  \cos\alpha = \frac{\cos\delta - \cos^2\delta}{\sin^2\delta} = 1 - \frac{1}{1 + \cos\delta}.
\]
Since $\cos\delta\leq 1$, we have $\cos\alpha\leq \frac{1}{2}$ and $\alpha \geq 60^\circ$. Equality holds iff $\delta = 0$, i.e.\ the triangle is simply a point. So on a sphere, each angle of an equilateral triangle is greater than $60^\circ$, and the angle sum of a triangle is greater than $180^\circ$.

\subsection{Geometry}
\subsubsection{Lines}
Any line through $\mathbf{a}$ and parallel to $\mathbf{t}$ can be written as
\[
  \mathbf{x} = \mathbf{a} + \lambda\mathbf{t}.
\]
By crossing both sides of the equation with $\mathbf{t}$, we have
\begin{thm} The equation of a straight line through $\mathbf{a}$ and parallel to $\mathbf{t}$ is
  \[
    \mathbf{(x - a)\times t = 0}\text{ or }\mathbf{x\times t = a\times t}.
  \]
\end{thm}
\subsubsection{Plane}
To define a plane $\Pi$, we need a normal $\mathbf{n}$ to the plane and a fixed point $\mathbf{b}$. For any $\mathbf{x}\in \Pi$, the vector $\mathbf{x - b}$ is contained in the plane and is thus normal to $\mathbf{n}$, i.e.\ $\mathbf{(x - b)\cdot n} = 0$.
\begin{thm}
  The equation of a plane through $\mathbf{b}$ with normal $\mathbf{n}$ is given by
  \[
    \mathbf{x\cdot n = b\cdot n}.
  \]
\end{thm}
If $\mathbf{n = \hat n}$ is a unit normal, then $d = \mathbf{x\cdot\hat{n} = b\cdot\hat{n}}$ is the perpendicular distance from the origin to $\Pi$.

Alternatively, if $\mathbf{a, b, c}$ lie in the plane, then the equation of the plane is
\[
  \mathbf{(x - a)\cdot [(b - a)\times (c - a)]} = 0.
\]

\begin{eg}\leavevmode
  \begin{enumerate}
    \item Consider the intersection between a line $\mathbf{x\times t = a\times t}$ with the plane $\mathbf{x\cdot n = b\cdot n}$. Cross $\mathbf{n}$ on the right with the line equation to obtain
      \[
        \mathbf{(x\cdot n)t - (t\cdot n)x = (a\times t)\times n}
      \]
      Eliminate $\mathbf{x\cdot n}$ using $\mathbf{x\cdot n = b\cdot n}$
      \[
        \mathbf{(t\cdot n)x = (b\cdot n)t - (a\times t)\times n}
      \]
      Provided $\mathbf{t\cdot n}$ is non-zero, the point of intersection is
      \[
        \mathbf{x = \frac{(b\cdot n)t - (a\times t)\times n}{t\cdot n}}.
      \]
      Exercise: what if $\mathbf{t\cdot n} = 0$?
    \item Shortest distance between two lines. Let $L_1$ be $(\mathbf{x} - \mathbf{a}_1)\times \mathbf{t}_1 = \mathbf{0}$ and $L_2$ be $(\mathbf{x} - \mathbf{a}_2)\times \mathbf{t}_2 = \mathbf{0}$.

      The distance of closest approach $s$ is along a line perpendicular to both $L_1$ and $L_2$, i.e.\ the line of closest approach is perpendicular to both lines and thus parallel to $\mathbf{t}_1\times \mathbf{t}_2$. The distance $s$ can then be found by projecting $\mathbf{a}_1 - \mathbf{a}_2$ onto $\mathbf{t}_1\times \mathbf{t}_2$. Thus $s = \left|(\mathbf{a}_1 - \mathbf{a}_2)\cdot\frac{\mathbf{t}_1\times \mathbf{t}_2}{|\mathbf{t}_1\times \mathbf{t}_2|}\right|$.
  \end{enumerate}
\end{eg}
\subsection{Vector equations}
\begin{eg}
  $\mathbf{x - (x\times a)\times b = c}$. Strategy: take the dot or cross of the equation with suitable vectors. The equation can be expanded to form
  \begin{align*}
    \mathbf{x - (x\cdot b)a + (a\cdot b)x} &= \mathbf{c}.\\
    \intertext{Dot this with $\mathbf{b}$ to obtain}
    \mathbf{x\cdot b - (x\cdot b)(a\cdot b) + (a\cdot b)(x\cdot b)} &= \mathbf{c\cdot b}\\
    \mathbf{x\cdot b} &= \mathbf{c\cdot b}.
  \end{align*}
  Substituting this into the original equation, we have
  \[
    \mathbf{x}(1 + \mathbf{a\cdot b}) = \mathbf{c + (c\cdot b)a}
  \]
  If $(1 + \mathbf{a \cdot b})$ is non-zero, then
  \[
    \mathbf{x} = \frac{\mathbf{c + (c\cdot b)a}}{1 + \mathbf{a\cdot b}}
  \]
  Otherwise, when $(1 + \mathbf{a\cdot b}) = 0$, if $\mathbf{c + (c\cdot b)a \not= 0}$, then a contradiction is reached. Otherwise, $\mathbf{x\cdot b = c\cdot b}$ is the most general solution, which is a plane of solutions.
\end{eg}

\section{Linear maps}
A \emph{linear map} is a special type of function between vector spaces. In fact, most of the time, these are the only functions we actually care about. They are maps that satisfy the property $f(\lambda \mathbf{a} + \mu \mathbf{b}) = \lambda f(\mathbf{a}) + \mu f(\mathbf{b})$.

We will first look at two important examples of linear maps --- rotations and reflections, and then study their properties formally.
\subsection{Examples}
\subsubsection{Rotation in \texorpdfstring{$\R^3$}{R3}}
In $\R^3$, first consider the simple cases where we rotate about the $z$ axis by $\theta$. We call this rotation $R$ and write $\mathbf{x}' = R(\mathbf{x})$.

Suppose that initially, $\mathbf{x} = (x, y, z) = (r\cos \phi, r\sin \phi, z)$. Then after a rotation by $\theta$, we get
\begin{align*}
  \mathbf{x}' &= (r\cos(\phi + \theta), r\sin (\phi + \theta), z) \\
  &= (r\cos \phi \cos \theta - r\sin \phi \sin \theta, r\sin \phi \cos \theta + r \cos \phi\sin \theta, z)\\
  &= (x\cos\theta - y\sin\theta, x\sin\theta + y\cos\theta, z).
\end{align*}
We can represent this by a matrix $R$ such that $x'_i = R_{ij}x_j$. Using our formula above, we obtain
\[
  R = \begin{pmatrix}
    \cos\theta & -\sin\theta & 0 \\
    \sin\theta & \cos\theta & 0 \\
    0 & 0 & 1
  \end{pmatrix}
\]
Now consider the general case where we rotate by $\theta$ about $\hat {\mathbf{n}}$.
\begin{center}
  \begin{tikzpicture}
    \draw [->] (0, 0) node [below] {$O$} -- (0, 3.5) node [above] {$\hat{\mathbf{n}}$};
    \draw [mred, ->] (0, 0) -- (3, 2) node [right] {$A$} node [pos = 0.5, anchor = north west] {$\mathbf{x}$};
    \draw [mred] (0, 2) -- (3, 2);
    \node at (0, 2) [left] {$B$};
    \draw [mblue] (0, 2) -- (2.5, 2.75) node [anchor = south west] {$A'$};
    \draw [dashed] (2.5, 2.75) -- (2.5, 2) node [below] {$C$};
    \draw [mblue, dashed, ->] (0, 0) -- (2.5, 2.75) node [pos = 0.5, anchor = south east] {$\mathbf{x}'$};
    \draw (2.35, 2) -- (2.35, 2.15) -- (2.5, 2.15);

    \draw (5, 2) node [left] {$B$}
    -- (7, 2) node [right] {$A$}
    -- (6.5, 3) node [above] {$A'$}
    -- cycle ;
    \draw (6.5, 3) -- (6.5, 2) node [below] {$C$};
    \draw (5.5, 2) arc(0:34:.5);
    \draw (5.5, 2) node [anchor = south west] {$\theta$};
    \draw (6.35, 2) -- (6.35, 2.15) -- (6.5, 2.15);
  \end{tikzpicture}
\end{center}
We have $\mathbf{x'} = \overrightarrow{OB} + \overrightarrow{BC} + \overrightarrow{CA'}$.
We know that
\begin{align*}
  \overrightarrow{OB} &= \mathbf{(\hat{n}\cdot x)\hat{n}}\\
  \overrightarrow{BC} &= \overrightarrow{BA}\cos\theta\\
  &= (\overrightarrow{BO} + \overrightarrow{OA})\cos\theta \\
  &= \mathbf{(-(\hat{n}\cdot x)\hat{n} + x)}\cos\theta
\end{align*}
Finally, to get $\overrightarrow{CA}$, we know that $|\overrightarrow{CA'}| = |\overrightarrow{BA'}|\sin\theta = |\overrightarrow{BA}|\sin\theta = |\mathbf{\hat{n}\times x}|\sin\theta$. Also, $\overrightarrow{CA'}$ is parallel to $\hat {\mathbf{n}}\times \mathbf{x}$. So we must have $\overrightarrow{CA'} = (\hat{\mathbf{n}} \times \mathbf{x})\sin \theta$.

Thus $\mathbf{x}' = \mathbf{x}\cos\theta + (1 - \cos\theta)\mathbf{(\hat{n}\cdot x)\hat{n} + \hat{n}\times x}\sin\theta$. In components,
\[
  x_i' = x_i\cos\theta + (1 - \cos\theta)n_jx_jn_i - \varepsilon_{ijk}x_jn_k\sin\theta.
\]
We want to find an $R$ such that $x_i' = R_{ij}x_j$. So
\[
  R_{ij} = \delta_{ij}\cos\theta + (1 - \cos\theta)n_in_j - \varepsilon_{ijk}n_k\sin\theta.
\]

\subsubsection{Reflection in \texorpdfstring{$\R^3$}{R3}}
Suppose we want to reflect through a plane through $O$ with normal $\hat{\mathbf{n}}$. First of all the projection of $\mathbf{x}$ onto $\hat{\mathbf{n}}$ is given by $(\mathbf{x}\cdot \hat{\mathbf{n}})\hat{\mathbf{n}}$. So we get $\mathbf{x}' = \mathbf{x} - 2\mathbf{(x\cdot \hat{n})\hat{n}}$. In suffix notation, we have $x_i' = x_i - 2x_jn_jn_i$. So our reflection matrix is $R_{ij} = \delta_{ij} - 2n_in_j$.
\begin{center}
  \begin{tikzpicture}
    \draw [->] (4, 1.25) -- (5, -0.5) node [below] {$\mathbf{x}'$};
    \draw [fill=mblue, fill opacity=0.8] (0, 0) -- (5, 0) -- (7, 2.5) -- (2, 2.5) -- cycle;
    \draw [->] (3, 1.25) -- (3, 3) node [above] {$\hat{\mathbf{n}}$};
    \draw [->] (4, 1.25) -- (5, 3) node [above] {$\mathbf{x}$};
    \draw [dashed] (5, 3) -- (5, 1.25);
  \end{tikzpicture}
\end{center}

\subsection{Linear Maps}
\begin{defi}[Domain, codomain and image of map]
  Consider sets $A$ and $B$ and mapping $T:A\to B$ such that each $x\in A$ is mapped into a unique $x' = T(x)\in B$. $A$ is the \emph{domain} of $T$ and $B$ is the \emph{co-domain} of $T$. Typically, we have $T:\R^n \to \R^m$ or $T:\C^n\to \C^m$.
\end{defi}

\begin{defi}[Linear map]
  Let $V, W$ be real (or complex) vector spaces, and $T: V\to W$. Then $T$ is a \emph{linear map} if
  \begin{enumerate}
    \item $T(\mathbf{a + b}) = T(\mathbf{a}) + T(\mathbf{b})$ for all $\mathbf{a, b}\in V$.
    \item $T(\lambda\mathbf{a}) = \lambda T(\mathbf{a})$ for all $\lambda \in \R$ (or $\C$).
  \end{enumerate}
  Equivalently, we have $T(\lambda\mathbf{a} + \mu\mathbf{b}) = \lambda T(\mathbf{a}) + \mu T(\mathbf{b})$.
\end{defi}

\begin{eg}\leavevmode
  \begin{enumerate}
    \item Consider a translation $T:\R^3 \to \R^3$ with $T(\mathbf{x}) = \mathbf{x + a}$ for some fixed, given $\mathbf{a}$. This is \emph{not} a linear map since $T(\lambda\mathbf{x} + \mu\mathbf{y}) \not= \lambda \mathbf{x} + \mu \mathbf{y} + (\lambda + \mu)\mathbf{a}$.
    \item Rotation, reflection and projection are linear transformations.
  \end{enumerate}
\end{eg}

\begin{defi}[Image and kernel of map]
  The \emph{image} of a map $f: U\to V$ is the subset of $V$ $\{f(\mathbf{u}): \mathbf{u}\in U\}$. The \emph{kernel} is the subset of $U$ $\{\mathbf{u}\in U: f(\mathbf{u}) = \mathbf{0}\}$.
\end{defi}

\begin{eg}\leavevmode
  \begin{enumerate}
    \item Consider $S: \R^3 \to \R^2$ with $S(x, y, z) = (x + y, 2x - z)$. Simple yet tedious algebra shows that this is linear.
      Now consider the effect of $S$ on the standard basis. $S(1, 0, 0) = (1, 2)$, $S(0, 1, 0) = (1, 0)$ and $S(0, 0, 1) = (0, -1)$. Clearly these are linearly dependent, but they do span the whole of $\R^2$. We can say $S(\R^3) = \R^2$. So the image is $\R^2$.

      Now solve $S(x, y, z) = \mathbf{0}$. We need $x + y = 0$ and $2x - z = 0$. Thus $\mathbf{x} = (x, -x, 2x)$, i.e.\ it is parallel to $(1, -1, 2)$. So the set $\{\lambda(1, -1, 2):\lambda\in \R\}$ is the kernel of $S$.
    \item Consider a rotation in $\R^3$. The kernel is the zero vector and the image is $\R^3$.
    \item Consider a projection of $\mathbf{x}$ onto a plane with normal $\mathbf{\hat n}$. The image is the plane itself, and the kernel is any vector parallel to $\mathbf{\hat n}$
  \end{enumerate}
\end{eg}

\begin{thm}
  Consider a linear map $f: U\to V$, where $U, V$ are vector spaces. Then $\im (f)$ is a subspace of $V$, and $\ker (f)$ is a subspace of $U$.
\end{thm}

\begin{proof}
  Both are non-empty since $f(\mathbf{0}) = \mathbf{0}$.

  If $\mathbf{x, y}\in \im (f)$, then $\exists \mathbf{a, b}\in U$ such that $\mathbf{x} = f(\mathbf{a}), \mathbf{y} = f(\mathbf{b})$. Then $\lambda \mathbf{x} + \mu\mathbf {y} = \lambda f(\mathbf{a}) + \mu f(\mathbf{b}) = f(\lambda\mathbf{a} + \mu\mathbf{b})$. Now $\lambda\mathbf{a} + \mu\mathbf{b}\in U$ since $U$ is a vector space, so there is an element in $U$ that maps to $\lambda\mathbf{x}+ \mu\mathbf{y}$. So $\lambda\mathbf{x}+ \mu\mathbf{y}\in \im (f)$ and $\im (f)$ is a subspace of $V$.

  Suppose $\mathbf{x, y}\in \ker(f)$, i.e.\ $f(\mathbf{x}) = f(\mathbf {y}) = \mathbf{0}$. Then $f(\lambda\mathbf{x} + \mu\mathbf{y}) = \lambda f(\mathbf{x}) + \mu f(\mathbf{y}) = \lambda \mathbf{0} + \mu\mathbf{0} = \mathbf{0}$. Therefore $\lambda\mathbf{x}+ \mu\mathbf{y} \in \ker (f)$.
\end{proof}

\subsection{Rank and nullity}
\begin{defi}[Rank of linear map]
  The \emph{rank} of a linear map $f: U\to V$, denoted by $r(f)$, is the dimension of the image of $f$.
\end{defi}

\begin{defi}[Nullity of linear map]
  The \emph{nullity} of $f$, denoted $n(f)$ is the dimension of the kernel of $f$.
\end{defi}

\begin{eg}
  For the projection onto a plane in $\R^3$, the image is the whole plane and the rank is $2$. The kernel is a line so the nullity is $1$.
\end{eg}

\begin{thm}[Rank-nullity theorem]
  For a linear map $f: U \to V$,
  \[
    r(f) + n(f) = \dim (U).
  \]
\end{thm}

\begin{proof}
  (Non-examinable) Write $\dim(U) = n$ and $n(f) = m$. If $m = n$, then $f$ is the zero map, and the proof is trivial, since $r(f) = 0 $. Otherwise, assume $m < n$.

  Suppose $\{\mathbf{e}_1, \mathbf{e}_2,\cdots, \mathbf{e}_m\}$ is a basis of $\ker f$, Extend this to a basis of the whole of $U$ to get $\{\mathbf{e}_1, \mathbf{e}_2, \cdots, \mathbf{e}_m, \mathbf{e}_{m+1}, \cdots, \mathbf{e}_n\}$. To prove the theorem, we need to prove that $\{f(\mathbf{e}_{m+1}), f(\mathbf{e}_{m + 2}), \cdots f({\mathbf{e}_n})\}$ is a basis of $\im (f)$.
  \begin{enumerate}
    \item First show that it spans $\im (f)$. Take $\mathbf{y}\in \im(f)$. Thus $\exists \mathbf{x}\in U$ such that $\mathbf{y} = f(\mathbf{x})$. Then
      \[
        \mathbf{y} = f(\alpha_1\mathbf{e}_1 + \alpha_2\mathbf{e}_2 + \cdots + \alpha_n \mathbf{e}_n),
      \]
      since $\mathbf{e}_1, \cdots \mathbf{e}_n$ is a basis of $U$. Thus
      \[
        \mathbf{y} = \alpha_1f(\mathbf{e}_1) + \alpha_2f(\mathbf{e}_2) + \cdots + \alpha_m f(\mathbf{e}_m) + \alpha_{m + 1}f(\mathbf{e}_{m + 1}) + \cdots + \alpha_nf(\mathbf{e}_n).
      \]
      The first $m$ terms map to $\mathbf{0}$, since $\mathbf{e_1, \cdots e_m}$ is the basis of the kernel of $f$. Thus
      \[
        \mathbf{y} = \alpha_{m + 1} f(\mathbf{e}_{m + 1}) + \cdots + \alpha_n f(\mathbf{e}_n).
      \]
    \item To show that they are linearly independent, suppose
      \[
        \alpha_{m + 1} f(\mathbf{e}_{m + 1}) + \cdots + \alpha_n f(\mathbf{e}_n) = \mathbf{0}.
      \]
      Then
      \[
        f(\alpha_{m + 1}\mathbf{e}_{m + 1} + \cdots + \alpha_n\mathbf{e}_n) = \mathbf{0}.
      \]
      Thus $\alpha_{m + 1}\mathbf{e}_{m + 1} + \cdots + \alpha_n\mathbf{e}_n\in \ker (f)$. Since $\{\mathbf{e}_1, \cdots, \mathbf{e}_m\}$ span $\ker (f)$, there exist some $\alpha_1, \alpha_2, \cdots \alpha_m$ such that
      \[
        \alpha_{m + 1}\mathbf{e}_{m + 1} + \cdots + \alpha_n\mathbf{e}_n = \alpha_1\mathbf{e_1} + \cdots + \alpha_m\mathbf{e}_m.
      \]
      But $\mathbf{e}_1\cdots \mathbf{e}_n$ is a basis of $U$ and are linearly independent. So $\alpha_i = 0$ for all $i$. Then the only solution to the equation $\alpha_{m + 1} f(\mathbf{e}_{m + 1}) + \cdots + \alpha_n f(\mathbf{e}_n) = \mathbf{0}$ is $\alpha_i = 0$, and they are linearly independent by definition. \qedhere
  \end{enumerate}
\end{proof}

\begin{eg}
  Calculate the kernel and image of $f:\R^3\to \R^3$, defined by $f(x, y, z) = (x + y + z, 2x - y+ 5z, x + 2z)$.

