Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 231,311 Bytes
afd65d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
\documentclass[a4paper]{article}

\def\npart {IB}
\def\nterm {Michaelmas}
\def\nyear {2015}
\def\nlecturer {S.\ J.\ Wadsley}
\def\ncourse {Linear Algebra}
\def\nofficial{https://www.dpmms.cam.ac.uk/~sjw47/LinearAlgebraM15.pdf}

\input{header}

\begin{document}
\maketitle
{\small
\noindent Definition of a vector space (over $\R$ or $\C$), subspaces, the space spanned by a subset. Linear independence, bases, dimension. Direct sums and complementary subspaces. \hspace*{\fill} [3]

\vspace{5pt}
\noindent Linear maps, isomorphisms. Relation between rank and nullity. The space of linear maps from $U$ to $V$, representation by matrices. Change of basis. Row rank and column rank.\hspace*{\fill} [4]

\vspace{5pt}
\noindent Determinant and trace of a square matrix. Determinant of a product of two matrices and of the inverse matrix. Determinant of an endomorphism. The adjugate matrix.\hspace*{\fill} [3]

\vspace{5pt}
\noindent Eigenvalues and eigenvectors. Diagonal and triangular forms. Characteristic and minimal polynomials. Cayley-Hamilton Theorem over $\C$. Algebraic and geometric multiplicity of eigenvalues. Statement and illustration of Jordan normal form.\hspace*{\fill} [4]

\vspace{5pt}
\noindent Dual of a finite-dimensional vector space, dual bases and maps. Matrix representation, rank and determinant of dual map.\hspace*{\fill} [2]

\vspace{5pt}
\noindent Bilinear forms. Matrix representation, change of basis. Symmetric forms and their link with quadratic forms. Diagonalisation of quadratic forms. Law of inertia, classification by rank and signature. Complex Hermitian forms.\hspace*{\fill} [4]

\vspace{5pt}
\noindent Inner product spaces, orthonormal sets, orthogonal projection, $V = W \oplus W^\bot$. Gram-Schmidt orthogonalisation. Adjoints. Diagonalisation of Hermitian matrices. Orthogonality of eigenvectors and properties of eigenvalues.\hspace*{\fill} [4]}

\tableofcontents
\setcounter{section}{-1}
\section{Introduction}
In IA Vectors and Matrices, we have learnt about vectors (and matrices) in a rather applied way. A vector was just treated as a ``list of numbers'' representing a point in space. We used these to represent lines, conics, planes and many other geometrical notions. A matrix is treated as a ``physical operation'' on vectors that stretches and rotates them. For example, we studied the properties of rotations, reflections and shears of space. We also used matrices to express and solve systems of linear equations. We mostly took a practical approach in the course.

In IB Linear Algebra, we are going to study vectors in an abstract setting. Instead of treating vectors as ``lists of numbers'', we view them as things we can add and scalar-multiply. We will write down axioms governing how these operations should behave, just like how we wrote down the axioms of group theory. Instead of studying matrices as an array of numbers, we instead look at linear maps between vector spaces abstractly.

In the course, we will, of course, prove that this abstract treatment of linear algebra is just ``the same as'' our previous study of ``vectors as a list of numbers''. Indeed, in certain cases, results are much more easily proved by working with matrices (as an array of numbers) instead of abstract linear maps, and we don't shy away from doing so. However, most of the time, looking at these abstractly will provide a much better fundamental understanding of how things work.

\section{Vector spaces}
\subsection{Definitions and examples}
\begin{notation}
  We will use $\F$ to denote an arbitrary field, usually $\R$ or $\C$.
\end{notation}

Intuitively, a vector space $V$ over a field $\F$ (or an $\F$-vector space) is a space with two operations:
\begin{itemize}
  \item We can add two vectors $\mathbf{v}_1, \mathbf{v}_2 \in V$ to obtain $\mathbf{v}_1 + \mathbf{v}_2 \in V$.
  \item We can multiply a scalar $\lambda \in \F$ with a vector $\mathbf{v}\in V$ to obtain $\lambda \mathbf{v} \in V$.
\end{itemize}

Of course, these two operations must satisfy certain axioms before we can call it a vector space. However, before going into these details, we first look at a few examples of vector spaces.

\begin{eg}\leavevmode
  \begin{enumerate}
    \item $\R^n = \{\text{column vectors of length }n\text{ with coefficients in }\R\}$ with the usual addition and scalar multiplication is a vector space.

      An $m\times n$ matrix $A$ with coefficients in $\R$ can be viewed as a linear map from $\R^m$ to $\R^n$ via $\mathbf{v} \mapsto A\mathbf{v}$.

      This is a motivational example for vector spaces. When confused about definitions, we can often think what the definition means in terms of $\R^n$ and matrices to get some intuition.

    \item Let $X$ be a set and define $\R^X = \{f: X\to \R\}$ with addition $(f + g)(x) = f(x) + g(x)$ and scalar multiplication $(\lambda f)(x) = \lambda f(x)$. This is a vector space.

      More generally, if $V$ is a vector space, $X$ is a set, we can define $V^X = \{f: X \to V\}$ with addition and scalar multiplication as above.
    \item Let $[a, b]\subseteq \R$ be a closed interval, then
      \[
        C([a, b], \R) = \{f\in \R^{[a,b]}: f\text{ is continuous}\}
      \]
      is a vector space, with operations as above. We also have
      \[
        C^{\infty}([a, b], \R) = \{f\in \R^{[a,b]}: f\text{ is infinitely differentiable}\}
      \]
    \item The set of $m\times n$ matrices with coefficients in $\R$ is a vector space, using componentwise addition and scalar multiplication, is a vector space.
  \end{enumerate}
\end{eg}

Of course, we cannot take a random set, define some random operations called addition and scalar multiplication, and call it a vector space. These operations have to behave sensibly.

\begin{defi}[Vector space]
  An \emph{$\F$-vector space} is an (additive) abelian group $V$ together with a function $\F \times V \to V$, written $(\lambda, \mathbf{v}) \mapsto \lambda \mathbf{v}$, such that
  \begin{enumerate}
    \item $\lambda(\mu \mathbf{v}) = \lambda \mu \mathbf{v}$ for all $\lambda, \mu \in \F$, $\mathbf{v}\in V$ \hfill (associativity)
    \item $\lambda(\mathbf{u} + \mathbf{v}) = \lambda \mathbf{u} + \lambda \mathbf{v}$ for all $\lambda\in \F$, $\mathbf{u}, \mathbf{v}\in V$\hfill (distributivity in $V$)
    \item $(\lambda + \mu) \mathbf{v} = \lambda \mathbf{v} + \mu \mathbf{v}$ for all $\lambda, \mu \in \F$, $\mathbf{v}\in V$ \hfill (distributivity in $\F$)
    \item $1\mathbf{v} = \mathbf{v}$ for all $\mathbf{v}\in V$ \hfill (identity)
  \end{enumerate}

  We always write $\mathbf{0}$ for the additive identity in $V$, and call this the identity. By abuse of notation, we also write $0$ for the trivial vector space $\{\mathbf{0}\}$.
\end{defi}
In a general vector space, there is no notion of ``coordinates'', length, angle or distance. For example, it would be difficult to assign these quantities to the vector space of real-valued continuous functions in $[a, b]$.

From the axioms, there are a few results we can immediately prove.
\begin{prop}
  In any vector space $V$, $0\mathbf{v} = \mathbf{0}$ for all $\mathbf{v}\in V$, and $(-1)\mathbf{v} = -\mathbf{v}$, where $-\mathbf{v}$ is the additive inverse of $\mathbf{v}$.
\end{prop}
Proof is left as an exercise.

In mathematics, whenever we define ``something'', we would also like to define a ``sub-something''. In the case of vector spaces, this is a subspace.
\begin{defi}[Subspace]
  If $V$ is an $\F$-vector space, then $U\subseteq V$ is an ($\F$-linear) \emph{subspace} if
  \begin{enumerate}
    \item $\mathbf{u}, \mathbf{v}\in U$ implies $\mathbf{u} + \mathbf{v} \in U$.
    \item $\mathbf{u}\in U, \lambda \in \F$ implies $\lambda \mathbf{u}\in U$.
    \item $\mathbf{0}\in U$.
  \end{enumerate}
  These conditions can be expressed more concisely as ``$U$ is non-empty and if $\lambda, \mu\in \F, \mathbf{u}, \mathbf{v}\in U$, then $\lambda \mathbf{u} + \mu \mathbf{v}\in U$''.

  Alternatively, $U$ is a subspace of $V$ if it is itself a vector space, inheriting the operations from $V$.

  We sometimes write $U\leq V$ if $U$ is a subspace of $V$.
\end{defi}

\begin{eg}\leavevmode
  \begin{enumerate}
    \item $\{(x_1, x_2, x_3) \in \R^3: x_1 + x_2 + x_3 = t\}$ is a subspace of $\R^3$ iff $t = 0$.
    \item Let $X$ be a set. We define the \emph{support} of $f$ in $\F^X$ to be $\supp(f) = \{x\in X: f(x) \not= 0\}$. Then the set of functions with finite support forms a vector subspace. This is since $\supp (f + g) \subseteq \supp(f) \cup \supp(g)$, $\supp (\lambda f) = \supp (f)$ (for $\lambda \not= 0$) and $\supp (0) = \emptyset$.
  \end{enumerate}
\end{eg}

If we have two subspaces $U$ and $V$, there are several things we can do with them. For example, we can take the intersection $U\cap V$. We will shortly show that this will be a subspace. However, taking the union will in general not produce a vector space. Instead, we need the sum:

\begin{defi}[Sum of subspaces]
  Suppose $U, W$ are subspaces of an $\F$ vector space $V$. The \emph{sum} of $U$ and $V$ is
  \[
    U + W = \{\mathbf{u} + \mathbf{w}: \mathbf{u}\in U, \mathbf{w}\in W\}.
  \]
\end{defi}

\begin{prop}
  Let $U, W$ be subspaces of $V$. Then $U + W$ and $U\cap W$ are subspaces.
\end{prop}

\begin{proof}
  Let $\mathbf{u}_i + \mathbf{w}_i \in U + W$, $\lambda, \mu\in \F$. Then
  \[
    \lambda(\mathbf{u}_1 + \mathbf{w}_1) + \mu(\mathbf{u}_2 + \mathbf{w}_2) = (\lambda\mathbf{u}_1 + \mu\mathbf{u}_2) + (\lambda\mathbf{w}_1 + \mu\mathbf{w}_2) \in U + W.
  \]
  Similarly, if $\mathbf{v}_i \in U\cap W$, then $\lambda \mathbf{v}_1 + \mu \mathbf{v}_2\in U$ and $\lambda \mathbf{v}_1 + \mu \mathbf{v}_2\in W$. So $\lambda \mathbf{v}_1 + \mu \mathbf{v}_2\in U\cap W$.

  Both $U\cap W$ and $U + W$ contain $\mathbf{0}$, and are non-empty. So done.
\end{proof}

In addition to sub-somethings, we often have quotient-somethings as well.
\begin{defi}[Quotient spaces]
  Let $V$ be a vector space, and $U\subseteq V$ a subspace. Then the quotient group $V/U$ can be made into a vector space called the \emph{quotient space}, where scalar multiplication is given by $(\lambda, \mathbf{v} + U) = (\lambda \mathbf{v}) + U$.

  This is well defined since if $\mathbf{v} + U = \mathbf{w} + U\in V/U$, then $\mathbf{v} - \mathbf{w} \in U$. Hence for $\lambda \in \F$, we have $\lambda \mathbf{v} - \lambda \mathbf{w} \in U$. So $\lambda \mathbf{v} + U = \lambda \mathbf{w} + U$.
\end{defi}
\subsection{Linear independence, bases and the Steinitz exchange lemma}
Recall that in $\R^n$, we had the ``standard basis'' made of vectors of the form $\mathbf{e}_i = (0, \cdots, 0, 1, 0, \cdots, 0)$, with $1$ in the $i$th component and $0$ otherwise. We call this a \emph{basis} because everything in $\R^n$ can be (uniquely) written as a sum of (scalar multiples of) these basis elements. In other words, the whole $\R^n$ is generated by taking sums and multiples of the basis elements.

We would like to capture this idea in general vector spaces. The most important result in this section is to prove that for any vector space $V$, any two basis must contain the same number of elements. This means we can define the ``dimension'' of a vector space as the number of elements in the basis.

While this result sounds rather trivial, it is a very important result. We will in fact prove a slightly stronger statement than what was stated above, and this ensures that the dimension of a vector space is well-behaved. For example, the subspace of a vector space has a smaller dimension than the larger space (at least when the dimensions are finite).

This is not the case when we study modules in IB Groups, Rings and Modules, which are generalizations of vector spaces. Not all modules have basis, which makes it difficult to define the dimension. Even for those that have basis, the behaviour of the ``dimension'' is complicated when, say, we take submodules. The existence and well-behavedness of basis and dimension is what makes linear algebra different from modules.

\begin{defi}[Span]
  Let $V$ be a vector space over $\F$ and $S\subseteq V$. The \emph{span} of $S$ is defined as
  \[
    \bra S\ket = \left\{\sum_{i = 1}^n \lambda_i \mathbf{s}_i : \lambda_i \in \F, \mathbf{s}_i \in S, n \geq 0\right\}
  \]
  This is the smallest subspace of $V$ containing $S$.

  Note that the sums must be finite. We will not play with infinite sums, since the notion of convergence is not even well defined in a general vector space.
\end{defi}

\begin{eg}\leavevmode
  \begin{enumerate}
    \item Let $V = \R^3$ and $S = \left\{\begin{pmatrix}1\\0\\0\end{pmatrix}, \begin{pmatrix}0\\1\\1\end{pmatrix}, \begin{pmatrix}1\\2\\2\end{pmatrix}\right\}$. Then
      \[
        \bra S\ket = \left\{
          \begin{pmatrix}
            a\\b\\b\\
          \end{pmatrix}: a, b\in \R
        \right\}.
      \]
      Note that any subset of $S$ of order 2 has the same span as $S$.
    \item Let $X$ be a set, $x \in X$. Define the function $\delta x: X\to \F$ by
      \[
        \delta x(y) =
        \begin{cases}
          1 & y = x\\
          0 & y\not= x
        \end{cases}.
      \]
      Then $\bra \delta x: x \in X\ket$ is the set of all functions with finite support.
  \end{enumerate}
\end{eg}

\begin{defi}[Spanning set]
  Let $V$ be a vector space over $\F$ and $S\subseteq V$. $S$ \emph{spans} $V$ if $\bra S\ket = V$.
\end{defi}

\begin{defi}[Linear independence]
  Let $V$ be a vector space over $\F$ and $S\subseteq V$. Then $S$ is \emph{linearly independent} if whenever
  \[
    \sum_{i = 1}^n \lambda_i \mathbf{s}_i = \mathbf{0}\text{ with } \lambda_i \in \F, \mathbf{s}_1, \mathbf{s}_2, \cdots, \mathbf{s}_n \in S\text{ distinct},
  \]
  we must have $\lambda_i = 0$ for all $i$.

  If $S$ is not linearly independent, we say it is \emph{linearly dependent}.
\end{defi}

\begin{defi}[Basis]
  Let $V$ be a vector space over $\F$ and $S\subseteq V$. Then $S$ is a \emph{basis} for $V$ if $S$ is linearly independent and spans $V$.
\end{defi}

\begin{defi}[Finite dimensional]
  A vector space is \emph{finite dimensional} if there is a finite basis.
\end{defi}
Ideally, we would want to define the \emph{dimension} as the number of vectors in the basis. However, we must first show that this is well-defined. It is certainly plausible that a vector space has a basis of size $7$ as well as a basis of size $3$. We must show that this can never happen, which is something we'll do soon.

We will first have an example:
\begin{eg}
  Again, let $V = \R^3$ and $S = \left\{\begin{pmatrix}1\\0\\0\end{pmatrix}, \begin{pmatrix}0\\1\\1\end{pmatrix}, \begin{pmatrix}1\\2\\2\end{pmatrix}\right\}$. Then $S$ is linearly dependent since
  \[
    1\begin{pmatrix}1\\0\\0\end{pmatrix} + 2\begin{pmatrix}0\\1\\1\end{pmatrix} + (-1) \begin{pmatrix}1\\2\\2\end{pmatrix} = \mathbf{0}.
  \]
  $S$ also does not span $V$ since $\begin{pmatrix}0\\0\\1\end{pmatrix}\not \in \bra S\ket$.
\end{eg}

Note that no linearly independent set can contain $\mathbf{0}$, as $1\cdot \mathbf{0} = \mathbf{0}$. We also have $\bra \emptyset\ket = \{\mathbf{0}\}$ and $\emptyset$ is a basis for this space.

