Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 231,311 Bytes
afd65d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 |
\documentclass[a4paper]{article}
\def\npart {IB}
\def\nterm {Michaelmas}
\def\nyear {2015}
\def\nlecturer {S.\ J.\ Wadsley}
\def\ncourse {Linear Algebra}
\def\nofficial{https://www.dpmms.cam.ac.uk/~sjw47/LinearAlgebraM15.pdf}
\input{header}
\begin{document}
\maketitle
{\small
\noindent Definition of a vector space (over $\R$ or $\C$), subspaces, the space spanned by a subset. Linear independence, bases, dimension. Direct sums and complementary subspaces. \hspace*{\fill} [3]
\vspace{5pt}
\noindent Linear maps, isomorphisms. Relation between rank and nullity. The space of linear maps from $U$ to $V$, representation by matrices. Change of basis. Row rank and column rank.\hspace*{\fill} [4]
\vspace{5pt}
\noindent Determinant and trace of a square matrix. Determinant of a product of two matrices and of the inverse matrix. Determinant of an endomorphism. The adjugate matrix.\hspace*{\fill} [3]
\vspace{5pt}
\noindent Eigenvalues and eigenvectors. Diagonal and triangular forms. Characteristic and minimal polynomials. Cayley-Hamilton Theorem over $\C$. Algebraic and geometric multiplicity of eigenvalues. Statement and illustration of Jordan normal form.\hspace*{\fill} [4]
\vspace{5pt}
\noindent Dual of a finite-dimensional vector space, dual bases and maps. Matrix representation, rank and determinant of dual map.\hspace*{\fill} [2]
\vspace{5pt}
\noindent Bilinear forms. Matrix representation, change of basis. Symmetric forms and their link with quadratic forms. Diagonalisation of quadratic forms. Law of inertia, classification by rank and signature. Complex Hermitian forms.\hspace*{\fill} [4]
\vspace{5pt}
\noindent Inner product spaces, orthonormal sets, orthogonal projection, $V = W \oplus W^\bot$. Gram-Schmidt orthogonalisation. Adjoints. Diagonalisation of Hermitian matrices. Orthogonality of eigenvectors and properties of eigenvalues.\hspace*{\fill} [4]}
\tableofcontents
\setcounter{section}{-1}
\section{Introduction}
In IA Vectors and Matrices, we have learnt about vectors (and matrices) in a rather applied way. A vector was just treated as a ``list of numbers'' representing a point in space. We used these to represent lines, conics, planes and many other geometrical notions. A matrix is treated as a ``physical operation'' on vectors that stretches and rotates them. For example, we studied the properties of rotations, reflections and shears of space. We also used matrices to express and solve systems of linear equations. We mostly took a practical approach in the course.
In IB Linear Algebra, we are going to study vectors in an abstract setting. Instead of treating vectors as ``lists of numbers'', we view them as things we can add and scalar-multiply. We will write down axioms governing how these operations should behave, just like how we wrote down the axioms of group theory. Instead of studying matrices as an array of numbers, we instead look at linear maps between vector spaces abstractly.
In the course, we will, of course, prove that this abstract treatment of linear algebra is just ``the same as'' our previous study of ``vectors as a list of numbers''. Indeed, in certain cases, results are much more easily proved by working with matrices (as an array of numbers) instead of abstract linear maps, and we don't shy away from doing so. However, most of the time, looking at these abstractly will provide a much better fundamental understanding of how things work.
\section{Vector spaces}
\subsection{Definitions and examples}
\begin{notation}
We will use $\F$ to denote an arbitrary field, usually $\R$ or $\C$.
\end{notation}
Intuitively, a vector space $V$ over a field $\F$ (or an $\F$-vector space) is a space with two operations:
\begin{itemize}
\item We can add two vectors $\mathbf{v}_1, \mathbf{v}_2 \in V$ to obtain $\mathbf{v}_1 + \mathbf{v}_2 \in V$.
\item We can multiply a scalar $\lambda \in \F$ with a vector $\mathbf{v}\in V$ to obtain $\lambda \mathbf{v} \in V$.
\end{itemize}
Of course, these two operations must satisfy certain axioms before we can call it a vector space. However, before going into these details, we first look at a few examples of vector spaces.
\begin{eg}\leavevmode
\begin{enumerate}
\item $\R^n = \{\text{column vectors of length }n\text{ with coefficients in }\R\}$ with the usual addition and scalar multiplication is a vector space.
An $m\times n$ matrix $A$ with coefficients in $\R$ can be viewed as a linear map from $\R^m$ to $\R^n$ via $\mathbf{v} \mapsto A\mathbf{v}$.
This is a motivational example for vector spaces. When confused about definitions, we can often think what the definition means in terms of $\R^n$ and matrices to get some intuition.
\item Let $X$ be a set and define $\R^X = \{f: X\to \R\}$ with addition $(f + g)(x) = f(x) + g(x)$ and scalar multiplication $(\lambda f)(x) = \lambda f(x)$. This is a vector space.
More generally, if $V$ is a vector space, $X$ is a set, we can define $V^X = \{f: X \to V\}$ with addition and scalar multiplication as above.
\item Let $[a, b]\subseteq \R$ be a closed interval, then
\[
C([a, b], \R) = \{f\in \R^{[a,b]}: f\text{ is continuous}\}
\]
is a vector space, with operations as above. We also have
\[
C^{\infty}([a, b], \R) = \{f\in \R^{[a,b]}: f\text{ is infinitely differentiable}\}
\]
\item The set of $m\times n$ matrices with coefficients in $\R$ is a vector space, using componentwise addition and scalar multiplication, is a vector space.
\end{enumerate}
\end{eg}
Of course, we cannot take a random set, define some random operations called addition and scalar multiplication, and call it a vector space. These operations have to behave sensibly.
\begin{defi}[Vector space]
An \emph{$\F$-vector space} is an (additive) abelian group $V$ together with a function $\F \times V \to V$, written $(\lambda, \mathbf{v}) \mapsto \lambda \mathbf{v}$, such that
\begin{enumerate}
\item $\lambda(\mu \mathbf{v}) = \lambda \mu \mathbf{v}$ for all $\lambda, \mu \in \F$, $\mathbf{v}\in V$ \hfill (associativity)
\item $\lambda(\mathbf{u} + \mathbf{v}) = \lambda \mathbf{u} + \lambda \mathbf{v}$ for all $\lambda\in \F$, $\mathbf{u}, \mathbf{v}\in V$\hfill (distributivity in $V$)
\item $(\lambda + \mu) \mathbf{v} = \lambda \mathbf{v} + \mu \mathbf{v}$ for all $\lambda, \mu \in \F$, $\mathbf{v}\in V$ \hfill (distributivity in $\F$)
\item $1\mathbf{v} = \mathbf{v}$ for all $\mathbf{v}\in V$ \hfill (identity)
\end{enumerate}
We always write $\mathbf{0}$ for the additive identity in $V$, and call this the identity. By abuse of notation, we also write $0$ for the trivial vector space $\{\mathbf{0}\}$.
\end{defi}
In a general vector space, there is no notion of ``coordinates'', length, angle or distance. For example, it would be difficult to assign these quantities to the vector space of real-valued continuous functions in $[a, b]$.
From the axioms, there are a few results we can immediately prove.
\begin{prop}
In any vector space $V$, $0\mathbf{v} = \mathbf{0}$ for all $\mathbf{v}\in V$, and $(-1)\mathbf{v} = -\mathbf{v}$, where $-\mathbf{v}$ is the additive inverse of $\mathbf{v}$.
\end{prop}
Proof is left as an exercise.
In mathematics, whenever we define ``something'', we would also like to define a ``sub-something''. In the case of vector spaces, this is a subspace.
\begin{defi}[Subspace]
If $V$ is an $\F$-vector space, then $U\subseteq V$ is an ($\F$-linear) \emph{subspace} if
\begin{enumerate}
\item $\mathbf{u}, \mathbf{v}\in U$ implies $\mathbf{u} + \mathbf{v} \in U$.
\item $\mathbf{u}\in U, \lambda \in \F$ implies $\lambda \mathbf{u}\in U$.
\item $\mathbf{0}\in U$.
\end{enumerate}
These conditions can be expressed more concisely as ``$U$ is non-empty and if $\lambda, \mu\in \F, \mathbf{u}, \mathbf{v}\in U$, then $\lambda \mathbf{u} + \mu \mathbf{v}\in U$''.
Alternatively, $U$ is a subspace of $V$ if it is itself a vector space, inheriting the operations from $V$.
We sometimes write $U\leq V$ if $U$ is a subspace of $V$.
\end{defi}
\begin{eg}\leavevmode
\begin{enumerate}
\item $\{(x_1, x_2, x_3) \in \R^3: x_1 + x_2 + x_3 = t\}$ is a subspace of $\R^3$ iff $t = 0$.
\item Let $X$ be a set. We define the \emph{support} of $f$ in $\F^X$ to be $\supp(f) = \{x\in X: f(x) \not= 0\}$. Then the set of functions with finite support forms a vector subspace. This is since $\supp (f + g) \subseteq \supp(f) \cup \supp(g)$, $\supp (\lambda f) = \supp (f)$ (for $\lambda \not= 0$) and $\supp (0) = \emptyset$.
\end{enumerate}
\end{eg}
If we have two subspaces $U$ and $V$, there are several things we can do with them. For example, we can take the intersection $U\cap V$. We will shortly show that this will be a subspace. However, taking the union will in general not produce a vector space. Instead, we need the sum:
\begin{defi}[Sum of subspaces]
Suppose $U, W$ are subspaces of an $\F$ vector space $V$. The \emph{sum} of $U$ and $V$ is
\[
U + W = \{\mathbf{u} + \mathbf{w}: \mathbf{u}\in U, \mathbf{w}\in W\}.
\]
\end{defi}
\begin{prop}
Let $U, W$ be subspaces of $V$. Then $U + W$ and $U\cap W$ are subspaces.
\end{prop}
\begin{proof}
Let $\mathbf{u}_i + \mathbf{w}_i \in U + W$, $\lambda, \mu\in \F$. Then
\[
\lambda(\mathbf{u}_1 + \mathbf{w}_1) + \mu(\mathbf{u}_2 + \mathbf{w}_2) = (\lambda\mathbf{u}_1 + \mu\mathbf{u}_2) + (\lambda\mathbf{w}_1 + \mu\mathbf{w}_2) \in U + W.
\]
Similarly, if $\mathbf{v}_i \in U\cap W$, then $\lambda \mathbf{v}_1 + \mu \mathbf{v}_2\in U$ and $\lambda \mathbf{v}_1 + \mu \mathbf{v}_2\in W$. So $\lambda \mathbf{v}_1 + \mu \mathbf{v}_2\in U\cap W$.
Both $U\cap W$ and $U + W$ contain $\mathbf{0}$, and are non-empty. So done.
\end{proof}
In addition to sub-somethings, we often have quotient-somethings as well.
\begin{defi}[Quotient spaces]
Let $V$ be a vector space, and $U\subseteq V$ a subspace. Then the quotient group $V/U$ can be made into a vector space called the \emph{quotient space}, where scalar multiplication is given by $(\lambda, \mathbf{v} + U) = (\lambda \mathbf{v}) + U$.
This is well defined since if $\mathbf{v} + U = \mathbf{w} + U\in V/U$, then $\mathbf{v} - \mathbf{w} \in U$. Hence for $\lambda \in \F$, we have $\lambda \mathbf{v} - \lambda \mathbf{w} \in U$. So $\lambda \mathbf{v} + U = \lambda \mathbf{w} + U$.
\end{defi}
\subsection{Linear independence, bases and the Steinitz exchange lemma}
Recall that in $\R^n$, we had the ``standard basis'' made of vectors of the form $\mathbf{e}_i = (0, \cdots, 0, 1, 0, \cdots, 0)$, with $1$ in the $i$th component and $0$ otherwise. We call this a \emph{basis} because everything in $\R^n$ can be (uniquely) written as a sum of (scalar multiples of) these basis elements. In other words, the whole $\R^n$ is generated by taking sums and multiples of the basis elements.
We would like to capture this idea in general vector spaces. The most important result in this section is to prove that for any vector space $V$, any two basis must contain the same number of elements. This means we can define the ``dimension'' of a vector space as the number of elements in the basis.
While this result sounds rather trivial, it is a very important result. We will in fact prove a slightly stronger statement than what was stated above, and this ensures that the dimension of a vector space is well-behaved. For example, the subspace of a vector space has a smaller dimension than the larger space (at least when the dimensions are finite).
This is not the case when we study modules in IB Groups, Rings and Modules, which are generalizations of vector spaces. Not all modules have basis, which makes it difficult to define the dimension. Even for those that have basis, the behaviour of the ``dimension'' is complicated when, say, we take submodules. The existence and well-behavedness of basis and dimension is what makes linear algebra different from modules.
\begin{defi}[Span]
Let $V$ be a vector space over $\F$ and $S\subseteq V$. The \emph{span} of $S$ is defined as
\[
\bra S\ket = \left\{\sum_{i = 1}^n \lambda_i \mathbf{s}_i : \lambda_i \in \F, \mathbf{s}_i \in S, n \geq 0\right\}
\]
This is the smallest subspace of $V$ containing $S$.
Note that the sums must be finite. We will not play with infinite sums, since the notion of convergence is not even well defined in a general vector space.
\end{defi}
\begin{eg}\leavevmode
\begin{enumerate}
\item Let $V = \R^3$ and $S = \left\{\begin{pmatrix}1\\0\\0\end{pmatrix}, \begin{pmatrix}0\\1\\1\end{pmatrix}, \begin{pmatrix}1\\2\\2\end{pmatrix}\right\}$. Then
\[
\bra S\ket = \left\{
\begin{pmatrix}
a\\b\\b\\
\end{pmatrix}: a, b\in \R
\right\}.
\]
Note that any subset of $S$ of order 2 has the same span as $S$.
\item Let $X$ be a set, $x \in X$. Define the function $\delta x: X\to \F$ by
\[
\delta x(y) =
\begin{cases}
1 & y = x\\
0 & y\not= x
\end{cases}.
\]
Then $\bra \delta x: x \in X\ket$ is the set of all functions with finite support.
\end{enumerate}
\end{eg}
\begin{defi}[Spanning set]
Let $V$ be a vector space over $\F$ and $S\subseteq V$. $S$ \emph{spans} $V$ if $\bra S\ket = V$.
\end{defi}
\begin{defi}[Linear independence]
Let $V$ be a vector space over $\F$ and $S\subseteq V$. Then $S$ is \emph{linearly independent} if whenever
\[
\sum_{i = 1}^n \lambda_i \mathbf{s}_i = \mathbf{0}\text{ with } \lambda_i \in \F, \mathbf{s}_1, \mathbf{s}_2, \cdots, \mathbf{s}_n \in S\text{ distinct},
\]
we must have $\lambda_i = 0$ for all $i$.
If $S$ is not linearly independent, we say it is \emph{linearly dependent}.
\end{defi}
\begin{defi}[Basis]
Let $V$ be a vector space over $\F$ and $S\subseteq V$. Then $S$ is a \emph{basis} for $V$ if $S$ is linearly independent and spans $V$.
\end{defi}
\begin{defi}[Finite dimensional]
A vector space is \emph{finite dimensional} if there is a finite basis.
\end{defi}
Ideally, we would want to define the \emph{dimension} as the number of vectors in the basis. However, we must first show that this is well-defined. It is certainly plausible that a vector space has a basis of size $7$ as well as a basis of size $3$. We must show that this can never happen, which is something we'll do soon.
We will first have an example:
\begin{eg}
Again, let $V = \R^3$ and $S = \left\{\begin{pmatrix}1\\0\\0\end{pmatrix}, \begin{pmatrix}0\\1\\1\end{pmatrix}, \begin{pmatrix}1\\2\\2\end{pmatrix}\right\}$. Then $S$ is linearly dependent since
\[
1\begin{pmatrix}1\\0\\0\end{pmatrix} + 2\begin{pmatrix}0\\1\\1\end{pmatrix} + (-1) \begin{pmatrix}1\\2\\2\end{pmatrix} = \mathbf{0}.
\]
$S$ also does not span $V$ since $\begin{pmatrix}0\\0\\1\end{pmatrix}\not \in \bra S\ket$.
\end{eg}
Note that no linearly independent set can contain $\mathbf{0}$, as $1\cdot \mathbf{0} = \mathbf{0}$. We also have $\bra \emptyset\ket = \{\mathbf{0}\}$ and $\emptyset$ is a basis for this space.
There is an alternative way in which we can define linear independence.
\begin{lemma}
$S\subseteq V$ is linearly dependent if and only if there are distinct $\mathbf{s}_0, \cdots, \mathbf{s}_n \in S$ and $\lambda_1, \cdots, \lambda_n\in \F$ such that
\[
\sum_{i = 1}^n \lambda_i \mathbf{s}_i = \mathbf{s}_0.
\]
\end{lemma}
\begin{proof}
If $S$ is linearly dependent, then there are some $\lambda_1, \cdots, \lambda_n \in \F$ not all zero and $\mathbf{s}_1,\cdots, \mathbf{s}_n \in S$ such that $\sum \lambda_i \mathbf{s}_i = \mathbf{0}$. Wlog, let $\lambda_1\not= 0$. Then
\[
\mathbf{s}_1 = \sum_{i = 2}^n -\frac{\lambda_i}{\lambda_1} \mathbf{s}_i.
\]
Conversely, if $\mathbf{s}_0 = \sum_{i = 1}^n \lambda_i \mathbf{s}_i$, then
\[
(-1)\mathbf{s}_0 + \sum_{i = 1}^n \lambda_i \mathbf{s}_i = \mathbf{0}.
\]
So $S$ is linearly dependent.
\end{proof}
This in turn gives an alternative characterization of what it means to be a basis:
\begin{prop}
If $S = \{\mathbf{e}_1, \cdots, \mathbf{e}_n\}$ is a subset of $V$ over $\F$, then it is a basis if and only if every $\mathbf{v}\in V$ can be written uniquely as a finite linear combination of elements in $S$, i.e.\ as
\[
\mathbf{v} = \sum_{i = 1}^n \lambda_i \mathbf{e}_i.
\]
\end{prop}
\begin{proof}
We can view this as a combination of two statements: it can be spanned in at least one way, and it can be spanned in at most one way. We will see that the first part corresponds to $S$ spanning $V$, and the second part corresponds to $S$ being linearly independent.
In fact, $S$ spanning $V$ is defined exactly to mean that every item $\mathbf{v}\in V$ can be written as a finite linear combination in at least one way.
Now suppose that $S$ is linearly independent, and we have
\[
\mathbf{v} = \sum_{i = 1}^n \lambda_i \mathbf{e}_i = \sum_{i = 1}^n\mu_i \mathbf{e}_i.
\]
Then we have
\[
\mathbf{0} = \mathbf{v} - \mathbf{v} = \sum_{i = 1}^n (\lambda_i - \mu_i) \mathbf{e}_i.
\]
Linear independence implies that $\lambda_i - \mu_i = 0$ for all $i$. Hence $\lambda_i = \mu_i$. So $\mathbf{v}$ can be expressed in a unique way.
On the other hand, if $S$ is not linearly independent, then we have
\[
\mathbf{0} = \sum_{i = 1}^n \lambda_i \mathbf{e}_i
\]
where $\lambda_i \not= 0$ for some $i$. But we also know that
\[
\mathbf{0} = \sum_{i = 1}^n 0\cdot \mathbf{e}_i.
\]
So there are two ways to write $\mathbf{0}$ as a linear combination. So done.
\end{proof}
Now we come to the key theorem:
\begin{thm}[Steinitz exchange lemma]
Let $V$ be a vector space over $\F$, and $S = \{\mathbf{e}_1, \cdots, \mathbf{e}_n\}$ a finite linearly independent subset of $V$, and $T$ a spanning subset of $V$. Then there is some $T'\subseteq T$ of order $n$ such that $(T\setminus T') \cup S$ still spans $V$. In particular, $|T| \geq n$.
\end{thm}
What does this actually say? This says if $T$ is spanning and $S$ is independent, there is a way of grabbing $|S|$ many elements away from $T$ and replace them with $S$, and the result will still be spanning.
In some sense, the final remark is the most important part. It tells us that we cannot have a independent set larger than a spanning set, and most of our corollaries later will only use this remark.
This is sometimes stated in the following alternative way for $|T| < \infty$.
\begin{cor}
Let $\{\mathbf{e}_1, \cdots, \mathbf{e}_n\}$ be a linearly independent subset of $V$, and suppose $\{\mathbf{f}_1, \cdots, \mathbf{f}_m\}$ spans $V$. Then there is a re-ordering of the $\{\mathbf{f}_i\}$ such that $\{\mathbf{e}_1,\cdots, \mathbf{e}_n, \mathbf{f}_{n + 1}, \cdots, \mathbf{f}_m\}$ spans $V$.
\end{cor}
The proof is going to be slightly technical and notationally daunting. So it helps to give a brief overview of what we are going to do in words first. The idea is to do the replacement one by one. The first one is easy. Start with $\mathbf{e}_1$. Since $T$ is spanning, we can write
\[
\mathbf{e}_1 = \sum \lambda_i \mathbf{t}_i
\]
for some $\mathbf{t}_i \in T, \lambda_i \in \F$ non-zero. We then replace with $\mathbf{t}_1$ with $\mathbf{e}_1$. The result is still spanning, since the above formula allows us to write $\mathbf{t}_1$ in terms of $\mathbf{e}_1$ and the other $\mathbf{t}_i$.
We continue inductively. For the $r$th element, we again write
\[
\mathbf{e}_r = \sum \lambda_i \mathbf{t}_i.
\]
We would like to just pick a random $\mathbf{t}_i$ and replace it with $\mathbf{e}_r$. However, we cannot do this arbitrarily, since the lemma wants us to replace something \emph{in $T$} with with $\mathbf{e}_r$. After all that replacement procedure before, some of the $\mathbf{t}_i$ might have actually come from $S$.
This is where the linear independence of $S$ kicks in. While some of the $\mathbf{t}_i$ might be from $S$, we cannot possibly have all \emph{all} of them being from $S$, or else this violates the linear independence of $S$. Hence there is something genuinely from $T$, and we can safely replace it with $\mathbf{e}_r$.
We now write this argument properly and formally.
\begin{proof}
Suppose that we have already found $T_r'\subseteq T$ of order $0 \leq r < n$ such that
\[
T_r = (T\setminus T_r') \cup \{\mathbf{e}_1, \cdots, \mathbf{e}_r\}
\]
spans $V$.
(Note that the case $r = 0$ is trivial, since we can take $T_r' = \emptyset$, and the case $r = n$ is the theorem which we want to achieve.)
Suppose we have these. Since $T_r$ spans $V$, we can write
\[
\mathbf{e}_{r + 1} = \sum_{i = 1}^k \lambda_i \mathbf{t}_i,\quad \lambda_i \in \F, \mathbf{t}_i \in T_r.
\]
We know that the $\mathbf{e}_i$ are linearly independent, so not all $\mathbf{t}_i$'s are $\mathbf{e}_i$'s. So there is some $j$ such that $\mathbf{t}_j \in (T\setminus T_r')$. We can write this as
\[
\mathbf{t}_j = \frac{1}{\lambda_j} \mathbf{e}_{r + 1} + \sum_{i \not= j} -\frac{\lambda_i}{\lambda_j} \mathbf{t}_i.
\]
We let $T_{r + 1}' = T_r' \cup \{\mathbf{t}_j\}$ of order $r + 1$, and
\[
T_{r + 1} = (T\setminus T_{r + 1}') \cup \{\mathbf{e}_1, \cdots, \mathbf{e}_{r + 1}\} = (T_r \setminus \{\mathbf{t}_j\}\} \cup \{\mathbf{e}_{r + 1}\}
\]
Since $\mathbf{t}_j$ is in the span of $T_r\cup \{\mathbf{e}_{r + 1}\}$, we have $\mathbf{t}_j \in \bra T_{r + 1}\ket$. So
\[
V \supseteq \bra T_{r + 1}\ket \supseteq \bra T_r \ket = V.
\]
So $\bra T_{r + 1}\ket = V$.
Hence we can inductively find $T_n$.
\end{proof}
From this lemma, we can immediately deduce a lot of important corollaries.
\begin{cor}
Suppose $V$ is a vector space over $\F$ with a basis of order $n$. Then
\begin{enumerate}
\item Every basis of $V$ has order $n$.
\item Any linearly independent set of order $n$ is a basis.
\item Every spanning set of order $n$ is a basis.
\item Every finite spanning set contains a basis.
\item Every linearly independent subset of $V$ can be extended to basis.
\end{enumerate}
\end{cor}
\begin{proof}
Let $S = \{\mathbf{e}_1, \cdots, \mathbf{e}_n\}$ be the basis for $V$.
\begin{enumerate}
\item Suppose $T$ is another basis. Since $S$ is independent and $T$ is spanning, $|T| \geq |S|$.
The other direction is less trivial, since $T$ might be infinite, and Steinitz does not immediately apply. Instead, we argue as follows: since $T$ is linearly independent, every finite subset of $T$ is independent. Also, $S$ is spanning. So every finite subset of $T$ has order at most $|S|$. So $|T| \leq |S|$. So $|T| = |S|$.
\item Suppose now that $T$ is a linearly independent subset of order $n$, but $\bra T\ket \not= V$. Then there is some $\mathbf{v} \in V\setminus \bra T\ket$. We now show that $T\cup \{\mathbf{v}\}$ is independent. Indeed, if
\[
\lambda_0 \mathbf{v} + \sum_{i = 1}^m \lambda_i \mathbf{t}_i = \mathbf{0}
\]
with $\lambda_i \in \F$, $\mathbf{t}_1, \cdots, \mathbf{t}_m\in T$ distinct, then
\[
\lambda_0 \mathbf{v} = \sum_{i = 1}^m (-\lambda_i) \mathbf{t}_i.
\]
Then $\lambda_0 \mathbf{v} \in \bra T\ket$. So $\lambda_0= 0$. As $T$ is linearly independent, we have $\lambda_0 = \cdots = \lambda_m = 0$. So $T\cup \{\mathbf{v}\}$ is a linearly independent subset of size $> n$. This is a contradiction since $S$ is a spanning set of size $n$.
\item Let $T$ be a spanning set of order $n$. If $T$ were linearly dependent, then there is some $\mathbf{t}_0, \cdots, \mathbf{t}_m \in T$ distinct and $\lambda_1, \cdots, \lambda_m \in \F$ such that
\[
\mathbf{t}_0 = \sum \lambda_i \mathbf{t}_i.
\]
So $\mathbf{t}_0 \in \bra T\setminus \{\mathbf{t}_0\}\ket$, i.e.\ $\bra T\setminus \{\mathbf{t}_0\} \ket = V$. So $T\setminus \{\mathbf{t}_0\}$ is a spanning set of order $n - 1$, which is a contradiction.
\item Suppose $T$ is any finite spanning set. Let $T' \subseteq T$ be a spanning set of least possible size. This exists because $T$ is finite. If $|T'|$ has size $n$, then done by (iii). Otherwise by the Steinitz exchange lemma, it has size $|T'| > n$. So $T'$ must be linearly dependent because $S$ is spanning. So there is some $\mathbf{t}_0, \cdots, \mathbf{t}_m \in T$ distinct and $\lambda_1, \cdots, \lambda_m \in \F$ such that $\mathbf{t}_0 = \sum \lambda_i \mathbf{t}_i$. Then $T'\setminus \{\mathbf{t}_0\}$ is a smaller spanning set. Contradiction.
\item Suppose $T$ is a linearly independent set. Since $S$ spans, there is some $S' \subseteq S$ of order $|T|$ such that $(S\setminus S')\cup T$ spans $V$ by the Steinitz exchange lemma. So by (ii), $(S\setminus S')\cup T$ is a basis of $V$ containing $T$.\qedhere
\end{enumerate}
\end{proof}
Note that the last part is where we actually use the full result of Steinitz.
Finally, we can use this to define the dimension.
\begin{defi}[Dimension]
If $V$ is a vector space over $\F$ with finite basis $S$, then the \emph{dimension} of $V$, written
\[
\dim V = \dim_{\F}V = |S|.
\]
\end{defi}
By the corollary, $\dim V$ does not depend on the choice of $S$. However, it does depend on $\F$. For example, $\dim_\C \C = 1$ (since $\{1\}$ is a basis), but $\dim_\R \C = 2$ (since $\{1, i\}$ is a basis).
After defining the dimension, we can prove a few things about dimensions.
\begin{lemma}
If $V$ is a finite dimensional vector space over $\F$, $U\subseteq V$ is a proper subspace, then $U$ is finite dimensional and $\dim U < \dim V$.
\end{lemma}
\begin{proof}
Every linearly independent subset of $V$ has size at most $\dim V$. So let $S \subseteq U$ be a linearly independent subset of largest size. We want to show that $S$ spans $U$ and $|S| < \dim V$.
If $\mathbf{v}\in V\setminus \bra S\ket$, then $S\cup \{\mathbf{v}\}$ is linearly independent. So $\mathbf{v}\not\in U$ by maximality of $S$. This means that $\bra S\ket = U$.
Since $U\not= V$, there is some $\mathbf{v}\in V\setminus U = V\setminus \bra S\ket$. So $S\cup \{\mathbf{v}\}$ is a linearly independent subset of order $|S| + 1$. So $|S| + 1 \leq \dim V$. In particular, $\dim U = |S| < \dim V$.
\end{proof}
\begin{prop}
If $U, W$ are subspaces of a finite dimensional vector space $V$, then
\[
\dim (U + W) = \dim U + \dim W - \dim (U\cap W).
\]
\end{prop}
The proof is not hard, as long as we manage to pick the right basis to do the proof. This is our slogan:
\begin{center}
When you choose a basis, always choose the right basis.
\end{center}
We need a basis for all four of them, and we want to compare the bases. So we want to pick bases that are compatible.
\begin{proof}
Let $R = \{\mathbf{v}_1, \cdots, \mathbf{v}_r\}$ be a basis for $U\cap W$. This is a linearly independent subset of $U$. So we can extend it to be a basis of $U$ by
\[
S = \{\mathbf{v}_1, \cdots, \mathbf{v}_r, \mathbf{u}_{r + 1}, \cdots, \mathbf{u}_s\}.
\]
Similarly, for $W$, we can obtain a basis
\[
T = \{\mathbf{v}_1, \cdots, \mathbf{v}_r, \mathbf{w}_{r + 1}, \cdots, \mathbf{w}_t\}.
\]
We want to show that $\dim (U + W) = s + t - r$. It is sufficient to prove that $S\cup T$ is a basis for $U + W$.
We first show spanning. Suppose $\mathbf{u} + \mathbf{w} \in U + W$, $\mathbf{u}\in U, \mathbf{w}\in W$. Then $\mathbf{u}\in \bra S\ket$ and $\mathbf{w}\in \bra T\ket$. So $\mathbf{u} + \mathbf{w} \in \bra S\cup T\ket$. So $U + W = \bra S \cup T\ket$.
To show linear independence, suppose we have a linear relation
\[
\sum_{i = 1}^r \lambda_i \mathbf{v}_i + \sum_{j = r + 1}^s \mu_j \mathbf{u}_j + \sum_{k = r + 1}^t \nu_k \mathbf{w}_k = \mathbf{0}.
\]
So
\[
\sum \lambda_i \mathbf{v}_i + \sum \mu_j \mathbf{u}_j = - \sum \nu_k \mathbf{w}_k.
\]
Since the left hand side is something in $U$, and the right hand side is something in $W$, they both lie in $U\cap W$.
Since $S$ is a basis of $U$, there is only one way of writing the left hand vector as a sum of $\mathbf{v}_i$ and $\mathbf{u}_j$. However, since $R$ is a basis of $U\cap W$, we can write the left hand vector just as a sum of $\mathbf{v}_i$'s. So we must have $\mu_j = 0$ for all $j$. Then we have
\[
\sum \lambda_i \mathbf{v}_i + \sum \nu_k \mathbf{w}_k = \mathbf{0}.
\]
Finally, since $T$ is linearly independent, $\lambda_i = \nu_k = 0$ for all $i, k$. So $S\cup T$ is linearly independent.
\end{proof}
\begin{prop}
If $V$ is a finite dimensional vector space over $\F$ and $U\cup V$ is a subspace, then
\[
\dim V = \dim U + \dim V/U.
\]
\end{prop}
We can view this as a linear algebra version of Lagrange's theorem. Combined with the first isomorphism theorem for vector spaces, this gives the rank-nullity theorem.
\begin{proof}
Let $\{\mathbf{u}_1, \cdots, \mathbf{u}_m\}$ be a basis for $U$ and extend this to a basis $\{\mathbf{u}_1, \cdots, \mathbf{u}_m,\allowbreak \mathbf{v}_{m + 1}, \cdots, \mathbf{v}_n\}$ for $V$. We want to show that $\{\mathbf{v}_{m + 1} + U, \cdots, \mathbf{v}_n + U\}$ is a basis for $V/U$.
It is easy to see that this spans $V/U$. If $\mathbf{v} + U \in V/U$, then we can write
\[
\mathbf{v} = \sum \lambda_i \mathbf{u}_i + \sum \mu_i \mathbf{v}_i.
\]
Then
\[
\mathbf{v} + U = \sum \mu_i (\mathbf{v}_i + U) + \sum \lambda_i (\mathbf{u}_i + U) = \sum \mu_i (\mathbf{v}_i + U).
\]
So done.
To show that they are linearly independent, suppose that
\[
\sum \lambda_i (\mathbf{v}_i + U) = \mathbf{0} + U = U.
\]
Then this requires
\[
\sum \lambda_i \mathbf{v}_i \in U.
\]
Then we can write this as a linear combination of the $\mathbf{u}_i$'s. So
\[
\sum \lambda_i \mathbf{v}_i = \sum \mu_j \mathbf{u}_j
\]
for some $\mu_j$. Since $\{\mathbf{u}_1, \cdots, \mathbf{u}_m, \mathbf{v}_{n + 1}, \cdots, \mathbf{v}_n\}$ is a basis for $V$, we must have $\lambda_i = \mu_j = 0$ for all $i, j$. So $\{\mathbf{v}_i + U\}$ is linearly independent.
\end{proof}
\subsection{Direct sums}
We are going to define direct sums in many ways in order to confuse students.
\begin{defi}[(Internal) direct sum]
Suppose $V$ is a vector space over $\F$ and $U, W\subseteq V$ are subspaces. We say that $V$ is the \emph{(internal) direct sum} of $U$ and $W$ if
\begin{enumerate}
\item $U + W = V$
\item $U \cap W = 0$.
\end{enumerate}
We write $V = U\oplus W$.
Equivalently, this requires that every $\mathbf{v}\in V$ can be written uniquely as $\mathbf{u} + \mathbf{w}$ with $\mathbf{u}\in U, \mathbf{w}\in W$. We say that $U$ and $W$ are \emph{complementary subspaces} of $V$.
\end{defi}
You will show in the example sheets that given any subspace $U \subseteq V$, $U$ must have a complementary subspace in $V$.
\begin{eg}
Let $V = \R^2$, and $U = \bra \begin{pmatrix}0\\1\end{pmatrix}\ket$. Then $\bra \begin{pmatrix}1\\1\end{pmatrix}\ket$ and $\bra \begin{pmatrix}1\\0\end{pmatrix}\ket$ are both complementary subspaces to $U$ in $V$.