  First find the kernel: we've got the system of equations:
  \begin{align*}
    x + y + z &= 0\\
    2x - y + 5z &= 0\\
    x + 2z &= 0
  \end{align*}
  Note that the first and second equation add to give $3x + 6z = 0$, which is identical to the third. Then using the first and third equation, we have $y = -x - z = z$. So the kernel is any vector in the form $(-2z, z, z)$ and is the span of $(-2, 1, 1)$.

  To find the image, extend the basis of $\ker(f)$ to a basis of the whole of $\R^3$: $\{(-2, 1, 1), (0, 1, 0), (0, 0, 1)\}$. Apply $f$ to this basis to obtain $(0, 0, 0), (1, -1, 0)$ and $(1, 5, 2)$. From the proof of the rank-nullity theorem, we know that $f(0, 1, 0)$ and $f(0, 0, 1)$ is a basis of the image.

  To get the standard form of the image, we know that the normal to the plane is parallel to $(1, -1, 0)\times (1, 5, 2) \parallel (1, 1, -3)$. Since $\mathbf{0}\in \im (f)$, the equation of the plane is $x + y - 3z = 0$.
\end{eg}

\subsection{Matrices}
In the examples above, we have represented our linear maps by some object $R$ such that $x_i' = R_{ij}x_j$. We call $R$ the \emph{matrix} for the linear map. In general, let $\alpha: \R^n \to \R^m$ be a linear map, and $\mathbf{x}' = \alpha(\mathbf{x})$.

Let $\{\mathbf{e}_i\}$ be a basis of $\R^n$. Then $\mathbf{x} = x_j \mathbf{e}_j$ for some $x_j$. Then we get
\[
  \mathbf{x}' = \alpha(x_j \mathbf{e}_j) = x_j \alpha(\mathbf{e}_j).
\]
So we get that
\[
  x_i' = [\alpha(\mathbf{e}_j)]_i x_j.
\]
We now define $A_{ij} = [\alpha(\mathbf{e}_j)]_i$. Then $x_i' = A_{ij}x_j$. We write
\[
  A = \{A_{ij}\} =
  \begin{pmatrix}
    A_{11} & \cdots & A_{1n}\\
    \vdots & A_{ij} & \vdots\\
    A_{m1} & \cdots & A_{mn}
  \end{pmatrix}
\]
Here $A_{ij}$ is the entry in the $i$th row of the $j$th column. We say that $A$ is an $m\times n$ matrix, and write $\mathbf{x}' = A\mathbf{x}$.

We see that the columns of the matrix are the images of the standard basis vectors under the mapping $\alpha$.

\begin{eg}
\end{eg}


\subsubsection{Examples}
\begin{enumerate}
  \item In $\R^2$, consider a reflection in a line with an angle $\theta$ to the $x$ axis. We know that $\mathbf{\hat{i}}\mapsto \cos 2\theta \mathbf{\hat{i}} + \sin 2\theta\mathbf{\hat j}$ , with $\mathbf{\hat{j}}\mapsto -\cos 2\theta \mathbf{\hat{j}} + \sin 2\theta\mathbf{\hat i}$. Then the matrix is
  $\begin{pmatrix}
    \cos 2\theta & \sin 2\theta\\
    \sin 2\theta & -\cos 2\theta
  \end{pmatrix}$.

  \item In $\R^3$, as we've previously seen, a rotation by $\theta$ about the $z$ axis is given by
    \[
      R = \begin{pmatrix}
        \cos\theta & -\sin\theta & 0 \\
        \sin\theta & \cos\theta & 0 \\
        0 & 0 & 1
      \end{pmatrix}
    \]
  \item In $\R^3$, a reflection in plane with normal $\hat{\mathbf{n}}$ is given by $R_{ij} = \delta_{ij} - 2\hat n_i\hat n_j$. Written as a matrix, we have
    \[
      \begin{pmatrix}
        1 - 2\hat n_1^2 & -2\hat n_1\hat n_2 & -2\hat n_1\hat n_3\\
        -2\hat n_2\hat n_1 & 1 - 2\hat n_2^2 & -2\hat n_2\hat n_3\\
        -2\hat n_3\hat n_1 & -2\hat n_3\hat n_2 & 1 - 2\hat n_3^2
      \end{pmatrix}
    \]
  \item Dilation (``stretching'') $\alpha: \R^3 \to \R^3$ is given by a map $(x, y, z)\mapsto (\lambda x, \mu y, \nu z)$ for some $\lambda, \mu, \nu$. The matrix is
    \[
      \begin{pmatrix}
        \lambda & 0 & 0\\
        0 & \mu & 0\\
        0 & 0 & \nu
      \end{pmatrix}
    \]
  \item Shear: Consider $S:\R^3 \to \R^3$ that sheers in the $x$ direction:
    \begin{center}
      \begin{tikzpicture}
        \draw [->] (-0.5, 0) -- (3, 0) node [right] {$x$};
        \draw [->] (0, -0.5) -- (0, 2.5) node [above] {$y$};
        \draw [->] (0, 0) -- (1, 1) node [above] {$\mathbf{x}$};
        \draw [->] (0, 0) -- (2, 1) node [above] {$\mathbf{x}'$};
        \draw [->] (1, 1.5) -- (2, 1.5) node [align=center, above] {sheer in $x$ direction};
      \end{tikzpicture}
    \end{center}
    We have $(x, y, z)\mapsto (x + \lambda y, y, z)$. Then
    \[
      S =
      \begin{pmatrix}
        1 & \lambda & 0\\
        0 & 1 & 0\\
        0 & 0 & 1
      \end{pmatrix}
    \]
\end{enumerate}

\subsubsection{Matrix Algebra}
This part is mostly on a whole lot of definitions, saying what we can do with matrices and classifying them into different types.

\begin{defi}[Addition of matrices] Consider two linear maps $\alpha, \beta: \R^n\to \R^m$. The sum of $\alpha$ and $\beta$ is defined by
  \begin{align*}
    (\alpha + \beta)(\mathbf{x}) &= \alpha(\mathbf{x}) + \beta(\mathbf{x})\\
    \intertext{In terms of the matrix, we have}
    (A + B)_{ij}x_j &= A_{ij}x_j + B_{ij}x_j,\\
    \intertext{or}
    (A + B)_{ij} &= A_{ij}+B_{ij}.
  \end{align*}
\end{defi}

\begin{defi}[Scalar multiplication of matrices]
  Define $(\lambda\alpha)\mathbf{x} = \lambda[\alpha(\mathbf{x})]$. So $(\lambda A)_{ij} = \lambda A_{ij}$.
\end{defi}

\begin{defi}[Matrix multiplication]
  Consider maps $\alpha: \R^\ell \to \R^n$ and $\beta: \R^n\to \R^m$. The composition is $\beta\alpha:\R^\ell\to\R^m$. Take $\mathbf{x}\in \R^\ell\mapsto \mathbf{x}''\in \R^m$. Then $\mathbf{x}'' = (BA)\mathbf{x} = B\mathbf{x'}$, where $\mathbf{x}' = A\mathbf{x}$. Using suffix notation, we have $x_i'' = (B\mathbf{x}')_i = b_{ik}x_k' = B_{ik}A_{kj}x_j$. But $x_i'' = (BA)_{ij}x_j$. So
  \[
    (BA)_{ij} = B_{ik}A_{kj}.
  \]
  Generally, an $m\times n$ matrix multiplied by an $n\times \ell$ matrix gives an $m\times\ell$ matrix. $(BA)_{ij}$ is given by the $i$th row of $B$ dotted with the $j$th column of $A$.
\end{defi}
Note that the number of columns of $B$ has to be equal to the number of rows of $A$ for multiplication to be defined. If $\ell = m$ as well, then both $BA$ and $AB$ make sense, but $AB\not= BA$ in general. In fact, they don't even have to have the same dimensions.

Also, since function composition is associative, we get $A(BC) = (AB)C$.

\begin{defi}[Transpose of matrix]
  If $A$ is an $m\times n$ matrix, the \emph{transpose} $A^T$ is an $n\times m$ matrix defined by $(A^T)_{ij} = A_{ji}$.
\end{defi}

\begin{prop}\leavevmode
  \begin{enumerate}
    \item $(A^T)^T = A$.
    \item If $\mathbf{x}$ is a column vector$\begin{pmatrix}x_1\\x_2\\\vdots\\x_n\end{pmatrix}$, $\mathbf{x}^T$ is a row vector $(x_1\; x_2\cdots x_n)$.
    \item $(AB)^T = B^TA^T$ since $(AB)^T_{ij} = (AB)_{ji} = A_{jk}B_{ki} = B_{ki}A_{jk} $\\$= (B^T)_{ik}(A^T)_{kj} = (B^TA^T)_{ij}$.
  \end{enumerate}
\end{prop}

\begin{defi}[Hermitian conjugate]
  Define $A^{\dagger} = (A^T)^*$. Similarly, $(AB)^\dagger = B^\dagger A^\dagger$.
\end{defi}

\begin{defi}[Symmetric matrix]
  A matrix is \emph{symmetric} if $A^T = A$.
\end{defi}

\begin{defi}[Hermitian matrix]
  A matrix is \emph{Hermitian} if $A^\dagger = A$. (The diagonal of a Hermitian matrix must be real).
\end{defi}

\begin{defi}[Anti/skew symmetric matrix]
  A matrix is \emph{anti-symmetric} or \emph{skew symmetric} if $A^T = -A$. The diagonals are all zero.
\end{defi}

\begin{defi}[Skew-Hermitian matrix]
  A matrix is \emph{skew-Hermitian} if $A^\dagger = -A$. The diagonals are pure imaginary.
\end{defi}

\begin{defi}[Trace of matrix]
  The \emph{trace} of an $n\times n$ matrix $A$ is the sum of the diagonal. $\tr(A) = A_{ii}$.
\end{defi}

\begin{eg}
  Consider the reflection matrix $R_{ij} = \delta_{ij} - 2\hat n_i \hat n_j$. We have $\tr(A) = R_{ii} = 3 - 2\hat{n}\cdot \hat{n} = 3 - 2 = 1$.
\end{eg}

\begin{prop}
  $\tr(BC) = \tr(CB)$
\end{prop}

\begin{proof}
  $\tr(BC) = B_{ik}C_{ki} = C_{ki}B_{ik} = (CB)_{kk} = \tr(CB)$
\end{proof}

\begin{defi}[Identity matrix]
  $I = \delta_{ij}$.
\end{defi}
\subsubsection{Decomposition of an \texorpdfstring{$n\times n$}{n x n} matrix}
Any $n\times n$ matrix $B$ can be split as a sum of symmetric and antisymmetric parts. Write
\[
  B_{ij} = \underbrace{\frac{1}{2}(B_{ij} + B_{ji})}_{S_{ij}} + \underbrace{\frac{1}{2}(B_{ij} - B_{ji})}_{A_{ij}}.
\]
We have $S_{ij} = S_{ji}$, so $S$ is symmetric, while $A_{ji} = -A_{ij}$, and $A$ is antisymmetric. So $B = S + A$.

Furthermore , we can decompose $S$ into an isotropic part (a scalar multiple of the identity) plus a trace-less part (i.e.\ sum of diagonal $= 0$). Write
\[
  S_{ij} = \underbrace{\frac{1}{n}\tr (S)\delta_{ij}}_{\text{isotropic part}} + \underbrace{(S_{ij} - \frac{1}{n}\tr(S)\delta_{ij})}_{T_{ij}}.
\]
We have $\tr(T) = T_{ii} = S_{ii} - \frac{1}{n}\tr(S)\delta_{ii} = \tr(S) - \frac{1}{n}\tr(S)(n) = 0$.

Putting all these together,
\[
  B = \frac{1}{n}\tr(B)I + \left\{\frac{1}{2}(B + B^T) - \frac{1}{n}\tr(B)I\right\} + \frac{1}{2}(B - B^T).
\]
In three dimensions, we can write the antisymmetric part $A$ in terms of a single vector: we have
\[
  A = \begin{pmatrix}
    0 & a & -b\\
    -a & 0 & c\\
    b & -c & 0
  \end{pmatrix}
\]
and we can consider
\[
  \varepsilon_{ijk}\omega_k =
  \begin{pmatrix}
    0 & \omega_3 & -\omega_2\\
    -\omega_3 & 0 & \omega_1\\
    \omega_2 & -\omega_1 & 0
  \end{pmatrix}
\]
So if we have $\mathbf{\omega} = (c, b, a)$, then $A_{ij} = \varepsilon_{ijk}\omega_k$.

This decomposition can be useful in certain physical applications. For example, if the matrix represents the stress of a system, different parts of the decomposition will correspond to different types of stresses.

\subsubsection{Matrix inverse}

\begin{defi}[Inverse of matrix]
  Consider an $m\times n$ matrix $A$ and $n\times m$ matrices $B$ and $C$. If $BA = I$, then we say $B$ is the \emph{left inverse} of $A$. If $AC = I$, then we say $C$ is the \emph{right inverse} of $A$. If $A$ is square ($n\times n$), then $B = B(AC) = (BA)C = C$, i.e.\ the left and right inverses coincide. Both are denoted by $A^{-1}$, the \emph{inverse} of $A$. Therefore we have
  \[
    AA^{-1} = A^{-1}A = I.
  \]
\end{defi}
Note that not all square matrices have inverses. For example, the zero matrix clearly has no inverse.

\begin{defi}[Invertible matrix]
  If $A$ has an inverse, then $A$ is \emph{invertible}.
\end{defi}

\begin{prop}
  $(AB)^{-1} = B^{-1}A^{-1}$
\end{prop}

\begin{proof}
  $(B^{-1}A^{-1})(AB) = B^{-1}(A^{-1}A)B = B^{-1}B = I$.
\end{proof}

\begin{defi}[Orthogonal and unitary matrices]
  A real $n\times n$ matrix is \emph{orthogonal} if $A^TA = AA^T = I$, i.e.\ $A^T = A^{-1}$. A complex $n\times n$ matrix is \emph{unitary} if $U^\dagger U = UU^\dagger = I$, i.e.\ $U^\dagger = U^{-1}$.
\end{defi}
Note that an orthogonal matrix $A$ satisfies $A_{ik}(A^T_{kj}) = \delta_{ij}$, i.e.\ $A_{ik}A_{jk} = \delta_{ij}$. We can see this as saying ``the scalar product of two distinct rows is 0, and the scalar product of a row with itself is 1''. Alternatively, the rows (and columns --- by considering $A^T$) of an orthogonal matrix form an orthonormal set.

Similarly, for a unitary matrix, $U_{ik}U_{kj}^\dagger = \delta_{ij}$, i.e.\ $u_{ik}u_{jk}^* = u_{ik}^*u_{jk} =\delta_{ij}$. i.e.\ the rows are orthonormal, using the definition of complex scalar product.

\begin{eg}\leavevmode
  \begin{enumerate}
    \item The reflection in a plane is an orthogonal matrix. Since $R_{ij} = \delta_{ij} - 2n_in_j$, We have
      \begin{align*}
        R_{ik}R_{jk} &= (\delta_{ik} - 2n_in_k)(\delta_{jk} - 2n_jn_k)\\
        &= \delta_{ik}\delta_{jk} - 2\delta_{jk}n_in_k - 2\delta_{ik}n_jn_k + 2n_in_kn_jn_k\\
        &= \delta_{ij} - 2n_in_j - 2n_jn_i + 4n_in_j(n_kn_k)\\
        &= \delta_{ij}
      \end{align*}
    \item The rotation is an orthogonal matrix. We could multiply out using suffix notation, but it would be cumbersome to do so. Alternatively, denote rotation matrix by $\theta$ about $\mathbf{\hat n}$ as $R(\theta, \mathbf{\hat n})$. Clearly, $R(\theta, \mathbf{\hat n})^{-1} = R(-\theta, \mathbf{\hat n})$. We have
      \begin{align*}
        R_{ij}(-\theta, \mathbf{\hat n}) &= (\cos\theta)\delta_{ij} + n_in_j(1 - \cos\theta) + \varepsilon_{ijk}n_k\sin\theta\\
        &= (\cos\theta)\delta_{ji} + n_jn_i(1 - \cos\theta) - \varepsilon_{jik}n_k\sin\theta\\
        &= R_{ji}(\theta, \mathbf{\hat n})
      \end{align*}
      In other words, $R(-\theta, \mathbf{\hat n}) = R(\theta, \mathbf{\hat n})^T$. So $R(\theta, \mathbf{\hat n})^{-1} = R(\theta, \mathbf{\hat n})^T$.
  \end{enumerate}
\end{eg}

\subsection{Determinants}
Consider a linear map $\alpha: \R^3\to \R^3$. The standard basis $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ is mapped to $\mathbf{e}_1', \mathbf{e}_2', \mathbf{e}_3'$ with $\mathbf{e}_i' = A\mathbf{e}_i$. Thus the unit cube formed by $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ is mapped to the parallelepiped with volume
\begin{align*}
  [\mathbf{e}_1', \mathbf{e}_2', \mathbf{e}_3'] &= \varepsilon_{ijk}(e_1')_i (e_2')_j (e_3')_k\\
  &= \varepsilon_{ijk} A_{i\ell} \underbrace{(e_1)_\ell}_{\delta_{1\ell}} A_{jm}\underbrace{(e_2)_m}_{\delta_{2m}} A_{kn}\underbrace{(e_3)_n}_{\delta_{3n}}\\
  &= \varepsilon_{ijk} A_{i1}A_{j2}A_{k3}
\end{align*}
We call this the determinant and write as
\[
  \det(A) = \begin{vmatrix} A_{11} & A_{12} & A_{13}\\A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33}\end{vmatrix}
\]

\subsubsection{Permutations}
To define the determinant for square matrices of arbitrary size, we first have to consider \emph{permutations}.

\begin{defi}[Permutation]
  A \emph{permutation} of a set $S$ is a bijection $\varepsilon: S\to S$.
\end{defi}

\begin{notation}
  Consider the set $S_n$ of all permutations of $1, 2, 3, \cdots , n$. $S_n$ contains $n!$ elements. Consider $\rho\in S_n$ with $i \mapsto \rho(i)$. We write
  \[
    \rho = \begin{pmatrix} 1 & 2 & \cdots & n\\ \rho(1) & \rho (2) &\cdots & \rho (n)\end{pmatrix}.
  \]
\end{notation}

\begin{defi}[Fixed point]
  A \emph{fixed point} of $\rho$ is a $k$ such that $\rho(k) = k$. e.g.\ in $\begin{pmatrix} 1 & 2 & 3 & 4\\4 & 1 & 3 & 2\end{pmatrix}$, $3$ is the fixed point. By convention, we can omit the fixed point and write as $\begin{pmatrix} 1 & 2 & 4\\ 4 & 1 & 2\end{pmatrix}$.
\end{defi}

\begin{defi}[Disjoint permutation]
  Two permutations are \emph{disjoint} if numbers moved by one are fixed by the other, and vice versa. e.g.\ $\begin{pmatrix} 1 & 2 & 4 & 5 & 6\\ 5 & 6 & 1 & 4 & 2\end{pmatrix} = \begin{pmatrix}2 & 6\\ 6& 2\end{pmatrix}\begin{pmatrix}1 & 4 & 5\\5 & 1 & 4\end{pmatrix}$, and the two cycles on the right hand side are disjoint. Disjoint permutations commute, but in general non-disjoint permutations do not.
\end{defi}

\begin{defi}[Transposition and $k$-cycle]
  $\begin{pmatrix} 2 & 6 \\ 6 & 2\end{pmatrix}$ is a \emph{2-cycle} or a \emph{transposition}, and we can simply write $(2\; 6)$. $\begin{pmatrix}1 & 4 & 5\\5 & 1 & 4\end{pmatrix}$ is a 3-cycle, and we can simply write $(1\; 5\; 4)$. (1 is mapped to 5; 5 is mapped to 4; 4 is mapped to 1)
\end{defi}

\begin{prop}
  Any $q$-cycle can be written as a product of 2-cycles.
\end{prop}

\begin{proof}
  $(1\; 2\; 3\; \cdots \; n) = (1\; 2)(2\; 3)(3\; 4)\cdots (n-1\; n)$.
\end{proof}

\begin{defi}[Sign of permutation]
  The \emph{sign} of a permutation $\varepsilon(\rho)$ is $(-1)^r$, where $r$ is the number of 2-cycles when $\rho$ is written as a product of 2-cycles. If $\varepsilon(\rho) = +1$, it is an even permutation. Otherwise, it is an odd permutation. Note that $\varepsilon(\rho\sigma) = \varepsilon(\rho)\varepsilon(\sigma)$ and $\varepsilon(\rho^{-1}) = \varepsilon(\rho)$.
\end{defi}
The proof that this is well-defined can be found in IA Groups.