There is an alternative way in which we can define linear independence.
\begin{lemma}
  $S\subseteq V$ is linearly dependent if and only if there are distinct $\mathbf{s}_0, \cdots, \mathbf{s}_n \in S$ and $\lambda_1, \cdots, \lambda_n\in \F$ such that
  \[
    \sum_{i = 1}^n \lambda_i \mathbf{s}_i = \mathbf{s}_0.
  \]
\end{lemma}

\begin{proof}
  If $S$ is linearly dependent, then there are some $\lambda_1, \cdots, \lambda_n \in \F$ not all zero and $\mathbf{s}_1,\cdots, \mathbf{s}_n \in S$ such that $\sum \lambda_i \mathbf{s}_i = \mathbf{0}$. Wlog, let $\lambda_1\not= 0$. Then
  \[
    \mathbf{s}_1 = \sum_{i = 2}^n -\frac{\lambda_i}{\lambda_1} \mathbf{s}_i.
  \]
  Conversely, if $\mathbf{s}_0 = \sum_{i = 1}^n \lambda_i \mathbf{s}_i$, then
  \[
    (-1)\mathbf{s}_0 + \sum_{i = 1}^n \lambda_i \mathbf{s}_i = \mathbf{0}.
  \]
  So $S$ is linearly dependent.
\end{proof}

This in turn gives an alternative characterization of what it means to be a basis:
\begin{prop}
  If $S = \{\mathbf{e}_1, \cdots, \mathbf{e}_n\}$ is a subset of $V$ over $\F$, then it is a basis if and only if every $\mathbf{v}\in V$ can be written uniquely as a finite linear combination of elements in $S$, i.e.\ as
  \[
    \mathbf{v} = \sum_{i = 1}^n \lambda_i \mathbf{e}_i.
  \]
\end{prop}

\begin{proof}
  We can view this as a combination of two statements: it can be spanned in at least one way, and it can be spanned in at most one way. We will see that the first part corresponds to $S$ spanning $V$, and the second part corresponds to $S$ being linearly independent.

  In fact, $S$ spanning $V$ is defined exactly to mean that every item $\mathbf{v}\in V$ can be written as a finite linear combination in at least one way.

  Now suppose that $S$ is linearly independent, and we have
  \[
    \mathbf{v} = \sum_{i = 1}^n \lambda_i \mathbf{e}_i = \sum_{i = 1}^n\mu_i \mathbf{e}_i.
  \]
  Then we have
  \[
    \mathbf{0} = \mathbf{v} - \mathbf{v} = \sum_{i = 1}^n (\lambda_i - \mu_i) \mathbf{e}_i.
  \]
  Linear independence implies that $\lambda_i - \mu_i = 0$ for all $i$. Hence $\lambda_i = \mu_i$. So $\mathbf{v}$ can be expressed in a unique way.

  On the other hand, if $S$ is not linearly independent, then we have
  \[
    \mathbf{0} = \sum_{i = 1}^n \lambda_i \mathbf{e}_i
  \]
  where $\lambda_i \not= 0$ for some $i$. But we also know that
  \[
    \mathbf{0} = \sum_{i = 1}^n 0\cdot \mathbf{e}_i.
  \]
  So there are two ways to write $\mathbf{0}$ as a linear combination. So done.
\end{proof}

Now we come to the key theorem:
\begin{thm}[Steinitz exchange lemma]
  Let $V$ be a vector space over $\F$, and $S = \{\mathbf{e}_1, \cdots, \mathbf{e}_n\}$ a finite linearly independent subset of $V$, and $T$ a spanning subset of $V$. Then there is some $T'\subseteq T$ of order $n$ such that $(T\setminus T') \cup S$ still spans $V$. In particular, $|T| \geq n$.
\end{thm}
What does this actually say? This says if $T$ is spanning and $S$ is independent, there is a way of grabbing $|S|$ many elements away from $T$ and replace them with $S$, and the result will still be spanning.

In some sense, the final remark is the most important part. It tells us that we cannot have a independent set larger than a spanning set, and most of our corollaries later will only use this remark.

This is sometimes stated in the following alternative way for $|T| < \infty$.
\begin{cor}
  Let $\{\mathbf{e}_1, \cdots, \mathbf{e}_n\}$ be a linearly independent subset of $V$, and suppose $\{\mathbf{f}_1, \cdots, \mathbf{f}_m\}$ spans $V$. Then there is a re-ordering of the $\{\mathbf{f}_i\}$ such that $\{\mathbf{e}_1,\cdots, \mathbf{e}_n, \mathbf{f}_{n + 1}, \cdots, \mathbf{f}_m\}$ spans $V$.
\end{cor}

The proof is going to be slightly technical and notationally daunting. So it helps to give a brief overview of what we are going to do in words first. The idea is to do the replacement one by one. The first one is easy. Start with $\mathbf{e}_1$. Since $T$ is spanning, we can write
\[
  \mathbf{e}_1 = \sum \lambda_i \mathbf{t}_i
\]
for some $\mathbf{t}_i \in T, \lambda_i \in \F$ non-zero. We then replace with $\mathbf{t}_1$ with $\mathbf{e}_1$. The result is still spanning, since the above formula allows us to write $\mathbf{t}_1$ in terms of $\mathbf{e}_1$ and the other $\mathbf{t}_i$.

We continue inductively. For the $r$th element, we again write
\[
  \mathbf{e}_r = \sum \lambda_i \mathbf{t}_i.
\]
We would like to just pick a random $\mathbf{t}_i$ and replace it with $\mathbf{e}_r$. However, we cannot do this arbitrarily, since the lemma wants us to replace something \emph{in $T$} with with $\mathbf{e}_r$. After all that replacement procedure before, some of the $\mathbf{t}_i$ might have actually come from $S$.

This is where the linear independence of $S$ kicks in. While some of the $\mathbf{t}_i$ might be from $S$, we cannot possibly have all \emph{all} of them being from $S$, or else this violates the linear independence of $S$. Hence there is something genuinely from $T$, and we can safely replace it with $\mathbf{e}_r$.

We now write this argument properly and formally.
\begin{proof}
  Suppose that we have already found $T_r'\subseteq T$ of order $0 \leq r < n$ such that
  \[
    T_r = (T\setminus T_r') \cup \{\mathbf{e}_1, \cdots, \mathbf{e}_r\}
  \]
  spans $V$.

  (Note that the case $r = 0$ is trivial, since we can take $T_r' = \emptyset$, and the case $r = n$ is the theorem which we want to achieve.)

  Suppose we have these. Since $T_r$ spans $V$, we can write
  \[
    \mathbf{e}_{r + 1} = \sum_{i = 1}^k \lambda_i \mathbf{t}_i,\quad \lambda_i \in \F, \mathbf{t}_i \in T_r.
  \]
  We know that the $\mathbf{e}_i$ are linearly independent, so not all $\mathbf{t}_i$'s are $\mathbf{e}_i$'s. So there is some $j$ such that $\mathbf{t}_j \in (T\setminus T_r')$. We can write this as
  \[
    \mathbf{t}_j = \frac{1}{\lambda_j} \mathbf{e}_{r + 1} + \sum_{i \not= j} -\frac{\lambda_i}{\lambda_j} \mathbf{t}_i.
  \]
  We let $T_{r + 1}' = T_r' \cup \{\mathbf{t}_j\}$ of order $r + 1$, and
  \[
    T_{r + 1} = (T\setminus T_{r + 1}') \cup \{\mathbf{e}_1, \cdots, \mathbf{e}_{r + 1}\} = (T_r \setminus \{\mathbf{t}_j\}\} \cup \{\mathbf{e}_{r + 1}\}
  \]
  Since $\mathbf{t}_j$ is in the span of $T_r\cup \{\mathbf{e}_{r + 1}\}$, we have $\mathbf{t}_j \in \bra T_{r + 1}\ket$. So
  \[
    V \supseteq \bra T_{r + 1}\ket \supseteq \bra T_r \ket = V.
  \]
  So $\bra T_{r + 1}\ket = V$.

  Hence we can inductively find $T_n$.
\end{proof}

From this lemma, we can immediately deduce a lot of important corollaries.
\begin{cor}
  Suppose $V$ is a vector space over $\F$ with a basis of order $n$. Then
  \begin{enumerate}
    \item Every basis of $V$ has order $n$.
    \item Any linearly independent set of order $n$ is a basis.
    \item Every spanning set of order $n$ is a basis.
    \item Every finite spanning set contains a basis.
    \item Every linearly independent subset of $V$ can be extended to basis.
  \end{enumerate}
\end{cor}

\begin{proof}
  Let $S = \{\mathbf{e}_1, \cdots, \mathbf{e}_n\}$ be the basis for $V$.
  \begin{enumerate}
    \item Suppose $T$ is another basis. Since $S$ is independent and $T$ is spanning, $|T| \geq |S|$.

      The other direction is less trivial, since $T$ might be infinite, and Steinitz does not immediately apply. Instead, we argue as follows: since $T$ is linearly independent, every finite subset of $T$ is independent. Also, $S$ is spanning. So every finite subset of $T$ has order at most $|S|$. So $|T| \leq |S|$. So $|T| = |S|$.

    \item Suppose now that $T$ is a linearly independent subset of order $n$, but $\bra T\ket \not= V$. Then there is some $\mathbf{v} \in V\setminus \bra T\ket$. We now show that $T\cup \{\mathbf{v}\}$ is independent. Indeed, if
      \[
        \lambda_0 \mathbf{v} + \sum_{i = 1}^m \lambda_i \mathbf{t}_i = \mathbf{0}
      \]
      with $\lambda_i \in \F$, $\mathbf{t}_1, \cdots, \mathbf{t}_m\in T$ distinct, then
      \[
        \lambda_0 \mathbf{v} = \sum_{i = 1}^m (-\lambda_i) \mathbf{t}_i.
      \]
      Then $\lambda_0 \mathbf{v} \in \bra T\ket$. So $\lambda_0= 0$. As $T$ is linearly independent, we have $\lambda_0 = \cdots = \lambda_m = 0$. So $T\cup \{\mathbf{v}\}$ is a linearly independent subset of size $> n$. This is a contradiction since $S$ is a spanning set of size $n$.

    \item Let $T$ be a spanning set of order $n$. If $T$ were linearly dependent, then there is some $\mathbf{t}_0, \cdots, \mathbf{t}_m \in T$ distinct and $\lambda_1, \cdots, \lambda_m \in \F$ such that
      \[
        \mathbf{t}_0 = \sum \lambda_i \mathbf{t}_i.
      \]
      So $\mathbf{t}_0 \in \bra T\setminus \{\mathbf{t}_0\}\ket$, i.e.\ $\bra T\setminus \{\mathbf{t}_0\} \ket = V$. So $T\setminus \{\mathbf{t}_0\}$ is a spanning set of order $n - 1$, which is a contradiction.

    \item Suppose $T$ is any finite spanning set. Let $T' \subseteq T$ be a spanning set of least possible size. This exists because $T$ is finite. If $|T'|$ has size $n$, then done by (iii). Otherwise by the Steinitz exchange lemma, it has size $|T'| > n$. So $T'$ must be linearly dependent because $S$ is spanning. So there is some $\mathbf{t}_0, \cdots, \mathbf{t}_m \in T$ distinct and $\lambda_1, \cdots, \lambda_m \in \F$ such that $\mathbf{t}_0 = \sum \lambda_i \mathbf{t}_i$. Then $T'\setminus \{\mathbf{t}_0\}$ is a smaller spanning set. Contradiction.

    \item Suppose $T$ is a linearly independent set. Since $S$ spans, there is some $S' \subseteq S$ of order $|T|$ such that $(S\setminus S')\cup T$ spans $V$ by the Steinitz exchange lemma. So by (ii), $(S\setminus S')\cup T$ is a basis of $V$ containing $T$.\qedhere
  \end{enumerate}
\end{proof}
Note that the last part is where we actually use the full result of Steinitz.

Finally, we can use this to define the dimension.
\begin{defi}[Dimension]
  If $V$ is a vector space over $\F$ with finite basis $S$, then the \emph{dimension} of $V$, written
  \[
    \dim V = \dim_{\F}V = |S|.
  \]
\end{defi}
By the corollary, $\dim V$ does not depend on the choice of $S$. However, it does depend on $\F$. For example, $\dim_\C \C = 1$ (since $\{1\}$ is a basis), but $\dim_\R \C = 2$ (since $\{1, i\}$ is a basis).

After defining the dimension, we can prove a few things about dimensions.
\begin{lemma}
  If $V$ is a finite dimensional vector space over $\F$, $U\subseteq V$ is a proper subspace, then $U$ is finite dimensional and $\dim U < \dim V$.
\end{lemma}

\begin{proof}
  Every linearly independent subset of $V$ has size at most $\dim V$. So let $S \subseteq U$ be a linearly independent subset of largest size. We want to show that $S$ spans $U$ and $|S| < \dim V$.

  If $\mathbf{v}\in V\setminus \bra S\ket$, then $S\cup \{\mathbf{v}\}$ is linearly independent. So $\mathbf{v}\not\in U$ by maximality of $S$. This means that $\bra S\ket = U$.

  Since $U\not= V$, there is some $\mathbf{v}\in V\setminus U = V\setminus \bra S\ket$. So $S\cup \{\mathbf{v}\}$ is a linearly independent subset of order $|S| + 1$. So $|S| + 1 \leq \dim V$. In particular, $\dim U = |S| < \dim V$.
\end{proof}

\begin{prop}
  If $U, W$ are subspaces of a finite dimensional vector space $V$, then
  \[
    \dim (U + W) = \dim U + \dim W - \dim (U\cap W).
  \]
\end{prop}
The proof is not hard, as long as we manage to pick the right basis to do the proof. This is our slogan:
\begin{center}
  When you choose a basis, always choose the right basis.
\end{center}
We need a basis for all four of them, and we want to compare the bases. So we want to pick bases that are compatible.

\begin{proof}
  Let $R = \{\mathbf{v}_1, \cdots, \mathbf{v}_r\}$ be a basis for $U\cap W$. This is a linearly independent subset of $U$. So we can extend it to be a basis of $U$ by
  \[
    S = \{\mathbf{v}_1, \cdots, \mathbf{v}_r, \mathbf{u}_{r + 1}, \cdots, \mathbf{u}_s\}.
  \]
  Similarly, for $W$, we can obtain a basis
  \[
    T = \{\mathbf{v}_1, \cdots, \mathbf{v}_r, \mathbf{w}_{r + 1}, \cdots, \mathbf{w}_t\}.
  \]
  We want to show that $\dim (U + W) = s + t - r$. It is sufficient to prove that $S\cup T$ is a basis for $U + W$.

  We first show spanning. Suppose $\mathbf{u} + \mathbf{w} \in U + W$, $\mathbf{u}\in U, \mathbf{w}\in W$. Then $\mathbf{u}\in \bra S\ket$ and $\mathbf{w}\in \bra T\ket$. So $\mathbf{u} + \mathbf{w} \in \bra S\cup T\ket$. So $U + W = \bra S \cup T\ket$.

  To show linear independence, suppose we have a linear relation
  \[
    \sum_{i = 1}^r \lambda_i \mathbf{v}_i + \sum_{j = r + 1}^s \mu_j \mathbf{u}_j + \sum_{k = r + 1}^t \nu_k \mathbf{w}_k = \mathbf{0}.
  \]
  So
  \[
    \sum \lambda_i \mathbf{v}_i + \sum \mu_j \mathbf{u}_j = - \sum \nu_k \mathbf{w}_k.
  \]
  Since the left hand side is something in $U$, and the right hand side is something in $W$, they both lie in $U\cap W$.

  Since $S$ is a basis of $U$, there is only one way of writing the left hand vector as a sum of $\mathbf{v}_i$ and $\mathbf{u}_j$. However, since $R$ is a basis of $U\cap W$, we can write the left hand vector just as a sum of $\mathbf{v}_i$'s. So we must have $\mu_j = 0$ for all $j$. Then we have
  \[
    \sum \lambda_i \mathbf{v}_i + \sum \nu_k \mathbf{w}_k = \mathbf{0}.
  \]
  Finally, since $T$ is linearly independent, $\lambda_i = \nu_k = 0$ for all $i, k$. So $S\cup T$ is linearly independent.
\end{proof}

\begin{prop}
  If $V$ is a finite dimensional vector space over $\F$ and $U\cup V$ is a subspace, then
  \[
    \dim V = \dim U + \dim V/U.
  \]
\end{prop}
We can view this as a linear algebra version of Lagrange's theorem. Combined with the first isomorphism theorem for vector spaces, this gives the rank-nullity theorem.

\begin{proof}
  Let $\{\mathbf{u}_1, \cdots, \mathbf{u}_m\}$ be a basis for $U$ and extend this to a basis $\{\mathbf{u}_1, \cdots, \mathbf{u}_m,\allowbreak \mathbf{v}_{m + 1}, \cdots, \mathbf{v}_n\}$ for $V$. We want to show that $\{\mathbf{v}_{m + 1} + U, \cdots, \mathbf{v}_n + U\}$ is a basis for $V/U$.

  It is easy to see that this spans $V/U$. If $\mathbf{v} + U \in V/U$, then we can write
  \[
    \mathbf{v} = \sum \lambda_i \mathbf{u}_i + \sum \mu_i \mathbf{v}_i.
  \]
  Then
  \[
    \mathbf{v} + U = \sum \mu_i (\mathbf{v}_i + U) + \sum \lambda_i (\mathbf{u}_i + U) = \sum \mu_i (\mathbf{v}_i + U).
  \]
  So done.

  To show that they are linearly independent, suppose that
  \[
    \sum \lambda_i (\mathbf{v}_i + U) = \mathbf{0} + U = U.
  \]
  Then this requires
  \[
    \sum \lambda_i \mathbf{v}_i \in U.
  \]
  Then we can write this as a linear combination of the $\mathbf{u}_i$'s. So
  \[
    \sum \lambda_i \mathbf{v}_i = \sum \mu_j \mathbf{u}_j
  \]
  for some $\mu_j$. Since $\{\mathbf{u}_1, \cdots, \mathbf{u}_m, \mathbf{v}_{n + 1}, \cdots, \mathbf{v}_n\}$ is a basis for $V$, we must have $\lambda_i = \mu_j = 0$ for all $i, j$. So $\{\mathbf{v}_i + U\}$ is linearly independent.
\end{proof}
\subsection{Direct sums}
We are going to define direct sums in many ways in order to confuse students.
\begin{defi}[(Internal) direct sum]
  Suppose $V$ is a vector space over $\F$ and $U, W\subseteq V$ are subspaces. We say that $V$ is the \emph{(internal) direct sum} of $U$ and $W$ if
  \begin{enumerate}
    \item $U + W = V$
    \item $U \cap W = 0$.
  \end{enumerate}
  We write $V = U\oplus W$.