\end{eg}
\begin{defi}[(External) direct sum]
If $U, W$ are vector spaces over $\F$, the \emph{(external) direct sum} is
\[
U\oplus W = \{(\mathbf{u}, \mathbf{w}): \mathbf{u}\in U, \mathbf{w}\in W\},
\]
with addition and scalar multiplication componentwise:
\[
(\mathbf{u}_1, \mathbf{w}_1) + (\mathbf{u}_2, \mathbf{w}_2) = (\mathbf{u}_1 + \mathbf{u}_2, \mathbf{w}_1 + \mathbf{w}_2),\quad \lambda (\mathbf{u}, \mathbf{w}) = (\lambda \mathbf{u}, \lambda \mathbf{w}).
\]
\end{defi}
The difference between these two definitions is that the first is decomposing $V$ into smaller spaces, while the second is building a bigger space based on two spaces.
Note, however, that the external direct sum $U\oplus W$ is the internal direct sum of $U$ and $W$ viewed as subspaces of $U\oplus W$, i.e.\ as the internal direct sum of $\{(\mathbf{u}, \mathbf{0}): \mathbf{u}\in U\}$ and $\{(\mathbf{0}, \mathbf{v}): \mathbf{v}\in V\}$. So these two are indeed compatible notions, and this is why we give them the same name and notation.
\begin{defi}[(Multiple) (internal) direct sum]
If $U_1, \cdots, U_n\subseteq V$ are subspaces of $V$, then $V$ is the \emph{(internal) direct sum}
\[
V = U_1 \oplus \cdots \oplus U_n = \bigoplus_{i = 1}^n U_i
\]
if every $\mathbf{v}\in V$ can be written uniquely as $\mathbf{v} = \sum \mathbf{u}_i$ with $\mathbf{u}_i \in U_i$.
This can be extended to an infinite sum with the same definition, just noting that the sum $\mathbf{v} = \sum \mathbf{u}_i$ has to be finite.
\end{defi}
For more details, see example sheet 1 Q. 10, where we prove in particular that $\dim V = \sum \dim U_i$.
\begin{defi}[(Multiple) (external) direct sum]
If $U_1, \cdots, U_n$ are vector spaces over $\F$, the external direct sum is
\[
U_1 \oplus \cdots \oplus U_n = \bigoplus_{i = 1}^n U_i = \{(\mathbf{u}_1, \cdots, \mathbf{u}_n): \mathbf{u}_i \in U_i\},
\]
with pointwise operations.
This can be made into an infinite sum if we require that all but finitely many of the $\mathbf{u}_i$ have to be zero.
\end{defi}
\section{Linear maps}
In mathematics, apart from studying objects, we would like to study functions between objects as well. In particular, we would like to study functions that respect the structure of the objects. With vector spaces, the kinds of functions we are interested in are \emph{linear maps}.
\subsection{Definitions and examples}
\begin{defi}[Linear map]
Let $U, V$ be vector spaces over $\F$. Then $\alpha: U\to V$ is a \emph{linear map} if
\begin{enumerate}
\item $\alpha(\mathbf{u}_1 + \mathbf{u}_2) = \alpha(\mathbf{u}_1) + \alpha(\mathbf{u}_2)$ for all $\mathbf{u}_i \in U$.
\item $\alpha(\lambda \mathbf{u}) = \lambda \alpha (\mathbf{u})$ for all $\lambda \in \F, \mathbf{u}\in U$.
\end{enumerate}
We write $\mathcal{L}(U, V)$ for the set of linear maps $U\to V$.
\end{defi}
There are a few things we should take note of:
\begin{itemize}
\item If we are lazy, we can combine the two requirements to the single requirement that
\[
\alpha (\lambda \mathbf{u}_1 + \mu \mathbf{u}_2) = \lambda \alpha(\mathbf{u}_1) + \mu \alpha(\mathbf{u}_2).
\]
\item It is easy to see that if $\alpha$ is linear, then it is a group homomorphism (if we view vector spaces as groups). In particular, $\alpha (\mathbf{0}) = \mathbf{0}$.
\item If we want to stress the field $\F$, we say that $\alpha$ is $\F$-linear. For example, complex conjugation is a map $\C \to \C$ that is $\R$-linear but not $\C$-linear.
\end{itemize}
\begin{eg}\leavevmode
\begin{enumerate}
\item Let $A$ be an $n\times m$ matrix with coefficients in $\F$. We will write $A\in M_{n, m}(\F)$. Then $\alpha: \F^m \to \F^n$ defined by $\mathbf{v}\to A\mathbf{v}$ is linear.
Recall matrix multiplication is defined by: if $A_{ij}$ is the $ij$th coefficient of $A$, then the $i$th coefficient of $A\mathbf{v}$ is $A_{ij}\mathbf{v}_j$. So we have
\begin{align*}
\alpha(\lambda \mathbf{u} + \mu \mathbf{v})_i &= \sum_{j = 1}^m A_{ij}(\lambda \mathbf{u} + \mu \mathbf{v})_j \\
&= \lambda \sum_{j = 1}^m A_{ij}u_j + \mu \sum_{j = 1}^m A_{ij} v_j \\
&= \lambda \alpha(\mathbf{u})_i + \mu \alpha(\mathbf{v})_i.
\end{align*}
So $\alpha$ is linear.
\item Let $X$ be a set and $g\in \F^X$. Then we define $m_g: \F^X \to \F^X$ by $m_g(f)(x) = g(x) f(x)$. Then $m_g$ is linear. For example, $f(x) \mapsto 2x^2 f(x)$ is linear.
\item Integration $I: (C([a, b]), \R) \to (C([a, b]), \R)$ defined by $f\mapsto \int_a^x f(t) \;\d t$ is linear.
\item Differentiation $D: (C^\infty ([a, b]), \R) \to (C^\infty ([a, b]), \R)$ by $ f\mapsto f'$ is linear.
\item If $\alpha, \beta\in \mathcal{L}(U, V)$, then $\alpha + \beta$ defined by $(\alpha + \beta)(\mathbf{u}) = \alpha(\mathbf{u}) + \beta(\mathbf{u})$ is linear.
Also, if $\lambda \in \F$, then $\lambda \alpha$ defined by $(\lambda \alpha)(\mathbf{u}) = \lambda (\alpha (\mathbf{u}))$ is also linear.
In this way, $\mathcal{L}(U, V)$ is also a vector space over $\F$.
\item Composition of linear maps is linear. Using this, we can show that many things are linear, like differentiating twice, or adding and then multiplying linear maps.
\end{enumerate}
\end{eg}
Just like everything else, we want to define isomorphisms.
\begin{defi}[Isomorphism]
We say a linear map $\alpha: U\to V$ is an \emph{isomorphism} if there is some $\beta: V\to U$ (also linear) such that $\alpha \circ \beta = \id_V$ and $\beta\circ \alpha = \id_U$.
If there exists an isomorphism $U\to V$, we say $U$ and $V$ are \emph{isomorphic}, and write $U\cong V$.
\end{defi}
\begin{lemma}
If $U$ and $V$ are vector spaces over $\F$ and $\alpha: U\to V$, then $\alpha$ is an isomorphism iff $\alpha$ is a bijective linear map.
\end{lemma}
\begin{proof}
If $\alpha$ is an isomorphism, then it is clearly bijective since it has an inverse function.
Suppose $\alpha$ is a linear bijection. Then as a function, it has an inverse $\beta: V\to U$. We want to show that this is linear. Let $\mathbf{v}_1, \mathbf{v}_2 \in V$, $\lambda, \mu \in \F$. We have
\[
\alpha \beta(\lambda \mathbf{v}_1 + \mu \mathbf{v}_2) = \lambda \mathbf{v}_1 + \mu \mathbf{v}_2 = \lambda \alpha \beta (\mathbf{v}_1) + \mu \alpha \beta (\mathbf{v}_2) = \alpha (\lambda \beta(\mathbf{v}_1) + \mu \beta (\mathbf{v}_2)).
\]
Since $\alpha$ is injective, we have
\[
\beta(\lambda \mathbf{v}_1 + \mu \mathbf{v}_2) = \lambda \beta (\mathbf{v}_1) + \mu \beta (\mathbf{v}_2).
\]
So $\beta$ is linear.
\end{proof}
\begin{defi}[Image and kernel]
Let $\alpha: U\to V$ be a linear map. Then the \emph{image} of $\alpha$ is
\[
\im \alpha = \{\alpha (\mathbf{u}): \mathbf{u}\in U\}.
\]
The \emph{kernel} of $\alpha$ is
\[
\ker \alpha = \{\mathbf{u}: \alpha (\mathbf{u}) = \mathbf{0}\}.
\]
\end{defi}
It is easy to show that these are subspaces of $V$ and $U$ respectively.
\begin{eg}\leavevmode
\begin{enumerate}
\item Let $A\in M_{m, n}(\F)$ and $\alpha: \F^n \to \F^m$ be the linear map $\mathbf{v}\mapsto A\mathbf{v}$. Then the system of linear equations
\[
\sum_{j = 1}^m A_{ij}x_j = b_i,\quad 1 \leq i \leq n
\]
has a solution iff $(b_1, \cdots, b_n) \in \im \alpha$.
The kernel of $\alpha$ contains all solutions to $\sum_j A_{ij}x_j = 0$.
\item Let $\beta: C^{\infty}(\R, \R) \to C^{\infty}(\R, \R)$ that sends
\[
\beta(f)(t) = f''(t) + p(t) f'(t) + q(t) f(t).
\]
for some $p, q\in C^{\infty}(\R, \R)$.
Then if $y(t) \in \im \beta$, then there is a solution (in $C^\infty (\R, \R)$) to the differential equation
\[
f''(t) + p(t) f'(t) + q(t) f(t) = y(t).
\]
Similarly, $\ker \beta$ contains the solutions to the homogeneous equation
\[
f''(t) + p(t) f'(t) + q(t) f(t) = 0.
\]
\end{enumerate}
\end{eg}
If two vector spaces are isomorphic, then it is not too surprising that they have the same dimension, since isomorphic spaces are ``the same''. Indeed this is what we are going to show.
\begin{prop}
Let $\alpha: U\to V$ be an $\F$-linear map. Then
\begin{enumerate}
\item If $\alpha$ is injective and $S\subseteq U$ is linearly independent, then $\alpha (S)$ is linearly independent in $V$.
\item If $\alpha$ is surjective and $S\subseteq U$ spans $U$, then $\alpha (S)$ spans $V$.
\item If $\alpha$ is an isomorphism and $S\subseteq U$ is a basis, then $\alpha(S)$ is a basis for $V$.
\end{enumerate}
\end{prop}
Here (iii) immediately shows that two isomorphic spaces have the same dimension.
\begin{proof}\leavevmode
\begin{enumerate}
\item We prove the contrapositive. Suppose that $\alpha$ is injective and $\alpha(S)$ is linearly dependent. So there are $\mathbf{s}_0, \cdots, \mathbf{s}_n \in S$ distinct and $\lambda_1, \cdots, \lambda_n\in \F$ not all zero such that
\[
\alpha(\mathbf{s}_0) = \sum_{i = 1}^n \lambda_i \alpha(\mathbf{s}_i) = \alpha\left(\sum_{i = 1}^n \lambda_i \mathbf{s}_i\right).
\]
Since $\alpha$ is injective, we must have
\[
\mathbf{s}_0 = \sum_{i = 1}^n \lambda_i \mathbf{s}_i.
\]
This is a non-trivial relation of the $\mathbf{s}_i$ in $U$. So $S$ is linearly dependent.
\item Suppose $\alpha$ is surjective and $S$ spans $U$. Pick $\mathbf{v} \in V$. Then there is some $\mathbf{u}\in U$ such that $\alpha(\mathbf{u}) = \mathbf{v}$. Since $S$ spans $U$, there is some $\mathbf{s}_1, \cdots, \mathbf{s}_n\in S$ and $\lambda_1, \cdots, \lambda_n\in \F$ such that
\[
\mathbf{u} = \sum_{I = 1}^n \lambda_i \mathbf{s}_i.
\]
Then
\[
\mathbf{v} = \alpha (\mathbf{u}) = \sum_{i = 1}^n \lambda_i \alpha (\mathbf{s}_i).
\]
So $\alpha (S)$ spans $V$.
\item Follows immediately from (i) and (ii).\qedhere
\end{enumerate}
\end{proof}
\begin{cor}
If $U$ and $V$ are finite-dimensional vector spaces over $\F$ and $\alpha: U\to V$ is an isomorphism, then $\dim U = \dim V$.
\end{cor}
Note that we restrict it to finite-dimensional spaces since we've only shown that dimensions are well-defined for finite dimensional spaces. Otherwise, the proof works just fine for infinite dimensional spaces.
\begin{proof}
Let $S$ be a basis for $U$. Then $\alpha(S)$ is a basis for $V$. Since $\alpha$ is injective, $|S| = |\alpha(S)|$. So done.
\end{proof}
How about the other way round? If two vector spaces have the same dimension, are they necessarily isomorphic? The answer is yes, at least for finite-dimensional ones.
However, we will not just prove that they are isomorphic. We will show that they are isomorphic in \emph{many ways}.
\begin{prop}
Suppose $V$ is a $\F$-vector space of dimension $n < \infty$. Then writing $\mathbf{e}_1,\cdots, \mathbf{e}_n$ for the standard basis of $\F^n$, there is a bijection
\[
\Phi: \{\text{isomorphisms }\F^n \to V\} \to \{\text{(ordered) basis} (\mathbf{v}_1, \cdots, \mathbf{v}_n)\text{ for }V\},
\]
defined by
\[
\alpha \mapsto (\alpha (\mathbf{e}_1), \cdots, \alpha(\mathbf{e}_n)).
\]
\end{prop}
\begin{proof}
We first make sure this is indeed a function --- if $\alpha$ is an isomorphism, then from our previous proposition, we know that it sends a basis to a basis. So $(\alpha(\mathbf{e}_1), \cdots, \alpha(\mathbf{e}_n))$ is indeed a basis for $V$.
We now have to prove surjectivity and injectivity.
Suppose $\alpha, \beta: \F^n \to V$ are isomorphism such that $\Phi(\alpha) = \Phi(\beta)$. In other words, $\alpha (\mathbf{e}_i) = \beta(\mathbf{e}_i)$ for all $i$. We want to show that $\alpha = \beta$. We have
\[
\alpha\left(
\begin{pmatrix}
x_1\\\vdots\\x_n
\end{pmatrix}
\right) = \alpha \left(\sum_{i = 1}^n x_i \mathbf{e}_i\right) = \sum x_i \alpha (\mathbf{e}_i) = \sum x_i \beta (\mathbf{e}_i) = \beta\left(
\begin{pmatrix}
x_1\\\vdots\\x_n
\end{pmatrix}\right).
\]
Hence $\alpha = \beta$.
Next, suppose that $(\mathbf{v}_1, \cdots, \mathbf{v}_n)$ is an ordered basis for $V$. Then define
\[
\alpha\left(
\begin{pmatrix}
x_1\\\vdots\\x_n
\end{pmatrix}
\right) = \sum x_i \mathbf{v}_i.
\]
It is easy to check that this is well-defined and linear. We also know that $\alpha$ is injective since $(\mathbf{v}_1, \cdots, \mathbf{v}_n)$ is linearly independent. So if $\sum x_i \mathbf{v}_i = \sum y_i \mathbf{v}_i$, then $x_i = y_i$. Also, $\alpha$ is surjective since $(\mathbf{v}_1, \cdots, \mathbf{v}_n)$ spans $V$. So $\alpha$ is an isomorphism, and by construction $\Phi(\alpha) = (\mathbf{v}_1, \cdots, \mathbf{v}_n)$.
\end{proof}
\subsection{Linear maps and matrices}
Recall that our first example of linear maps is matrices acting on $\F^n$. We will show that in fact, \emph{all} linear maps come from matrices. Since we know that all vector spaces are isomorphic to $\F^n$, this means we can represent arbitrary linear maps on vector spaces by matrices.
This is a useful result, since it is sometimes easier to argue about matrices than linear maps.
\begin{prop}
Suppose $U, V$ are vector spaces over $\F$ and $S = \{\mathbf{e}_1, \cdots, \mathbf{e}_n\}$ is a basis for $U$. Then every function $f: S \to V$ extends uniquely to a linear map $U \to V$.
\end{prop}
The slogan is ``to define a linear map, it suffices to define its values on a basis''.
\begin{proof}
For uniqueness, first suppose $\alpha, \beta: U \to V$ are linear and extend $f: S \to V$. We have sort-of proved this already just now.
If $\mathbf{u}\in U$, we can write $\mathbf{u} = \sum_{i = 1}^n u_i \mathbf{e}_i$ with $u_i \in \F$ since $S$ spans. Then
\[
\alpha (\mathbf{u}) = \alpha\left(\sum u_i \mathbf{e}_i\right) = \sum u_i \alpha (\mathbf{e}_i) = \sum u_i f( \mathbf{e}_i).
\]
Similarly,
\[
\beta( \mathbf{u}) = \sum u_i f(\mathbf{e}_i).
\]
So $\alpha (\mathbf{u}) = \beta(\mathbf{u})$ for every $\mathbf{u}$. So $\alpha = \beta$.
For existence, if $\mathbf{u} \in U$, we can write $\mathbf{u} = \sum u_i \mathbf{e}_i$ in a unique way. So defining
\[
\alpha(\mathbf{u}) = \sum u_i f(\mathbf{e}_i)
\]
is unambiguous. To show linearity, let $\lambda, \mu\in \F$, $\mathbf{u}, \mathbf{v}\in U$. Then
\begin{align*}
\alpha (\lambda \mathbf{u} + \mu \mathbf{v}) &= \alpha \left(\sum (\lambda u_i + \mu v_i) \mathbf{e}_i\right) \\
&= \sum (\lambda u_i + \mu v_i) f(\mathbf{e}_i)\\
&= \lambda \left(\sum u_i f(\mathbf{e}_i)\right) + \mu \left(\sum v_i f(\mathbf{e}_i)\right)\\
&= \lambda \alpha(\mathbf{u}) + \mu \alpha(\mathbf{v}).
\end{align*}
Moreover, $\alpha$ does extend $f$.
\end{proof}
\begin{cor}
If $U$ and $V$ are finite-dimensional vector spaces over $\F$ with bases $(\mathbf{e}_1, \cdots, \mathbf{e}_m)$ and $(\mathbf{f}_1, \cdots, \mathbf{f}_n)$ respectively, then there is a bijection
\[
\Mat_{n, m}(\F) \to \mathcal{L}(U, V),
\]
sending $A$ to the unique linear map $\alpha$ such that $\alpha(\mathbf{e}_i) = \sum a_{ji} \mathbf{f}_j$.
\end{cor}
We can interpret this as follows: the $i$th column of $A$ tells us how to write $\alpha (\mathbf{e}_i)$ in terms of the $\mathbf{f}_j$.
We can also draw a fancy diagram to display this result. Given a basis $\mathbf{e}_1, \cdots, \mathbf{e}_m$, by our bijection, we get an isomorphism $s(\mathbf{e}_i): U\to \F^m$. Similarly, we get an isomorphism $s(\mathbf{f}_i): V\to \F^n$.
Since a matrix is a linear map $A: \F^m \to \F^n$, given a matrix $A$, we can produce a linear map $\alpha: U\to V$ via the following composition
\[
\begin{tikzcd}
U \ar[r, "s(\mathbf{e}_i)"] & \F^m \ar[r, "A"] & \F^n \ar[r, "s(\mathbf{f}_i)^{-1}"] & V.
\end{tikzcd}
\]
We can put this into a square:
\[
\begin{tikzcd}[row sep=large]
\F^m \ar[r, "A"] & \F^n\\
U \ar[u, "s(\mathbf{e}_i)"] \ar[r, "\alpha"] & V \ar[u, "s(\mathbf{f}_i)"']
\end{tikzcd}
\]
Then the corollary tells us that every $A$ gives rise to an $\alpha$, and every $\alpha$ corresponds to an $A$ that fit into this diagram.
\begin{proof}
If $\alpha$ is a linear map $U \to V$, then for each $1 \leq i \leq m$, we can write $\alpha(\mathbf{e}_i)$ uniquely as
\[
\alpha(\mathbf{e}_i) = \sum_{j = 1}^n a_{ji} \mathbf{f}_j
\]
for some $a_{ji} \in \F$. This gives a matrix $A = (a_{ij})$. The previous proposition tells us that every matrix $A$ arises in this way, and $\alpha$ is determined by $A$.
\end{proof}
\begin{defi}[Matrix representation]
We call the matrix corresponding to a linear map $\alpha\in \mathcal{L}(U, V)$ under the corollary the \emph{matrix representing} $\alpha$ with respect to the bases $(\mathbf{e}_1, \cdots, \mathbf{e}_m)$ and $(\mathbf{f}_1, \cdots, \mathbf{f}_n)$.
\end{defi}
It is an exercise to show that the bijection $\Mat_{n, m}(\F) \to \mathcal{L}(U, V)$ is an isomorphism of the vector spaces and deduce that $\dim \mathcal{L}(U, V) = (\dim U)(\dim V)$.
\begin{prop}
Suppose $U, V, W$ are finite-dimensional vector spaces over $\F$ with bases $R = (\mathbf{u}_1, \cdots, \mathbf{u}_r)$ , $S = (\mathbf{v}_1, .., \mathbf{v}_s)$ and $T = (\mathbf{w}_1, \cdots, \mathbf{w}_t)$ respectively.
If $\alpha: U\to V$ and $\beta: V\to W$ are linear maps represented by $A$ and $B$ respectively (with respect to $R$, $S$ and $T$), then $\beta\alpha$ is linear and represented by $BA$ with respect to $R$ and $T$.
\end{prop}
\[
\begin{tikzcd}[row sep=large]
\F^r \ar[r, "A"] & \F^s \ar [r, "B"] & \F^t\\
U \ar[u, "s(R)"] \ar[r, "\alpha"] & V \ar[u, "s(S)"] \ar [r, "\beta"] & W \ar[u, "s(T)"']
\end{tikzcd}
\]
\begin{proof}
Verifying $\beta\alpha$ is linear is straightforward. Next we write $\beta\alpha(\mathbf{u}_i)$ as a linear combination of $\mathbf{w}_1, \cdots, \mathbf{w}_t$:
\begin{align*}
\beta\alpha(\mathbf{u}_i) &= \beta\left(\sum_k A_{ki}\mathbf{v}_k\right) \\
&= \sum_k A_{ki}\beta(\mathbf{v}_k) \\
&= \sum_k A_{ki}\sum_j B_{jk} \mathbf{w}_j \\
&= \sum_j \left(\sum_k B_{jk}A_{ki}\right)\mathbf{w}_j\\
&= \sum_j (BA)_{ji} \mathbf{w}_j\qedhere
\end{align*}
\end{proof}
\subsection{The first isomorphism theorem and the rank-nullity theorem}
The main theorem of this section is the \emph{rank-nullity theorem}, which relates the dimensions of the kernel and image of a linear map. This is in fact an easy corollary of a stronger result, known as the \emph{first isomorphism theorem}, which directly relates the kernel and image themselves. This first isomorphism is an exact analogy of that for groups, and should not be unfamiliar. We will also provide another proof that does not involve quotients.
\begin{thm}[First isomorphism theorem]
Let $\alpha: U\to V$ be a linear map. Then $\ker \alpha$ and $\im \alpha$ are subspaces of $U$ and $V$ respectively. Moreover, $\alpha$ induces an isomorphism
\begin{align*}
\bar{\alpha}: U/\ker \alpha &\to \im \alpha\\
(\mathbf{u} + \ker \alpha) &\mapsto \alpha(\mathbf{u})
\end{align*}
\end{thm}
Note that if we view a vector space as an abelian group, then this is exactly the first isomorphism theorem of groups.
\begin{proof}
We know that $\mathbf{0} \in \ker \alpha$ and $\mathbf{0}\in \im \alpha$.
Suppose $\mathbf{u}_1, \mathbf{u}_2 \in \ker \alpha$ and $\lambda_1, \lambda_2\in \F$. Then
\[
\alpha (\lambda_1 \mathbf{u}_1 + \lambda_2 \mathbf{u}_2) = \lambda_1 \alpha(\mathbf{u}_1) + \lambda_2 \alpha(\mathbf{u}_2) = \mathbf{0}.
\]
So $\lambda_1 \mathbf{u}_1 + \lambda_2 \mathbf{u}_2 \in \ker \alpha$. So $\ker \alpha$ is a subspace.
Similarly, if $\alpha(\mathbf{u}_1), \alpha(\mathbf{u}_2) \in \im \alpha$, then $\lambda\alpha(\mathbf{u}_1) + \lambda_2 \alpha(\mathbf{u}_2) = \alpha(\lambda_1 \mathbf{u}_1 + \lambda_2 \mathbf{u}_2) \in \im \alpha$. So $\im \alpha$ is a subspace.
Now by the first isomorphism theorem of groups, $\bar{\alpha}$ is a well-defined isomorphism of groups. So it remains to show that $\bar{\alpha}$ is a linear map. Indeed, we have
\[
\bar{\alpha}(\lambda(\mathbf{u} + \ker \alpha)) = \alpha (\lambda \mathbf{u}) = \lambda \alpha(\mathbf{u}) = \lambda (\bar{\alpha}(\mathbf{u} + \ker \alpha)).
\]
So $\bar {\alpha}$ is a linear map.
\end{proof}
\begin{defi}[Rank and nullity]
If $\alpha: U\to V$ is a linear map between finite-dimensional vector spaces over $\F$ (in fact we just need $U$ to be finite-dimensional), the \emph{rank} of $\alpha$ is the number $r(\alpha) = \dim \im \alpha$. The \emph{nullity} of $\alpha$ is the number $n(\alpha) = \dim \ker \alpha$.
\end{defi}
\begin{cor}[Rank-nullity theorem]
If $\alpha: U \to V$ is a linear map and $U$ is finite-dimensional, then
\[
r(\alpha) + n(\alpha) = \dim U.
\]
\end{cor}
\begin{proof}
By the first isomorphism theorem, we know that $U/\ker \alpha \cong \im \alpha$. So we have
\[
\dim \im \alpha = \dim (U/\ker \alpha) = \dim U - \dim \ker \alpha.
\]
So the result follows.
\end{proof}
We can also prove this result without the first isomorphism theorem, and say a bit more in the meantime.
\begin{prop}
If $\alpha: U\to V$ is a linear map between finite-dimensional vector spaces over $\F$, then there are bases $(\mathbf{e}_1, \cdots, \mathbf{e}_m)$ for $U$ and $(\mathbf{f}_1, \cdots, \mathbf{f}_n)$ for $V$ such that $\alpha$ is represented by the matrix
\[
\begin{pmatrix}
I_r & 0\\
0 & 0
\end{pmatrix},
\]
where $r = r(\alpha)$ and $I_r$ is the $r\times r$ identity matrix.
In particular, $r(\alpha) + n(\alpha) = \dim U$.
\end{prop}
\begin{proof}
Let $\mathbf{e}_{k + 1}, \cdots, \mathbf{e}_m$ be a basis for the kernel of $\alpha$. Then we can extend this to a basis of the $(\mathbf{e}_1,\cdots, \mathbf{e}_m)$.
Let $\mathbf{f}_i = \alpha(\mathbf{e}_i)$ for $1 \leq i \leq k$. We now show that $(\mathbf{f}_1, \cdots, \mathbf{f}_k)$ is a basis for $\im \alpha$ (and thus $k = r$). We first show that it spans. Suppose $\mathbf{v}\in \im \alpha$. Then we have
\[
\mathbf{v} = \alpha\left(\sum_{i = 1}^m \lambda_i \mathbf{e}_i\right)
\]
for some $\lambda_i \in \F$. By linearity, we can write this as
\[
\mathbf{v} = \sum_{i = 1}^m \lambda_i \alpha(\mathbf{e}_i) = \sum_{i = 1}^k \lambda_i \mathbf{f}_i + \mathbf{0}.
\]
So $\mathbf{v}\in \bra \mathbf{f}_1, \cdots, \mathbf{f}_k\ket$.
To show linear dependence, suppose that
\[
\sum_{i = 1}^k \mu_i \mathbf{f}_i = \mathbf{0}.
\]
So we have
\[
\alpha \left(\sum_{i = 1}^k \mu_i \mathbf{e}_i\right) = \mathbf{0}.
\]
So $\sum_{i = 1}^k \mu_i \mathbf{e}_i \in \ker \alpha$. Since $(\mathbf{e}_{k + 1}, \cdots, \mathbf{e}_m)$ is a basis for $\ker \alpha$, we can write
\[
\sum_{i = 1}^k \mu_i \mathbf{e}_i = \sum_{i = k + 1}^m \mu_i \mathbf{e}_i
\]
for some $\mu_i$ ($i = k + 1, \cdots, m$). Since $(\mathbf{e}_1, \cdots, \mathbf{e}_m)$ is a basis, we must have $\mu_i = 0$ for all $i$. So they are linearly independent.
Now we extend $(\mathbf{f}_1, \cdots, \mathbf{f}_r)$ to a basis for $V$, and
\[
\alpha(\mathbf{e}_i) =
\begin{cases}
\mathbf{f}_i & 1 \leq i \leq k\\
0 & k + 1 \leq i \leq m
\end{cases}.\qedhere
\]
\end{proof}
\begin{eg}
Let
\[
W = \{x\in \R^5: x_1 + x_2 + x_3 = 0 = x_3 - x_4 - x_5\}.
\]
What is $\dim W$? Well, it clearly is $3$, but how can we prove it?
We can consider the map $\alpha: \R^5 \to \R^2$ given by
\[
\begin{pmatrix}
x_1\\\vdots \\ x_5
\end{pmatrix}
\mapsto
\begin{pmatrix}
x_1 + x_2 + x_5\\
x_3 - x_4 - x_5.
\end{pmatrix}
\]
Then $\ker \alpha = W$. So $\dim W = 5 - r(\alpha)$. We know that $\alpha(1, 0, 0, 0, 0) = (1, 0)$ and $\alpha(0, 0, 1, 0, 0) = (0, 1)$. So $r(\alpha) = \dim \im \alpha = 2$. So $\dim W = 3$.
\end{eg}
More generally, the rank-nullity theorem gives that $m$ linear equations in $n$ have a space of solutions of dimension at least $n - m$.
\begin{eg}
Suppose that $U$ and $W$ are subspaces of $V$, all of which are finite-dimensional vector spaces of $\F$. We let
\begin{align*}
\alpha: U\oplus W &\to V\\
(\mathbf{u}, \mathbf{w}) &\mapsto \mathbf{u} + \mathbf{w},
\end{align*}
where the $\oplus$ is the \emph{external} direct sum. Then $\im \alpha =U + W$ and
\[
\ker \alpha = \{(\mathbf{u}, -\mathbf{u}): \mathbf{u}\in U\cap W\} \cong \dim (U\cap W).
\]
Then we have
\[
\dim U + \dim W = \dim (U\oplus W) = r(\alpha) + n(\alpha) = \dim(U + W) + \dim (U\cap W).
\]
This is a result we've previously obtained through fiddling with basis and horrible stuff.
\end{eg}
\begin{cor}
Suppose $\alpha: U\to V$ is a linear map between vector spaces over $\F$ both of dimension $n < \infty$. Then the following are equivalent
\begin{enumerate}
\item $\alpha$ is injective;
\item $\alpha$ is surjective;
\item $\alpha$ is an isomorphism.
\end{enumerate}
\end{cor}
\begin{proof}
It is clear that, (iii) implies (i) and (ii), and (i) and (ii) together implies (iii). So it suffices to show that (i) and (ii) are equivalent.
Note that $\alpha$ is injective iff $n(\alpha) = 0$, and $\alpha$ is surjective iff $r(\alpha) = \dim V = n$. By the rank-nullity theorem, $n(\alpha) + r(\alpha) = n$. So the result follows immediately.
\end{proof}
\begin{lemma}
Let $A \in M_{n, n}(\F) = M_n(\F)$ be a square matrix. The following are equivalent
\begin{enumerate}
\item There exists $B\in M_n (\F)$ such that $BA = I_n$.
\item There exists $C\in M_n (\F)$ such that $AC = I_n$.
\end{enumerate}
If these hold, then $B = C$. We call $A$ \emph{invertible} or \emph{non-singular}, and write $A^{-1} = B = C$.
\end{lemma}
\begin{proof}
Let $\alpha, \beta, \gamma, \iota: \F^n \to \F^n$ be the linear maps represented by matrices $A, B, C, I_n$ respectively with respect to the standard basis.
We note that (i) is equivalent to saying that there exists $\beta$ such that $\beta\alpha = \iota$. This is true iff $\alpha$ is injective, which is true iff $\alpha$ is an isomorphism, which is true iff $\alpha$ has an inverse $\alpha^{-1}$.
Similarly, (ii) is equivalent to saying that there exists $\gamma$ such that $\alpha\gamma = \iota$. This is true iff $\alpha$ is injective, which is true iff $\alpha$ is isomorphism, which is true iff $\alpha$ has an inverse $\alpha^{-1}$.
So these are the same things, and we have $\beta = \alpha^{-1} = \gamma$.
\end{proof}
\subsection{Change of basis}
Suppose we have a linear map $\alpha: U \to V$. Given a basis $\{\mathbf{e}_i\}$ for $U$, and a basis $\{\mathbf{f}_i\}$ for $V$, we can obtain a matrix $A$.
\[
\begin{tikzcd}[row sep=large]
U \ar[r, "\alpha"] & V\\
\F^m \ar[r, "A"] \ar[u, "(\mathbf{e}_i)"] & \F^n \ar[u, "(\mathbf{f}_i)"']
\end{tikzcd}
\]
We now want to consider what happens when we have two different basis $\{\mathbf{u}_i\}$ and $\{\mathbf{e}_i\}$ of $U$. These will then give rise to two different maps from $\F^m$ to our space $U$, and the two basis can be related by a change-of-basis map $P$. We can put them in the following diagram:
\[
\begin{tikzcd}[row sep=large]
U \ar[r, "\iota_U"] & U\\
\F^m \ar[r, "P"] \ar[u, "(\mathbf{u}_i)"] & \F^m \ar[u, "(\mathbf{e}_i)"]
\end{tikzcd}
\]
where $\iota_U$ is the identity map. If we perform a change of basis for both $U$ and $V$, we can stitch the diagrams together as
\[
\begin{tikzcd}[row sep=large]
U \ar[r, "\iota_U"] & U \ar[r, "\alpha"] & V & V\ar[l, "\iota_V"']\\
\F^m \ar[r, "P"] \ar[u, "(\mathbf{u}_i)"] \ar [rrr, bend right, "B"'] & \F^m \ar[r, "A"] \ar[u, "(\mathbf{e}_i)"] & \F^n \ar[u, "(\mathbf{f}_i)"] & \F^n \ar[l, "Q"'] \ar[u, "(\mathbf{v}_i)"]
\end{tikzcd}
\]
Then if we want a matrix representing the map $U\to V$ with respect to bases $(\mathbf{u}_i)$ and $(\mathbf{v}_i)$, we can write it as the composition
\[
B = Q^{-1}AP.
\]
We can write this as a theorem:
\begin{thm}
Suppose that $(\mathbf{e}_1, \cdots, \mathbf{e}_m)$ and $(\mathbf{u}_1,\cdots, \mathbf{u}_m)$ are basis for a finite-dimensional vector space $U$ over $\F$, and $(\mathbf{f}_1, \cdots, \mathbf{f}_n)$ and $(\mathbf{v}_1, \cdots, \mathbf{v}_n)$ are basis of a finite-dimensional vector space $V$ over $\F$.
Let $\alpha: U\to V$ be a linear map represented by a matrix $A$ with respect to $(\mathbf{e}_i)$ and $(\mathbf{f}_i)$ and by $B$ with respect to $(\mathbf{u}_i)$ and $(\mathbf{v}_i)$. Then
\[
B = Q^{-1}AP,
\]
where $P$ and $Q$ are given by
\[
\mathbf{u}_i = \sum_{k = 1}^m P_{ki}\mathbf{e}_k,\quad \mathbf{v}_i = \sum_{k = 1}^n Q_{ki}\mathbf{f}_k.