\begin{defi}[Levi-Civita symbol]
  The \emph{Levi-Civita} symbol is defined by
  \[
    \varepsilon_{j_1j_2\cdots j_n} = \begin{cases}+1 & \text{ if } j_1j_2j_3\cdots j_n\text{ is an even permutation of }1, 2, \cdots n\\
      -1 & \text{ if it is an odd permutation}\\
      0 & \text{ if any 2 of them are equal}
    \end{cases}
  \]
  Clearly, $\varepsilon_{\rho(1)\rho(2)\cdots \rho(n)} = \varepsilon(\rho)$.
\end{defi}

\begin{defi}[Determinant]
  The \emph{determinant} of an $n\times n$ matrix $A$ is defined as:
  \[
    \det (A) = \sum_{\sigma\in S_n} \varepsilon(\sigma) A_{\sigma(1)1}A_{\sigma(2)2}\cdots A_{\sigma(n)n},
  \]
  or equivalently,
  \[
    \det(A) = \varepsilon_{j_1j_2\cdots j_n}A_{j_11}A_{j_22}\cdots A_{j_nn}.
  \]
\end{defi}

\begin{prop}
  \[
    \begin{vmatrix}
      a & b\\
      c & d
    \end{vmatrix} = ad - bc
  \]
\end{prop}

\subsubsection{Properties of determinants}
\begin{prop}
  $\det (A) = \det (A^T)$.
\end{prop}

\begin{proof}
  Take a single term $A_{\sigma(1)1}A_{\sigma(2)2}\cdots A_{\sigma(n)n}$ and let $\rho$ be another permutation in $S_n$. We have
  \[
    A_{\sigma(1)1}A_{\sigma(2)2}\cdots A_{\sigma(n)n} = A_{\sigma(\rho(1))\rho(1)}A_{\sigma(\rho(2))\rho(2)}\cdots A_{\sigma(\rho(n))\rho(n)}
  \]
  since the right hand side is just re-ordering the order of multiplication. Choose $\rho = \sigma^{-1}$ and note that $\varepsilon(\sigma) = \varepsilon(\rho)$. Then
  \[
    \det(A) = \sum_{\rho\in S_n} \varepsilon(\rho) A_{1\rho(1)}A_{2\rho(2)}\cdots A_{n\rho(n)} = \det (A^T). \qedhere
  \]
\end{proof}

\begin{prop}
  If matrix $B$ is formed by multiplying every element in a single row of $A$ by a scalar $\lambda$, then $\det (B) = \lambda \det (A)$. Consequently, $\det (\lambda A) = \lambda^n \det(A)$.
\end{prop}

\begin{proof}
  Each term in the sum is multiplied by $\lambda$, so the whole sum is multiplied by $\lambda^n$.
\end{proof}

\begin{prop}
  If 2 rows (or 2 columns) of $A$ are identical, the determinant is $0$.
\end{prop}

\begin{proof}
  wlog, suppose columns 1 and 2 are the same. Then
  \[
    \det (A) = \sum_{\sigma\in S_n} \varepsilon(\sigma) A_{\sigma(1)1}A_{\sigma(2)2}\cdots A_{\sigma(n)n}.
  \]
  Now write an arbitrary $\sigma$ in the form $\sigma = \rho(1\; 2)$. Then $\varepsilon(\sigma) = \varepsilon(\rho)\varepsilon((1\; 2)) = -\varepsilon(\rho)$. So
  \[
    \det (A) = \sum_{\rho\in S_n} -\varepsilon(\rho) A_{\rho(2)1}A_{\rho(1)2}A_{\rho(3)3}\cdots A_{\rho(n)n}.
  \]
  But columns 1 and 2 are identical, so $A_{\rho(2)1} = A_{\rho(2)2}$ and $A_{\rho(1)2} = A_{\rho(1)1}$. So $\det (A) = -\det (A)$ and $\det(A) = 0$.
\end{proof}

\begin{prop}
  If 2 rows or 2 columns of a matrix are linearly dependent, then the determinant is zero.
\end{prop}

\begin{proof}
  Suppose in $A$, $($column $r) + \lambda($column $s) = 0$. Define
  \[
    B_{ij} =
    \begin{cases}
      A_{ij} & j\not= r\\
      A_{ij} + \lambda A_{is} & j = r
    \end{cases}.
  \]
  Then $\det (B) = \det(A) + \lambda \det($matrix with column $r =$ column $s) = \det(A)$. Then we can see that the $r$th column of $B$ is all zeroes. So each term in the sum contains one zero and $\det (A) = \det (B) = 0$.
\end{proof}
Even if we don't have linearly dependent rows or columns, we can still run the exact same proof as above, and still get that $\det (B) = \det (A)$. Linear dependence is only required to show that $\det (B) = 0$. So in general, we can add a linear multiple of a column (or row) onto another column (or row) without changing the determinant.

\begin{prop}
  Given a matrix $A$, if $B$ is a matrix obtained by adding a multiple of a column (or row) of $A$ to another column (or row) of $A$, then $\det A = \det B$.
\end{prop}

\begin{cor}
  Swapping two rows or columns of a matrix negates the determinant.
\end{cor}

\begin{proof}
  We do the column case only. Let $A = (\mathbf{a}_1 \cdots \mathbf{a}_i \cdots \mathbf{a}_j \cdots \mathbf{a}_n)$. Then
  \begin{align*}
    \det (\mathbf{a}_1 \cdots \mathbf{a}_i \cdots \mathbf{a}_j \cdots \mathbf{a}_n)&=\det(\mathbf{a}_1 \cdots \mathbf{a}_i + \mathbf{a}_j \cdots \mathbf{a}_j \cdots \mathbf{a}_n)\\
    &=\det (\mathbf{a}_1 \cdots \mathbf{a}_i + \mathbf{a}_j \cdots \mathbf{a}_j - (\mathbf{a}_i + \mathbf{a}_j) \cdots \mathbf{a}_n)\\
    &=\det (\mathbf{a}_1 \cdots \mathbf{a}_i + \mathbf{a}_j \cdots -\mathbf{a}_i \cdots \mathbf{a}_n)\\
    &=\det (\mathbf{a}_1 \cdots \mathbf{a}_j \cdots -\mathbf{a}_i \cdots \mathbf{a}_n)\\
    &=-\det (\mathbf{a}_1 \cdots \mathbf{a}_j \cdots \mathbf{a}_i \cdots \mathbf{a}_n)
  \end{align*}
  Alternatively, we can prove this from the definition directly, using the fact that the sign of a transposition is $-1$ (and that the sign is multiplicative).
\end{proof}

\begin{prop}
  $\det(AB) = \det(A)\det(B)$.
\end{prop}

\begin{proof}
  First note that $\sum_\sigma \varepsilon(\sigma)A_{\sigma(1)\rho(1)}A_{\sigma(2)\rho(2)} = \varepsilon(\rho)\det (A)$, i.e.\ swapping columns (or rows) an even/odd number of times gives a factor $\pm 1$ respectively. We can prove this by writing $\sigma = \mu \rho$.

  Now
  \begin{align*}
    \det AB &= \sum_\sigma \varepsilon(\sigma)(AB)_{\sigma(1)1}(AB)_{\sigma(2)2}\cdots (AB)_{\sigma(n)n}\\
    &= \sum_\sigma \varepsilon(\sigma) \sum_{k_1,k_2,\cdots,k_n}^{n} A_{\sigma(1)k_1}B_{k_11}\cdots A_{\sigma(n)k_n}B_{k_nn}\\
    &= \sum_{k_1,\cdots,k_n}B_{k_11}\cdots B_{k_nn}\underbrace{\sum_\sigma \varepsilon(\sigma) A_{\sigma(1)k_1}A_{\sigma(2)k_2}\cdots A_{\sigma(n)k_n}}_{S}
    \intertext{Now consider the many different $S$'s. If in $S$, two of $k_1$ and $k_n$ are equal, then $S$ is a determinant of a matrix with two columns the same, i.e.\ $S = 0$. So we only have to consider the sum over distinct $k_i$s. Thus the $k_i$s are are a permutation of $1, \cdots n$, say $k_i =\rho (i)$. Then we can write}
    \det AB &= \sum_\rho B_{\rho(1)1}\cdots B_{\rho(n)n} \sum_\sigma \varepsilon(\sigma) A_{\sigma(1)\rho(1)} \cdots A_{\sigma(n)\rho(n)}\\
    &= \sum_\rho B_{\rho(1)1}\cdots B_{\rho(n)n} (\varepsilon(\rho)\det A)\\
    &= \det A\sum_\rho \varepsilon(\rho) B_{\rho(1)1}\cdots B_{\rho(n)n}\\
    &= \det A\det B \qedhere
  \end{align*}
\end{proof}

\begin{cor}
  If $A$ is orthogonal, $\det A = \pm 1$.
\end{cor}

\begin{proof}
  \begin{align*}
    AA^T &= I\\
    \det AA^T &= \det I\\
    \det A\det A^T &= 1\\
    (\det A)^2 &= 1\\
    \det A &= \pm 1 \qedhere
  \end{align*}
\end{proof}

\begin{cor}
  If $U$ is unitary, $|\det U| = 1$.
\end{cor}

\begin{proof}
  We have $\det U^\dagger = (\det U^T)^* = \det(U)^*$. Since $UU^\dagger = I$, we have $\det(U)\det(U)^* = 1$.
\end{proof}

\begin{prop}
  In $\R^3$, orthogonal matrices represent either a rotation ($\det = 1$) or a reflection ($\det = -1$).
\end{prop}
\subsubsection{Minors and Cofactors}
\begin{defi}[Minor and cofactor]
  For an $n\times n$ matrix $A$, define $A^{ij}$ to be the $(n - 1)\times (n - 1)$ matrix in which row $i$ and column $j$ of $A$ have been removed.

  The \emph{minor} of the $ij$th element of $A$ is $M_{ij} = \det A^{ij}$

  The \emph{cofactor} of the $ij$th element of $A$ is $\Delta_{ij} = (-1)^{i + j}M_{ij}$.
\end{defi}

\begin{notation}
  We use $\bar \;$ to denote a symbol which has been missed out of a natural sequence.
\end{notation}
\begin{eg}
  $1, 2, 3, 5 = 1, 2, 3, \bar 4, 5$.
\end{eg}

The significance of these definitions is that we can use them to provide a systematic way of evaluating determinants. We will also use them to find inverses of matrices.
\begin{thm}[Laplace expansion formula]
  For any particular fixed $i$,
  \[
    \det A = \sum_{j = 1}^{n} A_{ji}\Delta_{ji}.
  \]
\end{thm}
\begin{proof}
  \[
    \det A = \sum_{j_i = 1}^nA_{j_ii} \sum_{j_1, \cdots, \overline{j_i}, \cdots j_n}^n \varepsilon_{j_1j_2\cdots j_n} A_{j_11}A_{j_22}\cdots \overline{A_{j_ii}}\cdots A_{j_nn}
  \]
  Let $\sigma \in S_n$ be the permutation which moves $j_i$ to the $i$th position, and leave everything else in its natural order, i.e.\setcounter{MaxMatrixCols}{11}
  \[
    \sigma =
    \begin{pmatrix}
      1 &\cdots& i & i + 1 & i + 2 & \cdots &j_i - 1&j_i& j_i + 1 & \cdots & n\\
      1 & \cdots & j_i & i & i + 1 & \cdots & j_i - 2 & j_i - 1 & j_i + 1 & \cdots & n
    \end{pmatrix}
  \]
  if $j_i > i$, and similarly for other cases. To perform this permutation, $|i - j_i|$ transpositions are made. So $\varepsilon(\sigma) = (-1)^{i - j_i}$.

  Now consider the permutation $\rho\in S_n$
  \[
    \rho =
    \begin{pmatrix}
      1 & \cdots & \cdots & \bar {j_i} & \cdots & n\\
      j_1 & \cdots & \bar{j_i} & \cdots & \cdots & j_n\\
    \end{pmatrix}
  \]
  The composition $\rho\sigma$ reorders $(1, \cdots, n)$ to $(j_1, j_2,\cdots, j_n)$. So $\varepsilon(\rho\sigma) = \varepsilon_{j_1\cdots j_n} = \varepsilon(\rho)\varepsilon(\sigma) = (-1)^{i - j_i} \varepsilon_{j_1\cdots \bar j_i \cdots j_n}$. Hence the original equation becomes
  \begin{align*}
    \det A &= \sum_{j_i = 1}^n A_{j_i i} \sum_{j_1\cdots \bar j_i\cdots j_n}(-1)^{i - j_i} \varepsilon_{j_1\cdots \bar j_i \cdots j_n} A_{j_11}\cdots \overline{A_{j_ii}} \cdots A_{j_nn}\\
    &= \sum_{j_i = 1}^n A_{j_ii} (-1)^{i - j_i}M_{j_ii}\\
    &= \sum_{j_i = 1}^{n} A_{j_ii}\Delta_{j_ii}\\
    &= \sum_{j = 1}^{n} A_{ji}\Delta_{ji} \qedhere
  \end{align*} % Check!
\end{proof}

\begin{eg}
  $\det A = \begin{vmatrix}2 & 4 & 2\\ 3 & 2 & 1\\ 2 & 0 & 1\end{vmatrix}$. We can pick the first row and have
  \begin{align*}
    \det A&= 2\begin{vmatrix}2 & 1\\0 & 1 \end{vmatrix} - 4\begin{vmatrix} 3 & 1\\ 2 & 1\end{vmatrix} + 2\begin{vmatrix}3 & 2 \\ 2 & 0\end{vmatrix}\\
    &= 2(2 - 0) - 4(3 - 2) + 2(0 - 4)\\
    &= -8.
  \end{align*}
  Alternatively, we can pick the second column and have
  \begin{align*}
    \det A&= -4\begin{vmatrix}3 & 1\\2 & 1 \end{vmatrix} + 2\begin{vmatrix} 2 & 2\\ 2 & 1\end{vmatrix} - 0\begin{vmatrix}2 & 2 \\ 3 & 1\end{vmatrix}\\
    &= -4(3 - 2) + 2(2 - 4) - 0\\
    &= -8.
  \end{align*}
\end{eg}

In practical terms, we use a combination of properties of determinants with a sensible choice of $i$ to evaluate $\det(A)$.

\begin{eg}
  Consider $\begin{vmatrix}1 & a & a^2\\1 & b & b^2\\1 & c & c^2 \end{vmatrix}$. Row 1 - row 2 gives
  \[
    \begin{vmatrix}0 & a - b & a^2 - b^2\\1 & b & b^2\\1 & c & c^2 \end{vmatrix} = (a - b)\begin{vmatrix}0 & 1 & a + b\\1 & b & b^2\\1 & c & c^2 \end{vmatrix}.
  \]
  Do row 2 - row 3. We obtain
  \[
    (a - b)(b - c)\begin{vmatrix}0 & 1 & a + b\\0 & 1 & b + c\\1 & c & c^2 \end{vmatrix}.
  \]
  Row 1 - row 2 gives
  \[
    (a - b)(b - c)(a - c)\begin{vmatrix}0 & 0 & 1\\0 & 1 & b + c\\1 & c & c^2 \end{vmatrix} = (a - b)(b - c)(a - c).
  \]
\end{eg}

\section{Matrices and linear equations}
\subsection{Simple example, \texorpdfstring{$2\times 2$}{2 x 2}}
Consider the system of equations
\begin{align*}
  A_{11}x_1 + A_{12}x_2 &= d_1\tag{a}\\
  A_{21}x_1 + A_{22}x_2 &= d_2\tag{b}.
  \intertext{We can write this as}
  A\mathbf{x} &= \mathbf{d}.
\end{align*}
If we do (a)$\times A_{22} - $(b)$\times A_{12}$ and similarly the other way round, we obtain
\begin{align*}
  (A_{11}A_{22} - A_{12}A_{21})x_1 &= A_{22}d_1 - A_{12}d_2\\
  \underbrace{(A_{11}A_{22} - A_{12}A_{21})}_{\det A}x_2 &= A_{11}d_2 - A_{21}d_1
\end{align*}
Dividing by $\det A$ and writing in matrix form, we have
\[
  \begin{pmatrix}
    x_1\\
    x_2
  \end{pmatrix} = \frac{1}{\det A}
  \begin{pmatrix}
    A_{22} & - A_{12}\\
    -A_{21} & A_{11}
  \end{pmatrix}
  \begin{pmatrix}
    d_1\\
    d_2
  \end{pmatrix}
\]
On the other hand, given the equation $A\mathbf{x} = \mathbf{d}$, if $A^{-1}$ exists, then by multiplying both sides on the left by $A^{-1}$, we obtain $\mathbf{x} = A^{-1}\mathbf{d}$.

Hence, we have constructed $A^{-1}$ in the $2\times 2$ case, and shown that the condition for its existence is $\det A \not= 0$, with
\[
  A^{-1} =\frac{1}{\det A}\begin{pmatrix}A_{22} & - A_{12}\\-A_{21} & A_{11}\end{pmatrix}
\]

\subsection{Inverse of an \texorpdfstring{$n\times n$}{n x n} matrix}
For larger matrices, the formula for the inverse is similar, but slightly more complicated (and costly to evaluate). The key to finding the inverse is the following:
\begin{lemma}
  $\sum A_{ik}\Delta_{jk} = \delta_{ij}\det A$.
\end{lemma}

\begin{proof}
  If $i \not= j$, then consider an $n\times n$ matrix $B$, which is identical to $A$ except the $j$th row is replaced by the $i$th row of $A$. So $\Delta_{jk}$ of $B = \Delta_{jk}$ of $A$, since $\Delta_{jk}$ does not depend on the elements in row $j$. Since $B$ has a duplicate row, we know that
  \[
    0 = \det B = \sum_{k = 1}^n B_{jk}\Delta_{jk} = \sum_{k = 1}^n A_{ik}\Delta_{jk}.
  \]
  If $i = j$, then the expression is $\det A$ by the Laplace expansion formula.
\end{proof}

\begin{thm}
  If $\det A \not =0$, then $A^{-1}$ exists and is given by
  \[
    (A^{-1})_{ij} = \frac{\Delta_{ji}}{\det A}.
  \]
\end{thm}

\begin{proof}
  \[
    (A^{-1})_{ik}A_{kj} = \frac{\Delta_{ki}}{\det A} A_{kj} = \frac{\delta_{ij}\det A}{\det A} = \delta_{ij}.
  \]
  So $A^{-1}A = I$.
\end{proof}
The other direction is easy to prove. If $\det A = 0$, then it has no inverse, since for any matrix $B$, $\det AB = 0$, and hence $AB$ cannot be the identity.

\begin{eg}
  Consider the shear matrix $S_\lambda = \begin{pmatrix} 1 & \lambda & 0 \\ 0 & 1 & 0\\ 0 & 0 & 1\end{pmatrix}$. We have $\det{S_\lambda} = 1$. The cofactors are
  \begin{center}
    \begin{tabular}{ccc}
      $\Delta_{11} = 1$ & $\Delta_{12} = 0$ & $\Delta_{13} = 0$ \\
      $\Delta_{21} - \lambda$ & $\Delta_{22} = 1$ & $\Delta_{23} = 0$ \\
      $\Delta_{31} = 0$ & $\Delta_{32} = 0$ & $\Delta_{33} = 1$
    \end{tabular}
  \end{center}
  So $S_\lambda^{-1} = \begin{pmatrix} 1 & -\lambda & 0\\ 0 & 1 & 0\\ 0 & 0 & 1\end{pmatrix}$.
\end{eg}

How many arithmetic operations are involved in calculating the inverse of an $n\times n$ matrix? We just count multiplication operations since they are the most time-consuming. Suppose that calculating $\det A$ takes $f_n$ multiplications. This involves $n$ $(n - 1)\times (n - 1)$ determinants, and you need $n$ more multiplications to put them together. So $f_n = nf_{n -1} + n$. So $f_n = O(n!)$ (in fact $f_n \approx (1 + e)n!$).