  Equivalently, this requires that every $\mathbf{v}\in V$ can be written uniquely as $\mathbf{u} + \mathbf{w}$ with $\mathbf{u}\in U, \mathbf{w}\in W$. We say that $U$ and $W$ are \emph{complementary subspaces} of $V$.
\end{defi}
You will show in the example sheets that given any subspace $U \subseteq V$, $U$ must have a complementary subspace in $V$.

\begin{eg}
  Let $V = \R^2$, and $U = \bra \begin{pmatrix}0\\1\end{pmatrix}\ket$. Then $\bra \begin{pmatrix}1\\1\end{pmatrix}\ket$ and $\bra \begin{pmatrix}1\\0\end{pmatrix}\ket$ are both complementary subspaces to $U$ in $V$.
\end{eg}

\begin{defi}[(External) direct sum]
  If $U, W$ are vector spaces over $\F$, the \emph{(external) direct sum} is
  \[
    U\oplus W = \{(\mathbf{u}, \mathbf{w}): \mathbf{u}\in U, \mathbf{w}\in W\},
  \]
  with addition and scalar multiplication componentwise:
  \[
    (\mathbf{u}_1, \mathbf{w}_1) + (\mathbf{u}_2, \mathbf{w}_2) = (\mathbf{u}_1 + \mathbf{u}_2, \mathbf{w}_1 + \mathbf{w}_2),\quad \lambda (\mathbf{u}, \mathbf{w}) = (\lambda \mathbf{u}, \lambda \mathbf{w}).
  \]
\end{defi}
The difference between these two definitions is that the first is decomposing $V$ into smaller spaces, while the second is building a bigger space based on two spaces.

Note, however, that the external direct sum $U\oplus W$ is the internal direct sum of $U$ and $W$ viewed as subspaces of $U\oplus W$, i.e.\ as the internal direct sum of $\{(\mathbf{u}, \mathbf{0}): \mathbf{u}\in U\}$ and $\{(\mathbf{0}, \mathbf{v}): \mathbf{v}\in V\}$. So these two are indeed compatible notions, and this is why we give them the same name and notation.

\begin{defi}[(Multiple) (internal) direct sum]
  If $U_1, \cdots, U_n\subseteq V$ are subspaces of $V$, then $V$ is the \emph{(internal) direct sum}
  \[
    V = U_1 \oplus \cdots \oplus U_n = \bigoplus_{i = 1}^n U_i
  \]
  if every $\mathbf{v}\in V$ can be written uniquely as $\mathbf{v} = \sum \mathbf{u}_i$ with $\mathbf{u}_i \in U_i$.

  This can be extended to an infinite sum with the same definition, just noting that the sum $\mathbf{v} = \sum \mathbf{u}_i$ has to be finite.
\end{defi}
For more details, see example sheet 1 Q. 10, where we prove in particular that $\dim V = \sum \dim U_i$.

\begin{defi}[(Multiple) (external) direct sum]
  If $U_1, \cdots, U_n$ are vector spaces over $\F$, the external direct sum is
  \[
    U_1 \oplus \cdots \oplus U_n = \bigoplus_{i = 1}^n U_i = \{(\mathbf{u}_1, \cdots, \mathbf{u}_n): \mathbf{u}_i \in U_i\},
  \]
  with pointwise operations.

  This can be made into an infinite sum if we require that all but finitely many of the $\mathbf{u}_i$ have to be zero.
\end{defi}

\section{Linear maps}
In mathematics, apart from studying objects, we would like to study functions between objects as well. In particular, we would like to study functions that respect the structure of the objects. With vector spaces, the kinds of functions we are interested in are \emph{linear maps}.
\subsection{Definitions and examples}
\begin{defi}[Linear map]
  Let $U, V$ be vector spaces over $\F$. Then $\alpha: U\to V$ is a \emph{linear map} if
  \begin{enumerate}
    \item $\alpha(\mathbf{u}_1 + \mathbf{u}_2) = \alpha(\mathbf{u}_1) + \alpha(\mathbf{u}_2)$ for all $\mathbf{u}_i \in U$.
    \item $\alpha(\lambda \mathbf{u}) = \lambda \alpha (\mathbf{u})$ for all $\lambda \in \F, \mathbf{u}\in U$.
  \end{enumerate}
  We write $\mathcal{L}(U, V)$ for the set of linear maps $U\to V$.
\end{defi}
There are a few things we should take note of:
\begin{itemize}
  \item If we are lazy, we can combine the two requirements to the single requirement that
    \[
      \alpha (\lambda \mathbf{u}_1 + \mu \mathbf{u}_2) = \lambda \alpha(\mathbf{u}_1) + \mu \alpha(\mathbf{u}_2).
    \]
  \item It is easy to see that if $\alpha$ is linear, then it is a group homomorphism (if we view vector spaces as groups). In particular, $\alpha (\mathbf{0}) = \mathbf{0}$.
  \item If we want to stress the field $\F$, we say that $\alpha$ is $\F$-linear. For example, complex conjugation is a map $\C \to \C$ that is $\R$-linear but not $\C$-linear.
\end{itemize}

\begin{eg}\leavevmode
  \begin{enumerate}
    \item Let $A$ be an $n\times m$ matrix with coefficients in $\F$. We will write $A\in M_{n, m}(\F)$. Then $\alpha: \F^m \to \F^n$ defined by $\mathbf{v}\to A\mathbf{v}$ is linear.

      Recall matrix multiplication is defined by: if $A_{ij}$ is the $ij$th coefficient of $A$, then the $i$th coefficient of $A\mathbf{v}$ is $A_{ij}\mathbf{v}_j$. So we have
      \begin{align*}
        \alpha(\lambda \mathbf{u} + \mu \mathbf{v})_i &= \sum_{j = 1}^m A_{ij}(\lambda \mathbf{u} + \mu \mathbf{v})_j \\
        &= \lambda \sum_{j = 1}^m A_{ij}u_j + \mu \sum_{j = 1}^m A_{ij} v_j \\
        &= \lambda \alpha(\mathbf{u})_i + \mu \alpha(\mathbf{v})_i.
      \end{align*}
      So $\alpha$ is linear.
    \item Let $X$ be a set and $g\in \F^X$. Then we define $m_g: \F^X \to \F^X$ by $m_g(f)(x) = g(x) f(x)$. Then $m_g$ is linear. For example, $f(x) \mapsto 2x^2 f(x)$ is linear.
    \item Integration $I: (C([a, b]), \R) \to (C([a, b]), \R)$ defined by $f\mapsto \int_a^x f(t) \;\d t$ is linear.
    \item Differentiation $D: (C^\infty ([a, b]), \R) \to (C^\infty ([a, b]), \R)$ by $ f\mapsto f'$ is linear.
    \item If $\alpha, \beta\in \mathcal{L}(U, V)$, then $\alpha + \beta$ defined by $(\alpha + \beta)(\mathbf{u}) = \alpha(\mathbf{u}) + \beta(\mathbf{u})$ is linear.

      Also, if $\lambda \in \F$, then $\lambda \alpha$ defined by $(\lambda \alpha)(\mathbf{u}) = \lambda (\alpha (\mathbf{u}))$ is also linear.

      In this way, $\mathcal{L}(U, V)$ is also a vector space over $\F$.
    \item Composition of linear maps is linear. Using this, we can show that many things are linear, like differentiating twice, or adding and then multiplying linear maps.
  \end{enumerate}
\end{eg}

Just like everything else, we want to define isomorphisms.
\begin{defi}[Isomorphism]
  We say a linear map $\alpha: U\to V$ is an \emph{isomorphism} if there is some $\beta: V\to U$ (also linear) such that $\alpha \circ \beta = \id_V$ and $\beta\circ \alpha = \id_U$.

  If there exists an isomorphism $U\to V$, we say $U$ and $V$ are \emph{isomorphic}, and write $U\cong V$.
\end{defi}

\begin{lemma}
  If $U$ and $V$ are vector spaces over $\F$ and $\alpha: U\to V$, then $\alpha$ is an isomorphism iff $\alpha$ is a bijective linear map.
\end{lemma}

\begin{proof}
  If $\alpha$ is an isomorphism, then it is clearly bijective since it has an inverse function.

  Suppose $\alpha$ is a linear bijection. Then as a function, it has an inverse $\beta: V\to U$. We want to show that this is linear. Let $\mathbf{v}_1, \mathbf{v}_2 \in V$, $\lambda, \mu \in \F$. We have
  \[
    \alpha \beta(\lambda \mathbf{v}_1 + \mu \mathbf{v}_2) = \lambda \mathbf{v}_1 + \mu \mathbf{v}_2 = \lambda \alpha \beta (\mathbf{v}_1) + \mu \alpha \beta (\mathbf{v}_2) = \alpha (\lambda \beta(\mathbf{v}_1) + \mu \beta (\mathbf{v}_2)).
  \]
  Since $\alpha$ is injective, we have
  \[
    \beta(\lambda \mathbf{v}_1 + \mu \mathbf{v}_2) = \lambda \beta (\mathbf{v}_1) + \mu \beta (\mathbf{v}_2).
  \]
  So $\beta$ is linear.
\end{proof}

\begin{defi}[Image and kernel]
  Let $\alpha: U\to V$ be a linear map. Then the \emph{image} of $\alpha$ is
  \[
    \im \alpha = \{\alpha (\mathbf{u}): \mathbf{u}\in U\}.
  \]
  The \emph{kernel} of $\alpha$ is
  \[
    \ker \alpha = \{\mathbf{u}: \alpha (\mathbf{u}) = \mathbf{0}\}.
  \]
\end{defi}
It is easy to show that these are subspaces of $V$ and $U$ respectively.

\begin{eg}\leavevmode
  \begin{enumerate}
    \item Let $A\in M_{m, n}(\F)$ and $\alpha: \F^n \to \F^m$ be the linear map $\mathbf{v}\mapsto A\mathbf{v}$. Then the system of linear equations
      \[
        \sum_{j = 1}^m A_{ij}x_j = b_i,\quad 1 \leq i \leq n
      \]
      has a solution iff $(b_1, \cdots, b_n) \in \im \alpha$.

      The kernel of $\alpha$ contains all solutions to $\sum_j A_{ij}x_j = 0$.
    \item Let $\beta: C^{\infty}(\R, \R) \to C^{\infty}(\R, \R)$ that sends
      \[
        \beta(f)(t) = f''(t) + p(t) f'(t) + q(t) f(t).
      \]
      for some $p, q\in C^{\infty}(\R, \R)$.

      Then if $y(t) \in \im \beta$, then there is a solution (in $C^\infty (\R, \R)$) to the differential equation
      \[
        f''(t) + p(t) f'(t) + q(t) f(t) = y(t).
      \]
      Similarly, $\ker \beta$ contains the solutions to the homogeneous equation
      \[
        f''(t) + p(t) f'(t) + q(t) f(t) = 0.
      \]
  \end{enumerate}
\end{eg}

If two vector spaces are isomorphic, then it is not too surprising that they have the same dimension, since isomorphic spaces are ``the same''. Indeed this is what we are going to show.
\begin{prop}
  Let $\alpha: U\to V$ be an $\F$-linear map. Then
  \begin{enumerate}
    \item If $\alpha$ is injective and $S\subseteq U$ is linearly independent, then $\alpha (S)$ is linearly independent in $V$.
    \item If $\alpha$ is surjective and $S\subseteq U$ spans $U$, then $\alpha (S)$ spans $V$.
    \item If $\alpha$ is an isomorphism and $S\subseteq U$ is a basis, then $\alpha(S)$ is a basis for $V$.
  \end{enumerate}
\end{prop}
Here (iii) immediately shows that two isomorphic spaces have the same dimension.
\begin{proof}\leavevmode
  \begin{enumerate}
    \item We prove the contrapositive. Suppose that $\alpha$ is injective and $\alpha(S)$ is linearly dependent. So there are $\mathbf{s}_0, \cdots, \mathbf{s}_n \in S$ distinct and $\lambda_1, \cdots, \lambda_n\in \F$ not all zero such that
      \[
        \alpha(\mathbf{s}_0) = \sum_{i = 1}^n \lambda_i \alpha(\mathbf{s}_i) = \alpha\left(\sum_{i = 1}^n \lambda_i \mathbf{s}_i\right).
      \]
      Since $\alpha$ is injective, we must have
      \[
        \mathbf{s}_0 = \sum_{i = 1}^n \lambda_i \mathbf{s}_i.
      \]
      This is a non-trivial relation of the $\mathbf{s}_i$ in $U$. So $S$ is linearly dependent.
    \item Suppose $\alpha$ is surjective and $S$ spans $U$. Pick $\mathbf{v} \in V$. Then there is some $\mathbf{u}\in U$ such that $\alpha(\mathbf{u}) = \mathbf{v}$. Since $S$ spans $U$, there is some $\mathbf{s}_1, \cdots, \mathbf{s}_n\in S$ and $\lambda_1, \cdots, \lambda_n\in \F$ such that
      \[
        \mathbf{u} = \sum_{I = 1}^n \lambda_i \mathbf{s}_i.
      \]
      Then
      \[
        \mathbf{v} = \alpha (\mathbf{u}) = \sum_{i = 1}^n \lambda_i \alpha (\mathbf{s}_i).
      \]
      So $\alpha (S)$ spans $V$.
    \item Follows immediately from (i) and (ii).\qedhere
  \end{enumerate}
\end{proof}

\begin{cor}
  If $U$ and $V$ are finite-dimensional vector spaces over $\F$ and $\alpha: U\to V$ is an isomorphism, then $\dim U = \dim V$.
\end{cor}
Note that we restrict it to finite-dimensional spaces since we've only shown that dimensions are well-defined for finite dimensional spaces. Otherwise, the proof works just fine for infinite dimensional spaces.

\begin{proof}
  Let $S$ be a basis for $U$. Then $\alpha(S)$ is a basis for $V$. Since $\alpha$ is injective, $|S| = |\alpha(S)|$. So done.
\end{proof}

How about the other way round? If two vector spaces have the same dimension, are they necessarily isomorphic? The answer is yes, at least for finite-dimensional ones.

However, we will not just prove that they are isomorphic. We will show that they are isomorphic in \emph{many ways}.
\begin{prop}
  Suppose $V$ is a $\F$-vector space of dimension $n < \infty$. Then writing $\mathbf{e}_1,\cdots, \mathbf{e}_n$ for the standard basis of $\F^n$, there is a bijection
  \[
    \Phi: \{\text{isomorphisms }\F^n \to V\} \to \{\text{(ordered) basis} (\mathbf{v}_1, \cdots, \mathbf{v}_n)\text{ for }V\},
  \]
  defined by
  \[
    \alpha \mapsto (\alpha (\mathbf{e}_1), \cdots, \alpha(\mathbf{e}_n)).
  \]
\end{prop}

\begin{proof}
  We first make sure this is indeed a function --- if $\alpha$ is an isomorphism, then from our previous proposition, we know that it sends a basis to a basis. So $(\alpha(\mathbf{e}_1), \cdots, \alpha(\mathbf{e}_n))$ is indeed a basis for $V$.

  We now have to prove surjectivity and injectivity.

  Suppose $\alpha, \beta: \F^n \to V$ are isomorphism such that $\Phi(\alpha) = \Phi(\beta)$. In other words, $\alpha (\mathbf{e}_i) = \beta(\mathbf{e}_i)$ for all $i$. We want to show that $\alpha = \beta$. We have
  \[
    \alpha\left(
    \begin{pmatrix}
      x_1\\\vdots\\x_n
    \end{pmatrix}
    \right) = \alpha \left(\sum_{i = 1}^n x_i \mathbf{e}_i\right) = \sum x_i \alpha (\mathbf{e}_i) = \sum x_i \beta (\mathbf{e}_i) = \beta\left(
    \begin{pmatrix}
      x_1\\\vdots\\x_n
    \end{pmatrix}\right).
  \]
  Hence $\alpha = \beta$.

  Next, suppose that $(\mathbf{v}_1, \cdots, \mathbf{v}_n)$ is an ordered basis for $V$. Then define
  \[
    \alpha\left(
    \begin{pmatrix}
      x_1\\\vdots\\x_n
    \end{pmatrix}
    \right) = \sum x_i \mathbf{v}_i.
  \]
  It is easy to check that this is well-defined and linear. We also know that $\alpha$ is injective since $(\mathbf{v}_1, \cdots, \mathbf{v}_n)$ is linearly independent. So if $\sum x_i \mathbf{v}_i = \sum y_i \mathbf{v}_i$, then $x_i = y_i$. Also, $\alpha$ is surjective since $(\mathbf{v}_1, \cdots, \mathbf{v}_n)$ spans $V$. So $\alpha$ is an isomorphism, and by construction $\Phi(\alpha) = (\mathbf{v}_1, \cdots, \mathbf{v}_n)$.
\end{proof}

\subsection{Linear maps and matrices}
Recall that our first example of linear maps is matrices acting on $\F^n$. We will show that in fact, \emph{all} linear maps come from matrices. Since we know that all vector spaces are isomorphic to $\F^n$, this means we can represent arbitrary linear maps on vector spaces by matrices.

This is a useful result, since it is sometimes easier to argue about matrices than linear maps.

\begin{prop}
  Suppose $U, V$ are vector spaces over $\F$ and $S = \{\mathbf{e}_1, \cdots, \mathbf{e}_n\}$ is a basis for $U$. Then every function $f: S \to V$ extends uniquely to a linear map $U \to V$.
\end{prop}
The slogan is ``to define a linear map, it suffices to define its values on a basis''.

\begin{proof}
  For uniqueness, first suppose $\alpha, \beta: U \to V$ are linear and extend $f: S \to V$. We have sort-of proved this already just now.