\]
\end{thm}
Note that one can view $P$ as the matrix representing the identity map $i_U$ from $U$ with basis $(\mathbf{u}_i$) to $U$ with basis $(\mathbf{e}_i)$, and similarly for $Q$. So both are invertible.
\begin{proof}
On the one hand, we have
\[
\alpha(\mathbf{u}_i) = \sum_{j = 1}^n B_{ji}\mathbf{v}_j = \sum_j\sum_\ell B_{ji} Q_{\ell j}\mathbf{f}_\ell = \sum_\ell [QB]_{\ell i}\mathbf{f}_\ell.
\]
On the other hand, we can write
\[
\alpha (\mathbf{u}_i) = \alpha \left(\sum_{k = 1}^m P_{ki}\mathbf{e}_k\right) = \sum_{k = 1}^m P_{ki} \sum_\ell A_{\ell k}\mathbf{f}_\ell = \sum_{\ell}[AP]_{\ell i} f_\ell.
\]
Since the $\mathbf{f}_\ell$ are linearly independent, we conclude that
\[
QB = AP.
\]
Since $Q$ is invertible, we get $B = Q^{-1}AP$.
\end{proof}
\begin{defi}[Equivalent matrices]
We say $A, B\in \Mat_{n, m}(\F)$ are \emph{equivalent} if there are invertible matrices $P\in\Mat_{m}(\F)$, $Q\in \Mat_n (\F)$ such that $B = Q^{-1}AP$.
\end{defi}
Since $\GL_K(\F) = \{A \in \Mat_k(\F): A\text{ is invertible}\}$ is a group, for each $k \geq 1$, this is indeed an equivalence relation. The equivalence classes are orbits under the action of $\GL_m(\F) \times \GL_n(\F)$, given by
\begin{align*}
\GL_m(\F) \times \GL_n(\F)\times \Mat_{n, m}(\F) &\to \Mat (\F)\\
(P, Q, A) &\mapsto QAP^{-1}.
\end{align*}
Two matrices are equivalent if and only if they represent the same linear map with respect to different basis.
\begin{cor}
If $A\in \Mat_{n, m}(\F)$, then there exists invertible matrices $P \in \GL_m(\F), Q\in \GL_n(\F)$ so that
\[
Q^{-1}AP =
\begin{pmatrix}
I_r & 0\\
0 & 0
\end{pmatrix}
\]
for some $0 \leq r \leq \min(m, n)$.
\end{cor}
This is just a rephrasing of the proposition we had last time. But this tells us there are $\min(m, n) + 1$ orbits of the action above parametrized by $r$.
\begin{defi}[Column and row rank]
If $A\in \Mat_{n, m}(\F)$, then
\begin{itemize}
\item The \emph{column rank} of $A$, written $r(A)$, is the dimension of the subspace of $\F^n$ spanned by the columns of $A$.
\item The \emph{row rank} of $A$, written $r(A)$, is the dimension of the subspace of $\F^m$ spanned by the rows of $A$. Alternatively, it is the column rank of $A^T$.
\end{itemize}
\end{defi}
There is no a priori reason why these should be equal to each other. However, it turns out they are always equal.
Note that if $\alpha: \F^m \to \F^n$ is the linear map represented by $A$ (with respect to the standard basis), then $r(A) = r(\alpha)$, i.e.\ the column rank is the rank. Moreover, since the rank of a map is independent of the basis, equivalent matrices have the same column rank.
\begin{thm}
If $A \in \Mat_{n, m}(\F)$, then $r(A) = r(A^T)$, i.e.\ the row rank is equivalent to the column rank.
\end{thm}
\begin{proof}
We know that there are some invertible $P, Q$ such that
\[
Q^{-1}AP =
\begin{pmatrix}
I_r & 0\\
0 & 0
\end{pmatrix},
\]
where $r = r(A)$. We can transpose this whole equation to obtain
\[
(Q^{-1}AP)^T = P^T A^T (Q^T)^{-1} =
\begin{pmatrix}
I_r & 0\\
0 & 0
\end{pmatrix}
\]
So $r(A^T) = r$.
\end{proof}
\subsection{Elementary matrix operations}
We are now going to re-prove our corollary that we can find $P, Q$ such that $Q^{-1}AP = \begin{pmatrix} I_r & 0\\ 0 & 0 \end{pmatrix}$ in a way that involves matrices only. This will give a concrete way to find $P$ and $Q$, but is less elegant.
To do so, we need to introduce \emph{elementary matrices}.
\begin{defi}[Elementary matrices]
We call the following matrices of $\GL_n(\F)$ \emph{elementary matrices}:
\setcounter{MaxMatrixCols}{11}
\[
S_{ij}^n =
\begin{pmatrix}
1\\
& \ddots\\
& & 1\\
& & & 0 & & & & 1\\
& & & & 1\\
& & & & & \ddots\\
& & & & & & 1\\
& & & 1 & & & & 0\\
& & & & & & & & 1\\
& & & & & & & & & \ddots\\
& & & & & & & & & & 1
\end{pmatrix}
\]
This is called a reflection, where the rows we changed are the $i$th and $j$th row.
\[
E_{ij}^n (\lambda) =
\begin{pmatrix}
1 \\
& \ddots \\
& & 1 & & \lambda\\
& & & \ddots\\
& & & & 1\\
& & & & & \ddots\\
& & & & & & 1
\end{pmatrix}
\]
This is called a shear, where $\lambda$ appears at the $i,j$th entry.
\[
T_{i}^n (\lambda) =
\begin{pmatrix}
1 \\
& \ddots\\
& & 1 \\
& & & \lambda\\
& & & & 1\\
& & & & & \ddots\\
& & & & & & 1
\end{pmatrix}
\]
This is called a shear, where $\lambda\not= 0$ appears at the $i$th column. % not a shear
\end{defi}
Observe that if $A$ is a $m\times n$ matrix, then
\begin{enumerate}
\item $AS_{ij}^n$ is obtained from $A$ by swapping the $i$ and $j$ columns.
\item $AE_{Ij}^n(\lambda)$ is obtained by adding $\lambda\times$ column $i$ to column $j$.
\item $AT_i^n (\lambda)$ is obtained from $A$ by rescaling the $i$th column by $\lambda$.
\end{enumerate}
Multiplying on the left instead of the right would result in the same operations performed on the rows instead of the columns.
\begin{prop}
If $A\in \Mat_{n, m}(\F)$, then there exists invertible matrices $P \in \GL_m(\F), Q\in \GL_n(\F)$ so that
\[
Q^{-1}AP =
\begin{pmatrix}
I_r & 0\\
0 & 0
\end{pmatrix}
\]
for some $0 \leq r \leq \min(m, n)$.
\end{prop}
We are going to start with $A$, and then apply these operations to get it into this form.
\begin{proof}
We claim that there are elementary matrices $E_1^m, \cdots, E_a^m$ and $F_1^n, \cdots, F_b^n$ (these $E$ are not necessarily the shears, but any elementary matrix) such that
\[
E_1^m \cdots E_a^m AF_1^n \cdots F_b^n =
\begin{pmatrix}
I_r & 0\\
0 & 0
\end{pmatrix}
\]
This suffices since the $E_i^m \in \GL_M(\F)$ and $F_j^n \in \GL_n(\F)$. Moreover, to prove the claim, it suffices to find a sequence of elementary row and column operations reducing $A$ to this form.
If $A = 0$, then done. If not, there is some $i, j$ such that $A_{ij} \not= 0$. By swapping row $1$ and row $i$; and then column $1$ and column $j$, we can assume $A_{11} \not= 0$. By rescaling row $1$ by $\frac{1}{A_{11}}$, we can further assume $A_{11} = 1$.
Now we can add $-A_{1j}$ times column $1$ to column $j$ for each $j \not= 1$, and then add $-A_{i1}$ times row $1$ to row $i \not= 1$. Then we now have
\[
A =
\begin{pmatrix}
1 & 0 & \cdots & 0\\
0 \\
\vdots & & B\\
0 &
\end{pmatrix}
\]
Now $B$ is smaller than $A$. So by induction on the size of $A$, we can reduce $B$ to a matrix of the required form, so done.
\end{proof}
It is an exercise to show that the row and column operations do not change the row rank or column rank, and deduce that they are equal.
\section{Duality}
Duality is a principle we will find throughout mathematics. For example, in IB Optimisation, we considered the dual problems of linear programs. Here we will look for the dual of vector spaces. In general, we try to look at our question in a ``mirror'' and hope that the mirror problem is easier to solve than the original mirror.
At first, the definition of the dual might see a bit arbitrary and weird. We will try to motivate it using what we will call \emph{annihilators}, but they are much more useful than just for these. Despite their usefulness, though, they can be confusing to work with at times, since the dual space of a vector space $V$ will be constructed by considering linear maps on $V$, and when we work with maps on dual spaces, things explode.
\subsection{Dual space}
To specify a subspace of $\F^n$, we can write down linear equations that its elements satisfy. For example, if we have the subspace $U = \bra \begin{pmatrix} 1\\2\\1 \end{pmatrix}\ket\subseteq \F^3$, we can specify this by saying $\begin{pmatrix}x_1\\ x_2\\ x_3\end{pmatrix} \in U$ if and only if
\begin{align*}
x_1 - x_3 &= 0\\
2x_1 - x_2 &= 0.
\end{align*}
However, characterizing a space in terms of equations involves picking some particular equations out of the many possibilities. In general, we do not like making arbitrary choices. Hence the solution is to consider \emph{all} possible such equations. We will show that these form a subspace in some space.
We can interpret these equations in terms of linear maps $\F^n \to \F$. For example $x_1 - x_3 = 0$ if and only if $\begin{pmatrix}x_1\\x_2\\x_3\end{pmatrix} \in \ker \theta$, where $\theta: \F^3 \to \F$ is defined by $\begin{pmatrix}x_1\\x_2\\x_3\end{pmatrix} \mapsto x_1 - x_3$.
This works well with the vector space operations. If $\theta_1, \theta_2: \F^n \to \F$ vanish on some subspace of $\F^n$, and $\lambda, \mu\in \F$, then $\lambda \theta_1 + \mu \theta_2$ also vanishes on the subspace. So the set of all maps $\F^n \to \F$ that vanishes on $U$ forms a vector space.
To formalize this notion, we introduce dual spaces.
\begin{defi}[Dual space]
Let $V$ be a vector space over $\F$. The \emph{dual} of $V$ is defined as
\[
V^* = \mathcal{L}(V, \F) = \{\theta: V \to \F: \theta\text{ linear}\}.
\]
Elements of $V^*$ are called \emph{linear functionals} or \emph{linear forms}.
\end{defi}
By convention, we use Roman letters for elements in $V$, and Greek letters for elements in $V^*$.
\begin{eg}\leavevmode
\begin{itemize}
\item If $V = \R^3$ and $\theta: V\to \R$ that sends $\begin{pmatrix}x_1\\x_2\\x_3\end{pmatrix} \mapsto x_1 - x_3$, then $\theta \in V^*$.
\item Let $V = \F^X$. Then for any fixed $x$, $\theta: V\to \F$ defined by $f \mapsto f(x)$ is in $V^*$.
\item Let $V = C([0, 1], \R)$. Then $f \mapsto \int_0^1 f(t)\;\d t \in V^*$.
\item The trace $\tr: M_n(\F)\to \F$ defined by $A\mapsto \sum_{i = 1}^n A_{ii}$ is in $M_n(\F)^*$.
\end{itemize}
\end{eg}
It turns out it is rather easy to specify how the dual space looks like, at least in the case where $V$ is finite dimensional.
\begin{lemma}
If $V$ is a finite-dimensional vector space over $f$ with basis $(\mathbf{e}_1, \cdots, \mathbf{e}_n)$, then there is a basis $(\varepsilon_1, \cdots, \varepsilon_n)$ for $V^*$ (called the \emph{dual basis} to $(\mathbf{e}_1, \cdots, \mathbf{e}_n)$) such that
\[
\varepsilon_i(\mathbf{e}_j) = \delta_{ij}.
\]
\end{lemma}
\begin{proof}
Since linear maps are characterized by their values on a basis, there exists unique choices for $\varepsilon_1, \cdots, \varepsilon_n \in V^*$. Now we show that $(\varepsilon_1, \cdots, \varepsilon_n)$ is a basis.
Suppose $\theta \in V^*$. We show that we can write it uniquely as a combination of $\varepsilon_1, \cdots, \varepsilon_n$. We have $\theta = \sum_{i = 1}^n \lambda_i \varepsilon_i$ if and only if $\theta(\mathbf{e}_j) = \sum_{i = 1}^n \lambda_i \varepsilon_i(\mathbf{e}_j)$ (for all $j$) if and only if $\lambda_j = \theta(\mathbf{e}_j)$. So we have uniqueness and existence.
\end{proof}
\begin{cor}
If $V$ is finite dimensional, then $\dim V = \dim V^*$.
\end{cor}
When $V$ is not finite dimensional, this need not be true. However, we know that the dimension of $V^*$ is at least as big as that of $V$, since the above gives a set of $\dim V$ many independent vectors in $V^*$. In fact for any infinite dimensional vector space, $\dim V^*$ is strictly larger than $\dim V$, if we manage to define dimensions for infinite-dimensional vector spaces.
It helps to come up with a more concrete example of how dual spaces look like. Consider the vector space $\F^n$, where we treat each element as a column vector (with respect to the standard basis). Then we can regard elements of $V^*$ as just row vectors $(a_1, \cdots, a_n) = \sum_{j = 1}^n a_j\varepsilon_j$ with respect to the dual basis. We have
\[
\left(\sum a_j \varepsilon_j\right)\left(\sum_{x_i}\mathbf{e}_i\right) = \sum_{i, j} a_j x_i \delta_{ij} = \sum_{i = 1}^n a_i x_i =
\begin{pmatrix}
a_1 & \cdots & a_n
\end{pmatrix}
\begin{pmatrix}
x_1\\\vdots\\x_n
\end{pmatrix}.
\]
This is exactly what we want.
Now what happens when we change basis? How will the dual basis change?
\begin{prop}
Let $V$ be a finite-dimensional vector space over $\F$ with bases $(\mathbf{e}_1, \cdots, \mathbf{e}_n)$ and $(\mathbf{f}_1, \cdots, \mathbf{f}_n)$, and that $P$ is the change of basis matrix so that
\[
\mathbf{f}_i = \sum_{k = 1}^n P_{ki}\mathbf{e}_k.
\]
Let $(\varepsilon_1, \cdots, \varepsilon_n)$ and $(\eta_1, \cdots, \eta_n)$ be the corresponding dual bases so that
\[
\varepsilon_i (\mathbf{e}_j) = \delta_{ij} = \eta_i (\mathbf{f}_j).
\]
Then the change of basis matrix from $(\varepsilon_1, \cdots, \varepsilon_n)$ to $(\eta_1, \cdots, \eta_n)$ is $(P^{-1})^T$, i.e.
\[
\varepsilon_i = \sum_{\ell = 1}^n P_{\ell i}^T \eta_\ell.
\]
\end{prop}
\begin{proof}
For convenience, write $Q = P^{-1}$ so that
\[
\mathbf{e}_j = \sum_{k = 1}^n Q_{kj}\mathbf{f}_k.
\]
So we can compute
\begin{align*}
\left(\sum_{\ell = 1}^n P_{i\ell}\eta_\ell\right)(\mathbf{e}_j) &= \left(\sum_{\ell = 1}^n P_{i\ell}\eta_\ell\right)\left(\sum_{k = 1}^n Q_{kj}\mathbf{f}_k\right)\\
&= \sum_{k, \ell} P_{i\ell}\delta_{\ell k} Q_{kj}\\
&= \sum_{k, \ell} P_{i\ell} Q_{\ell j}\\
&= [PQ]_{ij}\\
&= \delta_{ij}.
\end{align*}
So $\varepsilon_i = \sum_{\ell = 1}^n P_{\ell i}^T \eta_\ell$.
\end{proof}
Now we'll return to our original motivation, and think how we can define subspaces of $V^*$ in terms of subspaces of $V$, and vice versa.
\begin{defi}[Annihilator]
Let $U\subseteq V$. Then the \emph{annihilator} of $U$ is
\[
U^0 = \{\theta\in V^* : \theta(\mathbf{u}) = 0, \forall \mathbf{u}\in U\}.
\]
If $W \subseteq V^*$, then the \emph{annihilator} of $W$ is
\[
W^0 = \{\mathbf{v}\in V: \theta(\mathbf{v}) = 0,\forall \theta \in W\}.
\]
\end{defi}
One might object that $W^0$ should be a subset of $V^{**}$ and not $V$. We will later show that there is a canonical isomorphism between $V^{**}$ and $V$, and this will all make sense.
\begin{eg}
Consider $\R^3$ with standard basis $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$; $(R^3)^*$ with dual basis $(\varepsilon_1, \varepsilon_2, \varepsilon_3)$. If $U = \bra \mathbf{e}_1 + 2\mathbf{e}_2 + \mathbf{e}_3\ket$ and $W = \bra \varepsilon_1 - \varepsilon_3, 2\varepsilon_1 - \varepsilon_2\ket $, then $U^0 = W$ and $W^0 = U$.
\end{eg}
We see that the dimension of $U$ and $U^0$ add up to three, which is the dimension of $\R^3$. This is typical.
\begin{prop}
Let $V$ be a vector space over $\F$ and $U$ a subspace. Then
\[
\dim U + \dim U^0 = \dim V.
\]
\end{prop}
We are going to prove this in many ways.
\begin{proof}
Let $(\mathbf{e}_1, \cdots, \mathbf{e}_k)$ be a basis for $U$ and extend to $(\mathbf{e}_1, \cdots, \mathbf{e}_n)$ a basis for $V$. Consider the dual basis for $V^*$, say $(\varepsilon_1, \cdots, \varepsilon_n)$. Then we will show that
\[
U^0 = \bra \varepsilon_{k + 1}, \cdots, \varepsilon_{n}\ket.
\]
So $\dim U^0 = n - k$ as required. This is easy to prove --- if $j > k$, then $\varepsilon_j(\mathbf{e}_i) = 0$ for all $ i \leq k$. So $\varepsilon_{k + 1}, \cdots, \varepsilon_n \in U^0$. On the other hand, suppose $\theta \in U^0$. Then we can write
\[
\theta = \sum_{j = 1}^n \lambda_j \varepsilon_j.
\]
But then $0 = \theta (\mathbf{e}_i) = \lambda_i$ for $i \leq k$. So done.
\end{proof}
\begin{proof}
Consider the restriction map $V^* \to U^*$, given by $\theta \mapsto \theta|_U$. This is obviously linear. Since every linear map $U \to \F$ can be extended to $V\to \F$, this is a surjection. Moreover, the kernel is $U^0$. So by rank-nullity theorem,
\[
\dim V^* = \dim U^0 + \dim U^*.
\]
Since $\dim V^* = \dim V$ and $\dim U^* = \dim U$, we're done.
\end{proof}
\begin{proof}
We can show that $U^0 \simeq (V/U)^*$, and then deduce the result. Details are left as an exercise.
\end{proof}
\subsection{Dual maps}
Since linear algebra is the study of vector spaces and linear maps between them, after dualizing vector spaces, we should be able to dualize linear maps as well. If we have a map $\alpha: V \to W$, then after dualizing, the map will go \emph{the other direction}, i.e.\ $\alpha^*: W^* \to V^*$. This is a characteristic common to most dualization processes in mathematics.
\begin{defi}[Dual map]
Let $V, W$ be vector spaces over $\F$ and $\alpha: V\to W \in \mathcal{L}(V, W)$. The \emph{dual map} to $\alpha$, written $\alpha^*: W^* \to V^*$ is given by $\theta \mapsto \theta \circ \alpha$. Since the composite of linear maps is linear, $\alpha^*(\theta) \in V^*$. So this is a genuine map.
\end{defi}
\begin{prop}
Let $\alpha \in \mathcal{L}(V, W)$ be a linear map. Then $\alpha^* \in \mathcal{L}(W^*, V^*)$ is a linear map.
\end{prop}
This is \emph{not} the same as what we remarked at the end of the definition of the dual map. What we remarked was that given any $\theta$, $\alpha^*(\theta)$ is a linear map. What we want to show here is that $\alpha^*$ itself as a map $W^* \to V^*$ is linear.
\begin{proof}
Let $\lambda, \mu \in \F$ and $\theta_1, \theta_2 \in W^*$. We want to show
\[
\alpha^*(\lambda \theta_1 + \mu \theta_2) = \lambda \alpha^*(\theta_1) + \mu \alpha^*(\theta_2).
\]
To show this, we show that for every $\mathbf{v} \in V$, the left and right give the same result. We have
\begin{align*}
\alpha^*(\lambda \theta_1 + \mu \theta_2)(\mathbf{v}) &= (\lambda \theta_1 + \mu \theta_2)(\alpha \mathbf{v}) \\
&= \lambda \theta_1 (\alpha (\mathbf{v})) + \mu \theta_2 (\alpha(\mathbf{v})) \\
&= (\lambda \alpha^*(\theta_1)+ \mu \alpha^*(\theta_2))(\mathbf{v}).
\end{align*}
So $\alpha^* \in \mathcal{L}(W^*, V^*)$.
\end{proof}
What happens to the matrices when we take the dual map? The answer is that we get the transpose.
\begin{prop}
Let $V, W$ be finite-dimensional vector spaces over $\F$ and $\alpha: V\to W$ be a linear map. Let $(\mathbf{e}_1, \cdots, \mathbf{e}_n)$ be a basis for $V$ and $(\mathbf{f}_1, \cdots, \mathbf{f}_m)$ be a basis for $W$; $(\varepsilon_1, \cdots, \varepsilon_n)$ and $(\eta_1, \cdots, \eta_m)$ the corresponding dual bases.
Suppose $\alpha$ is represented by $A$ with respect to $(\mathbf{e}_i)$ and $(\mathbf{f}_i)$ for $V$ and $W$. Then $\alpha^*$ is represented by $A^T$ with respect to the corresponding dual bases.
\end{prop}
\begin{proof}
We are given that
\[
\alpha (\mathbf{e}_i) = \sum_{k = 1}^m A_{ki}\mathbf{f}_k.
\]
We must compute $\alpha^*(\eta_i)$. To do so, we evaluate it at $\mathbf{e}_j$. We have
\[
\alpha^*(\eta_i)(\mathbf{e}_j) = \eta_i(\alpha(\mathbf{e}_j)) = \eta_i\left(\sum_{k = 1}^m A_{kj}\mathbf{f}_k\right) = \sum_{k = 1}^m A_{kj} \delta_{ik} = A_{ij}.
\]
We can also write this as
\[
\alpha^*(\eta_i)(\mathbf{e}_j) = \sum_{k = 1}^n A_{ik} \varepsilon_k (\mathbf{e}_j).
\]
Since this is true for all $j$, we have
\[
\alpha^*(\eta_i) \sum_{k = 1}^n A_{ik}\varepsilon_k = \sum_{k = 1}^n A_{ki}^T \varepsilon_k.
\]
So done.
\end{proof}
Note that if $\alpha: U\to V$ and $\beta: V\to W$, $\theta \in W^*$, then
\[
(\beta\alpha)^*(\theta) = \theta\beta\alpha = \alpha^*(\theta\beta) = \alpha^*(\beta^*(\theta)).
\]
So we have $(\beta\alpha)^* = \alpha^*\beta^*$. This is obviously true for the finite-dimensional case, since that's how transposes of matrices work.
Similarly, if $\alpha, \beta: U \to V$, then $(\lambda\alpha + \mu\beta)^* = \lambda\alpha^* + \mu\beta^*$.
What happens when we change basis? If $B = Q^{-1}AP$ for some invertible $P$ and $Q$, then
\[
B^T = (Q^{-1}AP)^T = P^TA^T(Q^{-1})^T = ((P^{-1})^T)^{-1} A^T (Q^{-1})^T.
\]
So in the dual space, we conjugate by the dual of the change-of-basis matrices.
As we said, we can use dualization to translate problems about a vector space to its dual. The following lemma gives us some good tools to do so:
\begin{lemma}
Let $\alpha \in \mathcal{L}(V, W)$ with $V, W$ finite dimensional vector spaces over $\F$. Then
\begin{enumerate}
\item $\ker \alpha^* = (\im \alpha)^0$.
\item $r(\alpha) = r(\alpha^*)$ (which is another proof that row rank is equal to column rank).
\item $\im \alpha^* = (\ker \alpha)^0$.
\end{enumerate}
\end{lemma}
At first sight, (i) and (iii) look quite similar. However, (i) is almost trivial to prove, but (iii) is rather hard.
\begin{proof}\leavevmode
\begin{enumerate}
\item If $\theta \in W^*$, then
\begin{align*}
\theta \in \ker \alpha^* &\Leftrightarrow \alpha^*(\theta) = 0 \\
&\Leftrightarrow (\forall \mathbf{v}\in V)\; \theta \alpha(\mathbf{v}) = 0 \\
&\Leftrightarrow (\forall \mathbf{w}\in \im \alpha)\; \theta(\mathbf{w}) = 0\\
&\Leftrightarrow \theta \in (\im \alpha)^0.
\end{align*}
\item As $\im \alpha \leq W$, we've seen that
\[
\dim \im \alpha + \dim (\im \alpha)^0 = \dim W.
\]
Using (i), we see
\[
n(\alpha^*) = \dim (\im \alpha)^0.
\]
So
\[
r(\alpha) + n(\alpha^*) = \dim W = \dim W^*.
\]
By the rank-nullity theorem, we have $r(\alpha) = r(\alpha^*)$.
\item The proof in (i) doesn't quite work here. We can only show that one includes the other. To draw the conclusion, we will show that the two spaces have the dimensions, and hence must be equal.
Let $\theta \in \im \alpha^*$. Then $\theta = \phi \alpha$ for some $\phi \in W^*$. If $\mathbf{v}\in \ker\alpha$, then
\[
\theta(\mathbf{v}) = \phi(\alpha(\mathbf{v})) = \phi(\mathbf{0}) = \mathbf{0}.
\]
So $\im \alpha^* \subseteq (\ker\alpha)^0$.
But we know
\[
\dim (\ker \alpha)^0 + \dim \ker \alpha = \dim V,
\]
So we have
\[
\dim (\ker \alpha)^0 = \dim V - n(\alpha) = r(\alpha) = r(\alpha^*) = \dim \im \alpha^*.
\]
Hence we must have $\im \alpha^* = (\ker \alpha)^0$.\qedhere
\end{enumerate}
\end{proof}
Not only do we want to get from $V$ to $V^*$, we want to get back from $V^*$ to $V$. We can take the dual of $V^*$ to get a $V^{**}$. We already know that $V^{**}$ is isomorphic to $V$, since $V^*$ is isomorphic to $V$ already. However, the isomorphism between $V^*$ and $V$ are not ``natural''. To define such an isomorphism, we needed to pick a basis for $V$ and consider a dual basis. If we picked a different basis, we would get a different isomorphism. There is no natural, canonical, uniquely-defined isomorphism between $V$ and $V^*$.
However, this is not the case when we want to construct an isomorphism $V \to V^{**}$. The construction of this isomorphism is obvious once we think hard what $V^{**}$ actually means. Unwrapping the definition, we know $V^{**} = \mathcal{L}(V^*, \F)$. Our isomorphism has to produce something in $V^{**}$ given any $\mathbf{v} \in V$. This is equivalent to saying given any $\mathbf{v} \in V$ and a function $\theta \in V^*$, produce something in $\F$.
This is easy, by definition $\theta \in V^*$ is just a linear map $V \to \F$. So given $\mathbf{v}$ and $\theta$, we just return $\theta(\mathbf{v})$. We now just have to show that this is linear and is bijective.
\begin{lemma}
Let $V$ be a vector space over $\F$. Then there is a linear map $\ev: V\to (V^*)^*$ given by
\[
\ev (\mathbf{v})(\theta) = \theta(\mathbf{v}).
\]
We call this the \emph{evaluation} map.
\end{lemma}
We call this a ``canonical'' map since this does not require picking a particular basis of the vector spaces. It is in some sense a ``natural'' map.
\begin{proof}
We first show that $\ev(\mathbf{v}) \in V^{**}$ for all $\mathbf{v}\in V$, i.e.\ $\ev (\mathbf{v})$ is linear for any $\mathbf{v}$. For any $\lambda, \mu\in \F$, $\theta_1, \theta_2 \in V^*$, then for $\mathbf{v} \in V$, we have
\begin{align*}
\ev(\mathbf{v})(\lambda\theta_1 + \mu\theta_2) &= (\lambda\theta_1 + \mu\theta_2)(\mathbf{v}) \\
&= \lambda\theta_1(\mathbf{v}) + \mu\theta_2(\mathbf{v}) \\
&= \lambda\ev(\mathbf{v})(\theta_1) + \mu \ev(\mathbf{v})(\theta_2).
\end{align*}
So done. Now we show that $\ev$ itself is linear. Let $\lambda, \mu\in \F$, $\mathbf{v}_1, \mathbf{v}_2 \in V$. We want to show
\[
\ev(\lambda\mathbf{v}_1 + \mu \mathbf{v}_2) = \lambda \ev (\mathbf{v}_1) + \mu \ev(\mathbf{v}_2).
\]
To show these are equal, pick $\theta \in V^*$. Then
\begin{align*}
\ev(\lambda \mathbf{v}_1 + \mu \mathbf{v}_2)(\theta) &= \theta(\lambda\mathbf{v}_1 + \mu \mathbf{v}_2) \\
&= \lambda\theta(\mathbf{v}_1) + \mu \theta(\mathbf{v}_2) \\
&= \lambda \ev(\mathbf{v}_1)(\theta) + \mu \ev(\mathbf{v}_2)(\theta) \\
&= (\lambda \ev(\mathbf{v}_1) + \mu \ev(\mathbf{v}_2))(\theta).
\end{align*}
So done.
\end{proof}
In the special case where $V$ is finite-dimensional, this is an isomorphism.
\begin{lemma}
If $V$ is finite-dimensional, then $\ev: V \to V^{**}$ is an isomorphism.
\end{lemma}
This is very false for infinite dimensional spaces. In fact, this is true \emph{only} for finite-dimensional vector spaces (assuming the axiom of choice), and some (weird) people use this as the definition of finite-dimensional vector spaces.
\begin{proof}
We first show it is injective. Suppose $\ev(\mathbf{v}) = \mathbf{0}$ for some $\mathbf{v}\in V$. Then $\theta (\mathbf{v}) = \ev (\mathbf{v})(\theta) = 0$ for all $\theta \in V^*$. So $\dim \bra \mathbf{v}\ket^0 = \dim V^* = \dim V$. So $\dim \bra \mathbf{v} \ket = 0$. So $\mathbf{v} = 0$. So $\ev$ is injective. Since $V$ and $V^{**}$ have the same dimension, this is also surjective. So done.
\end{proof}
From now on, we will just pretend that $V$ and $V^{**}$ are the same thing, at least when $V$ is finite dimensional.
Note that this lemma does not just say that $V$ is isomorphic to $V^{**}$ (we already know that since they have the same dimension). This says there is a completely canonical way to choose the isomorphism.
In general, if $V$ is infinite dimensional, then $\ev$ is injective, but not surjective. So we can think of $V$ as a subspace of $V^{**}$ in a canonical way.
\begin{lemma}
Let $V, W$ be finite-dimensional vector spaces over $\F$ after identifying ($V$ and $V^{**}$) and ($W$ and $W^{**}$) by the evaluation map. Then we have
\begin{enumerate}
\item If $U\leq V$, then $U^{00} = U$.
\item If $\alpha\in \mathcal{L}(V, W)$, then $\alpha^{**} = \alpha$.
\end{enumerate}
\end{lemma}
\begin{proof}\leavevmode
\begin{enumerate}
\item Let $\mathbf{u} \in U$. Then $\mathbf{u}(\theta) = \theta(\mathbf{u}) = 0$ for all $\theta \in U^0$. So $\mathbf{u}$ annihilates everything in $U^0$. So $\mathbf{u} \in U^{00}$. So $U \subseteq U^{00}$. We also know that
\[
\dim U = \dim V - \dim U^0 = \dim V - (\dim V - \dim U^{00}) = \dim U^{00}.
\]
So we must have $U = U^{00}$.
\item The proof of this is basically --- the transpose of the transpose is the original matrix. The only work we have to do is to show that the dual of the dual basis is the original basis.
Let $(\mathbf{e}_1, \cdots, \mathbf{e}_n)$ be a basis for $V$ and $(\mathbf{f}_1, \cdots, \mathbf{f}_m)$ be a basis for $W$, and let $(\varepsilon_1, \cdots, \varepsilon_n)$ and $(\eta_1, \cdots, \eta_n)$ be the corresponding dual basis. We know that
\[
\mathbf{e}_i(\varepsilon_j) = \delta_{ij} = \varepsilon_j(\mathbf{e}_i),\quad \mathbf{f}_i(\eta_j) = \delta_{ij} = \eta_j(\mathbf{f}_i).
\]
So $(\mathbf{e}_1, \cdots, \mathbf{e}_n)$ is dual to $(\varepsilon_1, \cdots, \varepsilon_n)$, and similarly for $\mathbf{f}$ and $\eta$.
If $\alpha$ is represented by $A$, then $\alpha^*$ is represented by $A^T$. So $\alpha^{**}$ is represented by $(A^T)^T = A$. So done.\qedhere
\end{enumerate}
\end{proof}
\begin{prop}
Let $V$ be a finite-dimensional vector space $\F$ and $U_1$, $U_2$ are subspaces of $V$. Then we have
\begin{enumerate}
\item $(U_1 + U_2)^0 = U_1^0 \cap U_2^0$
\item $(U_1 \cap U_2)^0 = U_1^0 + U_2^0$
\end{enumerate}
\end{prop}
\begin{proof}\leavevmode
\begin{enumerate}
\item Suppose $\theta \in V^*$. Then
\begin{align*}
\theta \in (U_1 + U_2)^0 &\Leftrightarrow \theta (\mathbf{u}_1 + \mathbf{u}_2) = 0\text{ for all }\mathbf{u}_i \in U_i\\
&\Leftrightarrow \theta (\mathbf{u}) = 0\text{ for all }\mathbf{u} \in U_1 \cup U_2\\
&\Leftrightarrow \theta \in U_1^0 \cap U_2^0.
\end{align*}
\item We have
\[
(U_1 \cap U_2)^0 = ((U_1^0)^0 \cap (U_2^0)^0)^0 = (U_1^0 + U_2^0)^{00} = U_1^0 + U_2^0.
\]
So done.\qedhere
\end{enumerate}
\end{proof}
\section{Bilinear forms I}
\label{sec:bilin1}
So far, we have been looking at linear things only. This can get quite boring. For a change, we look at \emph{bi}linear maps instead. In this chapter, we will look at bilinear forms in general. It turns out there isn't much we can say about them, and hence this chapter is rather short. Later, in Chapter~\ref{sec:bilin2}, we will study some special kinds of bilinear forms which are more interesting.
\begin{defi}[Bilinear form]
Let $V, W$ be vector spaces over $\F$. Then a function $\phi: V\times W \to \F$ is a \emph{bilinear form} if it is linear in each variable, i.e.\ for each $\mathbf{v} \in V$, $\phi(\mathbf{v}, \ph): W \to \F$ is linear; for each $\mathbf{w} \in W$, $\phi(\ph, \mathbf{w}): V\to \F$ is linear.