To find the inverse, we need to calculate $n^2$ cofactors. Each is a $n -1$ determinant, and each takes $O((n - 1)!)$. So the time complexity is $O(n^2 (n - 1)!) = O(n\cdot n!)$.

This is incredibly slow. Hence while it is theoretically possible to solve systems of linear equations by inverting a matrix, sane people do not do so in general. Instead, we develop certain better methods to solve the equations. In fact, the ``usual'' method people use to solve equations by hand only has complexity $O(n^3)$, which is a much better complexity.

\subsection{Homogeneous and inhomogeneous equations}
Consider $A\mathbf{x} = \mathbf{b}$ where $A$ is an $n\times n$ matrix, $\mathbf{x}$ and $\mathbf{b}$ are $n\times 1$ column vectors.
\begin{defi}[Homogeneous equation]
  If $\mathbf{b} = \mathbf{0}$, then the system is \emph{homogeneous}. Otherwise, it's \emph{inhomogeneous}.
\end{defi}

Suppose $\det A\not= 0$. Then there is a unique solution $\mathbf{x} = A^{-1}\mathbf{b}$ ($\mathbf{x} = \mathbf{0}$ for homogeneous).

How can we understand this result? Recall that $\det A\not= 0$ means that the columns of $A$ are linearly independent. The columns are the images of the standard basis, $\mathbf{e}_i' = A\mathbf{e_i}$. So $\det A\not = 0$ means that $\mathbf{e}_i'$ are linearly independent and form a basis of $\R^n$. Therefore the image is the whole of $\R^n$. This automatically ensures that $\mathbf{b}$ is in the image, i.e.\ there is a solution.

To show that there is exactly one solution, suppose $\mathbf{x}$ and $\mathbf{x}'$ are both solutions. Then $A\mathbf{x} = A\mathbf{x}' = \mathbf{b}$. So $A(\mathbf{x} - \mathbf{x}') = \mathbf{0}$. So $\mathbf{x} - \mathbf{x}'$ is in the kernel of $A$. But since the rank of $A$ is $n$, by the rank-nullity theorem, the nullity is $0$. So the kernel is trivial. So $\mathbf{x} - \mathbf{x}' = \mathbf{0}$, i.e.\ $\mathbf{x} = \mathbf{x}'$.

\subsubsection{Gaussian elimination}
Consider a general solution
\begin{align*}
  A_{11}x_1 + A_{12}x_2 + \cdots + A_{1n}x_n &= d_1\\
  A_{21}x_1 + A_{22}x_2 + \cdots + A_{2n}x_n &= d_2\\
  \vdots&\\
  A_{m1}x_1 + A_{m2}x_2 + \cdots + A_{mn}x_n &= d_m
\end{align*}
So we have $m$ equations and $n$ unknowns.

Assume $A_{11}\not=0$ (if not, we can re-order the equations). We can use the first equation to eliminate $x_1$ from the remaining $(m - 1)$ equations. Then use the second equation to eliminate $x_2$ from the remaining $(m - 2)$ equations (if anything goes wrong, just re-order until things work). Repeat.

We are left with
\begin{align*}
  A_{11}x_1 + A_{12}x_2 + A_{13}x_3 + \cdots + A_{1n}x_n &= d_1\\
  A_{22}^{(2)}x_2 + A_{23}^{(2)}x_3 + \cdots + A_{2n}^{(2)}x_n &= d_2\\
  \vdots&\\
  A_{rr}^{(r)}x_r + \cdots + A_{rn}^{(r)}x_n &= d_r\\
  0 &= d_{r + 1}^{(r)}\\
  \vdots&\\
  0 &= d_{m}^{(r)}
\end{align*}
Here $A_{ii}^{(i)} \not=0$ (which we can achieve by re-ordering), and the superfix $(i)$ refers to the ``version number'' of the coefficient, e.g.\ $A_{22}^{(2)}$ is the second version of the coefficient of $x_2$ in the second row.

Let's consider the different possibilities:
\begin{enumerate}
  \item $r < m$ and at least one of $d^{(r)}_{r + 1}, \cdots d_m^{(r)} \not= 0$. Then a contradiction is reached. The system is inconsistent and has no solution. We say it is \emph{overdetermined}.
    \begin{eg}
      Consider the system
      \begin{align*}
        3x_1 + 2x_2 + x_3 &= 3\\
        6x_1 + 3x_2 + 3x_3 &= 0\\
        6x_1 + 2x_2 + 4x_3 &= 6
        \intertext{This becomes }
        3x_1 + 2x_2 + x_3 &= 3\\
        0 - x_2 + x_3 &= -6\\
        0 - 2x_2 + 2x_3 &= 0
        \intertext{And then}
        3x_1 + 2x_2 + x_3 &= 3\\
        0 - x_2 + x_3 &= -6\\
        0 &= 12
      \end{align*}
      We have $d_3^{(3)} = 12 = 0$ and there is no solution.
    \end{eg}
  \item If $r = n\leq m$, and all $d_{r + i}^{(r)} = 0$. Then from the $n$th equation, there is a unique solution for $x_n = d_{n}^{(n)}/A_{nn}^{(n)}$, and hence for all $x_i$ by back substitution. This system is \emph{determined}.
    \begin{eg}
      \begin{align*}
        2x_1 + 5x_2 &= 2\\
        4x_1 + 3x_2 &= 11\\
        \intertext{This becomes}
        2x_1 + 5x_2 &= 2\\
        -7x_2 &= 7
      \end{align*}
      So $x_2 = -1$ and thus $x_1 = 7/2$.
    \end{eg}
  \item If $r < n$ and $d_{r + i}^{(r)} = 0$, then $x_{r + 1}, \cdots x_n$ can be freely chosen, and there are infinitely many solutions. System is \emph{under-determined}. e.g.
    \begin{align*}
      x_1 + x_2 &= 1\\
      2x_1 + 2x_2 &= 2
      \intertext{Which gives}
      x_1 + x_2 &= 1\\
      0 &= 0
    \end{align*}
    So $x_1 = 1 - x_2$ is a solution for any $x_2$.
\end{enumerate}
In the $n = m$ case, there are $O(n^3)$ operations involved, which is much less than inverting the matrix. So this is an efficient way of solving equations.

This is also be related to the determinant. Consider the case where $m = n$ and $A$ is square. Since row operations do not change the determinant and swapping rows give a factor of $(-1)$. So
\[
  \det A = (-1)^k
  \begin{vmatrix}
    A_{11} &A_{12}&\cdots& \cdots& \cdots & A_{1n}\\
    0 & A_{22}^{(2)} &\cdots& \cdots & \cdots & A_{2n}^{(n)} \\
    \vdots & \vdots &\ddots & \vdots & \vdots & \vdots\\
    0 & 0 & \cdots & A_{rr}^{(r)} & \cdots & A_{rn}^{(n)}\\
    0 & 0 & \cdots & 0 & 0 & \cdots\\
    \vdots & \vdots & \vdots & \vdots & \vdots & \vdots
  \end{vmatrix}
\]
This determinant is an \emph{upper triangular} one (all elements below diagonal are $0$) and the determinant is the product of its diagonal elements.

Hence if $r < n$ (and $d_i^{(r)} = 0$ for $i > r$), then we have case (ii) and the $\det A = 0$. If $r = n$, then $\det A = (-1)^k A_{11}A_{22}^{(2)}\cdots A_{nn}^{(n)} \not= 0$.

\subsection{Matrix rank}
Consider a linear map $\alpha: \R^n\to \R^m$. Recall the rank $r(\alpha)$ is the dimension of the image. Suppose that the matrix $A$ is associated with the linear map. We also call $r(A)$ the \emph{rank} of $A$.

Recall that if the standard basis is $\mathbf{e}_1,\cdots \mathbf{e}_n$, then $A\mathbf{e}_1, \cdots, A\mathbf{e}_n$ span the image (but not necessarily linearly independent).

Further, $A\mathbf{e}_1, \cdots, A\mathbf{e}_n$ are the columns of the matrix $A$. Hence $r(A)$ is the number of linearly independent columns.

\begin{defi}[Column and row rank of linear map]
  The \emph{column rank} of a matrix is the maximum number of linearly independent columns.

  The \emph{row rank} of a matrix is the maximum number of linearly independent rows.
\end{defi}

\begin{thm}
  The column rank and row rank are equal for any $m\times n$ matrix.
\end{thm}

\begin{proof}
  Let $r$ be the row rank of $A$. Write the biggest set of linearly independent rows as $\mathbf{v}_1^T, \mathbf{v}_2^T, \cdots \mathbf{v}_r^T$ or in component form $\mathbf{v}_k^T = (v_{k1}, v_{k2}, \cdots, v_{kn})$ for $k = 1, 2, \cdots, r$.

  Now denote the $i$th row of $A$ as $\mathbf{r}_i^T = (A_{i1}, A_{i2}, \cdots A_{in})$.

  Note that every row of $A$ can be written as a linear combination of the $\mathbf{v}$'s. (If $\mathbf{r_i}$ cannot be written as a linear combination of the $\mathbf{v}$'s, then it is independent of the $\mathbf{v}$'s and $\mathbf{v}$ is not the maximum collection of linearly independent rows) Write
  \[
    \mathbf{r}_i^T = \sum_{k = 1}^r C_{ik}\mathbf{v}_{k}^T.
  \]
  For some coefficients $C_{ik}$ with $1 \leq i\leq m$ and $1 \leq k \leq r$.

  Now the elements of $A$ are
  \[
    A_{ij} = (\mathbf{r}_i)^T_j = \sum_{k = 1}^r C_{ik}(\mathbf{v}_k)_j,
  \]
  or
  \[
    \begin{pmatrix}
      A_{1j}\\
      A_{2j}\\
      \vdots\\
      A_{mj}
    \end{pmatrix} = \sum_{k = 1}^r {\mathbf{v}_k}_j
    \begin{pmatrix}
      C_{1k}\\
      C_{2k}\\\
      \vdots\\
      C_{mk}
    \end{pmatrix}
  \]
  So every column of $A$ can be written as a linear combination of the $r$ column vectors $\mathbf{c}_k$. Then the column rank of $A \leq r$, the row rank of $A$.

  Apply the same argument to $A^T$ to see that the row rank is $\leq$ the column rank.
\end{proof}

\subsection{Homogeneous problem \texorpdfstring{$A\mathbf{x} = \mathbf{0}$}{Ax = 0}}
We restrict our attention to the square case, i.e.\ number of unknowns = number of equations. Here $A$ is an $n\times n$ matrix. We want to solve $A\mathbf{x} = \mathbf{0}$.

First of all, if $\det A\not=0$, then $A^{-1}$ exists and $\mathbf{x}^{-1} = A^{-1}\mathbf{0} = \mathbf{0}$, which is the unique solution. Hence if $A\mathbf{x} = \mathbf{0}$ with $\mathbf{x} \not= \mathbf{0}$, then $\det A = 0$.

\subsubsection{Geometrical interpretation}
We consider a $3\times 3$ matrix
\[
  A = \begin{pmatrix} \mathbf{r}_1^T\\\mathbf{r}_2^T\\\mathbf{r}_3^T\end{pmatrix}
\]
$A\mathbf{x} = \mathbf{0}$ means that $\mathbf{r}_i\cdot \mathbf{x} = 0$ for all $i$. Each equation $\mathbf{r}_i\cdot \mathbf{x} = 0$ represents a plane through the origin. So the solution is the intersection of the three planes.

There are three possibilities:
\begin{enumerate}
  \item If $\det A =[\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3] \not= 0$, span$\{\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3\} = \R^3$ and thus $r(A) = 3$. By the rank-nullity theorem, $n(A) = 0$ and the kernel is $\{\mathbf{0}\}$. So $\mathbf{x} = \mathbf{0}$ is the unique solution.
  \item If $\det A = 0$, then $\dim(\spn\{\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3\}) = 1$ or $2$.
    \begin{enumerate}
      \item If rank $= 2$, wlog assume $\mathbf{r}_1, \mathbf{r}_2$ are linearly independent. So $\mathbf{x}$ lies on the intersection of two planes $\mathbf{x}\cdot \mathbf{r}_1 = 0$ and $\mathbf{x}\cdot \mathbf{r}_2 = 0$, which is the line $\{\mathbf{x}\in \R^3: \mathbf{x} = \lambda \mathbf{r}_1\times \mathbf{r}_2\}$ (Since $\mathbf{x}$ lies on the intersection of the two planes, it has to be normal to the normals of both planes). All such points on this line also satisfy $\mathbf{x}\cdot\mathbf{r}_3 = 0$ since $\mathbf{r}_3$ is a linear combination of $\mathbf{r}_1$ and $\mathbf{r}_2$. The kernel is a line, $n(A) = 1$.
      \item If rank = 1, then $\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3$ are parallel. So $\mathbf{x}\cdot \mathbf{r}_1 = 0 \Rightarrow \mathbf{x}\cdot \mathbf{r}_2 = \mathbf{x}\cdot \mathbf{r}_3 = 0$. So all $\mathbf{x}$ that satisfy $\mathbf{x}\cdot \mathbf{r}_1 = 0$ are in the kernel, and the kernel now is a plane. $n(A) = 2$.
    \end{enumerate}
\end{enumerate}
(We also have the trivial case where $r(A) = 0$, we have the zero mapping and the kernel is $\R^3$)

\subsubsection{Linear mapping view of \texorpdfstring{$A\mathbf{x} = \mathbf{0}$}{Ax = 0}}
In the general case, consider a linear map $\alpha: \R^n \to \R^n$ $\mathbf{x} \mapsto \mathbf{x}' = A\mathbf{x}$. The kernel $k(A) = \{\mathbf{x}\in \R^n: A\mathbf{x} = \mathbf{0}\}$ has dimension $n(A)$.

\begin{enumerate}
  \item If $n(A) = 0$, then $A(\mathbf{e}_1), A(\mathbf{e}_2), \cdots, A(\mathbf{e}_n)$ is a linearly independent set, and $r(A) = n$.
  \item If $n(A) > 0$, then the image is not the whole of $\R^n$. Let $\{\mathbf{u}_i\}, i = 1, \cdots, n(A)$ be a basis of the kernel, i.e.\ so given any solution to $A\mathbf{x} = \mathbf{0}$, $\displaystyle \mathbf{x} = \sum_{i = 1}^{n(A)} \lambda_i \mathbf{u}_i$ for some $\lambda_i$. Extend $\{\mathbf{u}_i\}$ to be a basis of $\R^n$ by introducing extra vectors $\mathbf{u}_{i}$ for $i = n(A) + 1, \cdots, n$. The vectors $A(\mathbf{u}_i)$ for $i = n(A) + 1, \cdots, n$ form a basis of the image.
\end{enumerate}

\subsection{General solution of \texorpdfstring{$A\mathbf{x} = \mathbf{d}$}{Ax = d}}
Finally consider the general equation $A\mathbf{x} = \mathbf{d}$, where $A$ is an $n\times n$ matrix and $\mathbf{x}, \mathbf{d}$ are $n \times 1$ column vectors. We can separate into two main cases.

\begin{enumerate}
  \item $\det(A) \not= 0$. So $A^{-1}$ exists and $n(A) = 0$, $r(A) = n$. Then for any $\mathbf{d}\in \R^n$, a unique solution must exists and it is $\mathbf{x} = A^{-1}\mathbf{d}$.
  \item $\det(A) = 0$. Then $A^{-1}$ does not exist, and $n(A) > 0$, $r(A) < n$. So the image of $A$ is not the whole of $\R^n$.
    \begin{enumerate}
      \item If $\mathbf{d}\not\in \im A$, then there is no solution (by definition of the image)
      \item If $\mathbf{d}\in \im A$, then by definition there exists at least one $\mathbf{x}$ such that $A\mathbf{x} = \mathbf{d}$. The general solution of $A\mathbf{x} = \mathbf{d}$ can be written as $\mathbf{x} = \mathbf{x}_0 + \mathbf{y}$, where $\mathbf{x}_0$ is a particular solution (i.e.\ $A\mathbf{x}_0 = \mathbf{d}$), and $\mathbf{y}$ is any vector in $\ker A$ (i.e.\ $A\mathbf{y} = \mathbf{0}$). (cf.\ Isomorphism theorem)

        If $n(A) = 0$, then $\mathbf{y = 0}$ only, and then the solution is unique (i.e.\ case (i)). If $n(A) > 0$ , then $\{\mathbf{u}_i\}, i = 1, \cdots, n(A)$ is a basis of the kernel. Hence
        \[
          \mathbf{y} = \sum_{j = 1}^{n(A)} \mu_j \mathbf{u}_j,
        \]
        so
        \[
          \mathbf{x} = \mathbf{x}_0 + \sum_{j = 1}^{n(A)} \mu_j \mathbf{u}_j
        \]
        for any $\mu_j$, i.e.\ there are infinitely many solutions.
    \end{enumerate}
\end{enumerate}
\begin{eg}
  \[
    \begin{pmatrix}
      1 & 1\\
      a & 1
    \end{pmatrix}
    \begin{pmatrix}
      x_1\\
      x_2
    \end{pmatrix} =
    \begin{pmatrix}
      1\\
      b
    \end{pmatrix}
  \]
  We have $\det A = 1 - a$. If $a \not= 1$, then $A^{-1}$ exists and
  \[
    A^{-1} = \frac{1}{1 - a} = \frac{1}{1 - a}\begin{pmatrix}
      1 & -1\\
      -a & 1
    \end{pmatrix}.
  \]
  Then
  \[
    \mathbf{x} = \frac{1}{1- a}\begin{pmatrix}
      1 - b\\
      -a + b
    \end{pmatrix}.
  \]
  If $a = 1$, then
  \[
    A\mathbf{x} = \begin{pmatrix}
      x_1 + x_2\\
      x_1 + x_2
    \end{pmatrix} = (x_1 + x_2)\begin{pmatrix}
      1\\
      1
    \end{pmatrix}.
  \]
  So $\im A = \spn\left\{
    \begin{pmatrix}
      1\\1
    \end{pmatrix}
  \right\}$ and $\ker A = \spn\left\{
    \begin{pmatrix}
      1\\-1
    \end{pmatrix}
  \right\}$. If $b \not=1 $, then $\begin{pmatrix}
    1\\b
  \end{pmatrix}
  \not\in \im A$ and there is no solution. If $b = 1$, then $
  \begin{pmatrix}
    1\\b
  \end{pmatrix}
  \in \im A$.