  If $\mathbf{u}\in U$, we can write $\mathbf{u} = \sum_{i = 1}^n u_i \mathbf{e}_i$ with $u_i \in \F$ since $S$ spans. Then
  \[
    \alpha (\mathbf{u}) = \alpha\left(\sum u_i \mathbf{e}_i\right) = \sum u_i \alpha (\mathbf{e}_i) = \sum u_i f( \mathbf{e}_i).
  \]
  Similarly,
  \[
    \beta( \mathbf{u}) = \sum u_i f(\mathbf{e}_i).
  \]
  So $\alpha (\mathbf{u}) = \beta(\mathbf{u})$ for every $\mathbf{u}$. So $\alpha = \beta$.

  For existence, if $\mathbf{u} \in U$, we can write $\mathbf{u} = \sum u_i \mathbf{e}_i$ in a unique way. So defining
  \[
    \alpha(\mathbf{u}) = \sum u_i f(\mathbf{e}_i)
  \]
  is unambiguous. To show linearity, let $\lambda, \mu\in \F$, $\mathbf{u}, \mathbf{v}\in U$. Then
  \begin{align*}
    \alpha (\lambda \mathbf{u} + \mu \mathbf{v}) &= \alpha \left(\sum (\lambda u_i + \mu v_i) \mathbf{e}_i\right) \\
    &= \sum (\lambda u_i + \mu v_i) f(\mathbf{e}_i)\\
    &= \lambda \left(\sum u_i f(\mathbf{e}_i)\right) + \mu \left(\sum v_i f(\mathbf{e}_i)\right)\\
    &= \lambda \alpha(\mathbf{u}) + \mu \alpha(\mathbf{v}).
  \end{align*}
  Moreover, $\alpha$ does extend $f$.
\end{proof}

\begin{cor}
  If $U$ and $V$ are finite-dimensional vector spaces over $\F$ with bases $(\mathbf{e}_1, \cdots, \mathbf{e}_m)$ and $(\mathbf{f}_1, \cdots, \mathbf{f}_n)$ respectively, then there is a bijection
  \[
    \Mat_{n, m}(\F) \to \mathcal{L}(U, V),
  \]
  sending $A$ to the unique linear map $\alpha$ such that $\alpha(\mathbf{e}_i) = \sum a_{ji} \mathbf{f}_j$.
\end{cor}
We can interpret this as follows: the $i$th column of $A$ tells us how to write $\alpha (\mathbf{e}_i)$ in terms of the $\mathbf{f}_j$.

We can also draw a fancy diagram to display this result. Given a basis $\mathbf{e}_1, \cdots, \mathbf{e}_m$, by our bijection, we get an isomorphism $s(\mathbf{e}_i): U\to \F^m$. Similarly, we get an isomorphism $s(\mathbf{f}_i): V\to \F^n$.

Since a matrix is a linear map $A: \F^m \to \F^n$, given a matrix $A$, we can produce a linear map $\alpha: U\to V$ via the following composition
\[
  \begin{tikzcd}
    U \ar[r, "s(\mathbf{e}_i)"] & \F^m \ar[r, "A"] & \F^n \ar[r, "s(\mathbf{f}_i)^{-1}"] & V.
  \end{tikzcd}
\]
We can put this into a square:
\[
  \begin{tikzcd}[row sep=large]
    \F^m \ar[r, "A"] & \F^n\\
    U \ar[u, "s(\mathbf{e}_i)"] \ar[r, "\alpha"] & V \ar[u, "s(\mathbf{f}_i)"']
  \end{tikzcd}
\]
Then the corollary tells us that every $A$ gives rise to an $\alpha$, and every $\alpha$ corresponds to an $A$ that fit into this diagram.
\begin{proof}
  If $\alpha$ is a linear map $U \to V$, then for each $1 \leq i \leq m$, we can write $\alpha(\mathbf{e}_i)$ uniquely as
  \[
    \alpha(\mathbf{e}_i) = \sum_{j = 1}^n a_{ji} \mathbf{f}_j
  \]
  for some $a_{ji} \in \F$. This gives a matrix $A = (a_{ij})$. The previous proposition tells us that every matrix $A$ arises in this way, and $\alpha$ is determined by $A$.
\end{proof}

\begin{defi}[Matrix representation]
  We call the matrix corresponding to a linear map $\alpha\in \mathcal{L}(U, V)$ under the corollary the \emph{matrix representing} $\alpha$ with respect to the bases $(\mathbf{e}_1, \cdots, \mathbf{e}_m)$ and $(\mathbf{f}_1, \cdots, \mathbf{f}_n)$.
\end{defi}

It is an exercise to show that the bijection $\Mat_{n, m}(\F) \to \mathcal{L}(U, V)$ is an isomorphism of the vector spaces and deduce that $\dim \mathcal{L}(U, V) = (\dim U)(\dim V)$.

\begin{prop}
  Suppose $U, V, W$ are finite-dimensional vector spaces over $\F$ with bases $R = (\mathbf{u}_1, \cdots, \mathbf{u}_r)$ , $S = (\mathbf{v}_1, .., \mathbf{v}_s)$ and $T = (\mathbf{w}_1, \cdots, \mathbf{w}_t)$ respectively.

  If $\alpha: U\to V$ and $\beta: V\to W$ are linear maps represented by $A$ and $B$ respectively (with respect to $R$, $S$ and $T$), then $\beta\alpha$ is linear and represented by $BA$ with respect to $R$ and $T$.
\end{prop}
\[
  \begin{tikzcd}[row sep=large]
    \F^r \ar[r, "A"] & \F^s \ar [r, "B"] & \F^t\\
    U \ar[u, "s(R)"] \ar[r, "\alpha"] & V \ar[u, "s(S)"] \ar [r, "\beta"] & W \ar[u, "s(T)"']
  \end{tikzcd}
\]
\begin{proof}
  Verifying $\beta\alpha$ is linear is straightforward. Next we write $\beta\alpha(\mathbf{u}_i)$ as a linear combination of $\mathbf{w}_1, \cdots, \mathbf{w}_t$:
  \begin{align*}
    \beta\alpha(\mathbf{u}_i) &= \beta\left(\sum_k A_{ki}\mathbf{v}_k\right) \\
    &= \sum_k A_{ki}\beta(\mathbf{v}_k) \\
    &= \sum_k A_{ki}\sum_j B_{jk} \mathbf{w}_j \\
    &= \sum_j \left(\sum_k B_{jk}A_{ki}\right)\mathbf{w}_j\\
    &= \sum_j (BA)_{ji} \mathbf{w}_j\qedhere
  \end{align*}
\end{proof}

\subsection{The first isomorphism theorem and the rank-nullity theorem}
The main theorem of this section is the \emph{rank-nullity theorem}, which relates the dimensions of the kernel and image of a linear map. This is in fact an easy corollary of a stronger result, known as the \emph{first isomorphism theorem}, which directly relates the kernel and image themselves. This first isomorphism is an exact analogy of that for groups, and should not be unfamiliar. We will also provide another proof that does not involve quotients.

\begin{thm}[First isomorphism theorem]
  Let $\alpha: U\to V$ be a linear map. Then $\ker \alpha$ and $\im \alpha$ are subspaces of $U$ and $V$ respectively. Moreover, $\alpha$ induces an isomorphism
  \begin{align*}
    \bar{\alpha}: U/\ker \alpha &\to \im \alpha\\
    (\mathbf{u} + \ker \alpha) &\mapsto \alpha(\mathbf{u})
  \end{align*}
\end{thm}
Note that if we view a vector space as an abelian group, then this is exactly the first isomorphism theorem of groups.

\begin{proof}
  We know that $\mathbf{0} \in \ker \alpha$ and $\mathbf{0}\in \im \alpha$.

  Suppose $\mathbf{u}_1, \mathbf{u}_2 \in \ker \alpha$ and $\lambda_1, \lambda_2\in \F$. Then
  \[
    \alpha (\lambda_1 \mathbf{u}_1 + \lambda_2 \mathbf{u}_2) = \lambda_1 \alpha(\mathbf{u}_1) + \lambda_2 \alpha(\mathbf{u}_2) = \mathbf{0}.
  \]
  So $\lambda_1 \mathbf{u}_1 + \lambda_2 \mathbf{u}_2 \in \ker \alpha$. So $\ker \alpha$ is a subspace.

  Similarly, if $\alpha(\mathbf{u}_1), \alpha(\mathbf{u}_2) \in \im \alpha$, then $\lambda\alpha(\mathbf{u}_1) + \lambda_2 \alpha(\mathbf{u}_2) = \alpha(\lambda_1 \mathbf{u}_1 + \lambda_2 \mathbf{u}_2) \in \im \alpha$. So $\im \alpha$ is a subspace.

  Now by the first isomorphism theorem of groups, $\bar{\alpha}$ is a well-defined isomorphism of groups. So it remains to show that $\bar{\alpha}$ is a linear map. Indeed, we have
  \[
    \bar{\alpha}(\lambda(\mathbf{u} + \ker \alpha)) = \alpha (\lambda \mathbf{u}) = \lambda \alpha(\mathbf{u}) = \lambda (\bar{\alpha}(\mathbf{u} + \ker \alpha)).
  \]
  So $\bar {\alpha}$ is a linear map.
\end{proof}

\begin{defi}[Rank and nullity]
  If $\alpha: U\to V$ is a linear map between finite-dimensional vector spaces over $\F$ (in fact we just need $U$ to be finite-dimensional), the \emph{rank} of $\alpha$ is the number $r(\alpha) = \dim \im \alpha$. The \emph{nullity} of $\alpha$ is the number $n(\alpha) = \dim \ker \alpha$.
\end{defi}

\begin{cor}[Rank-nullity theorem]
  If $\alpha: U \to V$ is a linear map and $U$ is finite-dimensional, then
  \[
    r(\alpha) + n(\alpha) = \dim U.
  \]
\end{cor}

\begin{proof}
  By the first isomorphism theorem, we know that $U/\ker \alpha \cong \im \alpha$. So we have
  \[
    \dim \im \alpha = \dim (U/\ker \alpha) = \dim U - \dim \ker \alpha.
  \]
  So the result follows.
\end{proof}

We can also prove this result without the first isomorphism theorem, and say a bit more in the meantime.
\begin{prop}
  If $\alpha: U\to V$ is a linear map between finite-dimensional vector spaces over $\F$, then there are bases $(\mathbf{e}_1, \cdots, \mathbf{e}_m)$ for $U$ and $(\mathbf{f}_1, \cdots, \mathbf{f}_n)$ for $V$ such that $\alpha$ is represented by the matrix
  \[
    \begin{pmatrix}
      I_r & 0\\
      0 & 0
    \end{pmatrix},
  \]
  where $r = r(\alpha)$ and $I_r$ is the $r\times r$ identity matrix.

  In particular, $r(\alpha) + n(\alpha) = \dim U$.
\end{prop}

\begin{proof}
  Let $\mathbf{e}_{k + 1}, \cdots, \mathbf{e}_m$ be a basis for the kernel of $\alpha$. Then we can extend this to a basis of the $(\mathbf{e}_1,\cdots, \mathbf{e}_m)$.

  Let $\mathbf{f}_i = \alpha(\mathbf{e}_i)$ for $1 \leq i \leq k$. We now show that $(\mathbf{f}_1, \cdots, \mathbf{f}_k)$ is a basis for $\im \alpha$ (and thus $k = r$). We first show that it spans. Suppose $\mathbf{v}\in \im \alpha$. Then we have
  \[
    \mathbf{v} = \alpha\left(\sum_{i = 1}^m \lambda_i \mathbf{e}_i\right)
  \]
  for some $\lambda_i \in \F$. By linearity, we can write this as
  \[
    \mathbf{v} = \sum_{i = 1}^m \lambda_i \alpha(\mathbf{e}_i) = \sum_{i = 1}^k \lambda_i \mathbf{f}_i + \mathbf{0}.
  \]
  So $\mathbf{v}\in \bra \mathbf{f}_1, \cdots, \mathbf{f}_k\ket$.

  To show linear dependence, suppose that
  \[
    \sum_{i = 1}^k \mu_i \mathbf{f}_i = \mathbf{0}.
  \]
  So we have
  \[
    \alpha \left(\sum_{i = 1}^k \mu_i \mathbf{e}_i\right) = \mathbf{0}.
  \]
  So $\sum_{i = 1}^k \mu_i \mathbf{e}_i \in \ker \alpha$. Since $(\mathbf{e}_{k + 1}, \cdots, \mathbf{e}_m)$ is a basis for $\ker \alpha$, we can write
  \[
    \sum_{i = 1}^k \mu_i \mathbf{e}_i = \sum_{i = k + 1}^m \mu_i \mathbf{e}_i
  \]
  for some $\mu_i$ ($i = k + 1, \cdots, m$). Since $(\mathbf{e}_1, \cdots, \mathbf{e}_m)$ is a basis, we must have $\mu_i = 0$ for all $i$. So they are linearly independent.

  Now we extend $(\mathbf{f}_1, \cdots, \mathbf{f}_r)$ to a basis for $V$, and
  \[
    \alpha(\mathbf{e}_i) =
    \begin{cases}
      \mathbf{f}_i & 1 \leq i \leq k\\
      0 & k + 1 \leq i \leq m
    \end{cases}.\qedhere
  \]
\end{proof}

\begin{eg}
  Let
  \[
    W = \{x\in \R^5: x_1 + x_2 + x_3 = 0 = x_3 - x_4 - x_5\}.
  \]
  What is $\dim W$? Well, it clearly is $3$, but how can we prove it?

  We can consider the map $\alpha: \R^5 \to \R^2$ given by
  \[
    \begin{pmatrix}
      x_1\\\vdots \\ x_5
    \end{pmatrix}
    \mapsto
    \begin{pmatrix}
      x_1 + x_2 + x_5\\
      x_3 - x_4 - x_5.
    \end{pmatrix}
  \]
  Then $\ker \alpha = W$. So $\dim W = 5 - r(\alpha)$. We know that $\alpha(1, 0, 0, 0, 0) = (1, 0)$ and $\alpha(0, 0, 1, 0, 0) = (0, 1)$. So $r(\alpha) = \dim \im \alpha = 2$. So $\dim W = 3$.
\end{eg}
More generally, the rank-nullity theorem gives that $m$ linear equations in $n$ have a space of solutions of dimension at least $n - m$.

\begin{eg}
  Suppose that $U$ and $W$ are subspaces of $V$, all of which are finite-dimensional vector spaces of $\F$. We let
  \begin{align*}
    \alpha: U\oplus W &\to V\\
    (\mathbf{u}, \mathbf{w}) &\mapsto \mathbf{u} + \mathbf{w},
  \end{align*}
  where the $\oplus$ is the \emph{external} direct sum. Then $\im \alpha =U + W$ and
  \[
    \ker \alpha = \{(\mathbf{u}, -\mathbf{u}): \mathbf{u}\in U\cap W\} \cong \dim (U\cap W).
  \]
  Then we have
  \[
    \dim U + \dim W = \dim (U\oplus W) = r(\alpha) + n(\alpha) = \dim(U + W) + \dim (U\cap W).
  \]
  This is a result we've previously obtained through fiddling with basis and horrible stuff.
\end{eg}

\begin{cor}
  Suppose $\alpha: U\to V$ is a linear map between vector spaces over $\F$ both of dimension $n < \infty$. Then the following are equivalent
  \begin{enumerate}
    \item $\alpha$ is injective;
    \item $\alpha$ is surjective;
    \item $\alpha$ is an isomorphism.
  \end{enumerate}
\end{cor}

\begin{proof}
  It is clear that, (iii) implies (i) and (ii), and (i) and (ii) together implies (iii). So it suffices to show that (i) and (ii) are equivalent.

  Note that $\alpha$ is injective iff $n(\alpha) = 0$, and $\alpha$ is surjective iff $r(\alpha) = \dim V = n$. By the rank-nullity theorem, $n(\alpha) + r(\alpha) = n$. So the result follows immediately.
\end{proof}

\begin{lemma}
  Let $A \in M_{n, n}(\F) = M_n(\F)$ be a square matrix. The following are equivalent
  \begin{enumerate}
    \item There exists $B\in M_n (\F)$ such that $BA = I_n$.
    \item There exists $C\in M_n (\F)$ such that $AC = I_n$.
  \end{enumerate}
  If these hold, then $B = C$. We call $A$ \emph{invertible} or \emph{non-singular}, and write $A^{-1} = B = C$.
\end{lemma}

\begin{proof}
  Let $\alpha, \beta, \gamma, \iota: \F^n \to \F^n$ be the linear maps represented by matrices $A, B, C, I_n$ respectively with respect to the standard basis.

  We note that (i) is equivalent to saying that there exists $\beta$ such that $\beta\alpha = \iota$. This is true iff $\alpha$ is injective, which is true iff $\alpha$ is an isomorphism, which is true iff $\alpha$ has an inverse $\alpha^{-1}$.

  Similarly, (ii) is equivalent to saying that there exists $\gamma$ such that $\alpha\gamma = \iota$. This is true iff $\alpha$ is injective, which is true iff $\alpha$ is isomorphism, which is true iff $\alpha$ has an inverse $\alpha^{-1}$.