\end{defi}
\begin{eg}
The map defined by
\begin{align*}
V\times V^* &\to \F\\
(\mathbf{v}, \theta) &\mapsto \theta(\mathbf{v}) = \ev(\mathbf{v})(\theta)
\end{align*}
is a bilinear form.
\end{eg}
\begin{eg}
Let $V = W = \F^n$. Then the function $(\mathbf{v}, \mathbf{w}) = \sum_{i = 1}^n v_i w_i$ is bilinear.
\end{eg}
\begin{eg}
If $V = W = C([0, 1], \R)$, then
\[
(f, g) \mapsto \int_0^a fg \;\d t
\]
is a bilinear form.
\end{eg}
\begin{eg}
Let $A \in \Mat_{m, n}(\F)$. Then
\begin{align*}
\phi: \F^m \times \F^n &\to \F\\
(\mathbf{v}, \mathbf{w}) &\mapsto \mathbf{v}^T A\mathbf{w}
\end{align*}
is bilinear. Note that the (real) dot product is the special case of this, where $n = m$ and $A = I$.
\end{eg}
In fact, this is the most general form of bilinear forms on finite-dimensional vector spaces.
\begin{defi}[Matrix representing bilinear form]
Let $(\mathbf{e}_1, \cdots, \mathbf{e}_n)$ be a basis for $V$ and $(\mathbf{f}_1, \cdots, \mathbf{f}_m)$ be a basis for $W$, and $\psi: V\times W \to \F$. Then the \emph{matrix $A$ representing $\psi$} with respect to the basis is defined to be
\[
A_{ij} = \psi(\mathbf{e}_i, \mathbf{f}_j).
\]
\end{defi}
Note that if $\mathbf{v} = \sum \lambda_i \mathbf{e}_i$ and $\mathbf{w} = \sum \mu_j \mathbf{f}_j$, then by linearity, we get
\begin{align*}
\psi(\mathbf{v}, \mathbf{w}) &= \psi\left(\sum \lambda_i \mathbf{e}_i, \mathbf{w}\right) \\
&= \sum_i \lambda_i \psi(\mathbf{e}_i, \mathbf{w})\\
&= \sum_i \lambda_i \psi\left(\mathbf{e}_i, \sum \mu_j \mathbf{f}_j\right)\\
&= \sum_{i, j} \lambda_i \mu_j \psi(\mathbf{e}_i, \mathbf{f}_j)\\
&= \lambda^T A \mu.
\end{align*}
So $\psi$ is determined by $A$.
We have identified linear maps with matrices, and we have identified bilinear maps with matrices. However, you shouldn't think linear maps are bilinear maps. They are, obviously, two different things. In fact, the matrices representing matrices and bilinear forms transform differently when we change basis.
\begin{prop}
Suppose $(\mathbf{e}_1, \cdots, \mathbf{e}_n)$ and $(\mathbf{v}_1, \cdots, \mathbf{v}_n)$ are basis for $V$ such that
\[
\mathbf{v}_i = \sum P_{ki}\mathbf{e}_k\text{ for all }i = 1,\cdots, n;
\]
and $(\mathbf{f}_1, \cdots, \mathbf{f}_m)$ and $(\mathbf{w}_1, \cdots, \mathbf{w}_m)$ are bases for $W$ such that
\[
\mathbf{w}_i = \sum Q_{\ell j} \mathbf{f}_\ell\text{ for all }j = 1, \cdots, m.
\]
Let $\psi: V\times W \to \F$ be a bilinear form represented by $A$ with respect to $(\mathbf{e}_1, \cdots, \mathbf{e}_n)$ and $(\mathbf{f}_1, \cdots, \mathbf{f}_m)$, and by $B$ with respect to the bases $(\mathbf{v}_1, \cdots, \mathbf{v}_n)$ and $(\mathbf{w}_1, \cdots, \mathbf{w}_m)$. Then
\[
B = P^T AQ.
\]
\end{prop}
The difference with the transformation laws of matrices is this time we are taking \emph{transposes}, not \emph{inverses}.
\begin{proof}
We have
\begin{align*}
B_{ij} &= \phi(\mathbf{v}_i, \mathbf{w}_j)\\
&= \phi\left(\sum P_{ki}\mathbf{e}_k, \sum Q_{\ell j}\mathbf{f}_\ell\right)\\
&= \sum P_{ki}Q_{\ell j}\phi(\mathbf{e}_k, \mathbf{f}_\ell)\\
&= \sum_{k, \ell} P^T_{ik} A_{k\ell} Q_{\ell j}\\
&= (P^T AQ)_{ij}.\qedhere
\end{align*}
\end{proof}
Note that while the transformation laws for bilinear forms and linear maps are different, we still get that two matrices are representing the same bilinear form with respect to different bases if and only if they are equivalent, since if $B = P^{-1} AQ$, then $B = ((P^{-1})^T)^T AQ$.
If we are given a bilinear form $\psi: V\times W \to \F$, we immediately get two linear maps:
\[
\psi_L: V\to W^*,\quad \psi_R: W \to V^*,
\]
defined by $\psi_L(\mathbf{v}) = \psi(\mathbf{v}, \ph)$ and $\psi_R(\mathbf{w}) = \psi(\ph, \mathbf{w})$.
For example, if $\psi: V\times V^* \to \F$, is defined by $(\mathbf{v}, \theta) \mapsto \theta(\mathbf{v})$, then $\psi_L: V\to V^{**}$ is the evaluation map. On the other hand, $\psi_R: V^* \to V^*$ is the identity map.
\begin{lemma}
Let $(\varepsilon_1,\cdots, \varepsilon_n)$ be a basis for $V^*$ dual to $(\mathbf{e}_1, \cdots, \mathbf{e}_n)$ of $V$; $(\eta_1,\cdots, \eta_n)$ be a basis for $W^*$ dual to $(\mathbf{f}_1, \cdots, \mathbf{f}_n)$ of $W$.
If $A$ represents $\psi$ with respect to $(\mathbf{e}_1, \cdots, \mathbf{e}_n)$ and $(\mathbf{f}_1, \cdots, \mathbf{f}_m)$, then $A$ also represents $\psi_R$ with respect to $(\mathbf{f}_1,\cdots, \mathbf{f}_m)$ and $(\varepsilon_1, \cdots, \varepsilon_n)$; and $A^T$ represents $\psi_L$ with respect to $(\mathbf{e}_1, \cdots, \mathbf{e}_n)$ and $(\eta_1, \cdots, \eta_m)$.
\end{lemma}
\begin{proof}
We just have to compute
\[
\psi_L(\mathbf{e}_i)(\mathbf{f}_j) = A_{ij} = \left(\sum A_{i\ell} \eta_\ell\right) (\mathbf{f}_j).
\]
So we get
\[
\psi_L(\mathbf{e}_i) = \sum A_{\ell i}^T\eta_\ell.
\]
So $A^T$ represents $\psi_L$.
We also have
\[
\psi_R(\mathbf{f}_j)(\mathbf{e}_i) = A_{ij}.
\]
So
\[
\psi_R(\mathbf{f}_j) = \sum A_{kj}\varepsilon_k.\qedhere
\]
\end{proof}
\begin{defi}[Left and right kernel]
The kernel of $\psi_L$ is \emph{left kernel} of $\psi$, while the kernel of $\psi_R$ is the \emph{right kernel} of $\psi$.
\end{defi}
Then by definition, $\mathbf{v}$ is in the left kernel if $\psi(\mathbf{v}, \mathbf{w}) = 0$ for all $\mathbf{w} \in W$.
More generally, if $T\subseteq V$, then we write
\[
T^\bot = \{\mathbf{w} \in W: \psi(\mathbf{t}, \mathbf{w}) = 0\text{ for all }\mathbf{t} \in T\}.
\]
Similarly, if $U\subseteq W$, then we write
\[
^\bot U = \{\mathbf{v} \in V: \psi(\mathbf{v}, \mathbf{u}) = 0\text{ for all }\mathbf{u}\in U\}.
\]
In particular, $V^\bot = \ker \psi_R$ and $^\bot W = \ker \psi_L$.
If we have a non-trivial left (or right) kernel, then in some sense, some elements in $V$ (or $W$) are ``useless'', and we don't like these.
\begin{defi}[Non-degenerate bilinear form]
$\psi$ is \emph{non-degenerate} if the left and right kernels are both trivial. We say $\psi$ is \emph{degenerate} otherwise.
\end{defi}
\begin{defi}[Rank of bilinear form]
If $\psi: V\to W$ is a bilinear form $\F$ on a finite-dimensional vector space $V$, then the \emph{rank} of $V$ is the rank of any matrix representing $\phi$. This is well-defined since $r(P^T AQ) = r(A)$ if $P$ and $Q$ are invertible.
Alternatively, it is the rank of $\psi_L$ (or $\psi_R$).
\end{defi}
\begin{lemma}
Let $V$ and $W$ be finite-dimensional vector spaces over $\F$ with bases $(\mathbf{e}_1, \cdots, \mathbf{e}_n)$ and $(\mathbf{f}_1, \cdots, \mathbf{f}_m)$ be their basis respectively.
Let $\psi: V\times W \to \F$ be a bilinear form represented by $A$ with respect to these bases. Then $\phi$ is non-degenerate if and only if $A$ is (square and) invertible. In particular, $V$ and $W$ have the same dimension.
\end{lemma}
We can understand this as saying if there are too many things in $V$ (or $W$), then some of them are bound to be useless.
\begin{proof}
Since $\psi_R$ and $\psi_L$ are represented by $A$ and $A^T$ (in some order), they both have trivial kernel if and only if $n(A) = n(A^T) = 0$. So we need $r(A) = \dim V$ and $r(A^T) = \dim W$. So we need $\dim V = \dim W$ and $A$ have full rank, i.e.\ the corresponding linear map is bijective. So done.
\end{proof}
\begin{eg}
The map
\begin{align*}
\F^2 \times \F^2 &\to \F\\
\begin{pmatrix}
a\\c
\end{pmatrix},
\begin{pmatrix}
b\\d
\end{pmatrix} &\mapsto ad - bc
\end{align*}
is a bilinear form. This, obviously, corresponds to the determinant of a 2-by-2 matrix. We have $\psi(\mathbf{v}, \mathbf{w}) = -\psi(\mathbf{w}, \mathbf{v})$ for all $\mathbf{v}, \mathbf{w}\in \F^2$.
\end{eg}
\section{Determinants of matrices}
We probably all know what the determinant is. Here we are going to give a slightly more abstract definition, and spend quite a lot of time trying motivate this definition.
Recall that $S_n$ is the group of permutations of $\{1, \cdots, n\}$, and there is a unique group homomorphism $\varepsilon: S_n \to \{\pm 1\}$ such that $\varepsilon(\sigma) = 1$ if $\sigma$ can be written as a product of an even number of transpositions; $\varepsilon(\sigma) = -1$ if $\sigma$ can be written as an odd number of transpositions. It is proved in IA Groups that this is well-defined.
\begin{defi}[Determinant]
Let $A \in \Mat_{n, n}(\F)$. Its \emph{determinant} is
\[
\det A = \sum_{\sigma \in S_n} \varepsilon(\sigma) \prod_{i = 1}^n A_{i \sigma(i)}.
\]
\end{defi}
This is a big scary definition. Hence, we will spend the first half of the chapter trying to understand what this really means, and how it behaves. We will eventually prove a formula that is useful for computing the determinant, which is probably how you were first exposed to the determinant.
\begin{eg}
If $n = 2$, then $S_2 = \{\id, (1\; 2)\}$. So
\[
\det A = A_{11}A_{22} - A_{12} A_{21}.
\]
When $n = 3$, then $S_3$ has 6 elements, and
\begin{align*}
\det A &= A_{11}A_{22}A_{33} + A_{12}A_{23}A_{31} + A_{13}A_{21}A_{32}\\
&\quad - A_{11}A_{23}A_{32} - A_{22}A_{31}A_{13} - A_{33}A_{12}A_{21}.
\end{align*}
\end{eg}
We will first prove a few easy and useful lemmas about the determinant.
\begin{lemma}
$\det A = \det A^T$.
\end{lemma}
\begin{proof}
\begin{align*}
\det A^T &= \sum_{\sigma \in S_n} \varepsilon(\sigma) \prod_{i = 1}^n A_{\sigma(i)i}\\
&= \sum_{\sigma \in S_n} \varepsilon (\sigma) \prod_{j = 1}^n A_{j \sigma^{-1}(j)}\\
&= \sum_{\tau \in S_n} \varepsilon (\tau^{-1}) \prod_{j = 1}^n A_{j \tau (j)}\\
\intertext{Since $\varepsilon(\tau) = \varepsilon(\tau^{-1})$, we get}
&= \sum_{\tau \in S_n} \varepsilon (\tau) \prod_{j = 1}^n A_{j \tau (j)}\\
&= \det A.\qedhere
\end{align*}
\end{proof}
\begin{lemma}
If $A$ is an upper triangular matrix, i.e.
\[
A =
\begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n}\\
0 & a_{22} & \cdots & a_{2n}\\
\vdots & \vdots & \ddots & \vdots\\
0 & 0 & \cdots & a_{nn}
\end{pmatrix}
\]
Then
\[
\det A = \prod_{i = 1}^n a_{ii}.
\]
\end{lemma}
\begin{proof}
We have
\[
\det A = \sum_{\sigma \in S_n} \varepsilon(\sigma) \prod_{i = 1}^n A_{i\sigma (i)}\\
\]
But $A_{i \sigma(i)} = 0$ whenever $i > \sigma(i)$. So
\[
\prod_{i = 1}^n A_{i\sigma(i)} = 0
\]
if there is some $i \in \{1, \cdots, n\}$ such that $i > \sigma(i)$.
However, the only permutation in which $i \leq \sigma(i)$ for all $i$ is the identity. So the only thing that contributes in the sum is $\sigma = \id$. So
\[
\det A = \prod_{i = 1}^n A_{ii}.\qedhere
\]
\end{proof}
To motivate this definition, we need a notion of volume. How can we define \emph{volume} on a vector space? It should be clear that the ``volume'' cannot be uniquely determined, since it depends on what units we are using. For example, saying the volume is ``$1$'' is meaningless unless we provide the units, e.g.\ $\SI{}{\centi\meter\cubed}$. So we have an axiomatic definition for what it means for something to denote a ``volume''.
\begin{defi}[Volume form]
A \emph{volume form} on $\F^n$ is a function $d: \F^n \times \cdots \times \F^n \to \F$ that is
\begin{enumerate}
\item Multilinear, i.e.\ for all $i$ and all $\mathbf{v}_1, \cdots, \mathbf{v}_{i - 1}, \mathbf{v}_{i + 1}, \cdots, \mathbf{v}_n \in \F^n$, we have
\[
\d (\mathbf{v}_1, \cdots, \mathbf{v}_{i - 1}, \ph, \mathbf{v}_{i + 1}, \cdots, \mathbf{v}_n) \in (\F^n)^*.
\]
\item Alternating, i.e.\ if $\mathbf{v}_i = \mathbf{v}_j$ for some $i \not= j$, then
\[
d(\mathbf{v}_1, \cdots, \mathbf{v}_n) = 0.
\]
\end{enumerate}
\end{defi}
We should think of $d(\mathbf{v}_1, \cdots, \mathbf{v}_n)$ as the $n$-dimensional volume of the parallelopiped spanned by $\mathbf{v}_1, \cdots, \mathbf{v}_n$.
We can view $A \in \Mat_n(\F)$ as $n$-many vectors in $\F^n$ by considering its columns $A = (A^{(1)}\; A^{(2)}\; \cdots \; A^{(n)})$, with $A^{(i)} \in \F^n$. Then we have
\begin{lemma}
$\det A$ is a volume form.
\end{lemma}
\begin{proof}
To see that $\det$ is multilinear, it is sufficient to show that each
\[
\prod_{i = 1}^n A_{i \sigma(i)}
\]
is multilinear for all $\sigma \in S_n$, since linear combinations of multilinear forms are multilinear. But each such product is contains precisely one entry from each column, and so is multilinear.
To show it is alternating, suppose now there are some $k, \ell$ distinct such that $A^{(k)} = A^{(\ell)}$. We let $\tau$ be the transposition $(k\; \ell)$. By Lagrange's theorem, we can write
\[
S_n = A_n \amalg \tau A_n,
\]
where $A_n = \ker \varepsilon$ and $\amalg$ is the disjoint union. We also know that
\[
\sum_{\sigma \in A_n} \prod_{i = 1}^n A_{i \sigma (i)} = \sum_{\sigma \in A_n} \prod_{i = 1}^n A_{i, \tau\sigma(i)},
\]
since if $\sigma(i)$ is not $k$ or $l$, then $\tau$ does nothing; if $\sigma(i)$ is $k$ or $l$, then $\tau$ just swaps them around, but $A^{(k)} = A^{(l)}$. So we get
\[
\sum_{\sigma \in A_n} \prod_{i = 1}^n A_{i \sigma (i)} = \sum_{\sigma' \in \tau A_n} \prod_{i = 1}^n A_{i\sigma'(i)},
\]
But we know that
\[
\det A = \text{LHS} - \text{RHS} = 0.
\]
So done.
\end{proof}
We have shown that determinants are volume forms, but is this the only volume form? Well obviously not, since $2 \det A$ is also a valid volume form. However, in some sense, all volume forms are ``derived'' from the determinant. Before we show that, we need the following
\begin{lemma}
Let $d$ be a volume form on $\F^n$. Then swapping two entries changes the sign, i.e.
\[
d (\mathbf{v}_1, \cdots, \mathbf{v}_i, \cdots, \mathbf{v}_j,\cdots, \mathbf{v}_n) = -d(\mathbf{v}_1, \cdots, \mathbf{v}_j, \cdots, \mathbf{v}_i, \cdots, \mathbf{v}_n).
\]
\end{lemma}
\begin{proof}
By linearity, we have
\begin{align*}
0 &= d(\mathbf{v}_1, \cdots, \mathbf{v}_i + \mathbf{v}_j, \cdots, \mathbf{v}_i + \mathbf{v}_j, \cdots,\mathbf{v}_n) \\
&= d(\mathbf{v}_1, \cdots, \mathbf{v}_i, \cdots, \mathbf{v}_i, \cdots, \mathbf{v}_n)\\
&\quad\quad+ d(\mathbf{v}_1, \cdots, \mathbf{v}_i, \cdots, \mathbf{v}_j, \cdots, \mathbf{v}_n)\\
&\quad\quad+ d(\mathbf{v}_1, \cdots, \mathbf{v}_j, \cdots, \mathbf{v}_i, \cdots, \mathbf{v}_n)\\
&\quad\quad+ d(\mathbf{v}_1, \cdots, \mathbf{v}_j, \cdots, \mathbf{v}_j, \cdots, \mathbf{v}_n)\\
&= d(\mathbf{v}_1, \cdots, \mathbf{v}_i, \cdots, \mathbf{v}_j, \cdots, \mathbf{v}_n)\\
&\quad\quad+ d(\mathbf{v}_1, \cdots, \mathbf{v}_j, \cdots, \mathbf{v}_i, \cdots, \mathbf{v}_n).
\end{align*}
So done.
\end{proof}
\begin{cor}
If $\sigma \in S_n$, then
\[
d(\mathbf{v}_{\sigma(1)}, \cdots, \mathbf{v}_{\sigma(n)}) = \varepsilon(\sigma) d(\mathbf{v}_1,\cdots, \mathbf{v}_n)
\]
for any $\mathbf{v}_i \in \F^n$.
\end{cor}
\begin{thm}
Let $d$ be any volume form on $\F^n$, and let $A = (A^{(1)}\;\cdots \;A^{(n)}) \in \Mat_n(\F)$. Then
\[
d(A^{(1)}, \cdots, A^{(n)}) = (\det A) d(\mathbf{e}_1, \cdots, \mathbf{e}_n),
\]
where $\{\mathbf{e}_1, \cdots, \mathbf{e}_n\}$ is the standard basis.
\end{thm}
\begin{proof}
We can compute
\begin{align*}
d(A^{(1)}, \cdots, A^{(n)}) &= d\left(\sum_{i = 1}^n A_{i1} \mathbf{e}_i, A^{(2)}, \cdots, A^{(n)}\right)\\
&= \sum_{i = 1}^n A_{i1} d(\mathbf{e}_i, A^{(2)}, \cdots, A^{(n)})\\
&= \sum_{i, j = 1}^n A_{i1}A_{j2}d(\mathbf{e}_i, \mathbf{e}_j, A^{(3)}, \cdots, A^{(n)})\\
&= \sum_{i_1, \cdots, i_n} d(\mathbf{e}_{i_1}, \cdots, \mathbf{e}_{i_n})\prod_{j = 1}^n A_{i_j j}.
\end{align*}
We know that lots of these are zero, since if $i_k = i_j$ for some $k, j$, then the term is zero. So we are just summing over distinct tuples, i.e.\ when there is some $\sigma$ such that $i_j = \sigma(j)$. So we get
\[
d(A^{(1)}, \cdots, A^{(n)}) = \sum_{\sigma \in S_n} d(\mathbf{e}_{\sigma(1)}, \cdots, \mathbf{e}_{\sigma(n)})\prod_{j = 1}^n A_{\sigma(j)j}.
\]
However, by our corollary up there, this is just
\[
d(A^{(1)}, \cdots, A^{(n)}) = \sum_{\sigma \in S_n} \varepsilon(\sigma) d(\mathbf{e}_1, \cdots, \mathbf{e}_n) \prod_{j = 1}^n A_{\sigma(j)j} = (\det A) d(\mathbf{e}_1, \cdots, \mathbf{e}_n).
\]
So done.
\end{proof}
We can rewrite the formula as
\[
d (A \mathbf{e}_1, \cdots, A\mathbf{e}_n) = (\det A)d(\mathbf{e}_1, \cdots, \mathbf{e}_n).
\]
It is not hard to see that the same proof gives for any $\mathbf{v}_1, \cdots, \mathbf{v}_n$, we have
\[
d(A\mathbf{v}_1, \cdots, A\mathbf{v}_n) = (\det A)d(\mathbf{v}_1, \cdots, \mathbf{v}_n).
\]
So we know that $\det A$ is the volume rescaling factor of an arbitrary parallelopiped, and this is true for \emph{any} volume form $d$.
\begin{thm}
Let $A, B \in \Mat_n(\F)$. Then $\det(AB) = \det(A)\det(B)$.
\end{thm}
\begin{proof}
Let $d$ be a non-zero volume form on $\F^n$ (e.g.\ the ``determinant''). Then we can compute
\[
d(AB\mathbf{e}_1,\cdots , AB\mathbf{e}_n) = (\det AB) d(\mathbf{e}_1,\cdots, \mathbf{e}_n),
\]
but we also have
\[
d(AB\mathbf{e}_1, \cdots, AB\mathbf{e}_n) = (\det A) d(B\mathbf{e}_1, \cdots, B\mathbf{e}_n) = (\det A)(\det B)d(\mathbf{e}_1, \cdots, \mathbf{e}_n).
\]
Since $d$ is non-zero, we must have $\det AB = \det A \det B$.
\end{proof}
\begin{cor}
If $A \in \Mat_n(\F)$ is invertible, then $\det A \not= 0$. In fact, when $A$ is invertible, then $\det (A^{-1}) = (\det A)^{-1}$.
\end{cor}
\begin{proof}
We have
\[
1 = \det I = \det(AA^{-1}) = \det A\det A^{-1}.
\]
So done.
\end{proof}
\begin{defi}[Singular matrices]
A matrix $A$ is \emph{singular} if $\det A = 0$. Otherwise, it is \emph{non-singular}.
\end{defi}
We have just shown that if $\det A = 0$, then $A$ is not invertible. Is the converse true? If $\det A \not= 0$, then can we conclude that $A$ is invertible? The answer is yes. We are now going to prove it in an abstract and clean way. We will later prove this fact again by constructing an explicit formula for the inverse, which involves dividing by the determinant. So if the determinant is non-zero, then we know an inverse exists.
\begin{thm}
Let $A \in \Mat_n(\F)$. Then the following are equivalent:
\begin{enumerate}
\item $A$ is invertible.
\item $\det A \not= 0$.
\item $r(A) = n$.
\end{enumerate}
\end{thm}
\begin{proof}
We have proved that (i) $\Rightarrow$ (ii) above, and the rank-nullity theorem implies (iii) $\Rightarrow$ (i). We will prove (ii) $\Rightarrow$ (iii). In fact we will show the contrapositive. Suppose $r(A) < n$. By rank-nullity theorem, $n(A) > 0$. So there is some $\mathbf{x} = \begin{pmatrix}\lambda_1\\\vdots\\\lambda_n\end{pmatrix}$ such that $A\mathbf{x} = \mathbf{0}$. Suppose $\lambda_k \not= 0$. We define $B$ as follows:
\[
B =
\begin{pmatrix}
1 & & & \lambda_1\\
& \ddots & & \vdots\\
& & 1 & \lambda_{k - 1}\\
& & & \lambda_k\\
& & & \lambda_{k + 1} & 1\\
& & & \vdots & & \ddots\\
& & & \lambda_n & & & 1
\end{pmatrix}
\]
So $AB$ has the $k$th column identically zero. So $\det(AB) = 0$. So it is sufficient to prove that $\det (B) \not= 0$. But $\det B = \lambda_k \not= 0$. So done.
\end{proof}
We are now going to come up with an alternative formula for the determinant (which is probably the one you are familiar with). To do so, we introduce the following notation:
\begin{notation}
Write $\hat{A}_{ij}$ for the matrix obtained from $A$ by deleting the $i$th row and $j$th column.
\end{notation}
\begin{lemma}
Let $A \in \Mat_n(\F)$. Then
\begin{enumerate}
\item We can expand $\det A$ along the $j$th column by
\[
\det A = \sum_{i = 1}^n (-1)^{i + j} A_{ij} \det \hat{A}_{ij}.
\]
\item We can expand $\det A$ along the $i$th row by
\[
\det A = \sum_{j = 1}^n (-1)^{i + j} A_{ij} \det \hat{A}_{ij}.
\]
\end{enumerate}
\end{lemma}
We could prove this directly from the definition, but that is messy and scary, so let's use volume forms instead.
\begin{proof}
Since $\det A = \det A^T$, (i) and (ii) are equivalent. So it suffices to prove just one of them. We have
\[
\det A = d(A^{(1)}, \cdots, A^{(n)}),
\]
where $d$ is the volume form induced by the determinant. Then we can write as
\begin{align*}
\det A &= d\left(A^{(1)}, \cdots, \sum_{i = 1}^n A_{ij} \mathbf{e}_i, \cdots, A^{(n)}\right)\\
&= \sum_{i = 1}^n A_{ij} d(A^{(1)}, \cdots, \mathbf{e}_i, \cdots, A^{(n)})
\end{align*}
The volume form on the right is the determinant of a matrix with the $j$th column replaced with $\mathbf{e}_i$. We can move our columns around so that our matrix becomes
\[
B =
\begin{pmatrix}
\hat{A}_{ij} & 0\\
\mathrm{stuff} & 1
\end{pmatrix}
\]
We get that $\det B = \det \hat{A}^{ij}$, since the only permutations that give a non-zero sum are those that send $n$ to $n$. In the row and column swapping, we have made $n - j$ column transpositions and $n - i$ row transpositions. So we have
\begin{align*}
\det A &= \sum_{i = 1}^n A_{ij} (-1)^{n - j} (-1)^{n - i}\det B\\
&= \sum_{i = 1}^n A_{ij} (-1)^{i + j} \det \hat{A}_{ij}.\qedhere
\end{align*}
\end{proof}
This is not only useful for computing determinants, but also computing inverses.
\begin{defi}[Adjugate matrix]
Let $A \in \Mat_n(\F)$. The \emph{adjugate matrix} of $A$, written $\adj A$, is the $n\times n$ matrix such that $(\adj A)_{ij} = (-1)^{i + j} \det\hat{A}_{ji}$.
\end{defi}
The relevance is the following result:
\begin{thm}
If $A \in \Mat_n(\F)$, then $A(\adj A) = (\det A) I_n = (\adj A)A$. In particular, if $\det A \not= 0$, then
\[
A^{-1} = \frac{1}{\det A}\adj A.
\]
\end{thm}
Note that this is \emph{not} an efficient way to compute the inverse.
\begin{proof}
We compute
\[
[(\adj A)A]_{jk} = \sum_{i = 1}^n (\adj A)_{ji} A_{ik} = \sum_{i = 1}^n (-1)^{i + j} \det\hat{A}_{ij} A_{ik}.\tag{$*$}
\]
So if $j = k$, then $[(\adj A)A]_{jk} = \det A$ by the lemma.
Otherwise, if $j \not= k$, consider the matrix $B$ obtained from $A$ by replacing the $j$th column by the $k$th column. Then the right hand side of $(*)$ is just $\det B$ by the lemma. But we know that if two columns are the same, the determinant is zero. So the right hand side of $(*)$ is zero. So
\[
[(\adj A)A]_{jk} = \det A \delta_{jk}
\]
The calculation for $[A\adj A] = (\det A) I_n$ can be done in a similar manner, or by considering $(A\adj A)^T = (\adj A)^T A^T = (\adj (A^T)) A^T = (\det A) I_n$.
\end{proof}
Note that the coefficients of $(\adj A)$ are just given by polynomials in the entries of $A$, and so is the determinant. So if $A$ is invertible, then its inverse is given by a rational function (i.e.\ ratio of two polynomials) in the entries of $A$.
This is very useful theoretically, but not computationally, since the polynomials are very large. There are better ways computationally, such as Gaussian elimination.
We'll end with a useful tricks to compute the determinant.
\begin{lemma}
Let $A, B$ be square matrices. Then for any $C$, we have
\begin{align*}
\det
\begin{pmatrix}
A & C\\
0 & B
\end{pmatrix}
= (\det A) (\det B).
\end{align*}
\end{lemma}
\begin{proof}
Suppose $A\in \Mat_k(\F)$, and $B\in \Mat_{\ell}(\F)$, so $C \in \Mat_{k, \ell}(\F)$. Let
\[
X =
\begin{pmatrix}
A & C\\
0 & B
\end{pmatrix}.
\]
Then by definition, we have
\[
\det X = \sum_{\sigma \in S_{k + \ell}}\varepsilon(\sigma) \prod_{i = 1}^{k + \ell} X_{i\sigma(i)}.
\]
If $j \leq k$ and $i > k$, then $X_{ij} = 0$. We only want to sum over permutations $\sigma$ such that $\sigma(i) > k$ if $i > k$. So we are permuting the last $j$ things among themselves, and hence the first $k$ things among themselves. So we can decompose this into $\sigma = \sigma_1 \sigma_2$, where $\sigma_1$ is a permutation of $\{1, \cdots, k\}$ and fixes the remaining things, while $\sigma_2$ fixes $\{1, \cdots, k\}$, and permutes the remaining. Then
\begin{align*}
\det X &= \sum_{\sigma = \sigma_1\sigma_2}\varepsilon(\sigma_1\sigma_2) \prod_{i = 1}^k X_{i\sigma_1(i)} \prod_{j = 1}^\ell X_{k + j\; \sigma_2(k + j)}\\
&= \left(\sum_{\sigma_1 \in S_k} \varepsilon(\sigma_1) \prod_{i = 1}^k A_{i\sigma_1(i)}\right)\left(\sum_{\sigma_2 \in S_\ell} \varepsilon(\sigma_2) \prod_{j = 1}^\ell B_{j\sigma_2(j)}\right)\\
&= (\det A)(\det B)
\end{align*}
\end{proof}
\begin{cor}
\[
\det
\begin{pmatrix}
A_1 & & & \mathrm{stuff}\\
& A_2\\
& & \ddots\\
0 & & & A_n
\end{pmatrix} = \prod_{i = 1}^n \det A_i
\]
\end{cor}
\section{Endomorphisms}
Endomorphisms are linear maps from a vector space $V$ to itself. One might wonder --- why would we want to study these linear maps in particular, when we can just work with arbitrary linear maps from any space to any other space?
When we work with arbitrary linear maps, we are free to choose any basis for the domain, and any basis for the co-domain, since it doesn't make sense to require they have the ``same'' basis. Then we proved that by choosing the right bases, we can put matrices into a nice form with only $1$'s in the diagonal.
However, when working with endomorphisms, we can require ourselves to use the same basis for the domain and co-domain, and there is much more we can say. One major objective is to classify all matrices up to similarity, where two matrices are similar if they represent the same endomorphism under different bases.
\subsection{Invariants}
\begin{defi}
If $V$ is a (finite-dimensional) vector space over $\F$. An \emph{endomorphism} of $V$ is a linear map $\alpha: V \to V$. We write $\End(V)$ for the $\F$-vector space of all such linear maps, and $I$ for the identity map $V \to V$.
\end{defi}
When we think about matrices representing an endomorphism of $V$, we'll use the same basis for the domain and the range. We are going to study some properties of these endomorphisms that are not dependent on the basis we pick, known as \emph{invariants}.
\begin{lemma}
Suppose $(\mathbf{e}_1, \cdots, \mathbf{e}_n)$ and $(\mathbf{f}_1, \cdots, \mathbf{f}_n)$ are bases for $V$ and $\alpha \in \End(V)$. If $A$ represents $\alpha$ with respect to $(\mathbf{e}_1, \cdots, \mathbf{e}_n)$ and $B$ represents $\alpha$ with respect to $(\mathbf{f}_1,\cdots, \mathbf{f}_n)$, then
\[
B = P^{-1}AP,
\]
where $P$ is given by
\[
\mathbf{f}_i = \sum_{j = 1}^n P_{ji}\mathbf{e}_j.
\]
\end{lemma}
\begin{proof}
This is merely a special case of an earlier more general result for arbitrary maps and spaces.
\end{proof}
\begin{defi}[Similar matrices]
We say matrices $A$ and $B$ are \emph{similar} or \emph{conjugate} if there is some $P$ invertible such that $B = P^{-1}AP$.
\end{defi}
Recall that $\GL_n(\F)$, the group of invertible $n\times n$ matrices. $\GL_n(\F)$ acts on $\Mat_n(\F)$ by conjugation:
\[
(P, A) \mapsto PAP^{-1}.
\]
We are conjugating it this way so that the associativity axiom holds (otherwise we get a \emph{right} action instead of a \emph{left} action). Then $A$ and $B$ are similar iff they are in the same orbit. Since orbits always partition the set, this is an equivalence relation.
Our main goal is to classify the orbits, i.e.\ find a ``nice'' representative for each orbit.
Our initial strategy is to identify basis-independent invariants for endomorphisms. For example, we will show that the rank, trace, determinant and characteristic polynomial are all such invariants.
Recall that the trace of a matrix $A \in \Mat_n(\F)$ is the sum of the diagonal elements:
\begin{defi}[Trace]
The \emph{trace} of a matrix of $A \in \Mat_n(\F)$ is defined by
\[
\tr A = \sum_{i = 1}^n A_{ii}.
\]
\end{defi}
We want to show that the trace is an invariant. In fact, we will show a stronger statement (as well as the corresponding statement for determinants):
\begin{lemma}\leavevmode
\begin{enumerate}
\item If $A \in \Mat_{m, n}(\F)$ and $B\in \Mat_{n, m}(\F)$, then
\[
\tr AB = \tr BA.
\]
\item If $A, B \in \Mat_n(\F)$ are similar, then $\tr A = \tr B$.
\item If $A, B \in \Mat_n(\F)$ are similar, then $\det A = \det B$.
\end{enumerate}
\end{lemma}
\begin{proof}\leavevmode
\begin{enumerate}
\item We have
\[
\tr AB = \sum_{i = 1}^m (AB)_{ii} = \sum_{i = 1}^m \sum_{j = 1}^n A_{ij}B_{ji} = \sum_{j = 1}^n \sum_{i = 1}^m B_{ji}A_{ij} = \tr BA.