  We find a particular solution of
  $\begin{pmatrix}
    1\\
    0
  \end{pmatrix}$. So The general solution is
  \[
    \mathbf{x} =
    \begin{pmatrix}
      1\\0
    \end{pmatrix}
    + \lambda
    \begin{pmatrix}
      1\\-1
    \end{pmatrix}.
  \]
\end{eg}

\begin{eg}
  Find the general solution of
  \[
    \begin{pmatrix}
      a & a & b\\
      b & a & a\\
      a & b & a
    \end{pmatrix}
    \begin{pmatrix}
      x\\y\\z
    \end{pmatrix}
    =\begin{pmatrix}
      1\\c\\1
    \end{pmatrix}
  \]
  We have $\det A = (a - b)^2 (2a + b)$. If $a \not= b$ and $b \not= -2a$, then the inverse exists and there is a unique solution for any $c$. Otherwise, the possible cases are
  \begin{enumerate}
    \item $a = b, b \not= -2a$. So $a\not= 0$. The kernel is the plane $x + y + z = 0$ which is $\spn\left\{
        \begin{pmatrix}
          -1\\1\\0
        \end{pmatrix},
        \begin{pmatrix}
          -1\\ 0\\ 1
        \end{pmatrix}\right\}$
        We extend this basis to $\R^3$ by adding $
        \begin{pmatrix}
          1\\0\\0
        \end{pmatrix}$.

        So the image is the span of $
        \begin{pmatrix}
          a\\a\\a
        \end{pmatrix} =
        \begin{pmatrix}
          1\\1\\1
        \end{pmatrix}$. Hence if $c\not= 1$, then $
        \begin{pmatrix}
          1\\c\\1
        \end{pmatrix}$ is not in the image and there is no solution. If $c = 1$, then a particular solution is $
        \begin{pmatrix}
          \frac{1}{a}\\0\\0
        \end{pmatrix}$
        and the general solution is
        \[
          \mathbf{x} =
          \begin{pmatrix}
            \frac{1}{a}\\0\\0
          \end{pmatrix} + \lambda
          \begin{pmatrix}
            -1\\1\\0
          \end{pmatrix} + \mu
          \begin{pmatrix}
            -1\\0\\1
          \end{pmatrix}
        \]
      \item If $a\not= b$ and $b = -2a$, then $a \not= 0$. The kernel satisfies
        \begin{align*}
          x + y - 2z &= 0\\
          -2x + y + z &= 0\\
          x - 2y + z &= 0
        \end{align*}
        This can be solved to give $x = y = z$, and the kernel is $\spn\left\{
          \begin{pmatrix}
            1\\1\\1
          \end{pmatrix}\right\}$. We add $
          \begin{pmatrix}
            1\\0\\0
          \end{pmatrix}$ and $
          \begin{pmatrix}
            0\\0\\1
          \end{pmatrix}$ to form a basis of $\R^3$. So the image is the span of $
          \begin{pmatrix}
            1\\-2\\1
          \end{pmatrix},
          \begin{pmatrix}
            -2\\1\\1
          \end{pmatrix}$.

          If $
          \begin{pmatrix}
            1\\c\\1
          \end{pmatrix}$ is in the image, then
          \[
            \begin{pmatrix}
              1\\c\\1
            \end{pmatrix} = \lambda
            \begin{pmatrix}
              1\\-2\\1
            \end{pmatrix}
            + \mu
            \begin{pmatrix}
              -2\\1\\1
            \end{pmatrix}.
          \]
          Then the only solution is $\mu = 0, \lambda = 1, c = -2$. Thus there is no solution if $c \not= -2$, and when $c = -2$, pick a particular solution $
          \begin{pmatrix}
            \frac{1}{a}\\0\\0
          \end{pmatrix}$ and the general solution is
          \[
            \mathbf{x} = \begin{pmatrix}
              \frac{1}{a}\\0\\0
            \end{pmatrix} +\lambda
            \begin{pmatrix}
              1\\1\\1
            \end{pmatrix}
          \]
        \item If $a = b$ and $b = -2a$, then $a = b = 0$ and $\ker A = \R^3$. So there is no solution for any $c$.
      \end{enumerate}
    \end{eg}

\section{Eigenvalues and eigenvectors}
\label{sec:eigen}
Given a matrix $A$, an eigenvector is a vector $\mathbf{x}$ that satisfies $A\mathbf{x} = \lambda \mathbf{x}$ for some $\lambda$. We call $\lambda$ the associated eigenvalue. In some sense, these vectors are not modified by the matrix, and are just scaled up by the matrix. We will look at the properties of eigenvectors and eigenvalues, and see their importance in diagonalizing matrices.

\subsection{Preliminaries and definitions}
\begin{thm}[Fundamental theorem of algebra]
  Let $p(z)$ be a polynomial of degree $m \geq 1$, i.e.
  \[
    p(z) = \sum_{j = 0}^m c_jz^j,
  \]
  where $c_j\in \C$ and $c_m \not= 0$.

  Then $p(z) = 0$ has precisely $m$ (not necessarily distinct) roots in the complex plane, accounting for multiplicity.
\end{thm}
Note that we have the disclaimer ``accounting for multiplicity''. For example, $x^2 - 2x + 1 = 0$ has only one distinct root, $1$, but we say that this root has multiplicity 2, and is thus counted twice. Formally, multiplicity is defined as follows:

\begin{defi}[Multiplicity of root]
  The root $z = \omega$ has \emph{multiplicity} $k$ if $(z - \omega)^k$ is a factor of $p(z)$ but $(z - \omega)^{k + 1}$ is not.
\end{defi}

\begin{eg}
  Let $p(z) = z^3 - z^2 - z + 1 = (z - 1)^2(z + 1)$. So $p(z) = 0$ has roots $1, 1, -1$, where $z = 1$ has multiplicity $2$.
\end{eg}

\begin{defi}[Eigenvector and eigenvalue]
  Let $\alpha: \C^n\to \C^n$ be a linear map with associated matrix $A$. Then $\mathbf{x}\not= \mathbf{0}$ is an \emph{eigenvector} of $A$ if
  \[
    A\mathbf{x} = \lambda\mathbf{x}
  \]
  for some $\lambda$. $\lambda$ is the associated \emph{eigenvalue}. This means that the direction of the eigenvector is preserved by the mapping, but is scaled up by $\lambda$.
\end{defi}

There is a rather easy way of finding eigenvalues:
\begin{thm}
  $\lambda$ is an eigenvalue of $A$ iff
  \[
    \det(A - \lambda I) = 0.
  \]
\end{thm}

\begin{proof}
  $(\Rightarrow)$ Suppose that $\lambda$ is an eigenvalue and $\mathbf{x}$ is the associated eigenvector. We can rearrange the equation in the definition above to
  \[
    (A - \lambda I)\mathbf{x} = \mathbf{0}
  \]
  and thus
  \[
    \mathbf{x}\in \ker(A - \lambda I)
  \]
  But $\mathbf{x}\not= \mathbf{0}$. So $\ker(A - \lambda I)$ is non-trivial and $\det(A - \lambda I) = 0$. The $(\Leftarrow)$ direction is similar.
\end{proof}

\begin{defi}[Characteristic equation of matrix]
  The \emph{characteristic equation} of $A$ is
  \[
    \det(A - \lambda I) = 0.
  \]
\end{defi}

\begin{defi}[Characteristic polynomial of matrix]
  The \emph{characteristic polynomial} of $A$ is
  \[
    p_A(\lambda) = \det(A - \lambda I).
  \]
\end{defi}

From the definition of the determinant,
\begin{align*}
  p_A(\lambda) &= \det(A - \lambda I)\\
  &= \varepsilon_{j_1j_2\cdots j_n} (A_{j_1 1} - \lambda\delta_{j_11})\cdots (A_{j_n n} - \lambda\delta_{j_nn})\\
  &= c_0 + c_1\lambda + \cdots + c_n\lambda^n
\end{align*}
for some constants $c_0, \cdots, c_n$. From this, we see that
\begin{enumerate}
  \item $p_A(\lambda)$ has degree $n$ and has $n$ roots. So an $n\times n$ matrix has $n$ eigenvalues (accounting for multiplicity).
  \item If $A$ is real, then all $c_i\in \R$. So eigenvalues are either real or come in complex conjugate pairs.
  \item $c_n = (-1)^n$ and $c_{n - 1} = (-1)^{n - 1}(A_{11} + A_{22} + \cdots + A_{nn}) = (-1)^{n - 1}\tr(A)$. But $c_{n -1}$ is the sum of roots, i.e.\ $c_{n - 1}= (-1)^{n - 1}(\lambda_1 + \lambda_2 + \cdots \lambda_n)$, so
    \[
      \tr(A) = \lambda_1 + \lambda_2 + \cdots + \lambda_n.
    \]
    Finally, $c_0 = p_A(0) = \det(A)$. Also $c_0$ is the product of all roots, i.e.\ $c_0 = \lambda_1\lambda_2\cdots \lambda_n$. So
    \[
      \det A = \lambda_1\lambda_2\cdots \lambda_n.
    \]
\end{enumerate}

The kernel of the matrix $A - \lambda I$ is the set $\{\mathbf{x}: A\mathbf{x} = \lambda\mathbf{x}\}$. This is a vector subspace because the kernel of any map is always a subspace.

\begin{defi}[Eigenspace]
  The \emph{eigenspace} denoted by $E_\lambda$ is the kernel of the matrix $A - \lambda I$, i.e.\ the set of eigenvectors with eigenvalue $\lambda$.
\end{defi}

\begin{defi}[Algebraic multiplicity of eigenvalue]
  The \emph{algebraic multiplicity} $M(\lambda)$ or $M_\lambda$ of an eigenvalue $\lambda$ is the multiplicity of $\lambda$ in $p_A(\lambda) = 0$. By the fundamental theorem of algebra,
  \[
    \sum_\lambda M(\lambda) = n.
  \]
  If $M(\lambda) > 1$, then the eigenvalue is \emph{degenerate}.
\end{defi}

\begin{defi}[Geometric multiplicity of eigenvalue]
  The \emph{geometric multiplicity} $m(\lambda)$ or $m_\lambda$ of an eigenvalue $\lambda$ is the dimension of the eigenspace, i.e.\ the maximum number of linearly independent eigenvectors with eigenvalue $\lambda$.
\end{defi}

\begin{defi}[Defect of eigenvalue]
  The \emph{defect} $\Delta_\lambda$ of eigenvalue $\lambda$ is
  \[
    \Delta_\lambda = M(\lambda) - m(\lambda).
  \]
  It can be proven that $\Delta_\lambda \geq 0$, i.e.\ the geometric multiplicity is never greater than the algebraic multiplicity.
\end{defi}

\subsection{Linearly independent eigenvectors}
\begin{thm}
  Suppose $n\times n$ matrix $A$ has \emph{distinct} eigenvalues $\lambda_1, \lambda_2, \cdots, \lambda_n$. Then the corresponding eigenvectors $\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_n$ are linearly independent.
\end{thm}

\begin{proof}
  Proof by contradiction: Suppose $\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_n$ are linearly dependent. Then we can find non-zero constants $d_i$ for $i = 1, 2, \cdots, r$, such that
  \[
    d_1\mathbf{x}_1 + d_2\mathbf{x}_2 + \cdots + d_r\mathbf{x}_r = \mathbf{0}.
  \]
  Suppose that this is the shortest non-trivial linear combination that gives $\mathbf{0}$ (we may need to re-order $\mathbf{x}_i$).

  Now apply $(A - \lambda_1 I)$ to the whole equation to obtain
  \[
    d_1(\lambda_1 - \lambda_1)\mathbf{x}_1 + d_2(\lambda_2 - \lambda_1)\mathbf{x}_2 + \cdots + d_r(\lambda_r - \lambda_1)\mathbf{x}_r = \mathbf{0}.
  \]
  We know that the first term is $\mathbf{0}$, while the others are not (since we assumed $\lambda_i \not= \lambda_j$ for $i\not= j$). So
  \[
    d_2(\lambda_2 - \lambda_1)\mathbf{x}_2 + \cdots + d_r(\lambda_r - \lambda_1)\mathbf{x}_r = \mathbf{0},
  \]
  and we have found a shorter linear combination that gives $\mathbf{0}$. Contradiction.
\end{proof}

\begin{eg}\leavevmode
  \begin{enumerate}
    \item $A = \begin{pmatrix} 0 & 1\\
        -1 & 0
      \end{pmatrix}$. Then $p_A(\lambda) = \lambda^2 + 1 = 0$. So $\lambda_1 = i$ and $\lambda_2 = -i$.

      To solve $(A - \lambda_1 I)\mathbf{x} = \mathbf{0}$, we obtain
      \[
        \begin{pmatrix}
          -i & 1\\-1 & -i
        \end{pmatrix}
        \begin{pmatrix}
          x_1\\x_2
        \end{pmatrix}
        = \mathbf{0}.
      \]
      So we obtain
      \[
        \begin{pmatrix}
          x_1\\x_2
        \end{pmatrix} =
        \begin{pmatrix}
          1\\i
        \end{pmatrix}
      \]
      to be an eigenvector. Clearly any scalar multiple of $\begin{pmatrix}
        1\\i
      \end{pmatrix}$ is also a solution, but still in the same eigenspace $E_i = \spn \begin{pmatrix}
        1\\i
      \end{pmatrix}$

      Solving $(A - \lambda_2I)\mathbf{x} = \mathbf{0}$ gives
      \[
        \begin{pmatrix}
          x_1\\x_2
        \end{pmatrix} =
        \begin{pmatrix}
          1\\-i
        \end{pmatrix}.
      \]
      So $E_{-i} = \spn
      \begin{pmatrix}
        1\\-i
      \end{pmatrix}$.

      Note that $M(\pm i) = m(\pm i) = 1$, so $\Delta_{\pm i} = 0$. Also note that the two eigenvectors are linearly independent and form a basis of $\C^2$.
    \item Consider
      \[
        A = \begin{pmatrix}
          -2 & 2 & -3\\
          2 & 1 & -6\\
          -1 & -2 & 0
        \end{pmatrix}
      \]
      Then $\det(A - \lambda I) = 0$ gives $45 + 21\lambda - \lambda^2 - \lambda^3$. So $\lambda_1 = 5, \lambda_2 = \lambda_3 = -3$.

      The eigenvector with eigenvalue $5$ is
      \[
        \mathbf{x} =
        \begin{pmatrix}
          1\\2\\-1
        \end{pmatrix}
      \]
      We can find that the eigenvectors with eigenvalue $-3$ are
      \[
        \mathbf{x} =
        \begin{pmatrix}
          -2x_2 + 3x_3\\x_2\\x_3
        \end{pmatrix}
      \]
      for any $x_2, x_3$. This gives two linearly independent eigenvectors, say $
      \begin{pmatrix}
        -2\\1\\0
      \end{pmatrix},
      \begin{pmatrix}
        3\\0\\1
      \end{pmatrix}$.

      So $M(5) = m(5) = 1$ and $M(-3) = m(-3) = 2$, and there is no defect for both of them. Note that these three eigenvectors form a basis of $\C^3$.
    \item Let
      \[
        A = \begin{pmatrix}
          -3&-1&1\\
          -1 & -3 & 1\\
          -2 & -2 & 0
        \end{pmatrix}
      \]
      Then $0 = p_A(\lambda) = -(\lambda+2)^4$. So $\lambda = -2, -2, -2$. To find the eigenvectors, we have
      \[
        (A + 2I)\mathbf{x} =
        \begin{pmatrix}
          -1&-1&1\\
          -1 & -1 & 1\\
          -2 & -2 & 2
        \end{pmatrix}
        \begin{pmatrix}
          x_1\\x_2\\x_3
        \end{pmatrix}
        = \mathbf{0}
      \]
      The general solution is thus $x_1 + x_2 - x_3 = 0$, and the general solution is thus $x =
      \begin{pmatrix}
        x_1\\x_2\\x_1 + x_2
      \end{pmatrix}$. The eigenspace $E_{-2} = \spn\left\{
        \begin{pmatrix}
          1\\0\\1
        \end{pmatrix},
        \begin{pmatrix}
          0\\1\\1
        \end{pmatrix}\right\}$.

      Hence $M(-2) = 3$ and $m(-2) = 2$. Thus the defect $\Delta_{-2} = 1$. So the eigenvectors do not form a basis of $\C^3$.
    \item Consider the reflection $R$ in the plane with normal $\mathbf{n}$. Clearly $R\mathbf{n} = -\mathbf{n}$. The eigenvalue is $-1$ and the eigenvector is $\mathbf{n}$. Then $E_1 = \spn\{\mathbf{n}\}$. So $M(-1) = m(-1) = 1$.

      If $\mathbf{p}$ is any vector in the plane, $R\mathbf{p} = \mathbf{p}$. So this has an eigenvalue of $1$ and eigenvectors being any vector in the plane. So $M(1) = m(1) = 2$.

      So the eigenvectors form a basis of $\R^3$.
    \item Consider a rotation $R$ by $\theta$ about $\mathbf{n}$. Since $R\mathbf{n} = \mathbf{n}$, we have an eigenvalue of $1$ and eigenspace $E_1 = \spn\{\mathbf{n}\}$.

      We know that there are no other real eigenvalues since rotation changes the direction of any other vector. The other eigenvalues turn out to be $e^{\pm i\theta}$. If $\theta \not= 0$, there are 3 distinct eigenvalues and the eigenvectors form a basis of $\C^3$.
    \item Consider a shear
      \[
        A =
        \begin{pmatrix}
          1&\mu\\0&1
        \end{pmatrix}
      \]
      The characteristic equation is $(1 - \lambda)^2 = 0$ and $\lambda = 1$. The eigenvectors corresponding to $\lambda = 1$ is $\mathbf{x} =
      \begin{pmatrix}
        1\\0
      \end{pmatrix}$. We have $M(1) = 2$ and $m(1) = 1$. So $\Delta_1 = 1$.
  \end{enumerate}
\end{eg}
If $n\times n$ matrix $A$ has $n$ distinct eigenvalues, and hence has $n$ linearly independent eigenvectors $\mathbf{v}_1, \mathbf{v}_2, \cdots \mathbf{v}_n$, then \emph{with respect to this eigenvector basis}, $A$ is diagonal.

In this basis, $v_1 = (1, 0, \cdots, 0)$ etc. We know that $A\mathbf{v}_i = \lambda_i\mathbf{v}_i$ (no summation). So the image of the $i$th basis vector is $\lambda_i$ times the $i$th basis. Since the columns of $A$ are simply the images of the basis,
\[
  \begin{pmatrix}
    \lambda_1 & 0 & \cdots & 0\\
    0 & \lambda_2 & \cdots & 0\\
    \vdots & \vdots & \ddots & \vdots\\
    0 & 0 & \cdots & \lambda_n
  \end{pmatrix}
\]
The fact that $A$ can be diagonalized by changing the basis is an important observation. We will now look at how we can change bases and see how we can make use of this.

\subsection{Transformation matrices}
How do the components of a vector or a matrix change when we change the basis?

Let $\{\mathbf{e}_1, \mathbf{e}_2, \cdots, \mathbf{e}_n\}$ and $\{\tilde{\mathbf{e}}_1, \tilde{\mathbf{e}}_2,\cdots, \tilde{\mathbf{e}}_n\}$ be 2 different bases of $\R^n$ or $\C^n$. Then we can write
\[
  \tilde{\mathbf{e}_j} = \sum_{i = 1}^n P_{ij}\mathbf{e}_i
\]
i.e.\ $P_{ij}$ is the $i$th component of $\tilde{\mathbf{e}_j}$ with respect to the basis $\{\mathbf{e}_1, \mathbf{e}_2, \cdots, \mathbf{e}_n\}$. Note that the sum is made as $P_{ij}\mathbf{e}_i$, not $P_{ij}\mathbf{e}_j$. This is different from the formula for matrix multiplication.

Matrix $P$ has as its columns the vectors $\tilde{\mathbf{e}_j}$ relative to $\{\mathbf{e}_1, \mathbf{e}_2, \cdots, \mathbf{e}_n\}$. So $P = (\tilde{\mathbf{e}_1}\; \tilde{\mathbf{e}_2}\; \cdots \; \tilde{\mathbf{e}_n})$ and
\[
  P(\mathbf{e}_i) = \tilde{\mathbf{e}_i}
\]
Similarly, we can write
\[
  \mathbf{e}_i = \sum_{k = 1}^nQ_{ki} \tilde{\mathbf{e}_k}
\]
with $Q = (\mathbf{e}_1\; \mathbf{e}_2\;\cdots\;\mathbf{e}_n)$.