  So these are the same things, and we have $\beta = \alpha^{-1} = \gamma$.
\end{proof}

\subsection{Change of basis}
Suppose we have a linear map $\alpha: U \to V$. Given a basis $\{\mathbf{e}_i\}$ for $U$, and a basis $\{\mathbf{f}_i\}$ for $V$, we can obtain a matrix $A$.
\[
  \begin{tikzcd}[row sep=large]
    U \ar[r, "\alpha"] & V\\
    \F^m \ar[r, "A"] \ar[u, "(\mathbf{e}_i)"] & \F^n \ar[u, "(\mathbf{f}_i)"']
  \end{tikzcd}
\]
We now want to consider what happens when we have two different basis $\{\mathbf{u}_i\}$ and $\{\mathbf{e}_i\}$ of $U$. These will then give rise to two different maps from $\F^m$ to our space $U$, and the two basis can be related by a change-of-basis map $P$. We can put them in the following diagram:
\[
  \begin{tikzcd}[row sep=large]
    U \ar[r, "\iota_U"] & U\\
    \F^m \ar[r, "P"] \ar[u, "(\mathbf{u}_i)"] & \F^m \ar[u, "(\mathbf{e}_i)"]
  \end{tikzcd}
\]
where $\iota_U$ is the identity map. If we perform a change of basis for both $U$ and $V$, we can stitch the diagrams together as
\[
  \begin{tikzcd}[row sep=large]
    U \ar[r, "\iota_U"] & U \ar[r, "\alpha"] & V & V\ar[l, "\iota_V"']\\
    \F^m \ar[r, "P"] \ar[u, "(\mathbf{u}_i)"] \ar [rrr, bend right, "B"'] & \F^m \ar[r, "A"] \ar[u, "(\mathbf{e}_i)"] & \F^n \ar[u, "(\mathbf{f}_i)"] & \F^n \ar[l, "Q"'] \ar[u, "(\mathbf{v}_i)"]
  \end{tikzcd}
\]
Then if we want a matrix representing the map $U\to V$ with respect to bases $(\mathbf{u}_i)$ and $(\mathbf{v}_i)$, we can write it as the composition
\[
  B = Q^{-1}AP.
\]
We can write this as a theorem:
\begin{thm}
  Suppose that $(\mathbf{e}_1, \cdots, \mathbf{e}_m)$ and $(\mathbf{u}_1,\cdots, \mathbf{u}_m)$ are basis for a finite-dimensional vector space $U$ over $\F$, and $(\mathbf{f}_1, \cdots, \mathbf{f}_n)$ and $(\mathbf{v}_1, \cdots, \mathbf{v}_n)$ are basis of a finite-dimensional vector space $V$ over $\F$.

  Let $\alpha: U\to V$ be a linear map represented by a matrix $A$ with respect to $(\mathbf{e}_i)$ and $(\mathbf{f}_i)$ and by $B$ with respect to $(\mathbf{u}_i)$ and $(\mathbf{v}_i)$. Then
  \[
    B = Q^{-1}AP,
  \]
  where $P$ and $Q$ are given by
  \[
    \mathbf{u}_i = \sum_{k = 1}^m P_{ki}\mathbf{e}_k,\quad \mathbf{v}_i = \sum_{k = 1}^n Q_{ki}\mathbf{f}_k.
  \]
\end{thm}
Note that one can view $P$ as the matrix representing the identity map $i_U$ from $U$ with basis $(\mathbf{u}_i$) to $U$ with basis $(\mathbf{e}_i)$, and similarly for $Q$. So both are invertible.

\begin{proof}
  On the one hand, we have
  \[
    \alpha(\mathbf{u}_i) = \sum_{j = 1}^n B_{ji}\mathbf{v}_j = \sum_j\sum_\ell B_{ji} Q_{\ell j}\mathbf{f}_\ell = \sum_\ell [QB]_{\ell i}\mathbf{f}_\ell.
  \]
  On the other hand, we can write
  \[
    \alpha (\mathbf{u}_i) = \alpha \left(\sum_{k = 1}^m P_{ki}\mathbf{e}_k\right) = \sum_{k = 1}^m P_{ki} \sum_\ell A_{\ell k}\mathbf{f}_\ell = \sum_{\ell}[AP]_{\ell i} f_\ell.
  \]
  Since the $\mathbf{f}_\ell$ are linearly independent, we conclude that
  \[
    QB = AP.
  \]
  Since $Q$ is invertible, we get $B = Q^{-1}AP$.
\end{proof}

\begin{defi}[Equivalent matrices]
  We say $A, B\in \Mat_{n, m}(\F)$ are \emph{equivalent} if there are invertible matrices $P\in\Mat_{m}(\F)$, $Q\in \Mat_n (\F)$ such that $B = Q^{-1}AP$.
\end{defi}
Since $\GL_K(\F) = \{A \in \Mat_k(\F): A\text{ is invertible}\}$ is a group, for each $k \geq 1$, this is indeed an equivalence relation. The equivalence classes are orbits under the action of $\GL_m(\F) \times \GL_n(\F)$, given by
\begin{align*}
  \GL_m(\F) \times \GL_n(\F)\times \Mat_{n, m}(\F) &\to \Mat (\F)\\
  (P, Q, A) &\mapsto QAP^{-1}.
\end{align*}
Two matrices are equivalent if and only if they represent the same linear map with respect to different basis.

\begin{cor}
  If $A\in \Mat_{n, m}(\F)$, then there exists invertible matrices $P \in \GL_m(\F), Q\in \GL_n(\F)$ so that
  \[
    Q^{-1}AP =
    \begin{pmatrix}
      I_r & 0\\
      0 & 0
    \end{pmatrix}
  \]
  for some $0 \leq r \leq \min(m, n)$.
\end{cor}
This is just a rephrasing of the proposition we had last time. But this tells us there are $\min(m, n) + 1$ orbits of the action above parametrized by $r$.

\begin{defi}[Column and row rank]
  If $A\in \Mat_{n, m}(\F)$, then
  \begin{itemize}
    \item The \emph{column rank} of $A$, written $r(A)$, is the dimension of the subspace of $\F^n$ spanned by the columns of $A$.
    \item The \emph{row rank} of $A$, written $r(A)$, is the dimension of the subspace of $\F^m$ spanned by the rows of $A$. Alternatively, it is the column rank of $A^T$.
  \end{itemize}
\end{defi}
There is no a priori reason why these should be equal to each other. However, it turns out they are always equal.

Note that if $\alpha: \F^m \to \F^n$ is the linear map represented by $A$ (with respect to the standard basis), then $r(A) = r(\alpha)$, i.e.\ the column rank is the rank. Moreover, since the rank of a map is independent of the basis, equivalent matrices have the same column rank.

\begin{thm}
  If $A \in \Mat_{n, m}(\F)$, then $r(A) = r(A^T)$, i.e.\ the row rank is equivalent to the column rank.
\end{thm}

\begin{proof}
  We know that there are some invertible $P, Q$ such that
  \[
    Q^{-1}AP =
    \begin{pmatrix}
      I_r & 0\\
      0 & 0
    \end{pmatrix},
  \]
  where $r = r(A)$. We can transpose this whole equation to obtain
  \[
    (Q^{-1}AP)^T = P^T A^T (Q^T)^{-1} =
    \begin{pmatrix}
      I_r & 0\\
      0 & 0
    \end{pmatrix}
  \]
  So $r(A^T) = r$.
\end{proof}

\subsection{Elementary matrix operations}
We are now going to re-prove our corollary that we can find $P, Q$ such that $Q^{-1}AP = \begin{pmatrix} I_r & 0\\ 0 & 0 \end{pmatrix}$ in a way that involves matrices only. This will give a concrete way to find $P$ and $Q$, but is less elegant.

To do so, we need to introduce \emph{elementary matrices}.
\begin{defi}[Elementary matrices]
  We call the following matrices of $\GL_n(\F)$ \emph{elementary matrices}:
  \setcounter{MaxMatrixCols}{11}
  \[
    S_{ij}^n =
    \begin{pmatrix}
      1\\
      & \ddots\\
      & & 1\\
      & & & 0 & & & & 1\\
      & & & & 1\\
      & & & & & \ddots\\
      & & & & & & 1\\
      & & & 1 & & & & 0\\
      & & & & & & & & 1\\
      & & & & & & & & & \ddots\\
      & & & & & & & & & & 1
    \end{pmatrix}
  \]
This is called a reflection, where the rows we changed are the $i$th and $j$th row.
  \[
    E_{ij}^n (\lambda) =
    \begin{pmatrix}
      1 \\
      & \ddots \\
      & & 1 & & \lambda\\
      & & & \ddots\\
      & & & & 1\\
      & & & & & \ddots\\
      & & & & & & 1
    \end{pmatrix}
  \]
  This is called a shear, where $\lambda$ appears at the $i,j$th entry.
  \[
    T_{i}^n (\lambda) =
    \begin{pmatrix}
      1 \\
      & \ddots\\
      & & 1 \\
      & & & \lambda\\
      & & & & 1\\
      & & & & & \ddots\\
      & & & & & & 1
    \end{pmatrix}
  \]
  This is called a shear, where $\lambda\not= 0$ appears at the $i$th column. % not a shear
\end{defi}
Observe that if $A$ is a $m\times n$ matrix, then
\begin{enumerate}
  \item $AS_{ij}^n$ is obtained from $A$ by swapping the $i$ and $j$ columns.
  \item $AE_{Ij}^n(\lambda)$ is obtained by adding $\lambda\times$ column $i$ to column $j$.
  \item $AT_i^n (\lambda)$ is obtained from $A$ by rescaling the $i$th column by $\lambda$.
\end{enumerate}
Multiplying on the left instead of the right would result in the same operations performed on the rows instead of the columns.

\begin{prop}
  If $A\in \Mat_{n, m}(\F)$, then there exists invertible matrices $P \in \GL_m(\F), Q\in \GL_n(\F)$ so that
  \[
    Q^{-1}AP =
    \begin{pmatrix}
      I_r & 0\\
      0 & 0
    \end{pmatrix}
  \]
  for some $0 \leq r \leq \min(m, n)$.
\end{prop}

We are going to start with $A$, and then apply these operations to get it into this form.

\begin{proof}
  We claim that there are elementary matrices $E_1^m, \cdots, E_a^m$ and $F_1^n, \cdots, F_b^n$ (these $E$ are not necessarily the shears, but any elementary matrix) such that
  \[
    E_1^m \cdots E_a^m AF_1^n \cdots F_b^n =
    \begin{pmatrix}
      I_r & 0\\
      0 & 0
    \end{pmatrix}
  \]
  This suffices since the $E_i^m \in \GL_M(\F)$ and $F_j^n \in \GL_n(\F)$. Moreover, to prove the claim, it suffices to find a sequence of elementary row and column operations reducing $A$ to this form.

  If $A = 0$, then done. If not, there is some $i, j$ such that $A_{ij} \not= 0$. By swapping row $1$ and row $i$; and then column $1$ and column $j$, we can assume $A_{11} \not= 0$. By rescaling row $1$ by $\frac{1}{A_{11}}$, we can further assume $A_{11} = 1$.

  Now we can add $-A_{1j}$ times column $1$ to column $j$ for each $j \not= 1$, and then add $-A_{i1}$ times row $1$ to row $i \not= 1$. Then we now have
  \[
    A =
    \begin{pmatrix}
      1 & 0 & \cdots & 0\\
      0 \\
      \vdots & & B\\
      0 &
    \end{pmatrix}
  \]
  Now $B$ is smaller than $A$. So by induction on the size of $A$, we can reduce $B$ to a matrix of the required form, so done.
\end{proof}
It is an exercise to show that the row and column operations do not change the row rank or column rank, and deduce that they are equal.

\section{Duality}
Duality is a principle we will find throughout mathematics. For example, in IB Optimisation, we considered the dual problems of linear programs. Here we will look for the dual of vector spaces. In general, we try to look at our question in a ``mirror'' and hope that the mirror problem is easier to solve than the original mirror.

At first, the definition of the dual might see a bit arbitrary and weird. We will try to motivate it using what we will call \emph{annihilators}, but they are much more useful than just for these. Despite their usefulness, though, they can be confusing to work with at times, since the dual space of a vector space $V$ will be constructed by considering linear maps on $V$, and when we work with maps on dual spaces, things explode.

\subsection{Dual space}
To specify a subspace of $\F^n$, we can write down linear equations that its elements satisfy. For example, if we have the subspace $U = \bra \begin{pmatrix} 1\\2\\1 \end{pmatrix}\ket\subseteq \F^3$, we can specify this by saying $\begin{pmatrix}x_1\\ x_2\\ x_3\end{pmatrix} \in U$ if and only if
\begin{align*}
  x_1 - x_3 &= 0\\
  2x_1 - x_2 &= 0.
\end{align*}
However, characterizing a space in terms of equations involves picking some particular equations out of the many possibilities. In general, we do not like making arbitrary choices. Hence the solution is to consider \emph{all} possible such equations. We will show that these form a subspace in some space.

We can interpret these equations in terms of linear maps $\F^n \to \F$. For example $x_1 - x_3 = 0$ if and only if $\begin{pmatrix}x_1\\x_2\\x_3\end{pmatrix} \in \ker \theta$, where $\theta: \F^3 \to \F$ is defined by $\begin{pmatrix}x_1\\x_2\\x_3\end{pmatrix} \mapsto x_1 - x_3$.

This works well with the vector space operations. If $\theta_1, \theta_2: \F^n \to \F$ vanish on some subspace of $\F^n$, and $\lambda, \mu\in \F$, then $\lambda \theta_1 + \mu \theta_2$ also vanishes on the subspace. So the set of all maps $\F^n \to \F$ that vanishes on $U$ forms a vector space.

To formalize this notion, we introduce dual spaces.

\begin{defi}[Dual space]
  Let $V$ be a vector space over $\F$. The \emph{dual} of $V$ is defined as
  \[
    V^* = \mathcal{L}(V, \F) = \{\theta: V \to \F: \theta\text{ linear}\}.
  \]
  Elements of $V^*$ are called \emph{linear functionals} or \emph{linear forms}.
\end{defi}
By convention, we use Roman letters for elements in $V$, and Greek letters for elements in $V^*$.

\begin{eg}\leavevmode
  \begin{itemize}
    \item If $V = \R^3$ and $\theta: V\to \R$ that sends $\begin{pmatrix}x_1\\x_2\\x_3\end{pmatrix} \mapsto x_1 - x_3$, then $\theta \in V^*$.
    \item Let $V = \F^X$. Then for any fixed $x$, $\theta: V\to \F$ defined by $f \mapsto f(x)$ is in $V^*$.
    \item Let $V = C([0, 1], \R)$. Then $f \mapsto \int_0^1 f(t)\;\d t \in V^*$.
    \item The trace $\tr: M_n(\F)\to \F$ defined by $A\mapsto \sum_{i = 1}^n A_{ii}$ is in $M_n(\F)^*$.
  \end{itemize}
\end{eg}

It turns out it is rather easy to specify how the dual space looks like, at least in the case where $V$ is finite dimensional.
\begin{lemma}
  If $V$ is a finite-dimensional vector space over $f$ with basis $(\mathbf{e}_1, \cdots, \mathbf{e}_n)$, then there is a basis $(\varepsilon_1, \cdots, \varepsilon_n)$ for $V^*$ (called the \emph{dual basis} to $(\mathbf{e}_1, \cdots, \mathbf{e}_n)$) such that
  \[
    \varepsilon_i(\mathbf{e}_j) = \delta_{ij}.
  \]
\end{lemma}

\begin{proof}
  Since linear maps are characterized by their values on a basis, there exists unique choices for $\varepsilon_1, \cdots, \varepsilon_n \in V^*$. Now we show that $(\varepsilon_1, \cdots, \varepsilon_n)$ is a basis.

  Suppose $\theta \in V^*$. We show that we can write it uniquely as a combination of $\varepsilon_1, \cdots, \varepsilon_n$. We have $\theta = \sum_{i = 1}^n \lambda_i \varepsilon_i$ if and only if $\theta(\mathbf{e}_j) = \sum_{i = 1}^n \lambda_i \varepsilon_i(\mathbf{e}_j)$ (for all $j$) if and only if $\lambda_j = \theta(\mathbf{e}_j)$. So we have uniqueness and existence.
\end{proof}

\begin{cor}
  If $V$ is finite dimensional, then $\dim V = \dim V^*$.
\end{cor}
When $V$ is not finite dimensional, this need not be true. However, we know that the dimension of $V^*$ is at least as big as that of $V$, since the above gives a set of $\dim V$ many independent vectors in $V^*$. In fact for any infinite dimensional vector space, $\dim V^*$ is strictly larger than $\dim V$, if we manage to define dimensions for infinite-dimensional vector spaces.

It helps to come up with a more concrete example of how dual spaces look like. Consider the vector space $\F^n$, where we treat each element as a column vector (with respect to the standard basis). Then we can regard elements of $V^*$ as just row vectors $(a_1, \cdots, a_n) = \sum_{j = 1}^n a_j\varepsilon_j$ with respect to the dual basis. We have
\[
  \left(\sum a_j \varepsilon_j\right)\left(\sum_{x_i}\mathbf{e}_i\right) = \sum_{i, j} a_j x_i \delta_{ij} = \sum_{i = 1}^n a_i x_i =
  \begin{pmatrix}
    a_1 & \cdots & a_n
  \end{pmatrix}
  \begin{pmatrix}
    x_1\\\vdots\\x_n
  \end{pmatrix}.
\]
This is exactly what we want.