\]
\item Suppose $B = P^{-1}AP$. Then we have
\[
\tr B = \tr (P^{-1}(AP)) = \tr ((AP)P^{-1}) = \tr A.
\]
\item We have
\[
\det (P^{-1}AP) = \det P^{-1} \det A \det P = (\det P)^{-1} \det A \det P = \det A.\qedhere
\]%\qedhere
\end{enumerate}
\end{proof}
This allows us to define the trace and determinant of an \emph{endomorphism}.
\begin{defi}[Trace and determinant of endomorphism]
Let $\alpha \in \End(V)$, and $A$ be a matrix representing $\alpha$ under any basis. Then the \emph{trace} of $\alpha$ is $\tr \alpha = \tr A$, and the \emph{determinant} is $\det \alpha = \det A$.
\end{defi}
The lemma tells us that the determinant and trace are well-defined. We can also define the determinant without reference to a basis, by defining more general volume forms and define the determinant as a scaling factor.
The trace is slightly more tricky to define without basis, but in IB Analysis II example sheet 4, you will find that it is the directional derivative of the determinant at the origin.
To talk about the characteristic polynomial, we need to know what eigenvalues are.
\begin{defi}[Eigenvalue and eigenvector]
Let $\alpha \in \End(V)$. Then $\lambda \in \F$ is an \emph{eigenvalue} (or E-value) if there is some $\mathbf{v} \in V\setminus \{0\}$ such that $\alpha \mathbf{v} = \lambda \mathbf{v}$.
$\mathbf{v}$ is an \emph{eigenvector} if $\alpha(\mathbf{v}) = \lambda \mathbf{v}$ for some $\lambda \in \F$.
When $\lambda \in \F$, the \emph{$\lambda$-eigenspace}, written $E_\alpha(\lambda)$ or $E(\lambda)$ is the subspace of $V$ containing all the $\lambda$-eigenvectors, i.e.
\[
E_\alpha(\lambda) = \ker (\lambda \iota - \alpha).
\]
where $\iota$ is the identity function.
\end{defi}
\begin{defi}[Characteristic polynomial]
The \emph{characteristic polynomial} of $\alpha$ is defined by
\[
\chi_\alpha(t) = \det (t\iota - \alpha).
\]
\end{defi}
You might be used to the definition $\chi_\alpha(t) = \det(\alpha - t \iota)$ instead. These two definitions are obviously equivalent up to a factor of $-1$, but this definition has an advantage that $\chi_\alpha(t)$ is always monic, i.e.\ the leading coefficient is $1$. However, when doing computations in reality, we often use $\det (\alpha - t\iota)$ instead, since it is easier to negate $t \iota$ than $\alpha$.
We know that $\lambda$ is an eigenvalue of $\alpha$ iff $n(\alpha - \lambda \iota) > 0$ iff $r(\alpha - \lambda \iota) < \dim V$ iff $\chi_\alpha(\lambda) = \det(\lambda \iota - \alpha) = 0$. So the eigenvalues are precisely the roots of the characteristic polynomial.
If $A \in \Mat_n(\F)$, we can define $\chi_A(t) = \det (tI - A)$.
\begin{lemma}
If $A$ and $B$ are similar, then they have the same characteristic polynomial.
\end{lemma}
\begin{proof}
\[
\det (tI - P^{-1}AP) = \det(P^{-1}(tI - A)P) = \det(tI - A).\qedhere
\]
\end{proof}
\begin{lemma}
Let $\alpha \in \End(V)$ and $\lambda_1, \cdots, \lambda_k$ distinct eigenvalues of $\alpha$. Then
\[
E(\lambda_1) + \cdots + E(\lambda_k) = \bigoplus_{i = 1}^k E(\lambda_i)
\]
is a direct sum.
\end{lemma}
\begin{proof}
Suppose
\[
\sum_{i = 1}^k \mathbf{x}_i = \sum_{i = 1}^k \mathbf{y}_i,
\]
with $\mathbf{x}_i, \mathbf{y}_i \in E(\lambda_i)$. We want to show that they are equal. We are going to find some clever map that tells us what $\mathbf{x}_i$ and $\mathbf{y}_i$ are. Consider $\beta_j \in \End(V)$ defined by
\[
\beta_j = \prod_{r \not= j} (\alpha - \lambda_r \iota).
\]
Then
\begin{align*}
\beta_j\left(\sum_{i = 1}^k \mathbf{x}_i\right) &= \sum_{i = 1}^k \prod_{r \not= j}(\alpha - \lambda_{r}\iota)(\mathbf{x}_i)\\
&= \sum_{i = 1}^k \prod_{r\not= j} (\lambda_i - \lambda_r)(\mathbf{x}_i).
\intertext{Each summand is zero, unless $i \not= j$. So this is equal to}
\beta_j\left(\sum_{i = 1}^k \mathbf{x}_i\right) &= \prod_{r \not= j}(\lambda_j - \lambda_r) (\mathbf{x}_j).
\end{align*}
Similarly, we obtain
\[
\beta_j\left(\sum_{i = 1}^k \mathbf{y}_i\right) = \prod_{r \not= j}(\lambda_j - \lambda_r) (\mathbf{y}_j).
\]
Since we know that $\sum \mathbf{x}_i = \sum \mathbf{y}_i$, we must have
\[
\prod_{r \not= j}(\lambda_j - \lambda_r) \mathbf{x}_j = \prod_{r \not= j} (\lambda_j- \lambda_r)\mathbf{y}_j.
\]
Since we know that $\prod_{r \not= j} (\lambda_r - \lambda_j) \not= 0$, we must have $\mathbf{x}_i = \mathbf{y}_i$ for all $i$.
So each expression for $\sum \mathbf{x}_i$ is unique.
\end{proof}
The proof shows that any set of non-zero eigenvectors with distinct eigenvalues is linearly independent.
\begin{defi}[Diagonalizable]
We say $\alpha \in \End(V)$ is diagonalizable if there is some basis for $V$ such that $\alpha$ is represented by a diagonal matrix, i.e.\ all terms not on the diagonal are zero.
\end{defi}
These are in some sense the nice matrices we like to work with.
\begin{thm}
Let $\alpha \in \End(V)$ and $\lambda_1, \cdots, \lambda_k$ be distinct eigenvalues of $\alpha$. Write $E_i$ for $E(\lambda_i)$. Then the following are equivalent:
\begin{enumerate}
\item $\alpha$ is diagonalizable.
\item $V$ has a basis of eigenvectors for $\alpha$.
\item $V = \bigoplus_{i = 1}^k E_i$.
\item $\dim V = \sum_{i = 1}^k \dim E_i$.
\end{enumerate}
\end{thm}
\begin{proof}\leavevmode
\begin{itemize}
\item (i) $\Leftrightarrow$ (ii): Suppose $(\mathbf{e}_1, \cdots, \mathbf{e}_n)$ is a basis for $V$. Then
\[
\alpha(\mathbf{e}_i) = A_{ji} \mathbf{e}_j,
\]
where $A$ represents $\alpha$. Then $A$ is diagonal iff each $\mathbf{e}_i$ is an eigenvector. So done
\item (ii) $\Leftrightarrow$ (iii): It is clear that (ii) is true iff $\sum E_i = V$, but we know that this must be a direct sum. So done.
\item (iii) $\Leftrightarrow$ (iv): This follows from example sheet 1 Q10, which says that $V = \bigoplus_{i = 1}^k E_i$ iff the bases for $E_i$ are disjoint and their union is a basis of $V$.\qedhere
\end{itemize}
\end{proof}
\subsection{The minimal polynomial}
\subsubsection{Aside on polynomials}
Before we talk about minimal polynomials, we first talk about polynomials in general.
\begin{defi}[Polynomial]
A \emph{polynomial} over $\F$ is an object of the form
\[
f(t) = a_m t^m + a_{m - 1}t^{m - 1} + \cdots + a_1 t + a_0,
\]
with $m \geq 0, a_0, \cdots, a_m \in \F$.
We write $\F[t]$ for the set of polynomials over $\F$.
\end{defi}
Note that we don't identify a polynomial $f$ with the corresponding function it represents. For example, if $\F = \Z/p\Z$, then $t^p$ and $t$ are different polynomials, even though they define the same function (by Fermat's little theorem/Lagrange's theorem). Two polynomials are equal if and only if they have the same coefficients.
However, we will later see that if $\F$ is $\R$ or $\C$, then polynomials are equal if and only if they represent the same function, and this distinction is not as important.
\begin{defi}[Degree]
Let $f \in \F[t]$. Then the \emph{degree} of $f$, written $\deg f$ is the largest $n$ such that $a_n \not= 0$. In particular, $\deg 0 = -\infty$.
\end{defi}
Notice that $\deg fg = \deg f + \deg g$ and $\deg f + g \leq \max\{\deg f, \deg g\}$.
\begin{lemma}[Polynomial division]
If $f, g \in \F[t]$ (and $g \not= 0$), then there exists $q, r \in \F[t]$ with $\deg r < \deg g$ such that
\[
f = qg + r.
\]
\end{lemma}
Proof is omitted.
\begin{lemma}
If $\lambda \in \F$ is a root of $f$, i.e.\ $f(\lambda) = 0$, then there is some $g$ such that
\[
f(t) = (t - \lambda) g(t).
\]
\end{lemma}
\begin{proof}
By polynomial division, let
\[
f(t) = (t - \lambda)g(t) + r(t)
\]
for some $g(t), r(t) \in \F[t]$ with $\deg r < \deg (t - \lambda) = 1$. So $r$ has to be constant, i.e.\ $r(t) = a_0$ for some $a_0 \in \F$. Now evaluate this at $\lambda$. So
\[
0 = f(\lambda) = (\lambda - \lambda)g(\lambda) + r(\lambda) = a_0.
\]
So $a_0 = 0$. So $r = 0$. So done.
\end{proof}
\begin{defi}[Multiplicity of a root]
Let $f \in \F[t]$ and $\lambda$ a root of $f$. We say $\lambda$ has \emph{multiplicity} $k$ if $(t - \lambda)^k$ is a factor of $f$ but $(t - \lambda)^{k + 1}$ is not, i.e.
\[
f(t) = (t - \lambda)^k g(t)
\]
for some $g(t) \in \F[t]$ with $g(\lambda) \not= 0$.
\end{defi}
We can use the last lemma and induction to show that any non-zero $f \in \F[t]$ can be written as
\[
f = g(t) \prod_{i = 1}^k (t - \lambda_i)^{a_i},
\]
where $\lambda_1, \cdots, \lambda_k$ are all distinct, $a_i > 1$, and $g$ is a polynomial with no roots in $\F$.
Hence we obtain the following:
\begin{lemma}
A non-zero polynomial $f \in \F[t]$ has at most $\deg f$ roots, counted with multiplicity.
\end{lemma}
\begin{cor}
Let $f, g \in \F[t]$ have degree $<n$. If there are $\lambda_1, \cdots, \lambda_n$ distinct such that $f(\lambda_i) = g(\lambda_i)$ for all $i$, then $f = g$.
\end{cor}
\begin{proof}
Given the lemma, consider $f - g$. This has degree less than $n$, and $(f - g)(\lambda_i) = 0$ for $i = 1, \cdots, n$. Since it has at least $n \geq \deg(f - g)$ roots, we must have $f - g = 0$. So $f = g$.
\end{proof}
\begin{cor}
If $\F$ is infinite, then $f$ and $g$ are equal if and only if they agree on all points.
\end{cor}
More importantly, we have the following:
\begin{thm}[The fundamental theorem of algebra]
Every non-constant polynomial over $\C$ has a root in $\C$.
\end{thm}
We will not prove this.
We say $\C$ is an \emph{algebraically closed field}.
It thus follows that every polynomial over $\C$ of degree $n > 0$ has precisely $n$ roots, counted with multiplicity, since if we write $f(t) = g(t)\prod (t - \lambda_i)^{a_i}$ and $g$ has no roots, then $g$ is constant. So the number of roots is $\sum a_i = \deg f$, counted with multiplicity.
It also follows that every polynomial in $\R$ factors into linear polynomials and quadratic polynomials with no real roots (since complex roots of real polynomials come in complex conjugate pairs).
\subsubsection{Minimal polynomial}
\begin{notation}
Given $f(t) = \sum_{i = 0}^m a_i t^i \in \F[t]$, $A \in \Mat_n(\F)$ and $\alpha \in \End(V)$, we can write
\[
f(A) = \sum_{i = 0}^m a_i A^i,\quad f(\alpha) = \sum_{i = 0}^m a_i \alpha^i
\]
where $A^0 = I$ and $\alpha^0 = \iota$.
\end{notation}
\begin{thm}[Diagonalizability theorem]
Suppose $\alpha \in \End(V)$. Then $\alpha$ is diagonalizable if and only if there exists non-zero $p(t) \in \F[t]$ such that $p(\alpha) = 0$, and $p(t)$ can be factored as a product of \emph{distinct} linear factors.
\end{thm}
\begin{proof}
Suppose $\alpha$ is diagonalizable. Let $\lambda_1, \cdots, \lambda_k$ be the distinct eigenvalues of $\alpha$. We have
\[
V = \bigoplus_{i = 1}^k E(\lambda_i).
\]
So each $\mathbf{v} \in V$ can be written (uniquely) as
\[
\mathbf{v} = \sum_{i = 1}^k \mathbf{v}_i \text{ with }\alpha(\mathbf{v}_i) = \lambda_i \mathbf{v}_i.
\]
Now let
\[
p(t) = \prod_{i = 1}^k (t - \lambda_i).
\]
Then for any $\mathbf{v}$, we get
\[
p(\alpha) (\mathbf{v}) = \sum_{i = 1}^k p(\alpha) (\mathbf{v}_i) = \sum_{i = 1}^k p(\lambda_i) \mathbf{v}_i = \mathbf{0}.
\]
So $p(\alpha) = 0$. By construction, $p$ has distinct linear factors.
Conversely, suppose we have our polynomial
\[
p(t) = \prod_{i = 1}^k (t - \lambda_i),
\]
with $\lambda_1, \cdots, \lambda_k \in \F$ distinct, and $p(\alpha) = 0$ (we can wlog assume $p$ is monic, i.e.\ the leading coefficient is $1$). We will show that
\[
V = \sum_{i = 1}^k E_\alpha(\lambda_i).
\]
In other words, we want to show that for all $\mathbf{v} \in V$, there is some $\mathbf{v}_i \in E_\alpha(\lambda_i)$ for $i = 1, \cdots, k$ such that $\mathbf{v} = \sum \mathbf{v}_i$.
To find these $\mathbf{v}_i$ out, we let
\[
q_j(t) = \prod_{i \not= j} \frac{t - \lambda_i}{\lambda_j - \lambda_i}.
\]
This is a polynomial of degree $k - 1$, and $q_j(\lambda_i) = \delta_{ij}$.
Now consider
\[
q(t) = \sum_{i = 1}^k q_i(t).
\]
We still have $\deg q \leq k - 1$, but $q(\lambda_i) = 1$ for any $i$. Since $q$ and $1$ agree on $k$ points, we must have $q = 1$.
Let $\pi_j: V\to V$ be given by $\pi_j = q_j(\alpha)$. Then the above says that
\[
\sum_{j = 1}^k \pi_j = \iota.
\]
Hence given $\mathbf{v} \in V$, we know that $\mathbf{v} = \sum \pi_j \mathbf{v}$.
We now check that $\pi_j \mathbf{v} \in E_\alpha (\lambda_j)$. This is true since
\[
(\alpha - \lambda_j\iota) \pi_j \mathbf{v} =\frac{1}{\prod_{i \not= j}(\lambda_j - \lambda_i)} \prod_{i = 1}^k (\alpha - \lambda_\iota) (\mathbf{v}) = \frac{1}{\prod_{i \not= j}(\lambda_j - \lambda_i)} p(\alpha) (\mathbf{v}) = \mathbf{0}.
\]
So
\[
\alpha \mathbf{v}_j = \lambda_j \mathbf{v}_j.
\]
So done.
\end{proof}
In the above proof, if $\mathbf{v} \in E_\alpha(\lambda_i)$, then $\pi_j(\mathbf{v}) = \delta_{ij}\mathbf{v}$. So $\pi_i$ is a projection onto the $E_\alpha(\lambda_i)$.
\begin{defi}[Minimal polynomial]
The \emph{minimal polynomial} of $\alpha \in \End(V)$ is the non-zero monic polynomial $M_\alpha(t)$ of least degree such that $M_\alpha(\alpha) = 0$.
\end{defi}
The monic requirement is just for things to look nice, since we can always divide by the leading coefficient of a polynomial to get a monic version.
Note that if $A$ represents $\alpha$, then for all $p \in \F[t]$, $p(A)$ represents $p(\alpha)$. Thus $p(\alpha)$ is zero iff $p(A) = 0$. So the minimal polynomial of $\alpha$ is the minimal polynomial of $A$ if we define $M_A$ analogously.
There are two things we want to know --- whether the minimal polynomial exists, and whether it is unique.
Existence is always guaranteed in finite-dimensional cases. If $\dim V = n < \infty$, then $\dim \End(V) = n^2$. So $\iota, \alpha, \alpha^2, \cdots, \alpha^{n^2}$ are linearly dependent. So there are some $\lambda_0, \cdots, \lambda_{n^2} \in \F$ not all zero such that
\[
\sum_{i = 0}^{n^2} \lambda_i \alpha^i = 0.
\]
So $\deg M_\alpha \leq n^2$. So we must have a minimal polynomial.
To show that the minimal polynomial is unique, we will prove the following stronger characterization of the minimal polynomial:
\begin{lemma}
Let $\alpha \in \End(V)$, and $p \in \F[t]$. Then $p(\alpha) = 0$ if and only if $M_\alpha(t)$ is a factor of $p(t)$. In particular, $M_\alpha$ is unique.
\end{lemma}
\begin{proof}
For all such $p$, we can write $p(t) = q(t) M_\alpha(t) + r(t)$ for some $r$ of degree less than $\deg M_\alpha$. Then
\[
p(\alpha) = q(\alpha) M_\alpha(\alpha) + r(\alpha).
\]
So if $r(\alpha) = 0$ iff $p(\alpha) = 0$. But $\deg r < \deg M_\alpha$. By the minimality of $M_\alpha$, we must have $r(\alpha) = 0$ iff $r = 0$. So $p(\alpha) = 0$ iff $M_\alpha(t) \mid p(t)$.
So if $M_1$ and $M_2$ are both minimal polynomials for $\alpha$, then $M_1 \mid M_2$ and $M_2 \mid M_1$. So $M_2$ is just a scalar multiple of $M_1$. But since $M_1$ and $M_2$ are monic, they must be equal.
\end{proof}
\begin{eg}
Let $V = \F^2$, and consider the following matrices:
\[
A =
\begin{pmatrix}
1 & 0\\
0 & 1
\end{pmatrix},\quad
B =
\begin{pmatrix}
1 & 1\\
0 & 1
\end{pmatrix}.
\]
Consider the polynomial $p(t) = (t - 1)^2$. We can compute $p(A) = p(B) = 0$. So $M_A(t)$ and $M_B(t)$ are factors of $(t - 1)^2$. There aren't many factors of $(t - 1)^2$. So the minimal polynomials are either $(t - 1)$ or $(t - 1)^2$. Since $A - I = 0$ and $B - I \not= 0$, the minimal polynomial of $A$ is $t - 1$ and the minimal polynomial of $B$ is $(t - 1)^2$.
\end{eg}
We can now re-state our diagonalizability theorem.
\begin{thm}[Diagonalizability theorem 2.0]
Let $\alpha \in \End(V)$. Then $\alpha$ is diagonalizable if and only if $M_\alpha(t)$ is a product of its distinct linear factors.
\end{thm}
\begin{proof}
$(\Leftarrow)$ This follows directly from the previous diagonalizability theorem.
$(\Rightarrow)$ Suppose $\alpha$ is diagonalizable. Then there is some $p\in \F[t]$ non-zero such that $p(\alpha) = 0$ and $p$ is a product of distinct linear factors. Since $M_\alpha$ divides $p$, $M_\alpha$ also has distinct linear factors.
\end{proof}
\begin{thm}
Let $\alpha, \beta \in \End(V)$ be both diagonalizable. Then $\alpha$ and $\beta$ are simultaneously diagonalizable (i.e.\ there exists a basis with respect to which both are diagonal) if and only if $\alpha\beta = \beta\alpha$.
\end{thm}
This is important in quantum mechanics. This means that if two operators do not commute, then they do not have a common eigenbasis. Hence we have the uncertainty principle.
\begin{proof}
$(\Rightarrow)$ If there exists a basis $(\mathbf{e}_1, \cdots, \mathbf{e}_n)$ for $V$ such that $\alpha$ and $\beta$ are represented by $A$ and $B$ respectively, with both diagonal, then by direct computation, $AB = BA$. But $AB$ represents $\alpha\beta$ and $BA$ represents $\beta\alpha$. So $\alpha\beta = \beta\alpha$.
$(\Leftarrow)$ Suppose $\alpha\beta = \beta\alpha$. The idea is to consider each eigenspace of $\alpha$ individually, and then diagonalize $\beta$ in each of the eigenspaces. Since $\alpha$ is diagonalizable, we can write
\[
V = \bigoplus_{i = 1}^k E_\alpha(\lambda_i),
\]
where $\lambda_i$ are the eigenvalues of $V$. We write $E_i$ for $E_\alpha (\lambda_i)$. We want to show that $\beta$ sends $E_i$ to itself, i.e.\ $\beta(E_i) \subseteq E_i$. Let $\mathbf{v} \in E_i$. Then we want $\beta(\mathbf{v})$ to be in $E_i$. This is true since
\[
\alpha(\beta(\mathbf{v})) = \beta(\alpha(\mathbf{v})) = \beta(\lambda_i \mathbf{v}) = \lambda_i \beta(\mathbf{v}).
\]
So $\beta(\mathbf{v})$ is an eigenvector of $\alpha$ with eigenvalue $\lambda_i$.
Now we can view $\beta|_{E_i} \in \End(E_i)$. Note that
\[
M_\beta(\beta|_{E_i}) = M_\beta(\beta)|_{E_i} = 0.
\]
Since $M_\beta(t)$ is a product of its distinct linear factors, it follows that $\beta|_{E_i}$ is diagonalizable. So we can choose a basis $B_i$ of eigenvectors for $\beta|_{E_i}$. We can do this for \emph{all} $i$.
Then since $V$ is a direct sum of the $E_i$'s, we know that $B = \bigcup_{i = 1}^k B_i$ is a basis for $V$ consisting of eigenvectors for both $\alpha$ and $\beta$. So done.
\end{proof}
\subsection{The Cayley-Hamilton theorem}
We will first state the theorem, and then prove it later.
Recall that $\chi_\alpha(t) = \det (t\iota - \alpha)$ for $\alpha \in \End(V)$. Our main theorem of the section (as you might have guessed from the title) is
\begin{thm}[Cayley-Hamilton theorem]
Let $V$ be a finite-dimensional vector space and $\alpha \in \End(V)$. Then $\chi_\alpha(\alpha) = 0$, i.e.\ $M_\alpha(t) \mid \chi_\alpha(t)$. In particular, $\deg M_\alpha \leq n$.
\end{thm}
We will not prove this yet, but just talk about it first. It is tempting to prove this by substituting $t = \alpha$ into $\det(t\iota - \alpha)$ and get $\det (\alpha - \alpha) = 0$, but this is meaningless, since what the statement $\chi_\alpha(t) = \det (t\iota - \alpha)$ tells us to do is to expand the determinant of the matrix
\[
\begin{pmatrix}
t - a_{11} & a_{12} & \cdots & a_{1n}\\
a_{21} & t - a_{22} & \cdots & a_{2n}\\
\vdots & \vdots & \ddots & \vdots\\
a_{n1} & a_{n2} & \cdots & t - a_{nn}
\end{pmatrix}
\]
to obtain a polynomial, and we clearly cannot substitute $t = A$ in this expression. However, we can later show that we can use this idea to prove it, but just be a bit more careful.
Note also that if $\rho(t) \in \F[t]$ and
\[
A =
\begin{pmatrix}
\lambda_1 &\\
& \ddots\\
& & \lambda_n
\end{pmatrix},
\]
then
\[
\rho(A) =
\begin{pmatrix}
\rho(\lambda_1) &\\
& \ddots\\
& & \rho(\lambda_n)
\end{pmatrix}.
\]
Since $\chi_A(t)$ is defined as $\prod_{i = 1}^n (t - \lambda_i)$, it follows that $\chi_A(A) = 0$. So if $\alpha$ is diagonalizable, then the theorem is clear.
This was easy. Diagonalizable matrices are nice. The next best thing we can look at is upper-triangular matrices.
\begin{defi}[Triangulable]
An endomorphism $\alpha \in \End(V)$ is \emph{triangulable} if there is a basis for $V$ such that $\alpha$ is represented by an upper triangular matrix
\[
\begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n}\\
0 & a_{22} & \cdots & a_{2n}\\
\vdots & \vdots & \ddots & \vdots\\
0 & 0 & \cdots & a_{nn}
\end{pmatrix}.
\]
\end{defi}
We have a similar lemma telling us when matrices are triangulable.
\begin{lemma}
An endomorphism $\alpha$ is triangulable if and only if $\chi_\alpha(t)$ can be written as a product of linear factors, not necessarily distinct. In particular, if $\F = \C$ (or any algebraically closed field), then every endomorphism is triangulable.
\end{lemma}
\begin{proof}
Suppose that $\alpha$ is triangulable and represented by
\[
\begin{pmatrix}
\lambda_1 & * & \cdots & *\\
0 & \lambda_2 & \cdots & *\\
\vdots & \vdots & \ddots & \vdots\\
0 & 0 & \cdots & \lambda_n
\end{pmatrix}.
\]
Then
\[
\chi_\alpha(t) = \det
\begin{pmatrix}
t - \lambda_1 & * & \cdots & *\\
0 & t - \lambda_2 & \cdots & *\\
\vdots & \vdots & \ddots & \vdots\\
0 & 0 & \cdots & t - \lambda_n
\end{pmatrix} =
\prod_{i = 1}^n (t - \lambda_i).
\]
So it is a product of linear factors.
We are going to prove the converse by induction on the dimension of our space. The base case $\dim V = 1$ is trivial, since every $1\times 1$ matrix is already upper triangular.
Suppose $\alpha \in \End(V)$ and the result holds for all spaces of dimensions $< \dim V$, and $\chi_\alpha$ is a product of linear factors. In particular, $\chi_\alpha(t)$ has a root, say $\lambda \in \F$.
Now let $U = E(\lambda) \not= 0$, and let $W$ be a complementary subspace to $U$ in $V$, i.e.\ $V = U \oplus W$. Let $\mathbf{u}_1, \cdots, \mathbf{u}_r$ be a basis for $U$ and $\mathbf{w}_{r + 1}, \cdots, \mathbf{w}_n$ be a basis for $W$ so that $\mathbf{u}_1, \cdots, \mathbf{u}_{r}, \mathbf{w}_{r + 1}, \cdots, \mathbf{w}_n$ is a basis for $V$, and $\alpha$ is represented by
\[
\begin{pmatrix}
\lambda I_r & \text{stuff}\\
0 & B
\end{pmatrix}
\]
We know $\chi_\alpha(t) = (t - \lambda)^r \chi_B(t)$. So $\chi_B(t)$ is also a product of linear factors. We let $\beta: W\to W$ be the map defined by $B$ with respect to $\mathbf{w}_{r + 1}, \cdots, \mathbf{w}_n$.
(Note that in general, $\beta$ is not $\alpha|_W$ in general, since $\alpha$ does not necessarily map $W$ to $W$. However, we can say that $(\alpha - \beta) (\mathbf{w}) \in U$ for all $\mathbf{w}\in W$. This can be much more elegantly expressed in terms of quotient spaces, but unfortunately that is not officially part of the course)
Since $\dim W < \dim V$, there is a basis $\mathbf{v}_{r + 1}, \cdots, \mathbf{v}_n$ for $W$ such that $\beta$ is represented by $C$, which is upper triangular.
For $j = 1, \cdots, n - r$, we have
\[
\alpha(\mathbf{v}_{j + r}) = \mathbf{u} + \sum_{k = 1}^{n - r} C_{kj} \mathbf{v}_{k + r}
\]
for some $\mathbf{u} \in U$. So $\alpha$ is represented by
\[
\begin{pmatrix}
\lambda I_r & \text{stuff}\\
0 & C
\end{pmatrix}
\]
with respect to $(\mathbf{u}_1, \cdots, \mathbf{u}_r, \mathbf{v}_{r + 1}, \cdots, \mathbf{v}_n)$, which is upper triangular.
\end{proof}
\begin{eg}
Consider the real rotation matrix
\[
\begin{pmatrix}
\cos \theta & \sin \theta\\
-\sin \theta & \cos \theta
\end{pmatrix}.
\]
This is \emph{not} similar to a real upper triangular matrix (if $\theta$ is not an integer multiple of $\pi$). This is since the eigenvalues are $e^{\pm i\theta}$ and are not real. On the other hand, as a complex matrix, it is triangulable, and in fact diagonalizable since the eigenvalues are distinct.
\end{eg}
For this reason, in the rest of the section, we are mostly going to work in $\C$. We can now prove the Cayley-Hamilton theorem.
\begin{thm}[Cayley-Hamilton theorem]
Let $V$ be a finite-dimensional vector space and $\alpha \in \End(V)$. Then $\chi_\alpha(\alpha) = 0$, i.e.\ $M_\alpha(t) \mid \chi_\alpha(t)$. In particular, $\deg M_\alpha \leq n$.
\end{thm}
\begin{proof}
In this proof, we will work over $\C$. By the lemma, we can choose a basis $\{\mathbf{e}_1, \cdots, \mathbf{e}_n\}$ is represented by an upper triangular matrix.
\[
A =
\begin{pmatrix}
\lambda_1 & * & \cdots & *\\
0 & \lambda_2 & \cdots & *\\
\vdots & \vdots & \ddots & \vdots\\
0 & 0 & \cdots & \lambda_n
\end{pmatrix}.
\]
We must prove that
\[
\chi_\alpha(\alpha) = \chi_A(\alpha) = \prod_{i = 1}^n (\alpha - \lambda_i \iota) = 0.
\]
Write $V_j = \bra \mathbf{e}_1, \cdots, \mathbf{e}_j\ket$. So we have the inclusions
\[
V_0 = 0 \subseteq V_1 \subseteq \cdots \subseteq V_{n - 1} \subseteq V_n = V.
\]
We also know that $\dim V_j = j$. This increasing sequence is known as a \emph{flag}.
Now note that since $A$ is upper-triangular, we get
\[
\alpha(\mathbf{e}_i) = \sum_{k = 1}^i A_{ki} \mathbf{e}_k \in V_i.
\]
So $\alpha (V_j)\subseteq V_j$ for all $j = 0, \cdots, n$.
Moreover, we have
\[
(\alpha - \lambda_j\iota)(\mathbf{e}_j) = \sum_{k = 1}^{j - 1} A_{kj}\mathbf{e}_k \subseteq V_{j - 1}
\]
for all $j = 1, \cdots, n$. So every time we apply one of these things, we get to a smaller space. Hence by induction on $n - j$, we have
\[
\prod_{i = j}^n (\alpha - \lambda_i \iota) (V_n) \subseteq V_{j - 1}.
\]
In particular, when $j = 1$, we get
\[
\prod_{i = 1}^n (\alpha - \lambda_i \iota) (V) \subseteq V_0 = 0.
\]
So $\chi_\alpha(\alpha) = 0$ as required.
Note that if our field $\F$ is not $\C$ but just a subfield of $\C$, say $\R$, we can just pretend it is a complex matrix, do the same proof.
\end{proof}
We can see this proof more ``visually'' as follows: for simplicity of expression, we suppose $n = 4$. In the basis where $\alpha$ is upper-triangular, the matrices $A - \lambda_i I$ look like this
\begin{align*}
A - \lambda_1 I &=
\begin{pmatrix}
0 & * & * & *\\
0 & * & * & *\\
0 & 0 & * & *\\
0 & 0 & 0 & *
\end{pmatrix}&
A - \lambda_2 I &=
\begin{pmatrix}
* & * & * & *\\
0 & 0 & * & *\\
0 & 0 & * & *\\
0 & 0 & 0 & *
\end{pmatrix}\\
A - \lambda_3 I &=
\begin{pmatrix}
* & * & * & *\\
0 & * & * & *\\
0 & 0 & 0 & *\\
0 & 0 & 0 & *
\end{pmatrix}&
A - \lambda_4 I &=
\begin{pmatrix}
* & * & * & *\\
0 & * & * & *\\
0 & 0 & * & *\\
0 & 0 & 0 & 0
\end{pmatrix}
\end{align*}
Then we just multiply out directly (from the right):
\begin{align*}
\prod_{i = 1}^4 (A - \lambda_i I) &=
\begin{pmatrix}
0 & * & * & *\\
0 & * & * & *\\
0 & 0 & * & *\\
0 & 0 & 0 & *
\end{pmatrix}
\begin{pmatrix}
* & * & * & *\\
0 & 0 & * & *\\
0 & 0 & * & *\\
0 & 0 & 0 & *
\end{pmatrix}
\begin{pmatrix}
* & * & * & *\\
0 & * & * & *\\
0 & 0 & 0 & *\\
0 & 0 & 0 & *
\end{pmatrix}
\begin{pmatrix}
* & * & * & *\\
0 & * & * & *\\
0 & 0 & * & *\\
0 & 0 & 0 & 0
\end{pmatrix}\\
&=
\begin{pmatrix}
0 & * & * & *\\
0 & * & * & *\\
0 & 0 & * & *\\
0 & 0 & 0 & *
\end{pmatrix}
\begin{pmatrix}
* & * & * & *\\
0 & 0 & * & *\\
0 & 0 & * & *\\
0 & 0 & 0 & *
\end{pmatrix}
\begin{pmatrix}
* & * & * & *\\
0 & * & * & *\\
0 & 0 & 0 & 0\\
0 & 0 & 0 & 0
\end{pmatrix}\\
&=
\begin{pmatrix}
0 & * & * & *\\
0 & * & * & *\\
0 & 0 & * & *\\
0 & 0 & 0 & *
\end{pmatrix}
\begin{pmatrix}
* & * & * & *\\
0 & 0 & 0 & 0\\
0 & 0 & 0 & 0\\
0 & 0 & 0 & 0
\end{pmatrix}\\
&=
\begin{pmatrix}
0 & 0 & 0 & 0\\
0 & 0 & 0 & 0\\
0 & 0 & 0 & 0\\
0 & 0 & 0 & 0
\end{pmatrix}.
\end{align*}
This is exactly what we showed in the proof --- after multiplying out the first $k$ elements of the product (counting from the right), the image is contained in the span of the first $n - k$ basis vectors.
\begin{proof}
We'll now prove the theorem again, which is somewhat a formalization of the ``nonsense proof'' where we just substitute $t = \alpha$ into $\det (\alpha - t\iota)$.
Let $\alpha$ be represented by $A$, and $B = tI - A$. Then
\[
B\adj B = \det B I_n = \chi_\alpha(t) I_n.
\]
But we know that $\adj B$ is a matrix with entries in $\F[t]$ of degree at most $n - 1$. So we can write
\[
\adj B = B_{n - 1}t^{n - 1} + B_{n - 2}t^{n - 2} + \cdots + B_0,
\]
with $B_i \in \Mat_n (\F)$. We can also write
\[
\chi_\alpha(t) = t^n + a_{n - 1}t^{n - 1} + \cdots + a_0.