Substituting this into the equation for $\tilde{\mathbf{e}_j}$, we have
\begin{align*}
  \tilde{\mathbf{e}_j} &= \sum_{i = 1}^n\left(\sum_{k = 1}^{n} Q_{ki}\tilde{\mathbf{e}_k}\right)P_{ij}\\
  &= \sum_{k = 1}^n \tilde{\mathbf{e}_k} \left(\sum_{i = 1}^n Q_{ki}P_{ij}\right)
\end{align*}
But $\tilde{\mathbf{e}}_1, \tilde{\mathbf{e}}_2,\cdots, \tilde{\mathbf{e}}_n$ are linearly independent, so this is only possible if
\[
  \sum_{i = 1}^n Q_{ki}P_{ij} = \delta_{kj},
\]
which is just a fancy way of saying $QP = I$, or $Q = P^{-1}$.
\subsubsection{Transformation law for vectors}
With respect to basis $\left\{\mathbf{e}_i\right\}$, $\mathbf{u} = \sum_{i = 1}^n u_i\mathbf{e}_i$.
With respect to basis $\left\{\tilde{\mathbf{e}_i}\right\}$, $\mathbf{u} = \sum_{i = 1}^n \tilde{u_i}\tilde{\mathbf{e}_i}$. Note that this is the \emph{same} vector $\mathbf{u}$ but has different components with respect to different bases. Using the transformation matrix above for the basis, we have
\begin{align*}
  \mathbf{u} &= \sum_{j= 1}^n \tilde{u_j} \sum_{i = 1}^{n}P_{ij}\mathbf{e}_i\\
  &= \sum_{i = 1}^n \left(\sum_{j = 1}^n P_{ij}\tilde{u_j}\right) \mathbf{e}_i
\end{align*}
By comparison, we know that
\[
  u_i = \sum_{j = 1}^n P_{ij}\tilde{u_j}
\]

\begin{thm}
  Denote vector as $\mathbf{u}$ with respect to $\{\mathbf{e}_i\}$ and $\tilde{\mathbf{u}}$ with respect to $\{\tilde{\mathbf{e}_i}\}$. Then
  \[
    \mathbf{u} = P\mathbf{\tilde{u}}\text{ and }\mathbf{\tilde{u}} = P^{-1}\mathbf{u}
  \]
\end{thm}

\begin{eg}
  Take the first basis as $\{\mathbf{e}_1 = (1, 0), \mathbf{e}_2 = (0, 1)\}$ and the second as $\{\tilde{\mathbf{e}_1} = (1, 1), \tilde{\mathbf{e}_2} = (-1, 1)\}$.

  So $\tilde{\mathbf{e}_1} = \mathbf{e}_1 + \mathbf{e}_2$ and $\tilde{\mathbf{e}_2} = -\mathbf{e}_1 + \mathbf{e}_2$. We have
  \[
    \mathbf{P} =
    \begin{pmatrix}
      1 & -1\\
      1 & 1
    \end{pmatrix}.
  \]
  Then for an arbitrary vector $\mathbf{u}$, we have
  \begin{align*}
    \mathbf{u}&= u_1\mathbf{e}_1 + u_2\mathbf{e}_2\\
    &= u_1\frac{1}{2}(\tilde{\mathbf{e}_1} - \tilde{\mathbf{e}_2}) + u_2\frac{1}{2}(\tilde{\mathbf{e}_1} + \tilde{\mathbf{e}_2})\\
    &= \frac{1}{2}(u_1 + u_2)\tilde{\mathbf{e}_1} + \frac{1}{2}(-u_1 + u_2)\tilde{\mathbf{e}_2}.
  \end{align*}
  Alternatively, using the formula above, we obtain
  \begin{align*}
    \mathbf{\tilde{u}} &= P^{-1} \mathbf{u}\\
    &= \frac{1}{2}
    \begin{pmatrix}
      1&1\\-1&1
    \end{pmatrix}
    \begin{pmatrix}
      u_1\\u_2
    \end{pmatrix}\\
    &=
    \begin{pmatrix}
      \frac{1}{2}(u_1 + u_2)\\
      \frac{1}{2}(-u_1 + u_2)
    \end{pmatrix}
  \end{align*}
  Which agrees with the above direct expansion.
\end{eg}
\subsubsection{Transformation law for matrix}
Consider a linear map $\alpha: \C^n \to \C^n$ with associated $n\times n$ matrix $A$. We have
\[
  \mathbf{u}' = \alpha(\mathbf{u}) = A\mathbf{u}.
\]
Denote $\mathbf{u}$ and $\mathbf{u}'$ as being with respect to basis $\{\mathbf{e}_i\}$ (i.e.\ same basis in both spaces), and $\mathbf{\tilde{u}, \tilde{u}'}$ with respect to $\{\tilde{\mathbf{e}_i}\}$.

Using what we've got above, we have
\begin{align*}
  \mathbf{u}' &= A\mathbf{u}\\
  P\mathbf{\tilde{u}'} &= AP\tilde{\mathbf{u}}\\
  \mathbf{\tilde{u}'} &= P^{-1}AP\mathbf{\tilde{u}}\\
  &= \tilde{A}\tilde{\mathbf{u}}
\end{align*}
So
\begin{thm}
  \[
    \tilde{A} = P^{-1}AP.
  \]
\end{thm}

\begin{eg}
  Consider the shear $S_\lambda =
  \begin{pmatrix}
    1 & \lambda & 0\\
    0 & 1 & 0\\
    0 & 0 & 1
  \end{pmatrix}$ with respect to the standard basis. Choose a new set of basis vectors by rotating by $\theta$ about the $\mathbf{e}_3$ axis:
  \begin{align*}
    \tilde{\mathbf{e}_1} &= \cos\theta \mathbf{e}_1 + \sin\theta \mathbf{e}_2\\
    \tilde{\mathbf{e}_2} &= -\sin\theta \mathbf{e}_1 + \cos\theta \mathbf{e}_2\\
    \tilde{\mathbf{e}_3} &= \mathbf{e}_3
  \end{align*}
  So we have
  \[
    P =
    \begin{pmatrix}
      \cos\theta & -\sin\theta & 0\\
      \sin\theta & \cos\theta & 0\\
      0 & 0 & 1
    \end{pmatrix}, P^{-1} =
    \begin{pmatrix}
      \cos\theta & \sin\theta & 0\\
      -\sin\theta & \cos\theta & 0\\
      0 & 0 & 1
    \end{pmatrix}
  \]
  Now use the basis transformation laws to obtain
  \[
    \tilde{S}_\lambda =
    \begin{pmatrix}
      1 + \lambda\sin\theta\cos\theta & \lambda \cos^2\theta & 0\\
      -\lambda \sin^2\theta & 1 - \lambda\sin\theta\cos\theta & 0\\
      0 & 0 & 1
    \end{pmatrix}
  \]
  Clearly this is much more complicated than our original basis. This shows that choosing a sensible basis is important.
\end{eg}

More generally, given $\alpha: \C^m \to \C^n$, given $\mathbf{x}\in \C^m$, $\mathbf{x}'\in \C^n$ with $\mathbf{x}' = A\mathbf{x}$. We know that $A$ is an $n\times m$ matrix.

Suppose $\C^m$ has a basis $\{\mathbf{e}_i\}$ and $\C^n$ has a basis $\{\mathbf{f}_i\}$. Now change bases to $\{\tilde{\mathbf{e}_i}\}$ and $\{\tilde{\mathbf{f}_i}\}$.

We know that $\mathbf{x} = P\mathbf{\tilde{x}}$ with $P$ being an $m\times m$ matrix, with $\mathbf{x}' = R\tilde{\mathbf{x}}'$ with $R$ being an $n\times n$ matrix.

Combining both of these, we have
\begin{align*}
  R\tilde{\mathbf{x}}' &= AP\tilde{\mathbf{x}}\\
  \tilde{\mathbf{x}}' &= R^{-1}AP\mathbf{\tilde{x}}
\end{align*}
Therefore $\tilde{A} = R^{-1}AP$.

\begin{eg}
  Consider $\alpha: \R^3 \to \R^2$, with respect to the standard bases in both spaces,
  \[
    A =
    \begin{pmatrix}
      2 & 3 & 4\\
      1 & 6 & 3
    \end{pmatrix}
  \]
  Use a new basis $
  \begin{pmatrix}
    2\\1
  \end{pmatrix},
  \begin{pmatrix}
    1\\5
  \end{pmatrix}$ in $\R^2$ and keep the standard basis in $\R^3$. The basis change matrix in $\R^3$ is simply $I$, while
  \[
    R =
    \begin{pmatrix}
      2& 1\\
      1 & 5
    \end{pmatrix}, R^{-1} = \frac{1}{9}
    \begin{pmatrix}
      5 & -1\\
      -1 & 2
    \end{pmatrix}
  \]
  is the transformation matrix for $\R^2$. So
  \begin{align*}
    \tilde{A} &=
    \begin{pmatrix}
      2 & 1\\1 & 5
    \end{pmatrix}
    \begin{pmatrix}
      2 & 3 & 4\\1 & 6 & 3
    \end{pmatrix}I\\
    &= \frac{1}{9}
    \begin{pmatrix}
      5 & -1\\
      -1 & 2
    \end{pmatrix}
    \begin{pmatrix}
      2 & 3 & 4\\1 & 6 & 3
    \end{pmatrix}\\
    &=
    \begin{pmatrix}
      1 & 1 & 17/9\\
      0 & 1 & 2/9
    \end{pmatrix}
  \end{align*}
  We can alternatively do it this way: we know that $\tilde{\mathbf{f}_1} =
  \begin{pmatrix}
    2\\1
  \end{pmatrix}, \tilde{\mathbf{f}_2} =
  \begin{pmatrix}
    1\\5
  \end{pmatrix}$
  Then we know that
  \begin{align*}
    \tilde{\mathbf{e}_1} = \mathbf{e}_1 &\mapsto 2\mathbf{f}_1 + \mathbf{f}_2 = \mathbf{f}_1\\
    \tilde{\mathbf{e}_2} = \mathbf{e}_2 &\mapsto 3\mathbf{f}_1 + 6\mathbf{f}_2 = \tilde{\mathbf{f}_1} + \tilde{\mathbf{f}_2}\\
    \tilde{\mathbf{e}_3} = \mathbf{e}_3 &\mapsto 4\mathbf{f}_1 + 3\mathbf{f}_2 = \frac{17}{9} \tilde{\mathbf{f}_1} + \frac{2}{9}\tilde{\mathbf{f}_2}
  \end{align*}
  and we can construct the matrix correspondingly.
\end{eg}
\subsection{Similar matrices}
\begin{defi}[Similar matrices]
  Two $n\times n$ matrices $A$ and $B$ are \emph{similar} if there exists an invertible matrix $P$ such that
  \[
    B = P^{-1}AP,
  \]
  i.e.\ they represent the same map under different bases. Alternatively, using the language from IA Groups, we say that they are in the same conjugacy class.
\end{defi}

\begin{prop}
  Similar matrices have the following properties:
  \begin{enumerate}
    \item Similar matrices have the same determinant.
    \item Similar matrices have the same trace.
    \item Similar matrices have the same characteristic polynomial.
  \end{enumerate}
\end{prop}
Note that (iii) implies (i) and (ii) since the determinant and trace are the coefficients of the characteristic polynomial

\begin{proof}
  They are proven as follows:
  \begin{enumerate}
    \item $\det B =\det (P^{-1}AP) = (\det A) (\det P)^{-1} (\det P) = \det A$
    \item
      \begin{align*}
        \tr B &= B_{ii}\\
        &= P_{ij}^{-1} A_{jk} P_{ki}\\
        &= A_{jk} P_{ki}P_{ij}^{-1}\\
        &= A_{jk}(PP^{-1})_{kj}\\
        &= A_{jk}\delta_{kj}\\
        &= A_{jj}\\
        &= \tr A
      \end{align*}
    \item
      \begin{align*}
        p_B(\lambda) &= \det(B - \lambda I)\\
        &= \det(P^{-1}AP - \lambda I)\\
        &= \det(P^{-1}AP - \lambda P^{-1}IP)\\
        &= \det(P^{-1}(A - \lambda I)P)\\
        &= \det(A - \lambda I)\\
        &= p_A(\lambda)\qedhere
      \end{align*}%\qedhere
  \end{enumerate}
\end{proof}
\subsection{Diagonalizable matrices}
\begin{defi}[Diagonalizable matrices]
  An $n\times n$ matrix $A$ is \emph{diagonalizable} if it is similar to a diagonal matrix. We showed above that this is equivalent to saying the eigenvectors form a basis of $\C^n$.
\end{defi}

The requirement that matrix $A$ has $n$ distinct eigenvalues is a \emph{sufficient} condition for diagonalizability as shown above. However, it is \emph{not} necessary.

Consider the second example in Section 5.2,
\[
  A = \begin{pmatrix}
    -2 & 2 & -3\\
    2 & 1 & -6\\
    -1 & -2 & 0
  \end{pmatrix}
\]
We found three linear eigenvectors
\[
  \tilde{\mathbf{e}_1} =
  \begin{pmatrix}
    1\\2\\1
  \end{pmatrix}, \tilde{\mathbf{e}_2} =
  \begin{pmatrix}
    -2\\1\\0
  \end{pmatrix}, \tilde{\mathbf{e}_3} =
  \begin{pmatrix}
    3\\0\\1
  \end{pmatrix}
\]
If we let
\[
  P =
  \begin{pmatrix}
    1 & -2 & 3\\
    2 & 1 & 0\\
    1 & 0 & 1
  \end{pmatrix}, P^{-1} = \frac{1}{8}
  \begin{pmatrix}
    1 & 2 & -3\\
    -2 & 4 & 6\\
    1 & 2 & 5
  \end{pmatrix},
\]
then
\[
  \tilde{A} = P^{-1}AP =
  \begin{pmatrix}
    5 & 0 & 0\\
    0 & -3 & 0\\
    0 & 0 & -3
  \end{pmatrix},
\]
so $A$ is diagonalizable.

\begin{thm}
  Let $\lambda_1, \lambda_2, \cdots, \lambda_r$, with $r \leq n$ be the distinct eigenvalues of $A$. Let $B_1, B_2, \cdots B_r$ be the bases of the eigenspaces $E_{\lambda_1}, E_{\lambda_2}, \cdots, E_{\lambda_r}$ correspondingly. Then the set $\displaystyle B = \bigcup_{i= 1}^r B_i$ is linearly independent.
\end{thm}

This is similar to the proof we had for the case where the eigenvalues are distinct. However, we are going to do it much concisely, and the actual meat of the proof is actually just a single line.
\begin{proof}
  Write $B_1 = \{\mathbf{x}_1^{(1)}, \mathbf{x}_2^{(1)}, \cdots \mathbf{x}_{m(\lambda_1)}^{(1)}\}$. Then $m(\lambda_1) = \dim (E_{\lambda_1})$, and similarly for all $B_i$.

  Consider the following general linear combination of all elements in $B$. Consider the equation
  \[
    \sum_{i = 1}^r\sum_{j = 1}^{m(\lambda_i)} \alpha_{ij} \mathbf{x}_j^{(i)} = 0.
  \]
  The first sum is summing over all eigenspaces, and the second sum sums over the basis vectors in $B_i$. Now apply the matrix
  \[
    \prod_{k = 1, 2, \cdots, \bar{K}, \cdots, r} (A - \lambda_kI)
  \]
  to the above sum, for some arbitrary $K$. We obtain
  \[
    \sum_{j = 1}^{m(\lambda_K)}\alpha_{Kj}\left[\prod_{k = 1, 2, \cdots, \bar{K}, \cdots, r}(\lambda_K - \lambda_k)\right]\mathbf{x}_j^{(K)} = 0.
  \]
  Since the $\mathbf{x}^{(K)}_j$ are linearly independent ($B_K$ is a basis), $\alpha_{Kj} = 0$ for all $j$. Since $K$ was arbitrary, all $\alpha_{ij}$ must be zero. So $B$ is linearly independent.
\end{proof}

\begin{prop}
  $A$ is diagonalizable iff all its eigenvalues have zero defect.
\end{prop}
\subsection{Canonical (Jordan normal) form}
Given a matrix $A$, if its eigenvalues all have non-zero defect, then we can find a basis in which it is diagonal. However, if some eigenvalue \emph{does} have defect, we can still put it into an almost-diagonal form. This is known as the \emph{Jordan normal form}.

\begin{thm}
  Any $2\times 2$ complex matrix $A$ is similar to exactly one of
  \[
    \begin{pmatrix}
      \lambda_1 & 0\\
      0 & \lambda_2
    \end{pmatrix},
    \begin{pmatrix}
      \lambda & 0\\
      0 & \lambda
    \end{pmatrix},
    \begin{pmatrix}
      \lambda & 1\\
      0 & \lambda
    \end{pmatrix}
  \]
\end{thm}
\begin{proof}
  For each case:
  \begin{enumerate}
    \item If $A$ has two distinct eigenvalues, then eigenvectors are linearly independent. Then we can use $P$ formed from eigenvectors as its columns
    \item If $\lambda_1=\lambda_2 = \lambda$ and $\dim E_\lambda = 2$, then write $E_\lambda = \spn\{\mathbf{u}, \mathbf{v}\}$, with $\mathbf{u}, \mathbf{v}$ linearly independent. Now use $\{\mathbf{u}, \mathbf{v}\}$ as a new basis of $\C^2$ and $\tilde{A} = P^{-1}AP =
      \begin{pmatrix}
        \lambda & 0\\
        0 & \lambda
      \end{pmatrix} = \lambda I$

      Note that since $P^{-1}AP = \lambda I$, we have $A = P(\lambda I)P^{-1} = \lambda I$. So $A$ is \emph{isotropic}, i.e.\ the same with respect to any basis.
    \item If $\lambda_1 = \lambda_2 = \lambda$ and $\dim (E_\lambda) = 1$, then $E_\lambda = \spn\{\mathbf{v}\}$. Now choose basis of $\C^2$ as $\{\mathbf{v}, \mathbf{w}\}$, where $\mathbf{w}\in \C^2\setminus E_\lambda$.

      We know that $A\mathbf{w}\in \C^2$. So $A\mathbf{w} = \alpha \mathbf{v} + \beta \mathbf{w}$. Hence, if we change basis to $\{\mathbf{v}, \mathbf{w}\}$, then $\tilde{A} = P^{-1}AP =
      \begin{pmatrix}
        \lambda & \alpha\\
        0 & \beta
      \end{pmatrix}$.

      However, $A$ and $\tilde{A}$ both have eigenvalue $\lambda$ with algebraic multiplicity $2$. So we must have $\beta = \lambda$. To make $\alpha = 1$, let $\mathbf{u} = (\tilde{A} - \lambda I)\mathbf{w}$. We know $\mathbf{u}\not= \mathbf{0}$ since $\mathbf{w}$ is not in the eigenspace. Then
      \[
        (\tilde{A} - \lambda I)\mathbf{u} = (\tilde{A} - \lambda I)^2 \mathbf{w} =
        \begin{pmatrix}
          0 & \alpha\\
          0 & 0
        \end{pmatrix}
        \begin{pmatrix}
          0 & \alpha\\
          0 & 0
        \end{pmatrix}\mathbf{w} = \mathbf{0}.
      \]
      So $\mathbf{u}$ is an eigenvector of $\tilde{A}$ with eigenvalue $\lambda$.

      We have $\mathbf{u} = \tilde A\mathbf{w} - \lambda\mathbf{w}$. So $\tilde A\mathbf{w} = \mathbf{u} + \lambda\mathbf{w}$.

      Change basis to $\{\mathbf{u}, \mathbf{w}\}$. Then $A$ with respect to this basis is $
      \begin{pmatrix}
        \lambda & 1\\
        0 & \lambda
      \end{pmatrix}$.