Now what happens when we change basis? How will the dual basis change?
\begin{prop}
  Let $V$ be a finite-dimensional vector space over $\F$ with bases $(\mathbf{e}_1, \cdots, \mathbf{e}_n)$ and $(\mathbf{f}_1, \cdots, \mathbf{f}_n)$, and that $P$ is the change of basis matrix so that
  \[
    \mathbf{f}_i = \sum_{k = 1}^n P_{ki}\mathbf{e}_k.
  \]
  Let $(\varepsilon_1, \cdots, \varepsilon_n)$ and $(\eta_1, \cdots, \eta_n)$ be the corresponding dual bases so that
  \[
    \varepsilon_i (\mathbf{e}_j) = \delta_{ij} = \eta_i (\mathbf{f}_j).
  \]
  Then the change of basis matrix from $(\varepsilon_1, \cdots, \varepsilon_n)$ to $(\eta_1, \cdots, \eta_n)$ is $(P^{-1})^T$, i.e.
  \[
    \varepsilon_i = \sum_{\ell = 1}^n P_{\ell i}^T \eta_\ell.
  \]
\end{prop}

\begin{proof}
  For convenience, write $Q = P^{-1}$ so that
  \[
    \mathbf{e}_j = \sum_{k = 1}^n Q_{kj}\mathbf{f}_k.
  \]
  So we can compute
  \begin{align*}
    \left(\sum_{\ell = 1}^n P_{i\ell}\eta_\ell\right)(\mathbf{e}_j) &= \left(\sum_{\ell = 1}^n P_{i\ell}\eta_\ell\right)\left(\sum_{k = 1}^n Q_{kj}\mathbf{f}_k\right)\\
    &= \sum_{k, \ell} P_{i\ell}\delta_{\ell k} Q_{kj}\\
    &= \sum_{k, \ell} P_{i\ell} Q_{\ell j}\\
    &= [PQ]_{ij}\\
    &= \delta_{ij}.
  \end{align*}
  So $\varepsilon_i = \sum_{\ell = 1}^n P_{\ell i}^T \eta_\ell$.
\end{proof}

Now we'll return to our original motivation, and think how we can define subspaces of $V^*$ in terms of subspaces of $V$, and vice versa.

\begin{defi}[Annihilator]
  Let $U\subseteq V$. Then the \emph{annihilator} of $U$ is
  \[
    U^0 = \{\theta\in V^* : \theta(\mathbf{u}) = 0, \forall \mathbf{u}\in U\}.
  \]
  If $W \subseteq V^*$, then the \emph{annihilator} of $W$ is
  \[
    W^0 = \{\mathbf{v}\in V: \theta(\mathbf{v}) = 0,\forall \theta \in W\}.
  \]
\end{defi}
One might object that $W^0$ should be a subset of $V^{**}$ and not $V$. We will later show that there is a canonical isomorphism between $V^{**}$ and $V$, and this will all make sense.

\begin{eg}
  Consider $\R^3$ with standard basis $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$; $(R^3)^*$ with dual basis $(\varepsilon_1, \varepsilon_2, \varepsilon_3)$. If $U = \bra \mathbf{e}_1 + 2\mathbf{e}_2 + \mathbf{e}_3\ket$ and $W = \bra \varepsilon_1 - \varepsilon_3, 2\varepsilon_1 - \varepsilon_2\ket $, then $U^0 = W$ and $W^0 = U$.
\end{eg}
We see that the dimension of $U$ and $U^0$ add up to three, which is the dimension of $\R^3$. This is typical.

\begin{prop}
  Let $V$ be a vector space over $\F$ and $U$ a subspace. Then
  \[
    \dim U + \dim U^0 = \dim V.
  \]
\end{prop}
We are going to prove this in many ways.
\begin{proof}
  Let $(\mathbf{e}_1, \cdots, \mathbf{e}_k)$ be a basis for $U$ and extend to $(\mathbf{e}_1, \cdots, \mathbf{e}_n)$ a basis for $V$. Consider the dual basis for $V^*$, say $(\varepsilon_1, \cdots, \varepsilon_n)$. Then we will show that
  \[
    U^0 = \bra \varepsilon_{k + 1}, \cdots, \varepsilon_{n}\ket.
  \]
  So $\dim U^0 = n - k$ as required. This is easy to prove --- if $j > k$, then $\varepsilon_j(\mathbf{e}_i) = 0$ for all $ i \leq k$. So $\varepsilon_{k + 1}, \cdots, \varepsilon_n \in U^0$. On the other hand, suppose $\theta \in U^0$. Then we can write
  \[
    \theta = \sum_{j = 1}^n \lambda_j \varepsilon_j.
  \]
  But then $0 = \theta (\mathbf{e}_i) = \lambda_i$ for $i \leq k$. So done.
\end{proof}

\begin{proof}
  Consider the restriction map $V^* \to U^*$, given by $\theta \mapsto \theta|_U$. This is obviously linear. Since every linear map $U \to \F$ can be extended to $V\to \F$, this is a surjection. Moreover, the kernel is $U^0$. So by rank-nullity theorem,
  \[
    \dim V^* = \dim U^0 + \dim U^*.
  \]
  Since $\dim V^* = \dim V$ and $\dim U^* = \dim U$, we're done.
\end{proof}

\begin{proof}
  We can show that $U^0 \simeq (V/U)^*$, and then deduce the result. Details are left as an exercise.
\end{proof}

\subsection{Dual maps}
Since linear algebra is the study of vector spaces and linear maps between them, after dualizing vector spaces, we should be able to dualize linear maps as well. If we have a map $\alpha: V \to W$, then after dualizing, the map will go \emph{the other direction}, i.e.\ $\alpha^*: W^* \to V^*$. This is a characteristic common to most dualization processes in mathematics.

\begin{defi}[Dual map]
  Let $V, W$ be vector spaces over $\F$ and $\alpha: V\to W \in \mathcal{L}(V, W)$. The \emph{dual map} to $\alpha$, written $\alpha^*: W^* \to V^*$ is given by $\theta \mapsto \theta \circ \alpha$. Since the composite of linear maps is linear, $\alpha^*(\theta) \in V^*$. So this is a genuine map.
\end{defi}

\begin{prop}
  Let $\alpha \in \mathcal{L}(V, W)$ be a linear map. Then $\alpha^* \in \mathcal{L}(W^*, V^*)$ is a linear map.
\end{prop}
This is \emph{not} the same as what we remarked at the end of the definition of the dual map. What we remarked was that given any $\theta$, $\alpha^*(\theta)$ is a linear map. What we want to show here is that $\alpha^*$ itself as a map $W^* \to V^*$ is linear.

\begin{proof}
  Let $\lambda, \mu \in \F$ and $\theta_1, \theta_2 \in W^*$. We want to show
  \[
    \alpha^*(\lambda \theta_1 + \mu \theta_2) = \lambda \alpha^*(\theta_1) + \mu \alpha^*(\theta_2).
  \]
  To show this, we show that for every $\mathbf{v} \in V$, the left and right give the same result. We have
  \begin{align*}
    \alpha^*(\lambda \theta_1 + \mu \theta_2)(\mathbf{v}) &= (\lambda \theta_1 + \mu \theta_2)(\alpha \mathbf{v}) \\
    &= \lambda \theta_1 (\alpha (\mathbf{v})) + \mu \theta_2 (\alpha(\mathbf{v})) \\
    &= (\lambda \alpha^*(\theta_1)+ \mu \alpha^*(\theta_2))(\mathbf{v}).
  \end{align*}
  So $\alpha^* \in \mathcal{L}(W^*, V^*)$.
\end{proof}

What happens to the matrices when we take the dual map? The answer is that we get the transpose.
\begin{prop}
  Let $V, W$ be finite-dimensional vector spaces over $\F$ and $\alpha: V\to W$ be a linear map. Let $(\mathbf{e}_1, \cdots, \mathbf{e}_n)$ be a basis for $V$ and $(\mathbf{f}_1, \cdots, \mathbf{f}_m)$ be a basis for $W$; $(\varepsilon_1, \cdots, \varepsilon_n)$ and $(\eta_1, \cdots, \eta_m)$ the corresponding dual bases.

  Suppose $\alpha$ is represented by $A$ with respect to $(\mathbf{e}_i)$ and $(\mathbf{f}_i)$ for $V$ and $W$. Then $\alpha^*$ is represented by $A^T$ with respect to the corresponding dual bases.
\end{prop}

\begin{proof}
  We are given that
  \[
    \alpha (\mathbf{e}_i) = \sum_{k = 1}^m A_{ki}\mathbf{f}_k.
  \]
  We must compute $\alpha^*(\eta_i)$. To do so, we evaluate it at $\mathbf{e}_j$. We have
  \[
    \alpha^*(\eta_i)(\mathbf{e}_j) = \eta_i(\alpha(\mathbf{e}_j)) = \eta_i\left(\sum_{k = 1}^m A_{kj}\mathbf{f}_k\right) = \sum_{k = 1}^m A_{kj} \delta_{ik} = A_{ij}.
  \]
  We can also write this as
  \[
    \alpha^*(\eta_i)(\mathbf{e}_j) = \sum_{k = 1}^n A_{ik} \varepsilon_k (\mathbf{e}_j).
  \]
  Since this is true for all $j$, we have
  \[
    \alpha^*(\eta_i) \sum_{k = 1}^n A_{ik}\varepsilon_k = \sum_{k = 1}^n A_{ki}^T \varepsilon_k.
  \]
  So done.
\end{proof}

Note that if $\alpha: U\to V$ and $\beta: V\to W$, $\theta \in W^*$, then
\[
  (\beta\alpha)^*(\theta) = \theta\beta\alpha = \alpha^*(\theta\beta) = \alpha^*(\beta^*(\theta)).
\]
So we have $(\beta\alpha)^* = \alpha^*\beta^*$. This is obviously true for the finite-dimensional case, since that's how transposes of matrices work.

Similarly, if $\alpha, \beta: U \to V$, then $(\lambda\alpha + \mu\beta)^* = \lambda\alpha^* + \mu\beta^*$.

What happens when we change basis? If $B = Q^{-1}AP$ for some invertible $P$ and $Q$, then
\[
  B^T = (Q^{-1}AP)^T = P^TA^T(Q^{-1})^T = ((P^{-1})^T)^{-1} A^T (Q^{-1})^T.
\]
So in the dual space, we conjugate by the dual of the change-of-basis matrices.

As we said, we can use dualization to translate problems about a vector space to its dual. The following lemma gives us some good tools to do so:
\begin{lemma}
  Let $\alpha \in \mathcal{L}(V, W)$ with $V, W$ finite dimensional vector spaces over $\F$. Then
  \begin{enumerate}
    \item $\ker \alpha^* = (\im \alpha)^0$.
    \item $r(\alpha) = r(\alpha^*)$ (which is another proof that row rank is equal to column rank).
    \item $\im \alpha^* = (\ker \alpha)^0$.
  \end{enumerate}
\end{lemma}
At first sight, (i) and (iii) look quite similar. However, (i) is almost trivial to prove, but (iii) is rather hard.

\begin{proof}\leavevmode
  \begin{enumerate}
    \item If $\theta \in W^*$, then
      \begin{align*}
        \theta \in \ker \alpha^* &\Leftrightarrow \alpha^*(\theta) = 0 \\
        &\Leftrightarrow (\forall \mathbf{v}\in V)\; \theta \alpha(\mathbf{v}) = 0 \\
        &\Leftrightarrow (\forall \mathbf{w}\in \im \alpha)\; \theta(\mathbf{w}) = 0\\
        &\Leftrightarrow \theta \in (\im \alpha)^0.
      \end{align*}
    \item As $\im \alpha \leq W$, we've seen that
      \[
        \dim \im \alpha + \dim (\im \alpha)^0 = \dim W.
      \]
      Using (i), we see
      \[
        n(\alpha^*) = \dim (\im \alpha)^0.
      \]
      So
      \[
        r(\alpha) + n(\alpha^*) = \dim W = \dim W^*.
      \]
      By the rank-nullity theorem, we have $r(\alpha) = r(\alpha^*)$.
    \item The proof in (i) doesn't quite work here. We can only show that one includes the other. To draw the conclusion, we will show that the two spaces have the dimensions, and hence must be equal.

      Let $\theta \in \im \alpha^*$. Then $\theta = \phi \alpha$ for some $\phi \in W^*$. If $\mathbf{v}\in \ker\alpha$, then
      \[
        \theta(\mathbf{v}) = \phi(\alpha(\mathbf{v})) = \phi(\mathbf{0}) = \mathbf{0}.
      \]
      So $\im \alpha^* \subseteq (\ker\alpha)^0$.

      But we know
      \[
        \dim (\ker \alpha)^0 + \dim \ker \alpha = \dim V,
      \]
      So we have
      \[
        \dim (\ker \alpha)^0 = \dim V - n(\alpha) = r(\alpha) = r(\alpha^*) = \dim \im \alpha^*.
      \]
      Hence we must have $\im \alpha^* = (\ker \alpha)^0$.\qedhere
  \end{enumerate}
\end{proof}

Not only do we want to get from $V$ to $V^*$, we want to get back from $V^*$ to $V$. We can take the dual of $V^*$ to get a $V^{**}$. We already know that $V^{**}$ is isomorphic to $V$, since $V^*$ is isomorphic to $V$ already. However, the isomorphism between $V^*$ and $V$ are not ``natural''. To define such an isomorphism, we needed to pick a basis for $V$ and consider a dual basis. If we picked a different basis, we would get a different isomorphism. There is no natural, canonical, uniquely-defined isomorphism between $V$ and $V^*$.

However, this is not the case when we want to construct an isomorphism $V \to V^{**}$. The construction of this isomorphism is obvious once we think hard what $V^{**}$ actually means. Unwrapping the definition, we know $V^{**} = \mathcal{L}(V^*, \F)$. Our isomorphism has to produce something in $V^{**}$ given any $\mathbf{v} \in V$. This is equivalent to saying given any $\mathbf{v} \in V$ and a function $\theta \in V^*$, produce something in $\F$.

This is easy, by definition $\theta \in V^*$ is just a linear map $V \to \F$. So given $\mathbf{v}$ and $\theta$, we just return $\theta(\mathbf{v})$. We now just have to show that this is linear and is bijective.
\begin{lemma}
  Let $V$ be a vector space over $\F$. Then there is a linear map $\ev: V\to (V^*)^*$ given by
  \[
    \ev (\mathbf{v})(\theta) = \theta(\mathbf{v}).
  \]
  We call this the \emph{evaluation} map.
\end{lemma}
We call this a ``canonical'' map since this does not require picking a particular basis of the vector spaces. It is in some sense a ``natural'' map.

\begin{proof}
  We first show that $\ev(\mathbf{v}) \in V^{**}$ for all $\mathbf{v}\in V$, i.e.\ $\ev (\mathbf{v})$ is linear for any $\mathbf{v}$. For any $\lambda, \mu\in \F$, $\theta_1, \theta_2 \in V^*$, then for $\mathbf{v} \in V$, we have
  \begin{align*}
    \ev(\mathbf{v})(\lambda\theta_1 + \mu\theta_2) &= (\lambda\theta_1 + \mu\theta_2)(\mathbf{v}) \\
    &= \lambda\theta_1(\mathbf{v}) + \mu\theta_2(\mathbf{v}) \\
    &= \lambda\ev(\mathbf{v})(\theta_1) + \mu \ev(\mathbf{v})(\theta_2).
  \end{align*}
  So done. Now we show that $\ev$ itself is linear. Let $\lambda, \mu\in \F$, $\mathbf{v}_1, \mathbf{v}_2 \in V$. We want to show
  \[
    \ev(\lambda\mathbf{v}_1 + \mu \mathbf{v}_2) = \lambda \ev (\mathbf{v}_1) + \mu \ev(\mathbf{v}_2).
  \]
  To show these are equal, pick $\theta \in V^*$. Then
  \begin{align*}
    \ev(\lambda \mathbf{v}_1 + \mu \mathbf{v}_2)(\theta) &= \theta(\lambda\mathbf{v}_1 + \mu \mathbf{v}_2) \\
    &= \lambda\theta(\mathbf{v}_1) + \mu \theta(\mathbf{v}_2) \\
    &= \lambda \ev(\mathbf{v}_1)(\theta) + \mu \ev(\mathbf{v}_2)(\theta) \\
    &= (\lambda \ev(\mathbf{v}_1) + \mu \ev(\mathbf{v}_2))(\theta).
  \end{align*}
  So done.
\end{proof}
In the special case where $V$ is finite-dimensional, this is an isomorphism.
\begin{lemma}
  If $V$ is finite-dimensional, then $\ev: V \to V^{**}$ is an isomorphism.
\end{lemma}
This is very false for infinite dimensional spaces. In fact, this is true \emph{only} for finite-dimensional vector spaces (assuming the axiom of choice), and some (weird) people use this as the definition of finite-dimensional vector spaces.

\begin{proof}
  We first show it is injective. Suppose $\ev(\mathbf{v}) = \mathbf{0}$ for some $\mathbf{v}\in V$. Then $\theta (\mathbf{v}) = \ev (\mathbf{v})(\theta) = 0$ for all $\theta \in V^*$. So $\dim \bra \mathbf{v}\ket^0 = \dim V^* = \dim V$. So $\dim \bra \mathbf{v} \ket = 0$. So $\mathbf{v} = 0$. So $\ev$ is injective. Since $V$ and $V^{**}$ have the same dimension, this is also surjective. So done.
\end{proof}
From now on, we will just pretend that $V$ and $V^{**}$ are the same thing, at least when $V$ is finite dimensional.

Note that this lemma does not just say that $V$ is isomorphic to $V^{**}$ (we already know that since they have the same dimension). This says there is a completely canonical way to choose the isomorphism.