\]
Then we get the result
\[
(tI_n - A) (B_{n - 1}t^{n - 1} + B_{n - 2} t^{n - 2} + \cdots + B_0) = (t^n + a_{n - 1} t^{n - 1} + \cdots + a_0)I_n.
\]
We would like to just throw in $t = A$, and get the desired result, but in all these derivations, $t$ is assumed to be a real number, and, $tI_n - A$ is the matrix
\[
\begin{pmatrix}
t - a_{11} & a_{12} & \cdots & a_{1n}\\
a_{21} & t - a_{22} & \cdots & a_{2n}\\
\vdots & \vdots & \ddots & \vdots\\
a_{n1} & a_{n2} & \cdots & t - a_{nn}
\end{pmatrix}
\]
It doesn't make sense to put our $A$ in there.
However, what we \emph{can} do is to note that since this is true for all values of $t$, the coefficients on both sides must be equal. Equating coefficients in $t^k$, we have
\begin{align*}
-A B_0 &= a_0I_n\\
B_0 - AB_1 &= a_1I_n\\
&\vdots\\
B_{n - 2} - AB_{n - 1} &= a_{n - 1}I_n\\
AB_{n - 1} - 0 &= I_n
\end{align*}
We now multiply each row a suitable power of $A$ to obtain
\begin{align*}
-A B_0 &= a_0 I_n\\
A B_0 - A^2B_1 &= a_1 A\\
&\;\;\vdots\\
A^{n - 1}B_{n - 2} - A^n B_{n - 1} &= a_{n - 1} A^{n - 1}\\
A^{n}B_{n - 1} - 0 &= A^n.
\end{align*}
Summing this up then gives $\chi_\alpha(A) = 0$.
\end{proof}
This proof suggests that we \emph{really} ought to be able to just substitute in $t = \alpha$ and be done. In fact, we can do this, after we develop sufficient machinery. This will be done in the IB Groups, Rings and Modules course.
\begin{lemma}
Let $\alpha \in \End(V), \lambda \in \F$. Then the following are equivalent:
\begin{enumerate}
\item $\lambda$ is an eigenvalue of $\alpha$.
\item $\lambda$ is a root of $\chi_\alpha(t)$.
\item $\lambda$ is a root of $M_\alpha(t)$.
\end{enumerate}
\end{lemma}
\begin{proof}\leavevmode
\begin{itemize}
\item (i) $\Leftrightarrow$ (ii): $\lambda$ is an eigenvalue of $\alpha$ if and only if $(\alpha - \lambda \iota)(\mathbf{v}) = 0$ has a non-trivial root, iff $\det(\alpha - \lambda \iota) = 0$.
\item (iii) $\Rightarrow$ (ii): This follows from Cayley-Hamilton theorem since $M_\alpha \mid \chi_\alpha$.
\item (i) $\Rightarrow$ (iii): Let $\lambda$ be an eigenvalue, and $\mathbf{v}$ be a corresponding eigenvector. Then by definition of $M_\alpha$, we have
\[
M_\alpha(\alpha)(\mathbf{v}) = 0(\mathbf{v}) = 0.
\]
We also know that
\[
M_\alpha(\alpha)(\mathbf{v}) = M_\alpha(\lambda)\mathbf{v}.
\]
Since $\mathbf{v}$ is non-zero, we must have $M_\alpha(\lambda) =0$.
\item (iii) $\Rightarrow$ (i): This is not necessary since it follows from the above, but we could as well do it explicitly. Suppose $\lambda$ is a root of $M_\alpha(t)$. Then $M_\alpha(t) = (t - \lambda) g(t)$ for some $g \in \F[t]$. But $\deg g < \deg M_\alpha$. Hence by minimality of $M_\alpha$, we must have $g(\alpha) \not= 0$. So there is some $\mathbf{v}\in V$ such that $g(\alpha)(\mathbf{v}) \not=0$. Then
\[
(\alpha - \lambda\iota)g(\alpha)(\mathbf{v}) = M_\alpha(\alpha)\mathbf{v} = 0.
\]
So we must have $\alpha (g(\alpha)(\mathbf{v})) = \lambda g(\alpha)(\mathbf{v})$. So $g(\alpha)(\mathbf{v}) \in E_\alpha(\lambda) \setminus \{0\}$. So (i) holds.\qedhere
\end{itemize}
\end{proof}
\begin{eg}
What is the minimal polynomial of
\[
A =
\begin{pmatrix}
1 & 0 & -2\\
0 & 1 & 1\\
0 & 0 & 2
\end{pmatrix}?
\]
We can compute $\chi_A(t) = (t - 1)^2 (t - 2)$. So we know that the minimal polynomial is one of $(t - 1)^2(t - 2)$ and $(t - 1)(t - 2)$.
By direct and boring computations, we can find $(A - I)(A - 2I) = 0$. So we know that $M_A(t) = (t - 1)(t - 2)$. So $A$ is diagonalizable.
\end{eg}
\subsection{Multiplicities of eigenvalues and Jordan normal form}
We will want to put our matrices in their ``Jordan normal forms'', which is a unique form for each equivalence class of similar matrices. The following properties will help determine which Jordan normal form a matrix can have.
\begin{defi}[Algebraic and geometry multiplicity]
Let $\alpha \in \End (V)$ and $\lambda$ an eigenvalue of $\alpha$. Then
\begin{enumerate}
\item The \emph{algebraic multiplicity} of $\lambda$, written $a_\lambda$, is the multiplicity of $\lambda$ as a root of $\chi_\alpha(t)$.
\item The \emph{geometric multiplicity} of $\lambda$, written $g_\lambda$, is the dimension of the corresponding eigenspace, $\dim E_\alpha(\lambda)$.
\item $c_\lambda$ is the multiplicity of $\lambda$ as a root of the minimal polynomial $m_\alpha(t)$.
\end{enumerate}
\end{defi}
We will look at some extreme examples:
\begin{eg}\leavevmode
\begin{itemize}
\item Let
\[
A =
\begin{pmatrix}
\lambda & 1 & \cdots & 0\\
0 & \lambda & \ddots & \vdots\\
\vdots & \vdots & \ddots & 1\\
0 & 0 & \cdots & \lambda
\end{pmatrix}.
\]
We will later show that $a_\lambda = n = c_\lambda$ and $g_\lambda = 1$.
\item Consider $A = \lambda I$. Then $a_\lambda = g_\lambda = n$, $c_\lambda = 1$.
\end{itemize}
\end{eg}
\begin{lemma}
If $\lambda$ is an eigenvalue of $\alpha$, then
\begin{enumerate}
\item $1 \leq g_\lambda \leq a_\lambda$
\item $1 \leq c_\lambda \leq a_\lambda$.
\end{enumerate}
\end{lemma}
\begin{proof}\leavevmode
\begin{enumerate}
\item The first inequality is easy. If $\lambda$ is an eigenvalue, then $E(\lambda) \not= 0$. So $g_\lambda = \dim E(\lambda) \geq 1$. To prove the other inequality, if $\mathbf{v}_1, \cdots, \mathbf{v}_g$ is a basis for $E(\lambda)$, then we can extend it to a basis for $V$, and then $\alpha$ is represented by
\[
\begin{pmatrix}
\lambda I_g & *\\
0 & B
\end{pmatrix}
\]
So $\chi_\alpha(t) = (t - \lambda)^g \chi_B(t)$. So $a_\lambda > g = g_\lambda$.
\item This is straightforward since $M_\alpha(\lambda) = 0$ implies $1 \leq c_\lambda$, and since $M_\alpha(t) \mid \chi_\alpha(t)$, we know that $c_\lambda \leq \alpha_\lambda$.\qedhere
\end{enumerate}
\end{proof}
\begin{lemma}
Suppose $\F = \C$ and $\alpha \in \End(V)$. Then the following are equivalent:
\begin{enumerate}
\item $\alpha$ is diagonalizable.
\item $g_\lambda = a_\lambda$ for all eigenvalues of $\alpha$.
\item $c_\lambda = 1$ for all $\lambda$.
\end{enumerate}
\end{lemma}
\begin{proof}\leavevmode
\begin{itemize}
\item (i) $\Leftrightarrow$ (ii): $\alpha$ is diagonalizable iff $\dim V = \sum \dim E_\alpha (\lambda_i)$. But this is equivalent to
\[
\dim V = \sum g_{\lambda_i} \leq \sum a_{\lambda_i} = \deg \chi_\alpha = \dim V.
\]
So we must have $\sum g_{\lambda_i} = \sum a_{\lambda_i}$. Since each $g_{\lambda_i}$ is at most $a_{\lambda_i}$, they must be individually equal.
\item (i) $\Leftrightarrow$ (iii): $\alpha$ is diagonalizable if and only if $M_\alpha(t)$ is a product of distinct linear factors if and only if $c_\lambda = 1$ for all eigenvalues $\lambda$.\qedhere
\end{itemize}
\end{proof}
\begin{defi}[Jordan normal form]
We say $A \in \Mat_N(\C)$ is in \emph{Jordan normal form} if it is a block diagonal of the form
\[
\begin{pmatrix}
J_{n_1}(\lambda_1) & & & 0\\
& J_{n_2}(\lambda_2)\\
& & \ddots\\\
0 & & & J_{n_k} (\lambda_k)
\end{pmatrix}
\]
where $k \geq 1$, $n_1, \cdots, n_k \in \N$ such that $n = \sum n_i$, $\lambda_1, \cdots, \lambda_k$ not necessarily distinct, and
\[
J_m (\lambda) =
\begin{pmatrix}
\lambda & 1 & \cdots & 0\\
0 & \lambda & \ddots & \vdots\\
\vdots & \vdots & \ddots & 1\\
0 & 0 & \cdots & \lambda
\end{pmatrix}
\]
is an $m \times m$ matrix. Note that $J_m(\lambda) = \lambda I_m + J_m(0)$.
\end{defi}
For example, it might look something like
\[\arraycolsep=1.4pt
\begin{pmatrix}
\lambda_1 & 1\\
& \lambda_1 & 1\\
& & \lambda_1 & 0\\
& & & \lambda_2 & 0\\
& & & & \lambda_3 & 1\\
& & & & & \lambda_3 & 0\\
& & & & & & \ddots & \ddots\\
& & & & & & & \lambda_n & 1\\
& & & & & & & & \lambda_n
\end{pmatrix}
\]
with all other entries zero.
Then we have the following theorem:
\begin{thm}[Jordan normal form theorem]
Every matrix $A \in \Mat_n(\C)$ is similar to a matrix in Jordan normal form. Moreover, this Jordan normal form matrix is unique up to permutation of the blocks.
\end{thm}
This is a complete solution to the classification problem of matrices, at least in $\C$. We will not prove this completely. We will only prove the uniqueness part, and then reduce the existence part to a special form of endomorphisms. The remainder of the proof is left for IB Groups, Rings and Modules.
We can rephrase this result using linear maps. If $\alpha \in \End(V)$ is an endomorphism of a finite-dimensional vector space $V$ over $\C$, then the theorem says there exists a basis such that $\alpha$ is represented by a matrix in Jordan normal form, and this is unique as before.
Note that the permutation thing is necessary, since if two matrices in Jordan normal form differ only by a rearrangement of blocks, then they are similar, by permuting the basis.
\begin{eg}
Every $2\times 2$ matrix in Jordan normal form is one of the three types:
\begin{center}
\begin{tabular}{cccc}
\toprule
Jordan normal form & $\chi_A$ & $M_A$\\
\midrule
$\begin{pmatrix} \lambda & 0\\ 0 & \lambda \end{pmatrix}$ & $(t - \lambda)^2$ & $(t - \lambda)$\\\addlinespace
$\begin{pmatrix} \lambda & 0\\ 0 & \mu \end{pmatrix}$ & $(t - \lambda)(t - \mu)$ & $(t - \lambda)(t - \mu)$\\\addlinespace
$\begin{pmatrix} \lambda & 1\\ 0 & \lambda \end{pmatrix}$ & $(t - \lambda)^2$ & $(t - \lambda)^2$\\
\bottomrule
\end{tabular}
\end{center}
with $\lambda, \mu \in \C$ distinct. We see that $M_A$ determines the Jordan normal form of $A$, but $\chi_A$ does not.
Every $3\times 3$ matrix in Jordan normal form is one of the six types. Here $\lambda_1, \lambda_2$ and $\lambda_3$ are distinct complex numbers.
\begin{center}
\begin{tabular}{ccccccc}
\toprule
Jordan normal form & $\chi_A$ & $M_A$\\
\midrule
$\begin{pmatrix} \lambda_1 & 0 & 0\\ 0 & \lambda_2 & 0\\ 0 & 0 & \lambda_3 \end{pmatrix}$ & $(t - \lambda_1)(t - \lambda_2)(t- \lambda_3)$ & $(t - \lambda_1)(t - \lambda_2)(t- \lambda_3)$\\\addlinespace
$\begin{pmatrix} \lambda_1 & 0 & 0\\ 0 & \lambda_1 & 0\\ 0 & 0 & \lambda_2 \end{pmatrix}$ & $(t - \lambda_1)^2 (t - \lambda_2)$ & $(t - \lambda_1) (t - \lambda_2)$\\\addlinespace
$\begin{pmatrix} \lambda_1 & 1 & 0\\ 0 & \lambda_1 & 0\\ 0 & 0 & \lambda_2 \end{pmatrix}$ & $(t - \lambda_1)^2 (t - \lambda_2)$ & $(t - \lambda_1)^2 (t - \lambda_2)$\\\addlinespace
$\begin{pmatrix} \lambda_1 & 0 & 0\\ 0 & \lambda_1 & 0\\ 0 & 0 & \lambda_1 \end{pmatrix}$ & $(t - \lambda_1)^3$ & $(t - \lambda_1)$\\\addlinespace
$\begin{pmatrix} \lambda_1 & 1 & 0\\ 0 & \lambda_1 & 0\\ 0 & 0 & \lambda_1 \end{pmatrix}$ & $(t - \lambda_1)^3$ & $(t - \lambda_1)^2$\\\addlinespace
$\begin{pmatrix} \lambda_1 & 1 & 0\\ 0 & \lambda_1 & 1\\ 0 & 0 & \lambda_1 \end{pmatrix}$ & $(t - \lambda_1)^3$ & $(t - \lambda_1)^3$\\
\bottomrule
\end{tabular}
\end{center}
Notice that $\chi_A$ and $M_A$ together determine the Jordan normal form of a $3\times 3$ complex matrix. We do indeed need $\chi_A$ in the second case, since if we are given $M_A = (t - \lambda_1)(t - \lambda_2)$, we know one of the roots is double, but not which one.
\end{eg}
In general, though, even $\chi_A$ and $M_A$ together does not suffice.
We now want to understand the Jordan normal blocks better. Recall the definition
\[
J_n(\lambda) =
\begin{pmatrix}
\lambda & 1 & \cdots & 0\\
0 & \lambda & \ddots & \vdots\\
\vdots & \vdots & \ddots & 1\\
0 & 0 & \cdots & \lambda
\end{pmatrix} = \lambda I_n + J_n(0).
\]
If $(\mathbf{e}_1, \cdots, \mathbf{e}_n)$ is the standard basis for $\C^n$, we have
\[
J_n(0)(\mathbf{e}_1) = 0, \quad J_n(0) (\mathbf{e}_i) = \mathbf{e}_{i - 1}\text{ for } 2\leq i \leq n.
\]
Thus we know
\[
J_n(0)^k(\mathbf{e}_i) =
\begin{cases}
0 & i \leq k\\
\mathbf{e}_{i - k} & k < i \leq n
\end{cases}
\]
In other words, for $k < n$, we have
\[
(J_n(\lambda) - \lambda I)^k = J_n(0)^k =
\begin{pmatrix}
0 & I_{n - k}\\
0 & 0
\end{pmatrix}.
\]
If $k \geq n$, then we have $(J_n(\lambda) - \lambda I)^k = 0$.
Hence we can summarize this as
\[
n((J_m(\lambda) - \lambda I_m)^r) = \min\{r, m\}.
\]
Note that if $A = J_n(\lambda)$, then $\chi_A(t) = M_A(t) = (t - \lambda)^n$. So $\lambda$ is the only eigenvalue of $A$. So $a_\lambda = c_\lambda = n$. We also know that $n(A - \lambda I) = n - r(A - \lambda I) = 1$. So $g_\lambda = 1$.
Recall that a general Jordan normal form is a block diagonal matrix of Jordan blocks. We have just studied individual Jordan blocks. Next, we want to look at some properties of block diagonal matrices in general. If $A$ is the block diagonal matrix
\[
A =
\begin{pmatrix}
A_1\\
& A_2\\
& & \ddots\\
& & & A_k
\end{pmatrix},
\]
then
\[
\chi_A(t) = \prod_{i = 1}^k \chi_{A_i}(k).
\]
Moreover, if $\rho \in \F[t]$, then
\[
\rho (A) =
\begin{pmatrix}
\rho(A_1)\\
& \rho(A_2)\\
& & \ddots\\
& & & \rho(A_k)
\end{pmatrix}.
\]
Hence
\[
M_A(t) = \lcm (M_{A_1}(t), \cdots, M_{A_k} (t)).
\]
By the rank-nullity theorem, we have
\[
n(\rho(A)) = \sum_{i = 1}^k n(\rho(A_i)).
\]
Thus if $A$ is in Jordan normal form, we get the following:
\begin{itemize}
\item $g_\lambda$ is the number of Jordan blocks in $A$ with eigenvalue $\lambda$.
\item $a_\lambda$ is the sum of sizes of the Jordan blocks of $A$ with eigenvalue $\lambda$.
\item $c_\lambda$ is the size of the largest Jordan block with eigenvalue $\lambda$.
\end{itemize}
We are now going to prove the uniqueness part of Jordan normal form theorem.
\begin{thm}
Let $\alpha \in \End(V)$, and $A$ in Jordan normal form representing $\alpha$. Then the number of Jordan blocks $J_n(\lambda)$ in $A$ with $n \geq r$ is
\[
n((\alpha - \lambda\iota)^r) - n((\alpha - \lambda\iota)^{r - 1}).
\]
\end{thm}
This is clearly independent of the choice of basis. Also, given this information, we can figure out how many Jordan blocks of size exactly $n$ by doing the right subtraction. Hence this tells us that Jordan normal forms are unique up to permutation of blocks.
\begin{proof}
We work blockwise for
\[
A =
\begin{pmatrix}
J_{n_1}(\lambda_1)\\
& J_{n_2}(\lambda_2)\\
& & \ddots\\\
& & & J_{n_k} (\lambda_k)
\end{pmatrix}.
\]
We have previously computed
\[
n((J_m(\lambda) - \lambda I_m)^r) =
\begin{cases}
r & r \leq m\\
m & r > m
\end{cases}.
\]
Hence we know
\[
n((J_m(\lambda) - \lambda I_m)^r) - n((J_m(\lambda) - \lambda I_m)^{r - 1}) =
\begin{cases}
1 & r \leq m\\
0 & \text{otherwise}.
\end{cases}
\]
It is also easy to see that for $\mu \not= \lambda$,
\[
n((J_m(\mu) - \lambda I_m)^r) = n(J_m(\mu - \lambda)^r) = 0
\]
Adding up for each block, for $r \geq 1$, we have
\[
n((\alpha - \lambda \iota)^r) - n((\alpha - \lambda \iota)^{r - 1}) =\text{ number of Jordan blocks }J_n(\lambda)\text{ with } n \geq r.\qedhere
\]
\end{proof}
We can interpret this result as follows: if $r \leq m$, when we take an additional power of $J_m(\lambda) - \lambda I_m$, we get from $\begin{pmatrix}0 & I_{m - r}\\ 0 & 0\end{pmatrix}$ to $\begin{pmatrix}0 & I_{m - r - 1}\\ 0 & 0\end{pmatrix}$. So we kill off one more column in the matrix, and the nullity increase by one. This happens until $(J_m(\lambda) - \lambda I_m)^r = 0$, in which case increasing the power no longer affects the matrix. So when we look at the difference in nullity, we are counting the number of blocks that are affected by the increase in power, which is the number of blocks of size at least $r$.
We have now proved uniqueness, but existence is not yet clear. To show this, we will reduce it to the case where there is exactly one eigenvalue. This reduction is easy if the matrix is diagonalizable, because we can decompose the matrix into each eigenspace and then work in the corresponding eigenspace. In general, we need to work with ``generalized eigenspaces''.
\begin{thm}[Generalized eigenspace decomposition]
Let $V$ be a finite-dimensional vector space $\C$ such that $\alpha \in \End(V)$. Suppose that
\[
M_\alpha(t) = \prod_{i = 1}^k (t - \lambda_i)^{c_i},
\]
with $\lambda_1, \cdots, \lambda_k \in \C$ distinct. Then
\[
V = V_1 \oplus \cdots \oplus V_k,
\]
where $V_i = \ker((\alpha - \lambda_i \iota)^{c_i})$ is the \emph{generalized eigenspace}.
\end{thm}
This allows us to decompose $V$ into a block diagonal matrix, and then each block will only have one eigenvalue.
Note that if $c_1 = \cdots = c_k = 1$, then we recover the diagonalizability theorem. Hence, it is not surprising that the proof of this is similar to the diagonalizability theorem. We will again prove this by constructing projection maps to each of the $V_i$.
\begin{proof}
Let
\[
p_j(t) = \prod_{i \not= j} (t - \lambda_i)^{c_i}.
\]
Then $p_1, \cdots, p_k$ have no common factors, i.e.\ they are coprime. Thus by Euclid's algorithm, there exists $q_1, \cdots, q_k \in \C[t]$ such that
\[
\sum p_i q_i = 1.
\]
We now define the endomorphism
\[
\pi_j = q_j(\alpha) p_j(\alpha)
\]
for $j = 1, \cdots, k$.
Then $\sum \pi_j = \iota$. Since $M_\alpha(\alpha) = 0$ and $M_\alpha(t) = (t - \lambda_j \iota)^{c_j} p_j(t)$, we get
\[
(\alpha - \lambda_j \iota)^{c_j} \pi_j = 0.
\]
So $\im \pi_j \subseteq V_j$.
Now suppose $\mathbf{v} \in V$. Then
\[
\mathbf{v} = \iota (\mathbf{v}) = \sum_{j = 1}^k \pi_j (\mathbf{v}) \in \sum V_j.
\]
So
\[
V = \sum V_j.
\]
To show this is a direct sum, note that $\pi_i \pi_j = 0$, since the product contains $M_\alpha(\alpha)$ as a factor. So
\[
\pi_i = \iota \pi_i = \left(\sum \pi_j\right) \pi_i = \pi_i^2.
\]
So $\pi$ is a projection, and $\pi_j|_{V_j} = \iota_{V_j}$. So if $\mathbf{v} = \sum \mathbf{v}_i$, then applying $\pi_i$ to both sides gives $\mathbf{v}_i = \pi_i (\mathbf{v})$. Hence there is a unique way of writing $\mathbf{v}$ as a sum of things in $V_i$. So $V = \bigoplus V_j$ as claimed.
\end{proof}
Note that we didn't really use the fact that the vector space is over $\C$, except to get that the minimal polynomial is a product of linear factors. In fact, for arbitrary vector spaces, if the minimal polynomial of a matrix is a product of linear factors, then it can be put into Jordan normal form. The converse is also true --- if it can be put into Jordan normal form, then the minimal polynomial is a product of linear factors, since we've seen that a necessary and sufficient condition for the minimal polynomial to be a product of linear factors is for there to be a basis in which the matrix is upper triangular.
Using this theorem, by restricting $\alpha$ to its generalized eigenspaces, we can reduce the existence part of the Jordan normal form theorem to the case $M_\alpha(t) = (t - \lambda)^c$. Further by replacing $\alpha$ by $\alpha - \lambda \iota$, we can reduce this to the case where $0$ is the only eigenvalue.
\begin{defi}[Nilpotent]
We say $\alpha \in \End(V)$ is nilpotent if there is some $r$ such that $\alpha^r = 0$.
\end{defi}
Over $\C$, $\alpha$ is nilpotent if and only if the only eigenvalue of $\alpha$ is $0$. This is since $\alpha$ is nilpotent if the minimal polynomial is $t^r$ for some $r$.
We've now reduced the problem of classifying complex endomorphisms to the classifying nilpotent endomorphisms. This is the point where we stop. For the remainder of the proof, see IB Groups, Rings and Modules. There is in fact an elementary proof of it, and we're not doing it not because it's hard, but because we don't have time.
\begin{eg}
Let
\[
A =
\begin{pmatrix}
3 & -2 & 0\\
1 & 0 & 0\\
1 & 0 & 1
\end{pmatrix}
\]
We know we can find the Jordan normal form by just computing the minimal polynomial and characteristic polynomial. But we can do better and try to find a $P$ such that $P^{-1}AP$ is in Jordan normal form.
We first compute the eigenvalues of $A$. The characteristic polynomial is
\[
\det \begin{pmatrix}
t - 3 & -2 & 0\\
1 & t & 0\\
1 & 0 & t - 1
\end{pmatrix} = (t - 1)((t - 3)t + 2) = (t - 1)^2 (t - 2).
\]
We now compute the eigenspaces of $A$. We have
\[
A - I =
\begin{pmatrix}
2 & -2 & 0\\
1 & -1 & 0\\
1 & 0 & 0
\end{pmatrix}
\]
We see this has rank $2$ and hence nullity $1$, and the eigenspace is the kernel
\[
E_A(1) = \left\bra
\begin{pmatrix}
0\\0\\1
\end{pmatrix}\right\ket
\]
We can also compute the other eigenspace. We have
\[
A - 2I =
\begin{pmatrix}
1 & -2 & 0\\
1 & -2 & 0\\
1 & 0 & -1
\end{pmatrix}
\]
This has rank $2$ and
\[
E_A(2) = \left\bra
\begin{pmatrix}
2 \\ 1 \\ 2
\end{pmatrix}\right\ket.
\]
Since
\[
\dim E_A(1) + \dim E_A(2) = 2 < 3,
\]
this is not diagonalizable. So the minimal polynomial must also be $M_A(t) = \chi_A(t) = (t - 1)^2 (t - 2)$. From the classificaion last time, we know that $A$ is similar to
\[
\begin{pmatrix}
1 & 1 & 0\\
0 & 1 & 0\\
0 & 0 & 2
\end{pmatrix}
\]
We now want to compute a basis that transforms $A$ to this. We want a basis $(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$ of $\C^3$ such that
\[
A\mathbf{v}_1 = \mathbf{v}_1,\quad A\mathbf{v}_2 = \mathbf{v}_1 + \mathbf{v}_2,\quad A \mathbf{v}_3 = 2\mathbf{v}_3.
\]
Equivalently, we have
\[
(A - I)\mathbf{v}_1 = \mathbf{0},\quad (A - I)\mathbf{v}_2 = \mathbf{v}_1, \quad (A - 2I)\mathbf{v}_3 = \mathbf{0}.
\]
There is an obvious choices $\mathbf{v}_3$, namely the eigenvector of eigenvalue $2$.
To find $\mathbf{v}_1$ and $\mathbf{v}_2$, the idea is to find some $\mathbf{v}_2$ such that $(A - I) \mathbf{v}_2 \not= \mathbf{0}$ but $(A - I)^2 \mathbf{v}_2 = \mathbf{0}$. Then we can let $\mathbf{v}_1 = (A - I) \mathbf{v}_1$.
We can compute the kernel of $(A - I)^2$. We have
\[
(A - I)^2 =
\begin{pmatrix}
2 & -2 & 0\\
1 & -1 & 0\\
2 & -2 & 0
\end{pmatrix}
\]
The kernel of this is
\[
\ker (A - I)^2 = \left\bra
\begin{pmatrix}
0 \\ 0 \\ 1
\end{pmatrix},
\begin{pmatrix}
1 \\ 1 \\ 0
\end{pmatrix}
\right\ket.
\]
We need to pick our $\mathbf{v}_2$ that is in this kernel but not in the kernel of $A - I$ (which is the eigenspace $E_1$ we have computed above). So we have
\[
\mathbf{v}_2 =
\begin{pmatrix}
1\\1\\0
\end{pmatrix},\quad
\mathbf{v}_1 =
\begin{pmatrix}
0\\0\\1
\end{pmatrix},\quad
\mathbf{v}_3 =
\begin{pmatrix}
2\\1\\2
\end{pmatrix}.
\]
Hence we have
\[
P =
\begin{pmatrix}
0 & 1 & 2\\
0 & 1 & 1\\
1 & 0 & 2
\end{pmatrix}
\]
and
\[
P^{-1} AP = \begin{pmatrix}
1 & 1 & 0\\
0 & 1 & 0\\
0 & 0 & 2
\end{pmatrix}.
\]
\end{eg}
\section{Bilinear forms II}
\label{sec:bilin2}
In Chapter~\ref{sec:bilin1}, we have looked at bilinear forms in general. Here, we want to look at bilinear forms on a single space, since often there is just one space we are interested in. We are also not looking into general bilinear forms on a single space, but just those that are symmetric.
\subsection{Symmetric bilinear forms and quadratic forms}
\begin{defi}[Symmetric bilinear form]
Let $V$ is a vector space over $\F$. A bilinear form $\phi: V \times V \to \F$ is \emph{symmetric} if
\[
\phi(\mathbf{v}, \mathbf{w}) = \phi(\mathbf{w}, \mathbf{v})
\]
for all $\mathbf{v}, \mathbf{w} \in V$.
\end{defi}
\begin{eg}
If $S \in \Mat_n(\F)$ is a symmetric matrix, i.e.\ $S^T = S$, the bilinear form $\phi: \F^n \times \F^n \to \F$ defined by
\[
\phi(\mathbf{x}, \mathbf{y}) = \mathbf{x}^T S\mathbf{x} = \sum_{i, j = 1}^n x_i S_{ij} y_j
\]
is a symmetric bilinear form.
\end{eg}
This example is typical in the following sense:
\begin{lemma}
Let $V$ be a finite-dimensional vector space over $\F$, and $\phi: V\times V \to \F$ is a symmetric bilinear form. Let $(\mathbf{e}_1, \cdots, \mathbf{e}_n)$ be a basis for $V$, and let $M$ be the matrix representing $\phi$ with respect to this basis, i.e.\ $M_{ij} = \phi(\mathbf{e}_i, \mathbf{e}_j)$. Then $\phi$ is symmetric if and only if $M$ is symmetric.
\end{lemma}
\begin{proof}
If $\phi$ is symmetric, then
\[
M_{ij} = \phi(\mathbf{e}_i, \mathbf{e}_j) = \phi(\mathbf{e}_j, \mathbf{e}_i) = M_{ji}.
\]
So $M^T = M$. So $M$ is symmetric.
If $M$ is symmetric, then
\begin{align*}
\phi(\mathbf{x}, \mathbf{y}) &= \phi\left(\sum x_i \mathbf{e}_i, \sum y_j \mathbf{e}_j\right)\\
&= \sum_{i, j} x_i M_{ij} y_j\\
&= \sum_{i, j}^n y_j M_{ji} x_i\\
&= \phi(\mathbf{y}, \mathbf{x}).\qedhere
\end{align*}
\end{proof}
We are going to see what happens when we change basis. As in the case of endomorphisms, we will require to change basis in the same ways on both sides.
\begin{lemma}
Let $V$ is a finite-dimensional vector space, and $\phi: V\times V \to \F$ a bilinear form. Let $(\mathbf{e}_1, \cdots, \mathbf{e}_n)$ and $(\mathbf{f}_1, \cdots, \mathbf{f}_n)$ be bases of $V$ such that
\[
\mathbf{f}_i = \sum_{k = 1}^n P_{ki} \mathbf{e}_k.
\]
If $A$ represents $\phi$ with respect to $(\mathbf{e}_i)$ and $B$ represents $\phi$ with respect to $(\mathbf{f}_i)$, then
\[
B = P^T AP.
\]
\end{lemma}
\begin{proof}
Special case of general formula proven before.
\end{proof}
This motivates the following definition:
\begin{defi}[Congruent matrices]
Two square matrices $A, B$ are \emph{congruent} if there exists some invertible $P$ such that
\[
B = P^T AP.
\]
\end{defi}
It is easy to see that congruence is an equivalence relation. Two matrices are congruent if and only if represent the same bilinear form with respect to different bases.
Thus, to classify (symmetric) bilinear forms is the same as classifying (symmetric) matrices up to congruence.
Before we do the classification, we first look at quadratic forms, which are something derived from bilinear forms.
\begin{defi}[Quadratic form]
A \emph{function} $q: V \to \F$ is a \emph{quadratic form} if there exists some bilinear form $\phi$ such that
\[
q(\mathbf{v}) = \phi(\mathbf{v}, \mathbf{v})
\]
for all $\mathbf{v} \in V$.
\end{defi}
Note that quadratic forms are \emph{not} linear maps (they are quadratic).
\begin{eg}
Let $V = \R^2$ and $\phi$ be represented by $A$ with respect to the standard basis. Then
\[
q\left(
\begin{pmatrix}
x\\y
\end{pmatrix}\right) =
\begin{pmatrix}
x & y
\end{pmatrix}
\begin{pmatrix}
A_{11} & A_{12}\\
A_{21} & A_{22}
\end{pmatrix}
\begin{pmatrix}
x\\y
\end{pmatrix}
= A_{11} x^2 + (A_{12} + A_{21}) xy + A_{22}y^2.
\]
\end{eg}
Notice that if $A$ is replaced the symmetric matrix
\[
\frac{1}{2}(A + A^T),
\]
then we get a different $\phi$, but the same $q$. This is in fact true in general.
\begin{prop}[Polarization identity]
Suppose that $\Char \F \not= 2$, i.e.\ $1 + 1 \not= 0$ on $\F$ (e.g.\ if $\F$ is $\R$ or $\C$). If $q: V\to \F$ is a quadratic form, then there exists a \emph{unique} symmetric bilinear form $\phi: V \times V\to \F$ such that
\[
q(\mathbf{v}) = \phi(\mathbf{v}, \mathbf{v}).
\]
\end{prop}
\begin{proof}
Let $\psi: V \times V\to \F$ be a bilinear form such that $\psi(\mathbf{v}, \mathbf{v}) = q(\mathbf{v})$. We define $\phi: V \times V\to \F$ by
\[
\phi(\mathbf{v}, \mathbf{w}) = \frac{1}{2}(\psi(\mathbf{v}, \mathbf{w}) + \psi(\mathbf{w}, \mathbf{v}))
\]
for all $\mathbf{v}, \mathbf{w} \in \F$. This is clearly a bilinear form, and it is also clearly symmetric and satisfies the condition we wants. So we have proved the existence part.
To prove uniqueness, we want to find out the values of $\phi(\mathbf{v}, \mathbf{w})$ in terms of what $q$ tells us. Suppose $\phi$ is such a symmetric bilinear form. We compute
\begin{align*}
q(\mathbf{v} + \mathbf{w}) &= \phi(\mathbf{v} + \mathbf{w}, \mathbf{v} + \mathbf{w}) \\
&= \phi(\mathbf{v}, \mathbf{v}) + \phi(\mathbf{v}, \mathbf{w}) + \phi(\mathbf{w}, \mathbf{v}) + \phi(\mathbf{w}, \mathbf{w})\\
&= q(\mathbf{v}) + 2\phi(\mathbf{v}, \mathbf{w}) + q(\mathbf{w}).
\end{align*}
So we have
\[
\phi(\mathbf{v}, \mathbf{w}) = \frac{1}{2}(q(\mathbf{v} + \mathbf{w}) - q(\mathbf{v}) - q(\mathbf{w})).
\]
So it is determined by $q$, and hence unique.