      This is a two-stage process: $P$ sends basis to $\{\mathbf{v}, \mathbf{w}\}$ and then matrix $Q$ sends to basis $\{\mathbf{u}, \mathbf{w}\}$. So the similarity transformation is $Q^{-1}(P^{-1}AP)Q = (PQ)^{-1}A(PQ)$.\qedhere
  \end{enumerate}
\end{proof}

\begin{prop}
  (Without proof) The canonical form, or Jordan normal form, exists for any $n\times n$ matrix $A$. Specifically, there exists a similarity transform such that $A$ is similar to a matrix to $\tilde{A}$ that satisfies the following properties:
  \begin{enumerate}
    \item $\tilde{A}_{\alpha\alpha} = \lambda_\alpha$, i.e.\ the diagonal composes of the eigenvalues.
    \item $\tilde{A}_{\alpha, \alpha + 1} = 0$ or $1$.
    \item $\tilde{A}_{ij} = 0$ otherwise.
  \end{enumerate}
\end{prop}
The actual theorem is actually stronger than this, and the Jordan normal form satisfies some additional properties in addition to the above. However, we shall not go into details, and this is left for the IB Linear Algebra course.

\begin{eg}
  Let
  \[
    A = \begin{pmatrix}
      -3 & -1 & 1\\
      -1 & -3 & 1\\
      -2 & -2 & 0
    \end{pmatrix}
  \]
  The eigenvalues are $-2, -2, -2$ and the eigenvectors are $
  \begin{pmatrix}
    -1 \\1 \\ 0
  \end{pmatrix},
  \begin{pmatrix}
    1 \\ 0 \\1
  \end{pmatrix}$. Pick $\mathbf{w} =
  \begin{pmatrix}
    1\\0\\0
  \end{pmatrix}$. Write $\mathbf{u} = (A - \lambda I)\mathbf{w} =
  \begin{pmatrix}
    -1 & -1 & 1\\
    -1 & -1 & 1\\
    -2 & -2 & 2
  \end{pmatrix}
  \begin{pmatrix}
    1\\0\\0
  \end{pmatrix} =
  \begin{pmatrix}
    -1\\-1\\-2
  \end{pmatrix}$. Note that $A\mathbf{u} = -2\mathbf{u}$. We also have $A\mathbf{w} = \mathbf{u} - 2\mathbf{w}$. Form a basis $\{\mathbf{u}, \mathbf{w}, \mathbf{v}\}$, where $\mathbf{v}$ is another eigenvector linearly independent from $\mathbf{u}$, say $
  \begin{pmatrix}
    1\\0\\1
  \end{pmatrix}$.

  Now change to this basis with
  $P = \begin{pmatrix}
    -1 & 1 & 1\\
    -1 & 0 & 0\\
    -2 & 0 & 1
  \end{pmatrix}$. Then the Jordan normal form is $P^{-1}AP =
  \begin{pmatrix}
    -2 & 1 & 0\\
    0 & -2 & 0\\
    0 & 0 & -2
  \end{pmatrix}$
\end{eg}

\subsection{Cayley-Hamilton Theorem}
\begin{thm}[Cayley-Hamilton theorem]
  Every $n\times n$ complex matrix satisfies its own characteristic equation.
\end{thm}

\begin{proof}
  We will only prove for diagonalizable matrices here. So suppose for our matrix $A$, there is some $P$ such that $D = \mathrm{diag}(\lambda_1, \lambda_2, \cdots, \lambda_n) = P^{-1}AP$.
  Note that
  \[
    D^i = (P^{-1}AP)(P^{-1}AP)\cdots(P^{-1}AP) = P^{-1}A^iP.
  \]
  Hence
  \[
    p_D(D) = p_D(P^{-1}AP) = P^{-1}[p_D(A)]P.
  \]
  Since similar matrices have the same characteristic polynomial. So
  \[
    p_A(D) = P^{-1}[p_A(A)]P.
  \]
  However, we also know that $D^i = \mathrm{diag}(\lambda_1^i, \lambda_2^i, \cdots \lambda_n^i)$. So
  \[
    p_A(D) = \mathrm{diag}(p_A(\lambda_1), p_A(\lambda_2), \cdots, p_A(\lambda_n)) = \mathrm{diag}(0, 0, \cdots, 0)
  \]
  since the eigenvalues are roots of $p_A(\lambda) = 0$. So $0 = p_A(D) = P^{-1}p_A(A)P$ and thus $p_A(A) = 0$.
\end{proof}

There are a few things to note.
\begin{enumerate}
  \item If $A^{-1}$ exists, then $A^{-1} p_A(A) = A^{-1}(c_0 + c_1A + c_2A^2 + \cdots + c_n A^n) = 0$. So $c_0 A^{-1} + c_1 + c_2A + \cdots + c_n A^{n - 1}$. Since $A^{-1}$ exists, $c_0 = \pm \det A \not= 0$. So
    \[
      A^{-1} = \frac{-1}{c_0}(c_1 + c_2 A + \cdots + c_n A^{n -1}).
    \]
    So we can calculate $A^{-1}$ from positive powers of $A$.
  \item We can define matrix exponentiation by
    \[
      e^A = I + A + \frac{1}{2!}A^2 + \cdots + \frac{1}{n!}A^n + \cdots.
    \]
    It is a fact that this always converges.

    If $A$ is diagonalizable with $P$ with $D = P^{-1}AP = \mathrm{diag}(\lambda_1, \lambda_2, \cdots, \lambda_n)$, then
    \begin{align*}
      P^{-1}e^A P &= P^{-1}IP + P^{-1}AP + \frac{1}{2!}P^{-1}A^2P + \cdots\\
      &= I + D + \frac{1}{2!}D^{2} + \cdots\\
      &= \mathrm{diag}(e^{\lambda_1}, e^{\lambda_2}, \cdots e^{\lambda_n})
    \end{align*}
    So
    \[
      e^A = P[\mathrm{diag}(e^{\lambda_1}, e^{\lambda_2}, \cdots, e^{\lambda_n})]P^{-1}.
    \]
  \item For $2\times 2$ matrices which are similar to $B =
    \begin{pmatrix}
      \lambda & 1\\
      0 & \lambda
    \end{pmatrix}$
    We see that the characteristic polynomial $p_B(z) = \det (B - zI) = (\lambda - z)^2$. Then $p_B(B) = (\lambda I - B)^2 =
    \begin{pmatrix}
      0 & -1\\
      0 & 0
    \end{pmatrix}^2 =
    \begin{pmatrix}
      0 & 0\\
      0 & 0
    \end{pmatrix}$.

    Since we have proved for the diagonalizable matrices above, we now know that \emph{any} $2\times 2$ matrix satisfies Cayley-Hamilton theorem.
\end{enumerate}
In IB Linear Algebra, we will prove the Cayley Hamilton theorem properly for all matrices without assuming diagonalizability.

\subsection{Eigenvalues and eigenvectors of a Hermitian matrix}
\subsubsection{Eigenvalues and eigenvectors}
\begin{thm}
  The eigenvalues of a Hermitian matrix $H$ are real.
\end{thm}

\begin{proof}
  Suppose that $H$ has eigenvalue $\lambda$ with eigenvector $\mathbf{v}\not= 0$. Then
  \[
    H\mathbf{v} = \lambda\mathbf{v}.
  \]
  We pre-multiply by $\mathbf{v}^\dagger$, a $1\times n$ row vector, to obtain
  \[
  \mathbf{v}^\dagger H\mathbf{v} = \lambda \mathbf{v}^\dagger \mathbf{v}\tag{$*$}\]
  We take the Hermitian conjugate of both sides. The left hand side is
  \[
    (\mathbf{v}^\dagger H\mathbf{v})^\dagger = \mathbf{v}^\dagger H^\dagger \mathbf{v} = \mathbf{v}^\dagger H \mathbf{v}
  \]
  since $H$ is Hermitian. The right hand side is
  \[
    (\lambda\mathbf{v}^\dagger\mathbf{v})^\dagger = \lambda^* \mathbf{v}^\dagger \mathbf{v}
  \]
  So we have
  \[
    \mathbf{v}^\dagger H\mathbf{v} = \lambda^* \mathbf{v}^\dagger \mathbf{v}.
  \]
  From $(*)$, we know that $\lambda \mathbf{v}^\dagger \mathbf{v} = \lambda^* \mathbf{v}^\dagger \mathbf{v}$. Since $\mathbf{v} \not= 0$, we know that $\mathbf{v}^\dagger \mathbf{v} = \mathbf{v}\cdot \mathbf{v} \not =0$. So $\lambda = \lambda^*$ and $\lambda$ is real.
\end{proof}

\begin{thm}
  The eigenvectors of a Hermitian matrix $H$ corresponding to distinct eigenvalues are orthogonal.
\end{thm}

\begin{proof}
  Let
  \begin{align*}
    H\mathbf{v}_i &= \lambda_i\mathbf{v}_i\tag{i}\\
    H\mathbf{v}_j &= \lambda_j\mathbf{v}_j\tag{ii}.
  \end{align*}
  Pre-multiply (i) by $\mathbf{v}_j^\dagger$ to obtain
  \[
    \mathbf{v}_j^\dagger H\mathbf{v}_i = \lambda_i \mathbf{v}_j^\dagger \mathbf{v}_i\tag{iii}.
  \]
  Pre-multiply (ii) by $\mathbf{v}_i^\dagger$ and take the Hermitian conjugate to obtain
  \[
    \mathbf{v}_j^\dagger H\mathbf{v}_i = \lambda_j \mathbf{v}_j^\dagger \mathbf{v}_i\tag{iv}.
  \]
  Equating (iii) and (iv) yields
  \[
    \lambda_i \mathbf{v}_j^\dagger \mathbf{v}_i = \lambda_j \mathbf{v}_j^\dagger \mathbf{v}_i.
  \]
  Since $\lambda_i\not= \lambda_j$, we must have $\mathbf{v}_j^\dagger\mathbf{v}_i = 0$. So their inner product is zero and are orthogonal.
\end{proof}

So we know that if a Hermitian matrix has $n$ distinct eigenvalues, then the eigenvectors form an orthonormal basis. However, if there are degenerate eigenvalues, it is more difficult, and requires the Gram-Schmidt process.

\subsubsection{Gram-Schmidt orthogonalization (non-examinable)}
Suppose we have a set $B = \{\mathbf{w}_1, \mathbf{w}_2, \cdots, \mathbf{w}_r\}$ of linearly independent vectors. We want to find an orthogonal set $\tilde{\mathbf{B}} = \{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_r\}$.

Define the projection of $\mathbf{w}$ onto $\mathbf{v}$ by $\mathcal{P}_\mathbf{v}(\mathbf{w}) = \frac{\bra \mathbf{v}\mid \mathbf{w}\ket}{\bra \mathbf{v}\mid \mathbf{v}\ket} \mathbf{v}$. Now construct $\tilde{\mathbf{B}}$ iteratively:
\begin{enumerate}
  \item $\mathbf{v}_1 = \mathbf{w}_1$
  \item $\mathbf{v}_2 = \mathbf{w}_2 - \mathcal{P}_{\mathbf{v}_1}(\mathbf{w})$

    Then we get that $\bra \mathbf{v}_1\mid \mathbf{v}_2\ket = \bra \mathbf{v}_1\mid \mathbf{w}_2\ket - \left(\frac{\bra \mathbf{v}_1\mid \mathbf{w}_2\ket}{\bra \mathbf{v}_1 \mid \mathbf{v}_1\ket}\right) \bra \mathbf{v}_1\mid \mathbf{v}_1\ket = 0$
  \item $\mathbf{v}_3 = \mathbf{w}_3 - \mathcal{P}_{\mathbf{v}_1}(\mathbf{w}_3) - \mathcal{P}_{\mathbf{v}_2}(\mathbf{w}_3)$
  \item $\vdots$
  \item $\displaystyle \mathbf{v}_r = \mathbf{w}_r - \sum_{j = 1}^{r - 1} \mathcal{P}_{\mathbf{v}_j}(\mathbf{w}_r)$
\end{enumerate}
At each step, we subtract out the components of $\mathbf{v}_i$ that belong to the space of $\{\mathbf{v}_1, \cdots, \mathbf{v}_{k - 1}\}$. This ensures that all the vectors are orthogonal. Finally, we normalize each basis vector individually to obtain an orthonormal basis.

\subsubsection{Unitary transformation}
Suppose $U$ is the transformation between one orthonormal basis and a new orthonormal basis $\{\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_n\}$, i.e.\ $\bra \mathbf{u}_i\mid \mathbf{u}_j\ket = \delta_{ij}$. Then
\[
  U =
  \begin{pmatrix}
    (\mathbf{u}_1)_1 & (\mathbf{u}_2)_1 & \cdots & (\mathbf{u}_n)_1\\
    (\mathbf{u}_1)_2 & (\mathbf{u}_2)_2 & \cdots & (\mathbf{u}_n)_2\\
    \vdots & \vdots & \ddots & \vdots\\
    (\mathbf{u}_1)_n & (\mathbf{u}_2)_n & \cdots & (\mathbf{u}_n)_n
  \end{pmatrix}
\]
Then
\begin{align*}
  (U^\dagger U)_{ij} &= (U^\dagger)_{ik}U_{kj}\\
  &= U_{ki}^* U_{kj}\\
  &= (\mathbf{u}_i)^*_k(\mathbf{u}_j)_k\\
  &= \bra \mathbf{u}_i \mid \mathbf{u}_j \ket\\
  &= \delta_{ij}
\end{align*}
So $U$ is a unitary matrix.
\subsubsection{Diagonalization of \texorpdfstring{$n\times n$}{n x n} Hermitian matrices}
\begin{thm}
  An $n\times n$ Hermitian matrix has precisely $n$ orthogonal eigenvectors.
\end{thm}

\begin{proof}
  (Non-examinable) Let $\lambda_1,\lambda_2, \cdots, \lambda_r$ be the distinct eigenvalues of $H$ ($r \leq n$), with a set of corresponding orthonormal eigenvectors $B = \{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_r\}$. Extend to a basis of the whole of $\C^n$
  \[
    B' = \{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_r, \mathbf{w}_1, \mathbf{w}_2,\cdots, \mathbf{w}_{n - r}\}
  \]
  Now use Gram-Schmidt to create an orthonormal basis
  \[
    \tilde{B} = \{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_r, \mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_{n - r}\}.
  \]
  Now write
  \[
    P =
    \begin{pmatrix}
      \uparrow & \uparrow & & \uparrow & \uparrow & & \uparrow\\
      \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_r & \mathbf{u}_1 & \cdots & \mathbf{u}_{n - r}\\
      \downarrow & \downarrow & & \downarrow & \downarrow & & \downarrow\\
    \end{pmatrix}
  \]
  We have shown above that this is a unitary matrix, i.e.\ $P^{-1} = P^\dagger$. So if we change basis, we have
  \begin{align*}
    P^{-1}HP &= P^\dagger HP\\
    &= \begin{pmatrix}
      \lambda_1 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0\\
      0 & \lambda_2 & \cdots & 0 & 0 & 0 & \cdots & 0\\
      \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & 0\\
      0 & 0 & \cdots & \lambda_r & 0 & 0 & \cdots & 0\\
      0 & 0 & \cdots & 0 & c_{11} & c_{12} & \cdots & c_{1, n - r}\\
      0 & 0 & \cdots & 0 & c_{21} & c_{22} & \cdots & c_{2, n - r}\\
      \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
      0 & 0 & \cdots & 0 & c_{n - r,1} & c_{n - r,2} & \cdots & c_{n - r, n - r}
    \end{pmatrix}
  \end{align*}
  Here $C$ is an $(n - r)\times (n - r)$ Hermitian matrix. The eigenvalues of $C$ are also eigenvalues of $H$ because $\det (H - \lambda I) = \det(P^\dagger HP - \lambda I) = (\lambda_1 - \lambda)\cdots (\lambda_r - \lambda)\det (C - \lambda I)$. So the eigenvalues of $C$ are the eigenvalues of $H$.

  We can keep repeating the process on $C$ until we finish all rows. For example, if the eigenvalues of $C$ are all distinct, there are $n - r$ orthonormal eigenvectors $\mathbf{w}_j$ (for $j = r + 1, \cdots, n$) of $C$. Let
  \[
    Q =
    \begin{pmatrix}
      1 \\
      & 1\\
      && \ddots\\
      &&& 1\\
      &&&& \uparrow & \uparrow & &\uparrow\\
      &&&& \mathbf{w}_{r+1} & \mathbf{w}_{r + 2} & \cdots & \mathbf{w}_n\\
      &&&& \downarrow & \downarrow & &\downarrow\\
    \end{pmatrix}
  \]
  with other entries $0$. (where we have a $r\times r$ identity matrix block on the top left corner and a $(n - r) \times (n -r)$ with columns formed by $\mathbf{w}_j$)

  Since the columns of $Q$ are orthonormal, $Q$ is unitary. So $Q^\dagger P^\dagger HPQ = \mathrm{diag}(\lambda_1, \lambda_2, \cdots, \lambda_r, \lambda_{r + 1}, \cdots, \lambda_n)$, where the first $r$ $\lambda$s are distinct and the remaining ones are copies of previous ones.

  The $n$ linearly-independent eigenvectors are the columns of $PQ$.

\end{proof}
So it now follows that $H$ is diagonalizable via transformation $U (=PQ)$. $U$ is a unitary matrix because $P$ and $Q$ are. We have
\begin{align*}
  D &= U^\dagger HU\\
  H &= UDU^\dagger
\end{align*}
Note that a real symmetric matrix $S$ is a special case of Hermitian matrices. So we have
\begin{align*}
  D &= Q^T SQ\\
  S &= QDQ^T
\end{align*}
\begin{eg}
  Find the orthogonal matrix which diagonalizes the following real symmetric matrix: $S =
  \begin{pmatrix}
    1 & \beta\\
    \beta & 1
  \end{pmatrix}$ with $\beta \not= 0 \in \R$.

  We find the eigenvalues by solving the characteristic equation: $\det(S - \lambda I) = 0$, and obtain $\lambda = 1\pm \beta$.

  The corresponding eigenvectors satisfy $(S - \lambda I)\mathbf{x} = 0$, which gives $\displaystyle \mathbf{x} = \frac{1}{\sqrt{2}}
  \begin{pmatrix}
    1\\
    \pm1
  \end{pmatrix}$

  We change the basis from the standard basis to $
  \displaystyle
  \frac{1}{\sqrt{2}}\begin{pmatrix}
    1\\1
  \end{pmatrix},
  \frac{1}{\sqrt{2}}
  \begin{pmatrix}
    1\\-1
  \end{pmatrix}$ (which is just a rotation by $\pi/4$).

  The transformation matrix is $
  Q = \begin{pmatrix}
    1/\sqrt{2} & 1/\sqrt{2}\\
    1/\sqrt{2} & -1/\sqrt{2}
  \end{pmatrix}$. Then we know that $S = QDQ^T$ with $D = \mathrm{diag}(1, -1)$
\end{eg}
\subsubsection{Normal matrices}
We have seen that the eigenvalues and eigenvectors of Hermitian matrices satisfy some nice properties. More generally, we can define the following:
\begin{defi}[Normal matrix]
  A \emph{normal matrix} as a matrix that commutes with its own Hermitian conjugate, i.e.
  \[
    NN^\dagger = N^\dagger N
  \]
\end{defi}
Hermitian, real symmetric, skew-Hermitian, real anti-symmetric, orthogonal, unitary matrices are all special cases of normal matrices.