In general, if $V$ is infinite dimensional, then $\ev$ is injective, but not surjective. So we can think of $V$ as a subspace of $V^{**}$ in a canonical way.

\begin{lemma}
  Let $V, W$ be finite-dimensional vector spaces over $\F$ after identifying ($V$ and $V^{**}$) and ($W$ and $W^{**}$) by the evaluation map. Then we have
  \begin{enumerate}
    \item If $U\leq V$, then $U^{00} = U$.
    \item If $\alpha\in \mathcal{L}(V, W)$, then $\alpha^{**} = \alpha$.
  \end{enumerate}
\end{lemma}

\begin{proof}\leavevmode
  \begin{enumerate}
    \item Let $\mathbf{u} \in U$. Then $\mathbf{u}(\theta) = \theta(\mathbf{u}) = 0$ for all $\theta \in U^0$. So $\mathbf{u}$ annihilates everything in $U^0$. So $\mathbf{u} \in U^{00}$. So $U \subseteq U^{00}$. We also know that
      \[
        \dim U = \dim V - \dim U^0 = \dim V - (\dim V - \dim U^{00}) = \dim U^{00}.
      \]
      So we must have $U = U^{00}$.
    \item The proof of this is basically --- the transpose of the transpose is the original matrix. The only work we have to do is to show that the dual of the dual basis is the original basis.

      Let $(\mathbf{e}_1, \cdots, \mathbf{e}_n)$ be a basis for $V$ and $(\mathbf{f}_1, \cdots, \mathbf{f}_m)$ be a basis for $W$, and let $(\varepsilon_1, \cdots, \varepsilon_n)$ and $(\eta_1, \cdots, \eta_n)$ be the corresponding dual basis. We know that
      \[
        \mathbf{e}_i(\varepsilon_j) = \delta_{ij} = \varepsilon_j(\mathbf{e}_i),\quad \mathbf{f}_i(\eta_j) = \delta_{ij} = \eta_j(\mathbf{f}_i).
      \]
      So $(\mathbf{e}_1, \cdots, \mathbf{e}_n)$ is dual to $(\varepsilon_1, \cdots, \varepsilon_n)$, and similarly for $\mathbf{f}$ and $\eta$.

      If $\alpha$ is represented by $A$, then $\alpha^*$ is represented by $A^T$. So $\alpha^{**}$ is represented by $(A^T)^T = A$. So done.\qedhere
  \end{enumerate}
\end{proof}

\begin{prop}
  Let $V$ be a finite-dimensional vector space $\F$ and $U_1$, $U_2$ are subspaces of $V$. Then we have
  \begin{enumerate}
    \item $(U_1 + U_2)^0 = U_1^0 \cap U_2^0$
    \item $(U_1 \cap U_2)^0 = U_1^0 + U_2^0$
  \end{enumerate}
\end{prop}

\begin{proof}\leavevmode
  \begin{enumerate}
    \item Suppose $\theta \in V^*$. Then
      \begin{align*}
        \theta \in (U_1 + U_2)^0 &\Leftrightarrow \theta (\mathbf{u}_1 + \mathbf{u}_2) = 0\text{ for all }\mathbf{u}_i \in U_i\\
        &\Leftrightarrow \theta (\mathbf{u}) = 0\text{ for all }\mathbf{u} \in U_1 \cup U_2\\
        &\Leftrightarrow \theta \in U_1^0 \cap U_2^0.
      \end{align*}
    \item We have
      \[
        (U_1 \cap U_2)^0 = ((U_1^0)^0 \cap (U_2^0)^0)^0 = (U_1^0 + U_2^0)^{00} = U_1^0 + U_2^0.
      \]
      So done.\qedhere
  \end{enumerate}
\end{proof}

\section{Bilinear forms I}
\label{sec:bilin1}
So far, we have been looking at linear things only. This can get quite boring. For a change, we look at \emph{bi}linear maps instead. In this chapter, we will look at bilinear forms in general. It turns out there isn't much we can say about them, and hence this chapter is rather short. Later, in Chapter~\ref{sec:bilin2}, we will study some special kinds of bilinear forms which are more interesting.

\begin{defi}[Bilinear form]
  Let $V, W$ be vector spaces over $\F$. Then a function $\phi: V\times W \to \F$ is a \emph{bilinear form} if it is linear in each variable, i.e.\ for each $\mathbf{v} \in V$, $\phi(\mathbf{v}, \ph): W \to \F$ is linear; for each $\mathbf{w} \in W$, $\phi(\ph, \mathbf{w}): V\to \F$ is linear.
\end{defi}

\begin{eg}
  The map defined by
  \begin{align*}
    V\times V^* &\to \F\\
    (\mathbf{v}, \theta) &\mapsto \theta(\mathbf{v}) = \ev(\mathbf{v})(\theta)
  \end{align*}
  is a bilinear form.
\end{eg}

\begin{eg}
  Let $V = W = \F^n$. Then the function $(\mathbf{v}, \mathbf{w}) = \sum_{i = 1}^n v_i w_i$ is bilinear.
\end{eg}

\begin{eg}
  If $V = W = C([0, 1], \R)$, then
  \[
    (f, g) \mapsto \int_0^a fg \;\d t
  \]
  is a bilinear form.
\end{eg}

\begin{eg}
  Let $A \in \Mat_{m, n}(\F)$. Then
  \begin{align*}
    \phi: \F^m \times \F^n &\to \F\\
       (\mathbf{v}, \mathbf{w}) &\mapsto \mathbf{v}^T A\mathbf{w}
  \end{align*}
  is bilinear. Note that the (real) dot product is the special case of this, where $n = m$ and $A = I$.
\end{eg}
In fact, this is the most general form of bilinear forms on finite-dimensional vector spaces.

\begin{defi}[Matrix representing bilinear form]
  Let $(\mathbf{e}_1, \cdots, \mathbf{e}_n)$ be a basis for $V$ and $(\mathbf{f}_1, \cdots, \mathbf{f}_m)$ be a basis for $W$, and $\psi: V\times W \to \F$. Then the \emph{matrix $A$ representing $\psi$} with respect to the basis is defined to be
  \[
    A_{ij} = \psi(\mathbf{e}_i, \mathbf{f}_j).
  \]
\end{defi}
Note that if $\mathbf{v} = \sum \lambda_i \mathbf{e}_i$ and $\mathbf{w} = \sum \mu_j \mathbf{f}_j$, then by linearity, we get
\begin{align*}
  \psi(\mathbf{v}, \mathbf{w}) &= \psi\left(\sum \lambda_i \mathbf{e}_i, \mathbf{w}\right) \\
  &= \sum_i \lambda_i \psi(\mathbf{e}_i, \mathbf{w})\\
  &= \sum_i \lambda_i \psi\left(\mathbf{e}_i, \sum \mu_j \mathbf{f}_j\right)\\
  &= \sum_{i, j} \lambda_i \mu_j \psi(\mathbf{e}_i, \mathbf{f}_j)\\
  &= \lambda^T A \mu.
\end{align*}
So $\psi$ is determined by $A$.

We have identified linear maps with matrices, and we have identified bilinear maps with matrices. However, you shouldn't think linear maps are bilinear maps. They are, obviously, two different things. In fact, the matrices representing matrices and bilinear forms transform differently when we change basis.

\begin{prop}
  Suppose $(\mathbf{e}_1, \cdots, \mathbf{e}_n)$ and $(\mathbf{v}_1, \cdots, \mathbf{v}_n)$ are basis for $V$ such that
  \[
    \mathbf{v}_i = \sum P_{ki}\mathbf{e}_k\text{ for all }i = 1,\cdots, n;
  \]
  and $(\mathbf{f}_1, \cdots, \mathbf{f}_m)$ and $(\mathbf{w}_1, \cdots, \mathbf{w}_m)$ are bases for $W$ such that
  \[
    \mathbf{w}_i = \sum Q_{\ell j} \mathbf{f}_\ell\text{ for all }j = 1, \cdots, m.
  \]
  Let $\psi: V\times W \to \F$ be a bilinear form represented by $A$ with respect to $(\mathbf{e}_1, \cdots, \mathbf{e}_n)$ and $(\mathbf{f}_1, \cdots, \mathbf{f}_m)$, and by $B$ with respect to the bases $(\mathbf{v}_1, \cdots, \mathbf{v}_n)$ and $(\mathbf{w}_1, \cdots, \mathbf{w}_m)$. Then
  \[
    B = P^T AQ.
  \]
\end{prop}
The difference with the transformation laws of matrices is this time we are taking \emph{transposes}, not \emph{inverses}.

\begin{proof}
  We have
  \begin{align*}
    B_{ij} &= \phi(\mathbf{v}_i, \mathbf{w}_j)\\
    &= \phi\left(\sum P_{ki}\mathbf{e}_k, \sum Q_{\ell j}\mathbf{f}_\ell\right)\\
    &= \sum P_{ki}Q_{\ell j}\phi(\mathbf{e}_k, \mathbf{f}_\ell)\\
    &= \sum_{k, \ell} P^T_{ik} A_{k\ell} Q_{\ell j}\\
    &= (P^T AQ)_{ij}.\qedhere
  \end{align*}
\end{proof}
Note that while the transformation laws for bilinear forms and linear maps are different, we still get that two matrices are representing the same bilinear form with respect to different bases if and only if they are equivalent, since if $B = P^{-1} AQ$, then $B = ((P^{-1})^T)^T AQ$.

If we are given a bilinear form $\psi: V\times W \to \F$, we immediately get two linear maps:
\[
  \psi_L: V\to W^*,\quad \psi_R: W \to V^*,
\]
defined by $\psi_L(\mathbf{v}) = \psi(\mathbf{v}, \ph)$ and $\psi_R(\mathbf{w}) = \psi(\ph, \mathbf{w})$.

For example, if $\psi: V\times V^* \to \F$, is defined by $(\mathbf{v}, \theta) \mapsto \theta(\mathbf{v})$, then $\psi_L: V\to V^{**}$ is the evaluation map. On the other hand, $\psi_R: V^* \to V^*$ is the identity map.

\begin{lemma}
  Let $(\varepsilon_1,\cdots, \varepsilon_n)$ be a basis for $V^*$ dual to $(\mathbf{e}_1, \cdots, \mathbf{e}_n)$ of $V$; $(\eta_1,\cdots, \eta_n)$ be a basis for $W^*$ dual to $(\mathbf{f}_1, \cdots, \mathbf{f}_n)$ of $W$.

  If $A$ represents $\psi$ with respect to $(\mathbf{e}_1, \cdots, \mathbf{e}_n)$ and $(\mathbf{f}_1, \cdots, \mathbf{f}_m)$, then $A$ also represents $\psi_R$ with respect to $(\mathbf{f}_1,\cdots, \mathbf{f}_m)$ and $(\varepsilon_1, \cdots, \varepsilon_n)$; and $A^T$ represents $\psi_L$ with respect to $(\mathbf{e}_1, \cdots, \mathbf{e}_n)$ and $(\eta_1, \cdots, \eta_m)$.
\end{lemma}

\begin{proof}
  We just have to compute
  \[
    \psi_L(\mathbf{e}_i)(\mathbf{f}_j) = A_{ij} = \left(\sum A_{i\ell} \eta_\ell\right) (\mathbf{f}_j).
  \]
  So we get
  \[
    \psi_L(\mathbf{e}_i) = \sum A_{\ell i}^T\eta_\ell.
  \]
  So $A^T$ represents $\psi_L$.

  We also have
  \[
    \psi_R(\mathbf{f}_j)(\mathbf{e}_i) = A_{ij}.
  \]
  So
  \[
    \psi_R(\mathbf{f}_j) = \sum A_{kj}\varepsilon_k.\qedhere
  \]
\end{proof}

\begin{defi}[Left and right kernel]
  The kernel of $\psi_L$ is \emph{left kernel} of $\psi$, while the kernel of $\psi_R$ is the \emph{right kernel} of $\psi$.
\end{defi}
Then by definition, $\mathbf{v}$ is in the left kernel if $\psi(\mathbf{v}, \mathbf{w}) = 0$ for all $\mathbf{w} \in W$.

More generally, if $T\subseteq V$, then we write
\[
  T^\bot = \{\mathbf{w} \in W: \psi(\mathbf{t}, \mathbf{w}) = 0\text{ for all }\mathbf{t} \in T\}.
\]
Similarly, if $U\subseteq W$, then we write
\[
  ^\bot U = \{\mathbf{v} \in V: \psi(\mathbf{v}, \mathbf{u}) = 0\text{ for all }\mathbf{u}\in U\}.
\]
In particular, $V^\bot = \ker \psi_R$ and $^\bot W = \ker \psi_L$.

If we have a non-trivial left (or right) kernel, then in some sense, some elements in $V$ (or $W$) are ``useless'', and we don't like these.
\begin{defi}[Non-degenerate bilinear form]
  $\psi$ is \emph{non-degenerate} if the left and right kernels are both trivial. We say $\psi$ is \emph{degenerate} otherwise.
\end{defi}

\begin{defi}[Rank of bilinear form]
  If $\psi: V\to W$ is a bilinear form $\F$ on a finite-dimensional vector space $V$, then the \emph{rank} of $V$ is the rank of any matrix representing $\phi$. This is well-defined since $r(P^T AQ) = r(A)$ if $P$ and $Q$ are invertible.

  Alternatively, it is the rank of $\psi_L$ (or $\psi_R$).
\end{defi}

\begin{lemma}
  Let $V$ and $W$ be finite-dimensional vector spaces over $\F$ with bases $(\mathbf{e}_1, \cdots, \mathbf{e}_n)$ and $(\mathbf{f}_1, \cdots, \mathbf{f}_m)$ be their basis respectively.

  Let $\psi: V\times W \to \F$ be a bilinear form represented by $A$ with respect to these bases. Then $\phi$ is non-degenerate if and only if $A$ is (square and) invertible. In particular, $V$ and $W$ have the same dimension.
\end{lemma}
We can understand this as saying if there are too many things in $V$ (or $W$), then some of them are bound to be useless.

\begin{proof}
  Since $\psi_R$ and $\psi_L$ are represented by $A$ and $A^T$ (in some order), they both have trivial kernel if and only if $n(A) = n(A^T) = 0$. So we need $r(A) = \dim V$ and $r(A^T) = \dim W$. So we need $\dim V = \dim W$ and $A$ have full rank, i.e.\ the corresponding linear map is bijective. So done.
\end{proof}

\begin{eg}
  The map
  \begin{align*}
    \F^2 \times \F^2 &\to \F\\
    \begin{pmatrix}
      a\\c
    \end{pmatrix},
    \begin{pmatrix}
      b\\d
    \end{pmatrix} &\mapsto ad - bc
  \end{align*}
  is a bilinear form. This, obviously, corresponds to the determinant of a 2-by-2 matrix. We have $\psi(\mathbf{v}, \mathbf{w}) = -\psi(\mathbf{w}, \mathbf{v})$ for all $\mathbf{v}, \mathbf{w}\in \F^2$.
\end{eg}

\section{Determinants of matrices}
We probably all know what the determinant is. Here we are going to give a slightly more abstract definition, and spend quite a lot of time trying motivate this definition.

Recall that $S_n$ is the group of permutations of $\{1, \cdots, n\}$, and there is a unique group homomorphism $\varepsilon: S_n \to \{\pm 1\}$ such that $\varepsilon(\sigma) = 1$ if $\sigma$ can be written as a product of an even number of transpositions; $\varepsilon(\sigma) = -1$ if $\sigma$ can be written as an odd number of transpositions. It is proved in IA Groups that this is well-defined.

\begin{defi}[Determinant]
  Let $A \in \Mat_{n, n}(\F)$. Its \emph{determinant} is
  \[
    \det A = \sum_{\sigma \in S_n} \varepsilon(\sigma) \prod_{i = 1}^n A_{i \sigma(i)}.
  \]
\end{defi}
This is a big scary definition. Hence, we will spend the first half of the chapter trying to understand what this really means, and how it behaves. We will eventually prove a formula that is useful for computing the determinant, which is probably how you were first exposed to the determinant.

\begin{eg}
  If $n = 2$, then $S_2 = \{\id, (1\; 2)\}$. So
  \[
    \det A = A_{11}A_{22} - A_{12} A_{21}.
  \]
  When $n = 3$, then $S_3$ has 6 elements, and
  \begin{align*}
    \det A &= A_{11}A_{22}A_{33} + A_{12}A_{23}A_{31} + A_{13}A_{21}A_{32}\\
    &\quad - A_{11}A_{23}A_{32} - A_{22}A_{31}A_{13} - A_{33}A_{12}A_{21}.
  \end{align*}
\end{eg}

We will first prove a few easy and useful lemmas about the determinant.
\begin{lemma}
  $\det A = \det A^T$.
\end{lemma}

\begin{proof}
  \begin{align*}
    \det A^T &= \sum_{\sigma \in S_n} \varepsilon(\sigma) \prod_{i = 1}^n A_{\sigma(i)i}\\
    &= \sum_{\sigma \in S_n} \varepsilon (\sigma) \prod_{j = 1}^n A_{j \sigma^{-1}(j)}\\
    &= \sum_{\tau \in S_n} \varepsilon (\tau^{-1}) \prod_{j = 1}^n A_{j \tau (j)}\\
    \intertext{Since $\varepsilon(\tau) = \varepsilon(\tau^{-1})$, we get}
    &= \sum_{\tau \in S_n} \varepsilon (\tau) \prod_{j = 1}^n A_{j \tau (j)}\\
    &= \det A.\qedhere
  \end{align*}
\end{proof}

\begin{lemma}
  If $A$ is an upper triangular matrix, i.e.
  \[
    A =
    \begin{pmatrix}
      a_{11} & a_{12} & \cdots & a_{1n}\\
      0 & a_{22} & \cdots & a_{2n}\\
      \vdots & \vdots & \ddots & \vdots\\
      0 & 0 & \cdots & a_{nn}
    \end{pmatrix}
  \]
  Then
  \[
    \det A = \prod_{i = 1}^n a_{ii}.
  \]
\end{lemma}

\begin{proof}
  We have
  \[
    \det A = \sum_{\sigma \in S_n} \varepsilon(\sigma) \prod_{i = 1}^n A_{i\sigma (i)}\\
  \]
  But $A_{i \sigma(i)} = 0$ whenever $i > \sigma(i)$. So
  \[
    \prod_{i = 1}^n A_{i\sigma(i)} = 0
  \]
  if there is some $i \in \{1, \cdots, n\}$ such that $i > \sigma(i)$.