\end{proof}
\begin{thm}
Let $V$ be a finite-dimensional vector space over $\F$, and $\phi: V\times V \to \F$ a symmetric bilinear form. Then there exists a basis $(\mathbf{e}_1, \cdots, \mathbf{e}_n)$ for $V$ such that $\phi$ is represented by a diagonal matrix with respect to this basis.
\end{thm}
This tells us classifying symmetric bilinear forms is easier than classifying endomorphisms, since for endomorphisms, even over $\C$, we cannot always make it diagonal, but we can for bilinear forms over arbitrary fields.
\begin{proof}
We induct over $n = \dim V$. The cases $n = 0$ and $n = 1$ are trivial, since all matrices are diagonal.
Suppose we have proven the result for all spaces of dimension less than $n$. First consider the case where $\phi(\mathbf{v}, \mathbf{v}) = 0$ for all $\mathbf{v} \in V$. We want to show that we must have $\phi = 0$. This follows from the polarization identity, since this $\phi$ induces the zero quadratic form, and we know that there is a unique bilinear form that induces the zero quadratic form. Since we know that the zero bilinear form also induces the zero quadratic form, we must have $\phi = 0$. Then $\phi$ will be represented by the zero matrix with respect to any basis, which is trivially diagonal.
If not, pick $\mathbf{e}_1 \in V$ such that $\phi(\mathbf{e}_1, \mathbf{e}_1) \not= 0$. Let
\[
U = \ker \phi(\mathbf{e}_1, \ph) = \{\mathbf{u} \in V: \phi(\mathbf{e}_1, \mathbf{u}) = 0\}.
\]
Since $\phi(\mathbf{e}_1, \ph) \in V^* \setminus \{0\}$, we know that $\dim U = n - 1$ by the rank-nullity theorem.
Our objective is to find other basis elements $\mathbf{e}_2, \cdots, \mathbf{e}_n$ such that $\phi(\mathbf{e}_1, \mathbf{e}_j) = 0$ for all $j > 1$. For this to happen, we need to find them inside $U$.
Now consider $\phi|_{U\times U}: U\times U \to \F$, a symmetric bilinear form. By the induction hypothesis, we can find a basis $\mathbf{e}_2, \cdots, \mathbf{e}_n$ for $U$ such that $\phi|_{U\times U}$ is represented by a diagonal matrix with respect to this basis.
Now by construction, $\phi(\mathbf{e}_i, \mathbf{e}_j) = 0$ for all $1 \leq i \not= j \leq n$ and $(\mathbf{e}_1, \cdots, \mathbf{e}_n)$ is a basis for $V$. So we're done.
\end{proof}
\begin{eg}
Let $q$ be a quadratic form on $\R^3$ given by
\[
q\left(
\begin{pmatrix}
x\\y\\z
\end{pmatrix}\right) = x^2 + y^2 + z^2 + 2xy + 4yz + 6xz.
\]
We want to find a basis $\mathbf{f}_1, \mathbf{f}_2, \mathbf{f}_3$ for $\R^3$ such that $q$ is of the form
\[
q(a\mathbf{f}_1 + b\mathbf{f}_2 + c\mathbf{f}_3) = \lambda a^2 + \mu b^2 + \nu c^2
\]
for some $\lambda, \mu, \nu \in \R$.
There are two ways to do this. The first way is to follow the proof we just had. We first find our symmetric bilinear form. It is the bilinear form represented by the matrix
\[
A =
\begin{pmatrix}
1 & 1 & 3\\
1 & 1 & 2\\
3 & 2 & 1
\end{pmatrix}.
\]
We then find $\mathbf{f}_1$ such that $\phi(\mathbf{f}_1, \mathbf{f}_1) \not= 0$. We note that $q(\mathbf{e}_1) = 1\not= 0$. So we pick
\[
\mathbf{f}_1 = \mathbf{e}_1 =
\begin{pmatrix}
1\\0\\0
\end{pmatrix}.
\]
Then
\[
\phi(\mathbf{e}_1, \mathbf{v}) =
\begin{pmatrix}
1 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
1 & 1 & 3\\
1 & 1 & 2\\
3 & 2 & 1
\end{pmatrix}
\begin{pmatrix}
v_1\\v_2\\v_3
\end{pmatrix} = v_1 + v_2 + 3v_3.
\]
Next we need to pick our $\mathbf{f}_2$. Since it is in the kernel of $\phi(\mathbf{f}_1, \ph)$, it must satisfy
\[
\phi(\mathbf{f}_1, \mathbf{f}_2) = 0.
\]
To continue our proof inductively, we also have to pick an $\mathbf{f}_2$ such that
\[
\quad \phi(\mathbf{f}_2, \mathbf{f}_2) \not= 0.
\]
For example, we can pick
\[
\mathbf{f}_2 =
\begin{pmatrix}
3\\0\\-1
\end{pmatrix}.
\]
Then we have $q(\mathbf{f}_2) = -8$.
Then we have
\[
\phi(\mathbf{f}_2, \mathbf{v}) =
\begin{pmatrix}
3 & 0 & -1
\end{pmatrix}
\begin{pmatrix}
1 & 1 & 3\\
1 & 1 & 2\\
3 & 2 & 1
\end{pmatrix}
\begin{pmatrix}
v_1\\v_2\\v_3
\end{pmatrix} = v_2 + 8v_3
\]
Finally, we want $\phi(\mathbf{f}_1, \mathbf{f}_3) = \phi(\mathbf{f}_2, \mathbf{f}_3) = 0$. Then
\[
\mathbf{f}_3 =
\begin{pmatrix}
5 \\ -8 \\1
\end{pmatrix}
\]
works. We have $q(\mathbf{f}_3) = 8$.
With these basis elements, we have
\begin{align*}
q(a \mathbf{f}_1 + b\mathbf{f}_2 + c \mathbf{f}_3) &= \phi(a \mathbf{f}_1 + b \mathbf{f}_2 + c \mathbf{f}_3, a \mathbf{f}_1 + b \mathbf{f}_2 + c \mathbf{f}_3) \\
&= a^2 q (\mathbf{f}_1) + b^2 q(\mathbf{f}_2) + c^2 q(\mathbf{f}_3) \\
&= a^2 - 8b^2 + 8c^2.
\end{align*}
Alternatively, we can solve the problem by completing the square. We have
\begin{align*}
x^2 + y^2 + z^2 + 2xy + 4yz + 6xz &= (x + y + 3z)^2 - 2yz - 8z^2\\
&= (x + y + 3z)^2 - 8\left(z + \frac{y}{8}\right)^2 + \frac{1}{8}y^2.
\end{align*}
We now see
\[
\phi\left(
\begin{pmatrix}
x\\y\\z
\end{pmatrix},
\begin{pmatrix}
x'\\y'\\z'
\end{pmatrix}\right) = (x + y + 3z)(x' + y' + 3z') - 8\left(z + \frac{y}{8}\right)\left(z' + \frac{y'}{8}\right) + \frac{1}{8}yy'.
\]
Why do we know this? This is clearly a symmetric bilinear form, and this also clearly induces the $q$ given above. By uniqueness, we know that this is the right symmetric bilinear form.
We now use this form to find our $\mathbf{f}_1, \mathbf{f}_2, \mathbf{f}_3$ such that $\phi(\mathbf{f}_i, \mathbf{f}_j) = \delta_{ij}$.
To do so, we just solve the equations
\begin{align*}
x + y + 3z &= 1\\
z + \frac{1}{8}y &= 0\\
y &= 0.
\end{align*}
This gives our first vector as
\[
\mathbf{f}_1 =
\begin{pmatrix}
1\\0\\0
\end{pmatrix}.
\]
We then solve
\begin{align*}
x + y + 3z &= 0\\
z + \frac{1}{8}y &= 1\\
y &= 0.
\end{align*}
So we have
\[
\mathbf{f}_2 =
\begin{pmatrix}
-3\\0\\1
\end{pmatrix}.
\]
Finally, we solve
\begin{align*}
x + y + 3z &= 0\\
z + \frac{1}{8}y &= 0\\
y &= 1.
\end{align*}
This gives
\[
\mathbf{f}_3 =
\begin{pmatrix}
-5/8\\ 1 \\ -1/8.
\end{pmatrix}.
\]
Then we can see that the result follows, and we get
\[
q(a\mathbf{f}_1 + b\mathbf{f}_2 + c\mathbf{f}_3) = a^2 - 8b^2 + \frac{1}{8}c^2.
\]
\end{eg}
We see that the diagonal matrix we get is not unique. We can re-scale our basis by any constant, and get an equivalent expression.
\begin{thm}
Let $\phi$ be a symmetric bilinear form over a complex vector space $V$. Then there exists a basis $(\mathbf{v}_1, \cdots, \mathbf{v}_m)$ for $V$ such that $\phi$ is represented by
\[
\begin{pmatrix}
I_r & 0\\
0 & 0
\end{pmatrix}
\]
with respect to this basis, where $r = r(\phi)$.
\end{thm}
\begin{proof}
We've already shown that there exists a basis $(\mathbf{e}_1, \cdots, \mathbf{e}_n)$ such that $\phi(\mathbf{e}_i, \mathbf{e}_j) = \lambda_i \delta_{ij}$ for some $\lambda_{ij}$. By reordering the $\mathbf{e}_i$, we can assume that $\lambda_1, \cdots, \lambda_r \not= 0$ and $\lambda_{r + 1},\cdots, \lambda_n = 0$.
For each $1 \leq i \leq r$, there exists some $\mu_i$ such that $\mu_i^2 = \lambda_i$. For $r + 1 \leq r \leq n$, we let $\mu_i = 1$ (or anything non-zero). We define
\[
\mathbf{v}_i = \frac{\mathbf{e}_i}{\mu_i}.
\]
Then
\[
\phi(\mathbf{v}_i, \mathbf{v}_j) = \frac{1}{\mu_i \mu_j} \phi(\mathbf{e}_i, \mathbf{e}_j) =
\begin{cases}
0 & i\not= j\text{ or }i = j > r\\
1 & i = j < r.
\end{cases}
\]
So done.
\end{proof}
Note that it follows that for the corresponding quadratic form $q$, we have
\[
q\left(\sum_{i = 1}^n a_i \mathbf{v}_i\right) = \sum_{i = 1}^r a_i^2.
\]
\begin{cor}
Every symmetric $A \in \Mat_n(\C)$ is congruent to a unique matrix of the form
\[
\begin{pmatrix}
I_r & 0\\
0 & 0
\end{pmatrix}.
\]
\end{cor}
Now this theorem is a bit too strong, and we are going to fix that next lecture, by talking about Hermitian forms and sesquilinear forms. Before that, we do the equivalent result for real vector spaces.
\begin{thm}
Let $\phi$ be a symmetric bilinear form of a finite-dimensional vector space over $\R$. Then there exists a basis $(\mathbf{v}_1, \cdots, \mathbf{v}_n)$ for $V$ such that $\phi$ is represented
\[
\begin{pmatrix}
I_p\\
& -I_q\\
& & 0
\end{pmatrix},
\]
with $p + q = r(\phi)$, $p, q \geq 0$. Equivalently, the corresponding quadratic forms is given by
\[
q\left(\sum_{i = 1}^n a_i \mathbf{v}_i\right) = \sum_{i = 1}^p a_i^2 - \sum_{j = p + 1}^{p + q} a_j^2.
\]
\end{thm}
Note that we have seen these things in special relativity, where the Minkowski inner product is given by the symmetric bilinear form represented by
\[
\begin{pmatrix}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0\\
0 & 0 & 0 & 1
\end{pmatrix},
\]
in units where $c = 1$.
\begin{proof}
We've already shown that there exists a basis $(\mathbf{e}_1, \cdots, \mathbf{e}_n)$ such that $\phi(\mathbf{e}_i, \mathbf{e}_j) = \lambda_i \delta_{ij}$ for some $\lambda_1, \cdots, \lambda_n \in \R$. By reordering, we may assume
\[
\begin{cases}
\lambda_i > 0 & 1 \leq i \leq p\\
\lambda_i < 0 & p + 1 \leq i \leq r\\
\lambda_i = 0 & i > r
\end{cases}
\]
We let $\mu_i$ be defined by
\[
\mu_i =
\begin{cases}
\sqrt{\lambda_i} & 1 \leq i \leq p\\
\sqrt{-\lambda_i} & p + 1 \leq i \leq r\\
1 & i > r
\end{cases}
\]
Defining
\[
\mathbf{v}_i = \frac{1}{\mu_i}\mathbf{e}_i,
\]
we find that $\phi$ is indeed represented by
\[
\begin{pmatrix}
I_p\\
& -I_q\\
& & 0
\end{pmatrix},\qedhere
\]
\end{proof}
We will later show that this form is indeed unique. Before that, we will have a few definitions, that really only make sense over $\R$.
\begin{defi}[Positive/negative (semi-)definite]
Let $\phi$ be a symmetric bilinear form on a finite-dimensional real vector space $V$. We say
\begin{enumerate}
\item $\phi$ is \emph{positive definite} if $\phi(\mathbf{v}, \mathbf{v}) > 0$ for all $\mathbf{v} \in V\setminus \{0\}$.
\item $\phi$ is \emph{positive semi-definite} if $\phi(\mathbf{v}, \mathbf{v}) \geq 0$ for all $\mathbf{v} \in V$.
\item $\phi$ is \emph{negative definite} if $\phi(\mathbf{v}, \mathbf{v}) < 0$ for all $\mathbf{v} \in V\setminus \{0\}$.
\item $\phi$ is \emph{negative semi-definite} if $\phi(\mathbf{v}, \mathbf{v}) \leq 0$ for all $\mathbf{v} \in V$.
\end{enumerate}
\end{defi}
We are going to use these notions to prove uniqueness. It is easy to see that if $p = 0$ and $q = n$, then we are negative definite; if $p = 0$ and $q \not= n$, then we are negative semi-definite etc.
\begin{eg}
Let $\phi$ be a symmetric bilinear form on $\R^n$ represented by
\[
\begin{pmatrix}
I_p & 0\\
0 & 0_{n - p}
\end{pmatrix}.
\]
Then $\phi$ is positive semi-definite. $\phi$ is positive definite if and only if $n = p$.
If instead $\phi$ is represented by
\[
\begin{pmatrix}
-I_p & 0\\
0 & 0_{n - p}
\end{pmatrix},
\]
then $\phi$ is negative semi-definite. $\phi$ is negative definite precisely if $n = q$.
\end{eg}
We are going to use this to prove the uniqueness part of our previous theorem.
\begin{thm}[Sylvester's law of inertia]
Let $\phi$ be a symmetric bilinear form on a finite-dimensional real vector space $V$. Then there exists unique non-negative integers $p, q$ such that $\phi$ is represented by
\[
\begin{pmatrix}
I_p & 0 & 0\\
0 & -I_q & 0\\
0 & 0 & 0
\end{pmatrix}
\]
with respect to some basis.
\end{thm}
\begin{proof}
We have already proved the existence part, and we just have to prove uniqueness. To do so, we characterize $p$ and $q$ in a basis-independent way. We already know that $p + q = r(\phi)$ does not depend on the basis. So it suffices to show $p$ is unique.
To see that $p$ is unique, we show that $p$ is the largest dimension of a subspace $P \subseteq V$ such that $\phi|_{P\times P}$ is positive definite.
First we show we can find such at $P$. Suppose $\phi$ is represented by
\[
\begin{pmatrix}
I_p & 0 & 0\\
0 & -I_q & 0\\
0 & 0 & 0
\end{pmatrix}
\]
with respect to $(\mathbf{e}_1, \cdots, \mathbf{e}_n)$. Then $\phi$ restricted to $\bra \mathbf{e}_1, \cdots, \mathbf{e}_p\ket$ is represented by $I_p$ with respect to $\mathbf{e}_1, \cdots, \mathbf{e}_p$. So $\phi$ restricted to this is positive definite.
Now suppose $P$ is any subspace of $V$ such that $\phi|_{P \times P}$ is positive definite. To show $P$ has dimension at most $p$, we find a subspace complementary to $P$ with dimension $n - p$.
Let $Q = \bra \mathbf{e}_{p + 1}, \cdots, \mathbf{e}_n\ket$. Then $\phi$ restricted to $Q\times Q$ is represented by
\[
\begin{pmatrix}
-I_q& 0\\
0 & 0
\end{pmatrix}.
\]
Now if $\mathbf{v} \in P\cap Q \setminus \{0\}$, then $\phi(\mathbf{v}, \mathbf{v}) > 0$ since $\mathbf{v}\in P\setminus \{0\}$ and $\phi(\mathbf{v}, \mathbf{v}) \leq 0$ since $\mathbf{v}\in Q$, which is a contradiction. So $P\cap Q = 0$.
We have
\[
\dim V \geq \dim (P + Q) = \dim P + \dim Q = \dim P + (n - p).
\]
Rearranging gives
\[
\dim P \leq p.
\]
A similar argument shows that $q$ is the maximal dimension of a subspace $Q\subseteq V$ such that $\phi|_{Q\times Q}$ is negative definite.
\end{proof}
\begin{defi}[Signature]
The \emph{signature} of a bilinear form $\phi$ is the number $p - q$, where $p$ and $q$ are as above.
\end{defi}
Of course, we can recover $p$ and $q$ from the signature and the rank of $\phi$.
\begin{cor}
Every real symmetric matrix is congruent to precisely one matrix of the form
\[
\begin{pmatrix}
I_p & 0 & 0\\
0 & -I_q & 0\\
0 & 0 & 0
\end{pmatrix}.
\]
\end{cor}
\subsection{Hermitian form}
The above result was nice for real vector spaces. However, if $\phi$ is a bilinear form on a $\C$-vector space $V$, then $\phi(i\mathbf{v}, i\mathbf{v}) = -\phi(\mathbf{v}, \mathbf{v})$. So there can be no good notion of positive definiteness for complex bilinear forms. To make them work for complex vector spaces, we need to modify the definition slightly to obtain Hermitian forms.
\begin{defi}[Sesquilinear form]
Let $V, W$ be complex vector spaces. Then a \emph{sesquilinear form} is a function $\phi: V \times W \to \C$ such that
\begin{enumerate}
\item $\phi(\lambda \mathbf{v}_1 + \mu \mathbf{v}_2, \mathbf{w}) = \bar{\lambda} \phi(\mathbf{v}_1, \mathbf{w}) + \bar{\mu}\phi(\mathbf{v}_2, \mathbf{w})$.
\item $\phi(\mathbf{v}, \lambda \mathbf{w}_1 + \mu \mathbf{w}_2) = \lambda \phi(\mathbf{v}, \mathbf{w}_1) + \mu \phi(\mathbf{v} \mathbf{w}_2)$.
\end{enumerate}
for all $\mathbf{v}, \mathbf{v}_1, \mathbf{v}_2 \in V$, $\mathbf{w}, \mathbf{w}_1, \mathbf{w}_2 \in W$ and $\lambda, \mu \in \C$.
\end{defi}
Note that some people have an opposite definition, where we have linearity in the first argument and conjugate linearity in the second.
These are called sesquilinear since ``sesqui'' means ``one and a half'', and this is linear in the second argument and ``half linear'' in the first.
Alternatively, to define a sesquilinear form, we can define a new complex vector space $\bar{V}$ structure on $V$ by taking the same abelian group (i.e.\ the same underlying set and addition), but with the scalar multiplication $\C \times \bar{V} \to \bar{V}$ defined as
\[
(\lambda, \mathbf{v}) \mapsto \bar{\lambda} \mathbf{v}.
\]
Then a sesquilinear form on $V\times W$ is a bilinear form on $\bar{V} \times W$. Alternatively, this is a linear map $W \to \bar{V}^*$.
\begin{defi}[Representation of sesquilinear form]
Let $V, W$ be finite-dimensional complex vector spaces with basis $(\mathbf{v}_1, \cdots, \mathbf{v}_n)$ and $(\mathbf{w}_1, \cdots, \mathbf{w}_m)$ respectively, and $\phi: V \times W \to \C$ be a sesquilinear form. Then the matrix representing $\phi$ with respect to these bases is
\[
A_{ij} = \phi(\mathbf{v}_i, \mathbf{w}_j).
\]
for $1 \leq i \leq n, 1 \leq j \leq m$.
\end{defi}
As usual, this determines the whole sesquilinear form. This follows from the analogous fact for the bilinear form on $\bar{V} \times W \to \C$. Let $\mathbf{v} = \sum \lambda_i \mathbf{v}_i$ and $W = \sum \mu_j w_j$. Then we have
\[
\phi(\mathbf{v}, \mathbf{w}) = \sum_{i, j} \overline{\lambda}_i \mu_j \phi(\mathbf{v}_i, \mathbf{w}_j) = \lambda^\dagger A \mu.
\]
We now want the right definition of symmetric sesquilinear form. We cannot just require $\phi(\mathbf{v}, \mathbf{w}) = \phi(\mathbf{w}, \mathbf{v})$, since $\phi$ is linear in the second variable and conjugate linear on the first variable. So in particular, if $\phi(\mathbf{v}, \mathbf{w}) \not= 0$, we have $\phi(i \mathbf{v}, \mathbf{w}) \not= \phi(\mathbf{v}, i\mathbf{w})$.
\begin{defi}[Hermitian sesquilinear form]
A sesquilinear form on $V\times V$ is \emph{Hermitian} if
\[
\phi(\mathbf{v}, \mathbf{w}) = \overline{\phi(\mathbf{w}, \mathbf{v})}.
\]
\end{defi}
Note that if $\phi$ is Hermitian, then $\phi(\mathbf{v}, \mathbf{v}) = \overline{\phi(\mathbf{v}, \mathbf{v})} \in \R$ for any $\mathbf{v} \in V$. So it makes sense to ask if it is positive or negative. Moreover, for any complex number $\lambda$, we have
\[
\phi(\lambda \mathbf{v}, \lambda \mathbf{v}) = |\lambda|^2 \phi(\mathbf{v}, \mathbf{v}).
\]
So multiplying by a scalar does not change the sign. So it makes sense to talk about positive (semi-)definite and negative (semi-)definite Hermitian forms.
We will prove results analogous to what we had for real symmetric bilinear forms.
\begin{lemma}
Let $\phi: V \times V\to \C$ be a sesquilinear form on a finite-dimensional vector space over $\C$, and $(\mathbf{e}_1, \cdots, \mathbf{e}_n)$ a basis for $V$. Then $\phi$ is Hermitian if and only if the matrix $A$ representing $\phi$ is Hermitian (i.e.\ $A = A^\dagger$).
\end{lemma}
\begin{proof}
If $\phi$ is Hermitian, then
\[
A_{ij} = \phi(\mathbf{e}_i, \mathbf{e}_j) = \overline{\phi(\mathbf{e}_j, \mathbf{e}_i)} = A^{\dagger}_{ij}.
\]
If $A$ is Hermitian, then
\[
\phi\left(\sum \lambda_i \mathbf{e}_i, \sum \mu_j \mathbf{e}_j\right) = \lambda^\dagger A \mu = \overline{\mu^\dagger A^\dagger \lambda} = \overline{\phi\left(\sum \mu_j \mathbf{e}_j, \sum \lambda_j \mathbf{e}_j\right)}.
\]
So done.
\end{proof}
\begin{prop}[Change of basis]
Let $\phi$ be a Hermitian form on a finite dimensional vector space $V$; $(\mathbf{e}_1, \cdots, \mathbf{e}_n)$ and $(\mathbf{v}_1, \cdots, \mathbf{v}_n)$ are bases for $V$ such that
\[
\mathbf{v}_i = \sum_{k = 1}^n P_{ki} \mathbf{e}_k;
\]
and $A, B$ represent $\phi$ with respect to $(\mathbf{e}_1, \ldots, \mathbf{e}_n)$ and $(\mathbf{v}_1, \cdots, \mathbf{v}_n)$ respectively. Then
\[
B = P^\dagger AP.
\]
\end{prop}
\begin{proof}
We have
\begin{align*}
B_{ij} &= \phi(\mathbf{v}_i, \mathbf{v}_j) \\
&= \phi\left(\sum P_{ki} \mathbf{e}_k, \sum P_{\ell j} \mathbf{e}_\ell\right)\\
&= \sum_{k, \ell = 1}^n \bar{P}_{ki} P_{\ell j} A_{k\ell}\\
&= (P^\dagger AP)_{ij}.\qedhere
\end{align*}
\end{proof}
\begin{lemma}[Polarization identity (again)]
A Hermitian form $\phi$ on $V$ is determined by the function $\psi: \mathbf{v} \mapsto \phi(\mathbf{v}, \mathbf{v})$.
\end{lemma}
The proof this time is slightly more involved.
\begin{proof}
We have the following:
\begin{align*}
\psi(\mathbf{x} + \mathbf{y}) &= \phi(\mathbf{x}, \mathbf{x}) + \phi(\mathbf{x}, \mathbf{y}) + \phi(\mathbf{y}, \mathbf{x}) + \phi(\mathbf{y}, \mathbf{y})\\
-\psi(\mathbf{x} - \mathbf{y}) &= -\phi(\mathbf{x}, \mathbf{x}) + \phi(\mathbf{x}, \mathbf{y}) + \phi(\mathbf{y}, \mathbf{x}) - \phi(\mathbf{y}, \mathbf{y})\\
i\psi(\mathbf{x} -i\mathbf{y}) &= i\phi(\mathbf{x}, \mathbf{x}) + \phi(\mathbf{x}, \mathbf{y}) - \phi(\mathbf{y}, \mathbf{x}) +i\phi(\mathbf{y}, \mathbf{y})\\
-i\psi(\mathbf{x} +i\mathbf{y}) &=-i\phi(\mathbf{x}, \mathbf{x}) + \phi(\mathbf{x}, \mathbf{y}) - \phi(\mathbf{y}, \mathbf{x}) -i\phi(\mathbf{y}, \mathbf{y})
\end{align*}
So
\[
\phi(\mathbf{x}, \mathbf{y}) = \frac{1}{4}(\psi(\mathbf{x} + \mathbf{y}) - \psi(\mathbf{x} - \mathbf{y}) + i\psi(\mathbf{x} - i\mathbf{y}) - i \psi(\mathbf{x} + i\mathbf{y})).\qedhere
\]
\end{proof}
\begin{thm}[Hermitian form of Sylvester's law of inertia]
Let $V$ be a finite-dimensional complex vector space and $\phi$ a hermitian form on $V$. Then there exists unique non-negative integers $p$ and $q$ such that $\phi$ is represented by
\[
\begin{pmatrix}
I_p & 0 & 0\\
0 & -I_q & 0\\
0 & 0 & 0
\end{pmatrix}
\]
with respect to some basis.
\end{thm}
\begin{proof}
Same as for symmetric forms over $\R$.
\end{proof}
\section{Inner product spaces}
Welcome to the last chapter, where we discuss inner products. Technically, an inner product is just a special case of a positive-definite symmetric bilinear or hermitian form. However, they are usually much more interesting and useful. Many familiar notions such as orthogonality only make sense when we have an inner product.
In this chapter, we will adopt the convention that $\F$ always means either $\R$ or $\C$, since working with other fields doesn't make much sense here.
\subsection{Definitions and basic properties}
\begin{defi}[Inner product space]
Let $V$ be a vector space. An \emph{inner product} on $V$ is a positive-definite symmetric bilinear/hermitian form. We usually write $(x, y)$ instead of $\phi(x, y)$.
A vector space equipped with an inner product is an \emph{inner product space}.
\end{defi}
We will see that if we have an inner product, then we can define lengths and distances in a sensible way.
\begin{eg}\leavevmode
\begin{enumerate}
\item $\R^n$ or $\C^n$ with the usual inner product
\[
(x, y) = \sum_{i = 1}^n \bar{x}_i y_i
\]
forms an inner product space.
In some sense, this is the only inner product on finite-dimensional spaces, by Sylvester's law of inertia. However, we would not like to think so, and instead work with general inner products.
\item Let $C([0, 1], \F)$ be the vector space of real/complex valued continuous functions on $[0, 1]$. Then the following is an inner product:
\[
(f, g) = \int_0^1 \bar{f}(t) g(t)\;\d t.
\]
\item More generally, for any $w: [0, 1] \to \R^+$ continuous, we can define the inner product on $C([0, 1], \F)$ as
\[
(f, g) = \int_0^1 w(t) \bar{f}(t) g(t) \;\d t.
\]
\end{enumerate}
\end{eg}
If $V$ is an inner product space, we can define a norm on $V$ by
\[
\|\mathbf{v}\| = \sqrt{(\mathbf{v}, \mathbf{v})}.
\]
This is just the usual notion of norm on $\R^n$ and $\C^n$. This gives the notion of length in inner product spaces. Note that $\|\mathbf{v}\| > 0$ with equality if and only if $\mathbf{v} = \mathbf{0}$.
Note also that the norm $\|\ph\|$ determines the inner product by the polarization identity.
We want to see that this indeed satisfies the definition of a norm, as you might have seen from Analysis II. To prove this, we need to prove the Cauchy-Schwarz inequality.
\begin{thm}[Cauchy-Schwarz inequality]
Let $V$ be an inner product space and $\mathbf{v}, \mathbf{w} \in V$. Then
\[
|(\mathbf{v}, \mathbf{w})| \leq \|\mathbf{v}\| \|\mathbf{w}\|.
\]
\end{thm}
\begin{proof}
If $\mathbf{w} = 0$, then this is trivial. Otherwise, since the norm is positive definite, for any $\lambda$, we get
\[
0 \leq (\mathbf{v} - \lambda \mathbf{w}, \mathbf{v} - \lambda \mathbf{w}) = (\mathbf{v}, \mathbf{v}) - \bar{\lambda} (\mathbf{w}, \mathbf{v}) - \lambda (\mathbf{v}, \mathbf{w}) + |\lambda|^2 (\mathbf{w}, \mathbf{w}).
\]
We now pick a clever value of $\lambda$. We let
\[
\lambda = \frac{(\mathbf{w}, \mathbf{v})}{(\mathbf{w}, \mathbf{w})}.
\]
Then we get
\[
0 \leq (\mathbf{v}, \mathbf{v}) - \frac{|(\mathbf{w}, \mathbf{v})|^2}{(\mathbf{w}, \mathbf{w})} - \frac{|(\mathbf{w}, \mathbf{v})|^2}{(\mathbf{w}, \mathbf{w})} + \frac{|(\mathbf{w}, \mathbf{v})|^2}{(\mathbf{w}, \mathbf{w})}.
\]
So we get
\[
|(\mathbf{w}, \mathbf{v})|^2 \leq (\mathbf{v}, \mathbf{v}) (\mathbf{w}, \mathbf{w}).
\]
So done.
\end{proof}
With this, we can prove the triangle inequality.
\begin{cor}[Triangle inequality]
Let $V$ be an inner product space and $\mathbf{v}, \mathbf{w} \in V$. Then
\[
\|\mathbf{v} + \mathbf{w}\| \leq \|\mathbf{v}\| + \|\mathbf{w}\|.
\]
\end{cor}
\begin{proof}
We compute
\begin{align*}
\|\mathbf{v} + \mathbf{w}\|^2 &= (\mathbf{v} + \mathbf{w}, \mathbf{v} + \mathbf{w}) \\
&= (\mathbf{v}, \mathbf{v}) + (\mathbf{v}, \mathbf{w}) + (\mathbf{w}, \mathbf{v}) + (\mathbf{w}, \mathbf{w})\\
&\leq \|\mathbf{v}\|^2 + 2 \|\mathbf{v} \| \|\mathbf{w}\| + \|\mathbf{w}\|^2\\
&= (\|\mathbf{v}\| + \|\mathbf{w}\|)^2.
\end{align*}
So done.
\end{proof}
The next thing we do is to define orthogonality. This generalizes the notion of being ``perpendicular''.
\begin{defi}[Orthogonal vectors]
Let $V$ be an inner product space. Then $\mathbf{v}, \mathbf{w} \in V$ are \emph{orthogonal} if $(\mathbf{v}, \mathbf{w}) = 0$.
\end{defi}
\begin{defi}[Orthonormal set]
Let $V$ be an inner product space. A set $\{\mathbf{v}_i: i \in I\}$ is an \emph{orthonormal set} if for any $i, j \in I$, we have
\[
(\mathbf{v}_i, \mathbf{v}_j) = \delta_{ij}
\]
\end{defi}
It should be clear that an orthonormal set must be linearly independent.
\begin{defi}[Orthonormal basis]
Let $V$ be an inner product space. A subset of $V$ is an \emph{orthonormal basis} if it is an orthonormal set and is a basis.
\end{defi}
In an inner product space, we almost always want orthonormal basis only. If we pick a basis, we should pick an orthonormal one.
However, we do not know there is always an orthonormal basis, even in the finite-dimensional case. Also, given an orthonormal set, we would like to extend it to an orthonormal basis. This is what we will do later.
Before that, we first note that given an orthonormal basis, it is easy to find the coordinates of any vector in this basis. Suppose $V$ is a finite-dimensional inner product space with an orthonormal basis $\mathbf{v}_1, \cdots, \mathbf{v}_n$. Given
\[
\mathbf{v} = \sum_{i = 1}^n \lambda_i \mathbf{v}_i,
\]
we have
\[
(\mathbf{v}_j, \mathbf{v}) = \sum_{i = 1}^n \lambda_i (\mathbf{v}_j, \mathbf{v}_i) = \lambda_j.
\]
So $\mathbf{v} \in V$ can always be written as
\[
\sum_{i = 1}^n (\mathbf{v}_i, \mathbf{v}) \mathbf{v}_i.
\]
\begin{lemma}[Parseval's identity]
Let $V$ be a finite-dimensional inner product space with an orthonormal basis $\mathbf{v}_1, \cdots, \mathbf{v}_n$, and $\mathbf{v}, \mathbf{w} \in V$. Then
\[
(\mathbf{v}, \mathbf{w}) = \sum_{i = 1}^n \overline{(\mathbf{v}_i, \mathbf{v})} (\mathbf{v}_i, \mathbf{w}).
\]
In particular,
\[
\|\mathbf{v}\|^2 = \sum_{i = 1}^n |(\mathbf{v}_i, \mathbf{v})|^2.
\]
\end{lemma}
This is something we've seen in IB Methods, for infinite dimensional spaces. However, we will only care about finite-dimensional ones now.
\begin{proof}
\begin{align*}
(\mathbf{v}, \mathbf{w}) &= \left(\sum_{i = 1}^n (\mathbf{v}_i, \mathbf{v}) \mathbf{v}_i, \sum_{j = 1}^n (\mathbf{v}_j, \mathbf{w}) \mathbf{v}_j\right)\\
&= \sum_{i, j = 1}^n \overline{(\mathbf{v}_i, \mathbf{v})} (\mathbf{v}_j, \mathbf{w}) (\mathbf{v}_i, \mathbf{v}_j)\\
&= \sum_{i, j = 1}^n \overline{(\mathbf{v}_i, \mathbf{v})} (\mathbf{v}_j, \mathbf{w}) \delta_{ij}\\
&= \sum_{i = 1}^n \overline{(\mathbf{v}_i, \mathbf{v})} (\mathbf{v}_i, \mathbf{w}).\qedhere
\end{align*}
\end{proof}
\subsection{Gram-Schmidt orthogonalization}
As mentioned, we want to make sure every vector space has an orthonormal basis, and we can extend any orthonormal set to an orthonormal basis, at least in the case of finite-dimensional vector spaces. The idea is to start with an arbitrary basis, which we know exists, and produce an orthonormal basis out of it. The way to do this is the Gram-Schmidt process.
\begin{thm}[Gram-Schmidt process]
Let $V$ be an inner product space and $\mathbf{e}_1, \mathbf{e}_2, \cdots$ a linearly independent set. Then we can construct an orthonormal set $\mathbf{v}_1, \mathbf{v}_2, \cdots$ with the property that
\[
\bra \mathbf{v}_1, \cdots, \mathbf{v}_k\ket = \bra \mathbf{e}_1, \cdots, \mathbf{e}_k\ket
\]
for every $k$.