It can be shown that:
\begin{prop}\leavevmode
  \begin{enumerate}
    \item If $\lambda$ is an eigenvalue of $N$, then $\lambda^*$ is an eigenvalue of $N^\dagger$.
    \item The eigenvectors of distinct eigenvalues are orthogonal.
    \item A normal matrix can always be diagonalized with an orthonormal basis of eigenvectors.
  \end{enumerate}
\end{prop}

\section{Quadratic forms and conics}
We want to study quantities like $x_1^2 + x_2^2$ and $3x_1^2 + 2x_1x_2 + 4x_2^2$. For example, conic sections generally take this form. The common characteristic of these is that each term has degree 2. Consequently, we can write it in the form $\mathbf{x}^\dagger A\mathbf{x}$ for some matrix $A$.

\begin{defi}[Sesquilinear, Hermitian and quadratic forms]
  A \emph{sesquilinear form} is a quantity $F = \mathbf{x}^\dagger A\mathbf{x} = x_i^*A_{ij}x_j$. If $A$ is Hermitian, then $F$ is a \emph{Hermitian form}. If $A$ is real symmetric, then $F$ is a \emph{quadratic form}.
\end{defi}

\begin{thm}
  Hermitian forms are real.
\end{thm}
\begin{proof}
  $(\mathbf{x}^\dagger H\mathbf{x})^* = (\mathbf{x}^\dagger H\mathbf{x})^\dagger = \mathbf{x}^\dagger H^\dagger\mathbf{x} = \mathbf{x}^\dagger H\mathbf{x}$. So $(\mathbf{x}^\dagger H\mathbf{x})^* = \mathbf{x}^\dagger H\mathbf{x}$ and it is real.
\end{proof}

We know that any Hermitian matrix can be diagonalized with a unitary transformation. So $F(\mathbf{x}) = \mathbf{x}^\dagger H\mathbf{x} = \mathbf{x}^\dagger UDU^\dagger \mathbf{x}$. Write $\mathbf{x}' = U^\dagger \mathbf{x}$. So $F = (\mathbf{x}')^\dagger D\mathbf{x}'$, where $D = \mathrm{diag}(\lambda_1,\cdots,\lambda_n)$.

We know that $\mathbf{x}'$ is the vector $\mathbf{x}$ relative to the eigenvector basis. So
\[
  F(\mathbf{x}) = \sum_{i = 1}^n \lambda_i |x_i'|^2
\]
The eigenvectors are known as the principal axes.

\begin{eg}
  Take $F = 2x^2 - 4xy + 5y^2 = \mathbf{x}^TS\mathbf{x}$, where $\mathbf{x} =
  \begin{pmatrix}
    x\\y
  \end{pmatrix}$ and $S =
  \begin{pmatrix}
    2 & -2\\
    -2 & 5
  \end{pmatrix}$.

  Note that we can always choose the matrix to be symmetric. This is since for any antisymmetric $A$, we have $\mathbf{x}^\dagger A\mathbf{x} = 0$. So we can just take the symmetric part.

  The eigenvalues are $1, 6$ with corresponding eigenvectors $
  \displaystyle \frac{1}{\sqrt{5}}\begin{pmatrix}
    2\\1
  \end{pmatrix},\frac{1}{\sqrt{5}}
  \begin{pmatrix}
    1\\-2
  \end{pmatrix}$. Now change basis with
  \[
    Q = \frac{1}{\sqrt{5}}
    \begin{pmatrix}
      2 & 1\\
      1 & -2
    \end{pmatrix}
  \]
  Then $\mathbf{x}' = Q^T\mathbf{x} =
  \frac{1}{\sqrt{5}}\begin{pmatrix}
    2x + y\\x - 2y
  \end{pmatrix}$. Then $F = (x')^2 + 6(y')^2$.

  So $F = c$ is an ellipse.
\end{eg}

\subsection{Quadrics and conics}
\subsubsection{Quadrics}
\begin{defi}[Quadric]
  A \emph{quadric} is an $n$-dimensional surface defined by the zero of a real quadratic polynomial, i.e.
  \[
    \mathbf{x}^T A\mathbf{x} + \mathbf{b}^T\mathbf{x} + c = 0,
  \]
  where $A$ is a real $n\times n$ matrix, $\mathbf{x}, \mathbf{b}$ are $n$-dimensional column vectors and $c$ is a constant scalar.
\end{defi}

As noted in example, anti-symmetric matrix has $\mathbf{x}^TA\mathbf{x} = 0$, so for any $A$, we can split it into symmetric and anti-symmetric parts, and just retain the symmetric part $S = (A + A^T)/2$. So we can have
\[
  \mathbf{x}^T S\mathbf{x} + \mathbf{b}^T\mathbf{x} + c = 0
\]
with $S$ symmetric.

Since $S$ is real and symmetric, we can diagonalize it using $S = QDQ^T$ with $D$ diagonal. We write $\mathbf{x}' = Q^T \mathbf{x}$ and $\mathbf{b}' = Q^T \mathbf{b}$. So we have
\[
  (\mathbf{x}')^TD\mathbf{x}' + (\mathbf{b}')^T \mathbf{x}' + c = 0.
\]
If $S$ is invertible, i.e.\ with no zero eigenvalues, then write $\mathbf{x}'' = \mathbf{x}' + \frac{1}{2}D^{-1}\mathbf{b}'$ which shifts the origin to eliminate the linear term $(\mathbf{b}')^T\mathbf{x}'$ and finally have (dropping the prime superfixes)
\[
  \mathbf{x}^TD\mathbf{x} = k.
\]
So through two transformations, we have ended up with a simple quadratic form.

\subsubsection{Conic sections \texorpdfstring{$(n = 2)$}{(n = 2)}}
From the equation above, we obtain
\[
  \lambda_1x_1^2 + \lambda_2x_2^2 = k.
\]
We have the following cases:
\begin{enumerate}
  \item $\lambda_1\lambda_2 > 0$: we have ellipses with axes coinciding with eigenvectors of $S$. (We require $\mathrm{sgn}(k) = \mathrm{sgn}(\lambda_1,\lambda_2)$, or else we would have no solutions at all)
  \item $\lambda_1\lambda_2 < 0$: say $\lambda_1 = k/a^2 > 0$, $\lambda_2 = -k/b^2 < 0$. So we obtain
    \[
      \frac{x_1^2}{a^2} - \frac{x_2^2}{b^2} = 1,
    \]
    which is a hyperbola.
  \item $\lambda_1\lambda_2 = 0$: Say $\lambda_2 = 0$, $\lambda_1\not= 0$. Note that in this case, our symmetric matrix $S$ is not invertible and we cannot shift our origin using as above.

    From our initial equation, we have
    \[
      \lambda_1(x_1')^2 + b_1'x_1' + b_2' x_2' + c = 0.
    \]
    We perform the coordinate transform (which is simply completing the square!)
    \begin{align*}
      x_1'' &= x_1' + \frac{b_1'}{2\lambda_1}\\
      x_2'' &= x_2' + \frac{c}{b_2'} - \frac{(b_1')^2}{4\lambda_1b_2'}
    \end{align*}
    to remove the $x_1'$ and constant term. Dropping the primes, we have
    \[
      \lambda_1 x_1^2 + b_2 x_2 = 0,
    \]
    which is a parabola.

    Note that above we assumed $b_2'\not= 0$. If $b_2' = 0$, we have $\lambda_1(x_1')^2 + b_1' x_1' + c = 0$. If we solve this quadratic for $x_1'$, we obtain 0, 1 or 2 solutions for $x_1$ (and $x_2$ can be any value). So we have 0, 1 or 2 straight lines.
\end{enumerate}
These are known as conic sections. As you will see in IA Dynamics and Relativity, this are the trajectories of planets under the influence of gravity.

\subsection{Focus-directrix property}
Conic sections can be defined in a different way, in terms of
\begin{defi}[Conic sections]
  The \emph{eccentricity} and \emph{scale} are properties of a conic section that satisfy the following:

  Let the \emph{foci} of a conic section be $(\pm ae, 0)$ and the \emph{directrices} be $x = \pm a/e$.

  A \emph{conic section} is the set of points whose distance from focus is $e \times$ distance from directrix which is closer to that of focus (unless $e = 1$, where we take the distance to the other directrix).
\end{defi}

Now consider the different cases of $e$:
\begin{enumerate}
  \item $e < 1$. By definition,
    \begin{center}
      \begin{tikzpicture}
        \draw [->] (-2.5, 0) -- (4, 0) node [right] {$x$};
        \draw [->] (0, -2) -- (0, 2.5) node [above] {$y$};
        \draw (0, 0) node [anchor = north east] {$O$};
        \draw [dashed] (3.333, -2) -- (3.333, 2) node [above] {$x = a/e$};

        \draw [dashed] (1.2, 0) node [anchor = south east] {$ae$} node [circ] {}
        -- (1.6, 0.96) node [anchor = south west] {$(x, y)$} node [circ] {}
        -- (3.333, 0.96);
        \draw (0, 0) circle [x radius = 2, y radius = 1.6];
      \end{tikzpicture}
    \end{center}
    \begin{align*}
      \sqrt{(x - ae)^2 + y^2} &= e\left(\frac{a}{e} - x\right)\\
      \frac{x^2}{a^2} + \frac{y^2}{a^2(1 - e^2)} = 1
    \end{align*}
    Which is an ellipse with semi-major axis $a$ and semi-minor axis $a\sqrt{1 - e^2}$. (if $e = 0$, then we have a circle)

  \item $e > 1$. So
    \begin{center}
      \begin{tikzpicture}
        \draw [->] (-4, 0) -- (4, 0) node [right] {$x$};
        \draw [->] (0, -3) -- (0, 3) node [above] {$y$};
        \draw (0, 0) node [anchor = north east] {$O$};
        \draw [dashed] (1.333, -3) -- (1.333, 2.5) node [above] {$x = a/e$};
        \draw [dashed] (3, 0) node [anchor = south west] {$ae$} node [circ] {}
        -- (2.41, 1.5) node [right] {$(x, y)$} node [circ] {}
        -- (1.333, 1.5);

        \draw plot[domain = -1:1] ({2*cosh(\x)},{2.23607*sinh(\x)});
        \draw plot[domain = -1:1] ({-2*cosh(\x)},{2.23607*sinh(\x)});
      \end{tikzpicture}
    \end{center}
    \begin{align*}
      \sqrt{(x - ae)^2 + y^2} &= e\left(x - \frac{a}{e}\right)\\
      \frac{x^2}{a^2} - \frac{y^2}{a^2(e^2 - 1)} &= 1
    \end{align*}
    and we have a hyperbola.
  \item $e = 1$: Then
    \begin{center}
      \begin{tikzpicture}[yscale=0.4]
        \draw [->] (-2.5, 0) -- (4, 0) node [right] {$x$};
        \draw [->] (0, -6) -- (0, 6) node [above] {$y$};
        \draw (0, 0) node [anchor = north east] {$O$};
        \draw [dashed] (-2, -6) -- (-2, 5) node [above] {$x = a$};
        \draw [dashed] (2, 0) node [anchor = south west] {$a$} node [circ] {}
        -- (1.2, 3.1) node [right] {$(x, y)$} node [circ] {}
        -- (-2, 3.1);

        \draw plot[domain = -5:5] ({\x*\x/8,\x});
      \end{tikzpicture}
    \end{center}
    \begin{align*}
      \sqrt{(x - a)^2 + y^2} &= (x + 1)\\
      y^2 &= 4ax
    \end{align*}
    and we have a parabola.
\end{enumerate}

Conics also work in polar coordinates. We introduce a new parameter $l$ such that $l/e$ is the distance from the focus to the directrix. So
\[
  l = a|1 - e^2|.
\]
We use polar coordinates $(r, \theta)$ centered on a focus. So the focus-directrix property is
\begin{align*}
  r &= e\left(\frac{l}{e} - r\cos\theta\right)\\
  r &= \frac{l}{1 + e\cos\theta}
\end{align*}
We see that $r\to \infty$ if $\theta \to \cos^{-1}(-1/e)$, which is only possible if $e\geq 1$, i.e.\ hyperbola or parabola. But ellipses have $e < 1$. So $r$ is bounded, as expected.

\section{Transformation groups}
We have previously seen that orthogonal matrices are used to transform between orthonormal bases. Alternatively, we can see them as transformations of space itself that preserve distances, which is something we will prove shortly.

Using this as the definition of an orthogonal matrix, we see that our definition of orthogonal matrices is dependent on our choice of the notion of distance, or metric. In special relativity, we will need to use a different metric, which will lead to the \emph{Lorentz matrices}, the matrices that conserve distances in special relativity. We will have a brief look at these as well.

\subsection{Groups of orthogonal matrices}
\begin{prop}
  The set of all $n\times n$ orthogonal matrices $P$ forms a group under matrix multiplication.
\end{prop}

\begin{proof}\leavevmode
  \begin{enumerate}[label=\arabic{*}.]
      \setcounter{enumi}{-1}
    \item If $P, Q$ are orthogonal, then consider $R = PQ$. $RR^T = (PQ)(PQ)^T = P(QQ^T)P^T = PP^T = I$. So $R$ is orthogonal.
    \item $I$ satisfies $II^T = I$. So $I$ is orthogonal and is an identity of the group.
    \item Inverse: if $P$ is orthogonal, then $P^{-1}=P^T$ by definition, which is also orthogonal.
    \item Matrix multiplication is associative since function composition is associative.\qedhere
  \end{enumerate}
\end{proof}

\begin{defi}[Orthogonal group]
  The \emph{orthogonal group} $O(n)$ is the group of orthogonal matrices.
\end{defi}

\begin{defi}[Special orthogonal group]
  The \emph{special orthogonal group} is the subgroup of $O(n)$ that consists of all orthogonal matrices with determinant $1$.
\end{defi}

In general, we can show that any matrix in $O(2)$ is of the form
\[
  \begin{pmatrix}
    \cos\theta & -\sin\theta\\
    \sin\theta & \cos\theta
  \end{pmatrix}\text{ or }
  \begin{pmatrix}
    \cos\theta & \sin\theta\\
    \sin\theta & -\cos\theta
  \end{pmatrix}
\]
\subsection{Length preserving matrices}
\begin{thm}
  Let $P\in O(n)$. Then the following are equivalent:
  \begin{enumerate}
    \item $P$ is orthogonal
    \item $|P\mathbf{x}| = |\mathbf{x}|$
    \item $(P\mathbf{x})^T(P\mathbf{y}) = \mathbf{x}^T\mathbf{y}$, i.e.\ $(P\mathbf{x})\cdot(P\mathbf{y}) = \mathbf{x}\cdot \mathbf{y}$.
    \item If $(\mathbf{v}_1, \mathbf{v_2}, \cdots, \mathbf{v}_n)$ are orthonormal, so are $(P\mathbf{v}_1, P\mathbf{v}_2, \cdots, P\mathbf{v}_n)$
    \item The columns of $P$ are orthonormal.
  \end{enumerate}
\end{thm}

\begin{proof}
  We do them one by one:
  \begin{enumerate}
    \item $\Rightarrow$ (ii): $|P\mathbf{x}|^2 = (P\mathbf{x})^T(P\mathbf{x}) = \mathbf{x}^TP^TP\mathbf{x} = \mathbf{x}^T\mathbf{x} = |\mathbf{x}|^2$
    \item $\Rightarrow$ (iii): $|P(\mathbf{x} + \mathbf{y})|^2 = |\mathbf{x + y}|^2$. The right hand side is
      \[
        (\mathbf{x}^T + \mathbf{y}^T)(\mathbf{x + y}) = \mathbf{x}^T\mathbf{x} + y^T\mathbf{y} + \mathbf{y}^T\mathbf{x} + \mathbf{x}^T\mathbf{y} = |\mathbf{x}|^2 + |\mathbf{y}|^2 + 2\mathbf{x}^T\mathbf{y}.
      \]
      Similarly, the left hand side is
      \[
        |P\mathbf{x} + P\mathbf{y}|^2 = |P\mathbf{x}|^2 + |P\mathbf{y}| + 2(P\mathbf{x})^TP\mathbf{y} = |\mathbf{x}|^2 + |\mathbf{y}|^2 + 2(P\mathbf{x})^TP\mathbf{y}.
      \]
      So $(P\mathbf{x})^TP\mathbf{y} = \mathbf{x}^T\mathbf{y}$.
    \item $\Rightarrow$ (iv): $(P\mathbf{v}_i)^TP\mathbf{v}_j = \mathbf{v}_i^T\mathbf{v}_j = \delta_{ij}$. So $P\mathbf{v}_i$'s are also orthonormal.
    \item $\Rightarrow$ (v): Take the $\mathbf{v}_i$'s to be the standard basis. So the columns of $P$, being $P\mathbf{e}_i$, are orthonormal.
    \item $\Rightarrow$ (i): The columns of $P$ are orthonormal. Then $(PP^T)_{ij} = P_{ik}P_{jk} = (P_i)\cdot (P_j) = \delta_{ij}$, viewing $P_i$ as the $i$th column of $P$. So $PP^T = I$.\qedhere
  \end{enumerate}
\end{proof}

Therefore the set of length-preserving matrices is precisely $O(n)$.

\subsection{Lorentz transformations}
Consider the \emph{Minkowski} 1 + 1 dimension spacetime (i.e.\ 1 space dimension and 1 time dimension)

\begin{defi}[Minkowski inner product]
  The \emph{Minkowski} inner product of 2 vectors $\mathbf{x}$ and $\mathbf{y}$ is
  \[
    \bra \mathbf{x}\mid \mathbf{y}\ket = \mathbf{x}^TJ\mathbf{y},
  \]
  where
  \[
    J =
    \begin{pmatrix}
      1 & 0\\
      0 & -1
    \end{pmatrix}
  \]
  Then $\bra \mathbf{x}\mid \mathbf{y}\ket = x_1y_1 - x_2y_2$.
\end{defi}
This is to be compared to the usual \emph{Euclidean} inner product of $\mathbf{x}, \mathbf{y}\in \R^2$, given by
\[
  \bra \mathbf{x}\mid \mathbf{y}\ket = \mathbf{x}^T\mathbf{y} = \mathbf{x}^TI\mathbf{y} = x_1y_1 + x_2y_2.
\]

\begin{defi}[Preservation of inner product]
  A transformation matrix $M$ preserves the Minkowski inner product if
  \[
    \bra \mathbf{x}|\mathbf{y}\ket = \bra M\mathbf{x} | M\mathbf{y}\ket
  \]
  for all $\mathbf{x}, \mathbf{y}$.
\end{defi}

We know that $\mathbf{x}^TJ\mathbf{y} = (M\mathbf{x})^TJM\mathbf{y} = \mathbf{x}^T M^TJM\mathbf{y}$. Since this has to be true for all $\mathbf{x}$ and $\mathbf{y}$, we must have
\[
  J = M^TJM.
\]
We can show that $M$ takes the form of
\[
  H_\alpha = \begin{pmatrix}
    \cosh \alpha & \sinh \alpha\\
    \sinh \alpha & \cosh \alpha
  \end{pmatrix}\text{ or } K_{\alpha/2} =
  \begin{pmatrix}
    \cosh\alpha & -\sinh\alpha\\
    \sinh\alpha & -\cosh\alpha
  \end{pmatrix}
\]
where $H_\alpha$ is a \emph{hyperbolic rotation}, and $K_{\alpha/2}$ is a \emph{hyperbolic reflection}.

This is technically \emph{all} matrices that preserve the metric, since these only include matrices with $M_{11} > 0$. In physics, these are the matrices we want, since $M_{11} < 0$ corresponds to inverting time, which is frowned upon.

\begin{defi}[Lorentz matrix]
  A \emph{Lorentz matrix} or a \emph{Lorentz boost} is a matrix in the form
  \[
    B_v = \frac{1}{\sqrt{1 - v^2}}
    \begin{pmatrix}
      1 & v\\
      v & 1
    \end{pmatrix}.
  \]
  Here $|v| < 1$, where we have chosen units in which the speed of light is equal to $1$. We have $B_v = H_{\tanh^{-1}v}$
\end{defi}

\begin{defi}[Lorentz group]
  The \emph{Lorentz group} is a group of all Lorentz matrices under matrix multiplication.
\end{defi}
It is easy to prove that this is a group. For the closure axiom, we have $B_{v_1}B_{v_2} = B_{v_3}$, where
\[
  v_3 = \tanh(\tanh^{-1} v_1 + \tanh^{-1} v_2) = \frac{v_1 + v_2}{1 + v_1v_2}
\]
The set of all $B_v$ is a group of transformations which preserve the Minkowski inner product.
\end{document}