\end{thm}
Note that we are not requiring the set to be finite. We are just requiring it to be countable.
\begin{proof}
We construct it iteratively, and prove this by induction on $k$. The base case $k = 0$ is contentless.
Suppose we have already found $\mathbf{v}_1, \cdots, \mathbf{v}_k$ that satisfies the properties. We define
\[
\mathbf{u}_{k + 1} = \mathbf{e}_{k + 1} - \sum_{i = 1}^k (\mathbf{v}_i, \mathbf{e}_{i + 1}) \mathbf{v}_i.
\]
We want to prove that this is orthogonal to all the other $\mathbf{v}_i$'s for $i \leq k$. We have
\[
(\mathbf{v}_j, \mathbf{u}_{k + 1}) = (\mathbf{v}_j, \mathbf{e}_{k + 1}) - \sum_{i = 1}^k (\mathbf{v}_i, \mathbf{e}_{k + 1}) \delta_{ij} = (\mathbf{v}_j, \mathbf{e}_{k + 1}) - (\mathbf{v}_j, \mathbf{e}_{k + 1}) = 0.
\]
So it is orthogonal.
We want to argue that $\mathbf{u}_{k + 1}$ is non-zero. Note that
\[
\bra \mathbf{v}_1, \cdots, \mathbf{v}_k, \mathbf{u}_{k + 1}\ket = \bra \mathbf{v}_1, \cdots, \mathbf{v}_k, \mathbf{e}_{k + 1}\ket
\]
since we can recover $\mathbf{e}_{k + 1}$ from $\mathbf{v}_1, \cdots, \mathbf{v}_k$ and $\mathbf{u}_{k + 1}$ by construction. We also know
\[
\bra \mathbf{v}_1, \cdots, \mathbf{v}_k, \mathbf{e}_{k + 1}\ket = \bra \mathbf{e}_1, \cdots, \mathbf{e}_k, \mathbf{e}_{k + 1}\ket
\]
by assumption. We know $\bra \mathbf{e}_1, \cdots, \mathbf{e}_k, \mathbf{e}_{k + 1}\ket$ has dimension $k + 1$ since the $\mathbf{e}_i$ are linearly independent. So we must have $\mathbf{u}_{k + 1}$ non-zero, or else $\bra \mathbf{v}_1, \cdots, \mathbf{v}_k\ket$ will be a set of size $k$ spanning a space of dimension $k + 1$, which is clearly nonsense.
Therefore, we can define
\[
\mathbf{v}_{k + 1} = \frac{\mathbf{u}_{k + 1}}{\|\mathbf{u}_{k + 1}\|}.
\]
Then $\mathbf{v}_1, \cdots, \mathbf{v}_{k + 1}$ is orthonormal and $\bra \mathbf{v}_1, \cdots, \mathbf{v}_{k + 1}\ket = \bra \mathbf{e}_1, \cdots, \mathbf{e}_{k + 1}\ket$ as required.
\end{proof}
\begin{cor}
If $V$ is a finite-dimensional inner product space, then any orthonormal set can be extended to an orthonormal basis.
\end{cor}
\begin{proof}
Let $\mathbf{v}_1, \cdots, \mathbf{v}_k$ be an orthonormal set. Since this is linearly independent, we can extend it to a basis $(\mathbf{v}_1,\cdots, \mathbf{v}_k, \mathbf{x}_{k + 1}, \cdots, \mathbf{x}_n)$.
We now apply the Gram-Schmidt process to this basis to get an orthonormal basis of $V$, say $(\mathbf{u}_1, \cdots, \mathbf{u}_n)$. Moreover, we can check that the process does not modify our $\mathbf{v}_1, \cdots, \mathbf{v}_k$, i.e.\ $\mathbf{u}_i = \mathbf{v}_i$ for $1 \leq i \leq k$. So done.
\end{proof}
\begin{defi}[Orthogonal internal direct sum]
Let $V$ be an inner product space and $V_1, V_2 \leq V$. Then $V$ is the \emph{orthogonal internal direct sum} of $V_1$ and $V_2$ if it is a direct sum and $V_1$ and $V_2$ are orthogonal. More precisely, we require
\begin{enumerate}
\item $V = V_1 + V_2$
\item $V_1 \cap V_2 = 0$
\item $(\mathbf{v}_1, \mathbf{v}_2) = 0$ for all $\mathbf{v}_1 \in V_1$ and $\mathbf{v}_2 \in V_2$.
\end{enumerate}
Note that condition (iii) implies (ii), but we write it for the sake of explicitness.
We write $V = V_1 \perp V_2$.
\end{defi}
\begin{defi}[Orthogonal complement]
If $W \leq V$ is a subspace of an inner product space $V$, then the \emph{orthogonal complement} of $W$ in $V$ is the subspace
\[
W^\perp = \{\mathbf{v} \in V: (\mathbf{v}, \mathbf{w}) = 0, \forall \mathbf{w} \in W\}.
\]
\end{defi}
It is true that the orthogonal complement is a complement and orthogonal, i.e.\ $V$ is the orthogonal direct sum of $W$ and $W^\perp$.
\begin{prop}
Let $V$ be a finite-dimensional inner product space, and $W \leq V$. Then
\[
V = W \perp W^\perp.
\]
\end{prop}
\begin{proof}
There are three things to prove, and we know (iii) implies (ii). Also, (iii) is obvious by definition of $W^\perp$. So it remains to prove (i), i.e.\ $V = W + W^\perp$.
Let $\mathbf{w}_1, \cdots, \mathbf{w}_k$ be an orthonormal basis for $W$, and pick $\mathbf{v}\in V$. Now let
\[
\mathbf{w} = \sum_{i = 1}^k (\mathbf{w}_i, \mathbf{v}) \mathbf{w}_i.
\]
Clearly, we have $\mathbf{w} \in W$. So we need to show $\mathbf{v} - \mathbf{w} \in W^\perp$. For each $j$, we can compute
\begin{align*}
(\mathbf{w}_j, \mathbf{v} - \mathbf{w}) &= (\mathbf{w}_j, \mathbf{v}) - \sum_{i = 1}^k (\mathbf{w}_i, \mathbf{v})(\mathbf{w}_j, \mathbf{w}_i)\\
&= (\mathbf{w}_j, \mathbf{v}) - \sum_{i = 1}^k (\mathbf{w}_i, \mathbf{v}) \delta_{ij}\\
&= 0.
\end{align*}
Hence for any $\lambda_i$, we have
\[
\left(\sum \lambda_j \mathbf{w}_j, \mathbf{v} - \mathbf{w}\right) = 0.
\]
So we have $\mathbf{v}-\mathbf{w} \in W^\perp$. So done.
\end{proof}
\begin{defi}[Orthogonal external direct sum]
Let $V_1, V_2$ be inner product spaces. The \emph{orthogonal external direct sum} of $V_1$ and $V_2$ is the vector space $V_1 \oplus V_2$ with the inner product defined by
\[
(\mathbf{v}_1 + \mathbf{v}_2, \mathbf{w}_1 + \mathbf{w}_2) = (\mathbf{v}_1, \mathbf{w}_1) + (\mathbf{v}_2, \mathbf{w}_2),
\]
with $\mathbf{v}_1, \mathbf{w}_1 \in V_1$, $\mathbf{v}_2, \mathbf{w}_2 \in V_2$.
Here we write $\mathbf{v}_1 + \mathbf{v}_2 \in V_1 \oplus V_2$ instead of $(\mathbf{v}_1, \mathbf{v}_2)$ to avoid confusion.
\end{defi}
This external direct sum is equivalent to the internal direct sum of $\{(\mathbf{v}_1, \mathbf{0}): \mathbf{v}_1 \in V_1\}$ and $\{(\mathbf{0}, \mathbf{v}_2): \mathbf{v}_2 \in V_2\}$.
\begin{prop}
Let $V$ be a finite-dimensional inner product space and $W \leq V$. Let $(\mathbf{e}_1, \cdots, \mathbf{e}_k)$ be an orthonormal basis of $W$. Let $\pi$ be the orthonormal projection of $V$ onto $W$, i.e.\ $\pi: V \to W$ is a function that satisfies $\ker \pi = W^\perp$, $\pi|_W = \id$. Then
\begin{enumerate}
\item $\pi$ is given by the formula
\[
\pi(\mathbf{v}) = \sum_{i = 1}^k (\mathbf{e}_i, \mathbf{v}) \mathbf{e}_i.
\]
\item For all $\mathbf{v}\in V, \mathbf{w} \in W$, we have
\[
\|\mathbf{v} - \pi(\mathbf{v})\| \leq \|\mathbf{v} - \mathbf{w}\|,
\]
with equality if and only if $\pi(\mathbf{v}) = \mathbf{w}$. This says $\pi(\mathbf{v})$ is the point on $W$ that is closest to $\mathbf{v}$.
\begin{center}
\begin{tikzpicture}
\draw (0, 0) -- (5, 0) -- (7, 2.5) -- (2, 2.5) -- cycle;
\draw [->] (3, 1.25) -- (3, 3) node [above] {$W^\perp$};
\draw [dashed] (4, 1.25) node [left] {$\mathbf{w}$} -- (5, 3) node [above] {$\mathbf{v}$};
\draw [->] (5, 3) -- (5, 1.25) node [right] {$\pi(\mathbf{v})$};
\draw [dashed] (4, 1.25) -- (5, 1.25);
\node at (5, 3) [circ] {};
\node at (4, 1.25) [circ] {};
\node at (5, 1.25) [circ] {};
\end{tikzpicture}
\end{center}
\end{enumerate}
\end{prop}
\begin{proof}\leavevmode
\begin{enumerate}
\item Let $\mathbf{v} \in V$, and define
\[
\mathbf{w} = \sum_{i = 1} (\mathbf{e}_i, \mathbf{v}) \mathbf{e}_i.
\]
We want to show this is $\pi(\mathbf{v})$. We need to show $\mathbf{v} - \mathbf{w} \in W^\perp$. We can compute
\[
(\mathbf{e}_j, \mathbf{v} - \mathbf{w}) = (\mathbf{e}_j, \mathbf{v}) - \sum_{i = 1}^k (\mathbf{e}_i, \mathbf{v}) (\mathbf{e}_j, \mathbf{e}_i) = 0.
\]
So $\mathbf{v} - \mathbf{w}$ is orthogonal to every basis vector in $\mathbf{w}$, i.e.\ $\mathbf{v} - \mathbf{w} \in W^\perp$.So
\[
\pi(\mathbf{v}) = \pi(\mathbf{w}) + \pi(\mathbf{v} - \mathbf{w}) = \mathbf{w}
\]
as required.
\item This is just Pythagoras' theorem. Note that if $\mathbf{x}$ and $\mathbf{y}$ are orthogonal, then
\begin{align*}
\|\mathbf{x} + \mathbf{y}\|^2 &= (\mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y}) \\
&= (\mathbf{x}, \mathbf{x}) + (\mathbf{x}, \mathbf{y}) + (\mathbf{y}, \mathbf{x}) + (\mathbf{y}. \mathbf{y})\\
&= \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2.
\end{align*}
We apply this to our projection. For any $\mathbf{w} \in W$, we have
\[
\|\mathbf{v} - \mathbf{w}\|^2 = \|\mathbf{v} - \pi (\mathbf{v})\|^2 + \|\pi(\mathbf{v}) - \mathbf{w}\|^2 \geq \|\mathbf{v} - \pi(\mathbf{v})\|^2
\]
with equality if and only if $\|\pi(\mathbf{v}) - \mathbf{w}\| = 0$, i.e.\ $\pi(\mathbf{v}) = \mathbf{w}$.\qedhere
\end{enumerate}
\end{proof}
\subsection{Adjoints, orthogonal and unitary maps}
\subsubsection*{Adjoints}
\begin{lemma}
Let $V$ and $W$ be finite-dimensional inner product spaces and $\alpha: V \to W$ is a linear map. Then there exists a unique linear map $\alpha^*: W \to V$ such that
\[
(\alpha \mathbf{v}, \mathbf{w}) = (\mathbf{v}, \alpha^* \mathbf{w})\tag{$*$}
\]
for all $\mathbf{v} \in V$, $\mathbf{w} \in W$.
\end{lemma}
\begin{proof}
There are two parts. We have to prove existence and uniqueness. We'll first prove it concretely using matrices, and then provide a conceptual reason of what this means.
Let $(\mathbf{v}_1, \cdots, \mathbf{v}_n)$ and $(\mathbf{w}_1, \cdots, \mathbf{w}_m)$ be orthonormal basis for $V$ and $W$. Suppose $\alpha$ is represented by $A$.
To show uniqueness, suppose $\alpha^*: W \to V$ satisfies $(\alpha \mathbf{v}, \mathbf{w}) = (\mathbf{v}, \alpha^* \mathbf{w})$ for all $\mathbf{v} \in V$, $\mathbf{w} \in W$, then for all $i, j$, by definition, we know
\begin{align*}
(\mathbf{v}_i, \alpha^*(\mathbf{w}_j)) &= (\alpha(\mathbf{v}_i), \mathbf{w}_j) \\
&= \left(\sum_k A_{ki} \mathbf{w}_k, \mathbf{w}_j\right)\\
&= \sum_k \bar{A}_{ki} (\mathbf{w}_k, \mathbf{w}_j) = \bar{A}_{ji}.
\end{align*}
So we get
\[
\alpha^*(\mathbf{w}_j) = \sum_i (\mathbf{v}_i, \alpha^*(\mathbf{w}_j)) \mathbf{v}_i = \sum_i \bar{A}_{ji} \mathbf{v}_i.
\]
Hence $\alpha^*$ must be represented by $A^\dagger$. So $\alpha^*$ is unique.
To show existence, all we have to do is to show $A^\dagger$ indeed works. Now let $\alpha^*$ be represented by $A^\dagger$. We can compute the two sides of $(*)$ for arbitrary $\mathbf{v}, \mathbf{w}$. We have
\begin{align*}
\left(\alpha\left(\sum \lambda_i \mathbf{v}_i\right), \sum \mu_j \mathbf{w}_j\right) &= \sum_{i, j} \bar{\lambda}_i \mu_j (\alpha(\mathbf{v}_i), \mathbf{w}_j)\\
&= \sum_{i, j} \bar{\lambda}_i \mu_j \left(\sum_k A_{ki} \mathbf{w}_k, \mathbf{w}_j\right)\\
&= \sum_{i, j} \bar{\lambda}_i \bar{A}_{ji} \mu_j.
\end{align*}
We can compute the other side and get
\begin{align*}
\left(\sum \lambda_i \mathbf{v}_i, \alpha^*\left(\sum \mu_j \mathbf{w}_j\right)\right) &= \sum_{i, j} \bar{\lambda}_i \mu_j \left(\mathbf{v}_i, \sum_k A^{\dagger}_{kj} \mathbf{v}_k\right)\\
&= \sum_{i, j} \bar{\lambda}_i \bar{A}_{ji} \mu_j.
\end{align*}
So done.
\end{proof}
What does this mean, conceptually? Note that the inner product $V$ defines an isomorphism $V \to \bar{V}^*$ by $\mathbf{v} \mapsto (\ph,\mathbf{v})$. Similarly, we have an isomorphism $W \to \bar{W}^*$. We can then put them in the following diagram:
\[
\begin{tikzcd}
V \ar[r, "\alpha"] \ar[d, "\cong"] & W \ar[d, "\cong"]\\
\bar{V}^* & \bar{W}^* \ar[l, dashed, "\alpha^*"]
\end{tikzcd}
\]
Then $\alpha^*$ is what fills in the dashed arrow. So $\alpha^*$ is in some sense the ``dual'' of the map $\alpha$.
\begin{defi}[Adjoint]
We call the map $\alpha^*$ the \emph{adjoint} of $\alpha$.
\end{defi}
We have just seen that if $\alpha$ is represented by $A$ with respect to some orthonormal bases, then $\alpha^*$ is represented by $A^\dagger$.
\begin{defi}[Self-adjoint]
Let $V$ be an inner product space, and $\alpha \in \End(V)$. Then $\alpha$ is \emph{self-adjoint} if $\alpha = \alpha^*$, i.e.
\[
(\alpha(\mathbf{v}), \mathbf{w}) = (\mathbf{v}, \alpha(\mathbf{w}))
\]
for all $\mathbf{v}, \mathbf{w}$.
\end{defi}
Thus if $V = \R^n$ with the usual inner product, then $A \in \Mat_n(\R)$ is self-adjoint if and only if it is symmetric, i.e.\ $A = A^T$. If $V = \C^n$ with the usual inner product, then $A \in \Mat_n(\C)$ is self-adjoint if and only if $A$ is Hermitian, i.e.\ $A = A^\dagger$.
Self-adjoint endomorphisms are important, as you may have noticed from IB Quantum Mechanics. We will later see that these have real eigenvalues with an orthonormal basis of eigenvectors.
\subsubsection*{Orthogonal maps}
Another important class of endomorphisms is those that preserve lengths. We will first do this for real vector spaces, since the real and complex versions have different names.
\begin{defi}[Orthogonal endomorphism]
Let $V$ be a real inner product space. Then $\alpha \in \End(V)$ is \emph{orthogonal} if
\[
(\alpha(\mathbf{v}), \alpha(\mathbf{w})) = (\mathbf{v}, \mathbf{w})
\]
for all $\mathbf{v}, \mathbf{w} \in V$.
\end{defi}
By the polarization identity, $\alpha$ is orthogonal if and only if $\|\alpha(\mathbf{v})\| = \|\mathbf{v}\|$ for all $\mathbf{v} \in V$.
A real square matrix (as an endomorphism of $\R^n$ with the usual inner product) is orthogonal if and only if its columns are an orthonormal set.
There is also an alternative way of characterizing these orthogonal maps.
\begin{lemma}
Let $V$ be a finite-dimensional space and $\alpha \in \End(V)$. Then $\alpha$ is orthogonal if and only if $\alpha^{-1} = \alpha^*$.
\end{lemma}
\begin{proof}
$(\Leftarrow)$ Suppose $\alpha^{-1} = \alpha^*$. If $\alpha^{-1} = \alpha^*$, then
\[
(\alpha \mathbf{v}, \alpha \mathbf{v}) = (\mathbf{v}, \alpha^* \alpha \mathbf{v}) = (\mathbf{v}, \alpha^{-1} \alpha \mathbf{v}) = (\mathbf{v}, \mathbf{v}).
\]
$(\Rightarrow)$ If $\alpha$ is orthogonal and $(\mathbf{v}_1, \cdots, \mathbf{v}_n)$ is an orthonormal basis for $V$, then for $1 \leq i, j \leq n$, we have
\[
\delta_{ij} = (\mathbf{v}_i, \mathbf{v}_j) = (\alpha \mathbf{v}_i, \alpha \mathbf{v}_j) = (\mathbf{v}_i, \alpha^* \alpha \mathbf{v}_j).
\]
So we know
\[
\alpha^* \alpha (\mathbf{v}_j) = \sum_{i = 1}^n (\mathbf{v}_i, \alpha^* \alpha \mathbf{v}_j)) \mathbf{v}_i = \mathbf{v}_j.
\]
So by linearity of $\alpha^* \alpha$, we know $\alpha^* \alpha = \id_V$. So $\alpha^* = \alpha^{-1}$.
\end{proof}
\begin{cor}
$\alpha \in \End(V)$ is orthogonal if and only if $\alpha$ is represented by an orthogonal matrix, i.e.\ a matrix $A$ such that $A^T A = AA^T = I$, with respect to any orthonormal basis.
\end{cor}
\begin{proof}
Let $(\mathbf{e}_1, \cdots, \mathbf{e}_n)$ be an orthonormal basis for $V$. Then suppose $\alpha$ is represented by $A$. So $\alpha^*$ is represented by $A^T$. Then $A^* = A^{-1}$ if and only if $AA^T = A^T A = I$.
\end{proof}
\begin{defi}[Orthogonal group]
Let $V$ be a real inner product space. Then the \emph{orthogonal group} of $V$ is
\[
\Or(V) = \{\alpha \in \End(V): \alpha\text{ is orthogonal}\}.
\]
\end{defi}
It follows from the fact that $\alpha^* = \alpha^{-1}$ that $\alpha$ is invertible, and it is clear from definition that $\Or(V)$ is closed under multiplication and inverses. So this is indeed a group.
\begin{prop}
Let $V$ be a finite-dimensional real inner product space and $(\mathbf{e}_1, \cdots, \mathbf{e}_n)$ is an orthonormal basis of $V$. Then there is a bijection
\begin{align*}
\Or(V) &\to \{\text{orthonormal basis for }V\}\\
\alpha &\mapsto (\alpha(\mathbf{e}_1, \cdots, \mathbf{e}_n)).
\end{align*}
\end{prop}
This is analogous to our result for general vector spaces and general bases, where we replace $\Or(V)$ with $\GL(V)$.
\begin{proof}
Same as the case for general vector spaces and general bases.
\end{proof}
\subsubsection*{Unitary maps}
We are going to study the complex version of orthogonal maps, known as \emph{unitary maps}. The proofs are almost always identical to the real case, and we will not write the proofs again.
\begin{defi}[Unitary map]
Let $V$ be a finite-dimensional complex vector space. Then $\alpha \in \End(V)$ is \emph{unitary} if
\[
(\alpha(\mathbf{v}), \alpha(\mathbf{w})) = (\mathbf{v}, \mathbf{w})
\]
for all $\mathbf{v}, \mathbf{w} \in V$.
\end{defi}
By the polarization identity, $\alpha$ is unitary if and only if $\|\alpha(\mathbf{v})\| = \|\mathbf{v}\|$ for all $\mathbf{v} \in V$.
\begin{lemma}
Let $V$ be a finite dimensional complex inner product space and $\alpha \in \End(V)$. Then $\alpha$ is unitary if and only if $\alpha$ is invertible and $\alpha^* = \alpha^{-1}$.
\end{lemma}
\begin{cor}
$\alpha \in \End(V)$ is unitary if and only if $\alpha$ is represented by a unitary matrix $A$ with respect to any orthonormal basis, i.e.\ $A^{-1} = A^\dagger$.
\end{cor}
\begin{defi}[Unitary group]
Let $V$ be a finite-dimensional complex inner product space. Then the \emph{unitary group} of $V$ is
\[
U(V) = \{\alpha \in \End(V): \alpha\text{ is unitary}\}.
\]
\end{defi}
\begin{prop}
Let $V$ be a finite-dimensional complex inner product space. Then there is a bijection
\begin{align*}
U(V) &\to \{\text{orthonormal basis of } V\}\\
\alpha &\mapsto \{\alpha(\mathbf{e}_1), \cdots, \alpha (\mathbf{e}_n)\}.
\end{align*}
\end{prop}
\subsection{Spectral theory}
We are going to classify matrices in inner product spaces. Recall that for general vector spaces, what we effectively did was to find the orbits of the conjugation action of $\GL(V)$ on $\Mat_n(\F)$. If we have inner product spaces, we will want to look at the action of $O(V)$ or $U(V)$ on $\Mat_n(\F)$. In a more human language, instead of allowing arbitrary basis transformations, we only allow transforming between orthonormal basis.
We are not going to classify all endomorphisms, but just self-adjoint and orthogonal/unitary ones.
\begin{lemma}
Let $V$ be a finite-dimensional inner product space, and $\alpha \in \End(V)$ self-adjoint. Then
\begin{enumerate}
\item $\alpha$ has a real eigenvalue, and all eigenvalues of $\alpha$ are real.
\item Eigenvectors of $\alpha$ with distinct eigenvalues are orthogonal.
\end{enumerate}
\end{lemma}
\begin{proof}
We are going to do real and complex cases separately.
\begin{enumerate}
\item Suppose first $V$ is a complex inner product space. Then by the fundamental theorem of algebra, $\alpha$ has an eigenvalue, say $\lambda$. We pick $\mathbf{v} \in V\setminus \{0\}$ such that $\alpha \mathbf{v} = \lambda \mathbf{v}$. Then
\[
\bar{\lambda}(\mathbf{v}, \mathbf{v}) = (\lambda \mathbf{v}, \mathbf{v}) = (\alpha \mathbf{v}, \mathbf{v}) = (\mathbf{v}, \alpha \mathbf{v}) = (\mathbf{v}, \lambda \mathbf{v}) = \lambda (\mathbf{v}, \mathbf{v}).
\]
Since $\mathbf{v}\not= \mathbf{0}$, we know $(\mathbf{v}, \mathbf{v})\not= 0$. So $\lambda = \bar{\lambda}$.
For the real case, we pretend we are in the complex case. Let $\mathbf{e}_1, \cdots, \mathbf{e}_n$ be an orthonormal basis for $V$. Then $\alpha$ is represented by a symmetric matrix $A$ (with respect to this basis). Since real symmetric matrices are Hermitian viewed as complex matrices, this gives a self-adjoint endomorphism of $\C^n$. By the complex case, $A$ has real eigenvalues only. But the eigenvalues of $A$ are the eigenvalues of $\alpha$ and $M_A(t) = M_\alpha(t)$. So done.
Alternatively, we can prove this without reducing to the complex case. We know every irreducible factor of $M_\alpha(t)$ in $\R[t]$ must have degree $1$ or $2$, since the roots are either real or come in complex conjugate pairs. Suppose $f(t)$ were an irreducible factor of degree $2$. Then
\[
\left(\frac{m_\alpha}{f}\right)(\alpha) \not= 0
\]
since it has degree less than the minimal polynomial. So there is some $\mathbf{v} \in V$ such that
\[
\left(\frac{M_\alpha}{f}\right)(\alpha)(\mathbf{v}) \not= \mathbf{0}.
\]
So it must be that $f(\alpha)(\mathbf{v}) = \mathbf{0}$. Let $U = \bra \mathbf{v}, \alpha (\mathbf{v})\ket$. Then this is an $\alpha$-invariant subspace of $V$ since $f$ has degree $2$.
Now $\alpha|_U \in \End(U)$ is self-adjoint. So if $(\mathbf{e}_1, \mathbf{e}_2)$ is an orthonormal basis of $U$, then $\alpha$ is represented by a real symmetric matrix, say
\[
\begin{pmatrix}
a & b\\
b & a
\end{pmatrix}
\]
But then $\chi_{\alpha|_U}(t) = (t - a)^2 - b^2$, which has real roots, namely $a \pm b$. This is a contradiction, since $M_{\alpha|_U} = f$, but $f$ is irreducible.
\item Now suppose $\alpha \mathbf{v} = \lambda \mathbf{v}$, $\alpha \mathbf{w} = \mu \mathbf{w}$ and $\lambda \not= \mu$. We need to show $(\mathbf{v}, \mathbf{w}) = 0$. We know
\[
(\alpha \mathbf{v}, \mathbf{w}) = (\mathbf{v}, \alpha \mathbf{w})
\]
by definition. This then gives
\[
\lambda (\mathbf{v}, \mathbf{w}) = \mu (\mathbf{v}, \mathbf{w})
\]
Since $\lambda \not= \mu$, we must have $(\mathbf{v}, \mathbf{w}) = 0$.\qedhere
\end{enumerate}
\end{proof}
\begin{thm}
Let $V$ be a finite-dimensional inner product space, and $\alpha \in \End(V)$ self-adjoint. Then $V$ has an orthonormal basis of eigenvectors of $\alpha$.
\end{thm}
\begin{proof}
By the previous lemma, $\alpha$ has a real eigenvalue, say $\lambda$. Then we can find an eigenvector $\mathbf{v} \in V\setminus \{0\}$ such that $\alpha \mathbf{v} = \lambda \mathbf{v}$.
Let $U = \bra \mathbf{v}\ket ^\perp$. Then we can write
\[
V = \bra \mathbf{v}\ket \perp U.
\]
We now want to prove $\alpha$ sends $U$ into $U$. Suppose $\mathbf{u} \in U$. Then
\[
(\mathbf{v}, \alpha (\mathbf{u})) = (\alpha \mathbf{v}, \mathbf{u}) = \lambda (\mathbf{v}, \mathbf{u}) = 0.
\]
So $\alpha (\mathbf{u}) \in \bra \mathbf{v}\ket^\perp = U$. So $\alpha|_U \in \End(U)$ and is self-adjoint.
By induction on $\dim V$, $U$ has an orthonormal basis $(\mathbf{v}_2, \cdots, \mathbf{v}_n)$ of $\alpha$ eigenvectors. Now let
\[
\mathbf{v}_1 = \frac{\mathbf{v}}{\|\mathbf{v}\|}.
\]
Then $(\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n)$ is an orthonormal basis of eigenvectors for $\alpha$.
\end{proof}
\begin{cor}
Let $V$ be a finite-dimensional vector space and $\alpha$ self-adjoint. Then $V$ is the orthogonal (internal) direct sum of its $\alpha$-eigenspaces.
\end{cor}
\begin{cor}
Let $A \in \Mat_n(\R)$ be symmetric. Then there exists an orthogonal matrix $P$ such that $P^TAP = P^{-1}AP$ is diagonal.
\end{cor}
\begin{proof}
Let $(\ph, \ph)$ be the standard inner product on $\R^n$. Then $A$ is self-adjoint as an endomorphism of $\R^n$. So $\R^n$ has an orthonormal basis of eigenvectors for $A$, say $(\mathbf{v}_1, \cdots, \mathbf{v}_n)$. Taking $P = (\mathbf{v}_1\; \mathbf{v}_2\; \cdots \; \mathbf{v}_n)$ gives the result.
\end{proof}
\begin{cor}
Let $V$ be a finite-dimensional real inner product space and $\psi: V\times V \to \R$ a symmetric bilinear form. Then there exists an orthonormal basis $(\mathbf{v}_1, \cdots, \mathbf{v}_n)$ for $V$ with respect to which $\psi$ is represented by a diagonal matrix.
\end{cor}
\begin{proof}
Let $(\mathbf{u}_1, \cdots, \mathbf{u}_n)$ be any orthonormal basis for $V$. Then $\psi$ is represented by a symmetric matrix $A$. Then there exists an orthogonal matrix $P$ such that $P^T AP$ is diagonal. Now let $\mathbf{v}_i = \sum P_{ki} \mathbf{u}_k$. Then $(\mathbf{v}_1, \cdots, \mathbf{v}_n)$ is an orthonormal basis since
\begin{align*}
(\mathbf{v}_i, \mathbf{v}_j) &= \left(\sum P_{ki} \mathbf{u}_k, \sum P_{\ell j} \mathbf{u}_\ell\right) \\
&= \sum P_{ik}^T (\mathbf{u}_k, \mathbf{u}_\ell) P_{\ell j}\\
&= [P^T P]_{ij}\\
&= \delta_{ij}.
\end{align*}
Also, $\psi$ is represented by $P^T AP$ with respect to $(\mathbf{v}_1, \cdots, \mathbf{v}_n)$.
\end{proof}
Note that the diagonal values of $P^T AP$ are just the eigenvalues of $A$. So the signature of $\psi$ is just the number of positive eigenvalues of $A$ minus the number of negative eigenvalues of $A$.
\begin{cor}
Let $V$ be a finite-dimensional real vector space and $\phi, \psi$ symmetric bilinear forms on $V$ such that $\phi$ is positive-definite. Then we can find a basis $(\mathbf{v}_1, \cdots, \mathbf{v}_n)$ for $V$ such that both $\phi$ and $\psi$ are represented by diagonal matrices with respect to this basis.
\end{cor}
\begin{proof}
We use $\phi$ to define an inner product. Choose an orthonormal basis for $V$ (equipped with $\phi$) $(\mathbf{v}_1, \cdots, \mathbf{v}_n)$ with respect to which $\psi$ is diagonal. Then $\phi$ is represented by $I$ with respect to this basis, since $\psi(\mathbf{v}_i, \mathbf{v}_j) = \delta_{ij}$. So done.
\end{proof}
\begin{cor}
If $A, B \in \Mat_n(\R)$ are symmetric and $A$ is positive definitive (i.e.\ $\mathbf{v}^T A \mathbf{v} > 0$ for all $\mathbf{v} \in \R^n \setminus \{0\}$). Then there exists an invertible matrix $Q$ such that $Q^T AQ$ and $Q^T BQ$ are both diagonal.
\end{cor}
We can deduce similar results for complex finite-dimensional vector spaces, with the same proofs. In particular,
\begin{prop}\leavevmode
\begin{enumerate}
\item If $A \in \Mat_n(\C)$ is Hermitian, then there exists a unitary matrix $U \in \Mat_n(\C)$ such that
\[
U^{-1}AU = U^\dagger AU
\]
is diagonal.
\item If $\psi$ is a Hermitian form on a finite-dimensional complex inner product space $V$, then there is an orthonormal basis for $V$ diagonalizing $\psi$.
\item If $\phi, \psi$ are Hermitian forms on a finite-dimensional complex vector space and $\phi$ is positive definite, then there exists a basis for which $\phi$ and $\psi$ are diagonalized.
\item Let $A, B \in \Mat_n(\C)$ be Hermitian, and $A$ positive definitive (i.e.\ $\mathbf{v}^\dagger A \mathbf{v} > 0$ for $\mathbf{v} \in V \setminus \{0\}$). Then there exists some invertible $Q$ such that $Q^\dagger AQ$ and $Q^\dagger BQ$ are diagonal.
\end{enumerate}
\end{prop}
That's all for self-adjoint matrices. How about unitary matrices?
\begin{thm}
Let $V$ be a finite-dimensional complex vector space and $\alpha \in U(V)$ be unitary. Then $V$ has an orthonormal basis of $\alpha$ eigenvectors.
\end{thm}
\begin{proof}
By the fundamental theorem of algebra, there exists $\mathbf{v} \in V\setminus \{0\}$ and $\lambda \in \C$ such that $\alpha \mathbf{v} = \lambda \mathbf{v}$. Now consider $W = \bra \mathbf{v}\ket^\perp$. Then
\[
V = W \perp \bra \mathbf{v}\ket.
\]
We want to show $\alpha$ restricts to a (unitary) endomorphism of $W$. Let $\mathbf{w} \in W$. We need to show $\alpha(\mathbf{w})$ is orthogonal to $\mathbf{v}$. We have
\[
(\alpha \mathbf{w}, \mathbf{v}) = (\mathbf{w}, \alpha^{-1}\mathbf{v}) = (\mathbf{w}, \lambda^{-1} \mathbf{v}) = 0.
\]
So $\alpha(\mathbf{w}) \in W$ and $\alpha|_W \in \End(W)$. Also, $\alpha|_W$ is unitary since $\alpha$ is. So by induction on $\dim V$, $W$ has an orthonormal basis of $\alpha$ eigenvectors. If we add $\mathbf{v}/\|\mathbf{v}\|$ to this basis, we get an orthonormal basis of $V$ itself comprised of $\alpha$ eigenvectors.
\end{proof}
This theorem and the analogous one for self-adjoint endomorphisms have a common generalization, at least for complex inner product spaces. The key fact that leads to the existence of an orthonormal basis of eigenvectors is that $\alpha$ and $\alpha^*$ commute. This is clearly a necessary condition, since if $\alpha$ is diagonalizable, then $\alpha^*$ is diagonal in the same basis (since it is just the transpose (and conjugate)), and hence they commute. It turns out this is also a sufficient condition, as you will show in example sheet 4.
However, we cannot generalize this in the real orthogonal case. For example,
\[
\begin{pmatrix}
\cos \theta & \sin \theta\\
- \sin \theta & \cos \theta
\end{pmatrix} \in O(\R^2)
\]
cannot be diagonalized (if $\theta \not\in \pi \Z$). However, in example sheet 4, you will find a classification of $O(V)$, and you will see that the above counterexample is the worst that can happen in some sense.
\end{document}
|