  However, the only permutation in which $i \leq \sigma(i)$ for all $i$ is the identity. So the only thing that contributes in the sum is $\sigma = \id$. So
  \[
    \det A = \prod_{i = 1}^n A_{ii}.\qedhere
  \]
\end{proof}
To motivate this definition, we need a notion of volume. How can we define \emph{volume} on a vector space? It should be clear that the ``volume'' cannot be uniquely determined, since it depends on what units we are using. For example, saying the volume is ``$1$'' is meaningless unless we provide the units, e.g.\ $\SI{}{\centi\meter\cubed}$. So we have an axiomatic definition for what it means for something to denote a ``volume''.

\begin{defi}[Volume form]
  A \emph{volume form} on $\F^n$ is a function $d: \F^n \times \cdots \times \F^n \to \F$ that is
  \begin{enumerate}
    \item Multilinear, i.e.\ for all $i$ and all $\mathbf{v}_1, \cdots, \mathbf{v}_{i - 1}, \mathbf{v}_{i + 1}, \cdots, \mathbf{v}_n \in \F^n$, we have
      \[
        \d (\mathbf{v}_1, \cdots, \mathbf{v}_{i - 1}, \ph, \mathbf{v}_{i + 1}, \cdots, \mathbf{v}_n) \in (\F^n)^*.
      \]
    \item Alternating, i.e.\ if $\mathbf{v}_i = \mathbf{v}_j$ for some $i \not= j$, then
      \[
        d(\mathbf{v}_1, \cdots, \mathbf{v}_n) = 0.
      \]
  \end{enumerate}
\end{defi}
We should think of $d(\mathbf{v}_1, \cdots, \mathbf{v}_n)$ as the $n$-dimensional volume of the parallelopiped spanned by $\mathbf{v}_1, \cdots, \mathbf{v}_n$.

We can view $A \in \Mat_n(\F)$ as $n$-many vectors in $\F^n$ by considering its columns $A = (A^{(1)}\; A^{(2)}\; \cdots \; A^{(n)})$, with $A^{(i)} \in \F^n$. Then we have
\begin{lemma}
  $\det A$ is a volume form.
\end{lemma}

\begin{proof}
  To see that $\det$ is multilinear, it is sufficient to show that each
  \[
    \prod_{i = 1}^n A_{i \sigma(i)}
  \]
  is multilinear for all $\sigma \in S_n$, since linear combinations of multilinear forms are multilinear. But each such product is contains precisely one entry from each column, and so is multilinear.

  To show it is alternating, suppose now there are some $k, \ell$ distinct such that $A^{(k)} = A^{(\ell)}$. We let $\tau$ be the transposition $(k\; \ell)$. By Lagrange's theorem, we can write
  \[
    S_n = A_n \amalg \tau A_n,
  \]
  where $A_n = \ker \varepsilon$ and $\amalg$ is the disjoint union. We also know that
  \[
    \sum_{\sigma \in A_n} \prod_{i = 1}^n A_{i \sigma (i)} = \sum_{\sigma \in A_n} \prod_{i = 1}^n A_{i, \tau\sigma(i)},
  \]
  since if $\sigma(i)$ is not $k$ or $l$, then $\tau$ does nothing; if $\sigma(i)$ is $k$ or $l$, then $\tau$ just swaps them around, but $A^{(k)} = A^{(l)}$. So we get
  \[
    \sum_{\sigma \in A_n} \prod_{i = 1}^n A_{i \sigma (i)} = \sum_{\sigma' \in \tau A_n} \prod_{i = 1}^n A_{i\sigma'(i)},
  \]
  But we know that
  \[
    \det A = \text{LHS} - \text{RHS} = 0.
  \]
  So done.
\end{proof}
We have shown that determinants are volume forms, but is this the only volume form? Well obviously not, since $2 \det A$ is also a valid volume form. However, in some sense, all volume forms are ``derived'' from the determinant. Before we show that, we need the following

\begin{lemma}
  Let $d$ be a volume form on $\F^n$. Then swapping two entries changes the sign, i.e.
  \[
    d (\mathbf{v}_1, \cdots, \mathbf{v}_i, \cdots, \mathbf{v}_j,\cdots, \mathbf{v}_n) = -d(\mathbf{v}_1, \cdots, \mathbf{v}_j, \cdots, \mathbf{v}_i, \cdots, \mathbf{v}_n).
  \]
\end{lemma}

\begin{proof}
  By linearity, we have
  \begin{align*}
    0 &= d(\mathbf{v}_1, \cdots, \mathbf{v}_i + \mathbf{v}_j, \cdots, \mathbf{v}_i + \mathbf{v}_j, \cdots,\mathbf{v}_n) \\
    &= d(\mathbf{v}_1, \cdots, \mathbf{v}_i, \cdots, \mathbf{v}_i, \cdots, \mathbf{v}_n)\\
    &\quad\quad+ d(\mathbf{v}_1, \cdots, \mathbf{v}_i, \cdots, \mathbf{v}_j, \cdots, \mathbf{v}_n)\\
    &\quad\quad+ d(\mathbf{v}_1, \cdots, \mathbf{v}_j, \cdots, \mathbf{v}_i, \cdots, \mathbf{v}_n)\\
    &\quad\quad+ d(\mathbf{v}_1, \cdots, \mathbf{v}_j, \cdots, \mathbf{v}_j, \cdots, \mathbf{v}_n)\\
    &= d(\mathbf{v}_1, \cdots, \mathbf{v}_i, \cdots, \mathbf{v}_j, \cdots, \mathbf{v}_n)\\
    &\quad\quad+ d(\mathbf{v}_1, \cdots, \mathbf{v}_j, \cdots, \mathbf{v}_i, \cdots, \mathbf{v}_n).
  \end{align*}
  So done.
\end{proof}

\begin{cor}
  If $\sigma \in S_n$, then
  \[
    d(\mathbf{v}_{\sigma(1)}, \cdots, \mathbf{v}_{\sigma(n)}) = \varepsilon(\sigma) d(\mathbf{v}_1,\cdots, \mathbf{v}_n)
  \]
  for any $\mathbf{v}_i \in \F^n$.
\end{cor}

\begin{thm}
  Let $d$ be any volume form on $\F^n$, and let $A = (A^{(1)}\;\cdots \;A^{(n)}) \in \Mat_n(\F)$. Then
  \[
    d(A^{(1)}, \cdots, A^{(n)}) = (\det A) d(\mathbf{e}_1, \cdots, \mathbf{e}_n),
  \]
  where $\{\mathbf{e}_1, \cdots, \mathbf{e}_n\}$ is the standard basis.
\end{thm}

\begin{proof}
  We can compute
  \begin{align*}
    d(A^{(1)}, \cdots, A^{(n)}) &= d\left(\sum_{i = 1}^n A_{i1} \mathbf{e}_i, A^{(2)}, \cdots, A^{(n)}\right)\\
    &= \sum_{i = 1}^n A_{i1} d(\mathbf{e}_i, A^{(2)}, \cdots, A^{(n)})\\
    &= \sum_{i, j = 1}^n A_{i1}A_{j2}d(\mathbf{e}_i, \mathbf{e}_j, A^{(3)}, \cdots, A^{(n)})\\
    &= \sum_{i_1, \cdots, i_n} d(\mathbf{e}_{i_1}, \cdots, \mathbf{e}_{i_n})\prod_{j = 1}^n A_{i_j j}.
  \end{align*}
  We know that lots of these are zero, since if $i_k = i_j$ for some $k, j$, then the term is zero. So we are just summing over distinct tuples, i.e.\ when there is some $\sigma$ such that $i_j = \sigma(j)$. So we get
  \[
    d(A^{(1)}, \cdots, A^{(n)}) = \sum_{\sigma \in S_n} d(\mathbf{e}_{\sigma(1)}, \cdots, \mathbf{e}_{\sigma(n)})\prod_{j = 1}^n A_{\sigma(j)j}.
  \]
  However, by our corollary up there, this is just
  \[
    d(A^{(1)}, \cdots, A^{(n)}) = \sum_{\sigma \in S_n} \varepsilon(\sigma) d(\mathbf{e}_1, \cdots, \mathbf{e}_n) \prod_{j = 1}^n A_{\sigma(j)j} = (\det A) d(\mathbf{e}_1, \cdots, \mathbf{e}_n).
  \]
  So done.
\end{proof}
We can rewrite the formula as
\[
  d (A \mathbf{e}_1, \cdots, A\mathbf{e}_n) = (\det A)d(\mathbf{e}_1, \cdots, \mathbf{e}_n).
\]
It is not hard to see that the same proof gives for any $\mathbf{v}_1, \cdots, \mathbf{v}_n$, we have
\[
  d(A\mathbf{v}_1, \cdots, A\mathbf{v}_n) = (\det A)d(\mathbf{v}_1, \cdots, \mathbf{v}_n).
\]
So we know that $\det A$ is the volume rescaling factor of an arbitrary parallelopiped, and this is true for \emph{any} volume form $d$.

\begin{thm}
  Let $A, B \in \Mat_n(\F)$. Then $\det(AB) = \det(A)\det(B)$.
\end{thm}

\begin{proof}
  Let $d$ be a non-zero volume form on $\F^n$ (e.g.\ the ``determinant''). Then we can compute
  \[
    d(AB\mathbf{e}_1,\cdots , AB\mathbf{e}_n) = (\det AB) d(\mathbf{e}_1,\cdots, \mathbf{e}_n),
  \]
  but we also have
  \[
    d(AB\mathbf{e}_1, \cdots, AB\mathbf{e}_n) = (\det A) d(B\mathbf{e}_1, \cdots, B\mathbf{e}_n) = (\det A)(\det B)d(\mathbf{e}_1, \cdots, \mathbf{e}_n).
  \]
  Since $d$ is non-zero, we must have $\det AB = \det A \det B$.
\end{proof}

\begin{cor}
  If $A \in \Mat_n(\F)$ is invertible, then $\det A \not= 0$. In fact, when $A$ is invertible, then $\det (A^{-1}) = (\det A)^{-1}$.
\end{cor}

\begin{proof}
  We have
  \[
    1 = \det I = \det(AA^{-1}) = \det A\det A^{-1}.
  \]
  So done.
\end{proof}

\begin{defi}[Singular matrices]
  A matrix $A$ is \emph{singular} if $\det A = 0$. Otherwise, it is \emph{non-singular}.
\end{defi}
We have just shown that if $\det A = 0$, then $A$ is not invertible. Is the converse true? If $\det A \not= 0$, then can we conclude that $A$ is invertible? The answer is yes. We are now going to prove it in an abstract and clean way. We will later prove this fact again by constructing an explicit formula for the inverse, which involves dividing by the determinant. So if the determinant is non-zero, then we know an inverse exists.

\begin{thm}
  Let $A \in \Mat_n(\F)$. Then the following are equivalent:
  \begin{enumerate}
    \item $A$ is invertible.
    \item $\det A \not= 0$.
    \item $r(A) = n$.
  \end{enumerate}
\end{thm}

\begin{proof}
  We have proved that (i) $\Rightarrow$ (ii) above, and the rank-nullity theorem implies (iii) $\Rightarrow$ (i). We will prove (ii) $\Rightarrow$ (iii). In fact we will show the contrapositive. Suppose $r(A) < n$. By rank-nullity theorem, $n(A) > 0$. So there is some $\mathbf{x} = \begin{pmatrix}\lambda_1\\\vdots\\\lambda_n\end{pmatrix}$ such that $A\mathbf{x} = \mathbf{0}$. Suppose $\lambda_k \not= 0$. We define $B$ as follows:
  \[
    B =
    \begin{pmatrix}
      1 & & & \lambda_1\\
      & \ddots & & \vdots\\
      & & 1 & \lambda_{k - 1}\\
      & & & \lambda_k\\
      & & & \lambda_{k + 1} & 1\\
      & & & \vdots & & \ddots\\
      & & & \lambda_n & & & 1
    \end{pmatrix}
  \]
  So $AB$ has the $k$th column identically zero. So $\det(AB) = 0$. So it is sufficient to prove that $\det (B) \not= 0$. But $\det B = \lambda_k \not= 0$. So done.
\end{proof}

We are now going to come up with an alternative formula for the determinant (which is probably the one you are familiar with). To do so, we introduce the following notation:
\begin{notation}
  Write $\hat{A}_{ij}$ for the matrix obtained from $A$ by deleting the $i$th row and $j$th column.
\end{notation}

\begin{lemma}
  Let $A \in \Mat_n(\F)$. Then
  \begin{enumerate}
    \item We can expand $\det A$ along the $j$th column by
      \[
        \det A = \sum_{i = 1}^n (-1)^{i + j} A_{ij} \det \hat{A}_{ij}.
      \]
    \item We can expand $\det A$ along the $i$th row by
      \[
        \det A = \sum_{j = 1}^n (-1)^{i + j} A_{ij} \det \hat{A}_{ij}.
      \]
  \end{enumerate}
\end{lemma}
We could prove this directly from the definition, but that is messy and scary, so let's use volume forms instead.

\begin{proof}
  Since $\det A = \det A^T$, (i) and (ii) are equivalent. So it suffices to prove just one of them. We have
  \[
    \det A = d(A^{(1)}, \cdots, A^{(n)}),
  \]
  where $d$ is the volume form induced by the determinant. Then we can write as
  \begin{align*}
    \det A &= d\left(A^{(1)}, \cdots, \sum_{i = 1}^n A_{ij} \mathbf{e}_i, \cdots, A^{(n)}\right)\\
    &= \sum_{i = 1}^n A_{ij} d(A^{(1)}, \cdots, \mathbf{e}_i, \cdots, A^{(n)})
  \end{align*}
  The volume form on the right is the determinant of a matrix with the $j$th column replaced with $\mathbf{e}_i$. We can move our columns around so that our matrix becomes
  \[
    B =
    \begin{pmatrix}
      \hat{A}_{ij} & 0\\
      \mathrm{stuff} & 1
    \end{pmatrix}
  \]
  We get that $\det B = \det \hat{A}^{ij}$, since the only permutations that give a non-zero sum are those that send $n$ to $n$. In the row and column swapping, we have made $n - j$ column transpositions and $n - i$ row transpositions. So we have
  \begin{align*}
    \det A &= \sum_{i = 1}^n A_{ij} (-1)^{n - j} (-1)^{n - i}\det B\\
    &= \sum_{i = 1}^n A_{ij} (-1)^{i + j} \det \hat{A}_{ij}.\qedhere
  \end{align*}
\end{proof}
This is not only useful for computing determinants, but also computing inverses.

\begin{defi}[Adjugate matrix]
  Let $A \in \Mat_n(\F)$. The \emph{adjugate matrix} of $A$, written $\adj A$, is the $n\times n$ matrix such that $(\adj A)_{ij} = (-1)^{i + j} \det\hat{A}_{ji}$.
\end{defi}

The relevance is the following result:
\begin{thm}
  If $A \in \Mat_n(\F)$, then $A(\adj A) = (\det A) I_n = (\adj A)A$. In particular, if $\det A \not= 0$, then
  \[
    A^{-1} = \frac{1}{\det A}\adj A.
  \]
\end{thm}
Note that this is \emph{not} an efficient way to compute the inverse.

\begin{proof}
  We compute
  \[
    [(\adj A)A]_{jk} = \sum_{i = 1}^n (\adj A)_{ji} A_{ik} = \sum_{i = 1}^n (-1)^{i + j} \det\hat{A}_{ij} A_{ik}.\tag{$*$}
  \]
  So if $j = k$, then $[(\adj A)A]_{jk} = \det A$ by the lemma.

  Otherwise, if $j \not= k$, consider the matrix $B$ obtained from $A$ by replacing the $j$th column by the $k$th column. Then the right hand side of $(*)$ is just $\det B$ by the lemma. But we know that if two columns are the same, the determinant is zero. So the right hand side of $(*)$ is zero. So
  \[
    [(\adj A)A]_{jk} = \det A \delta_{jk}
  \]
  The calculation for $[A\adj A] = (\det A) I_n$ can be done in a similar manner, or by considering $(A\adj A)^T = (\adj A)^T A^T = (\adj (A^T)) A^T = (\det A) I_n$.
\end{proof}
Note that the coefficients of $(\adj A)$ are just given by polynomials in the entries of $A$, and so is the determinant. So if $A$ is invertible, then its inverse is given by a rational function (i.e.\ ratio of two polynomials) in the entries of $A$.

This is very useful theoretically, but not computationally, since the polynomials are very large. There are better ways computationally, such as Gaussian elimination.

We'll end with a useful tricks to compute the determinant.
\begin{lemma}
  Let $A, B$ be square matrices. Then for any $C$, we have
  \begin{align*}
    \det
    \begin{pmatrix}
      A & C\\
      0 & B
    \end{pmatrix}
    = (\det A) (\det B).
  \end{align*}
\end{lemma}

\begin{proof}
  Suppose $A\in \Mat_k(\F)$, and $B\in \Mat_{\ell}(\F)$, so $C \in \Mat_{k, \ell}(\F)$. Let
  \[
    X =
    \begin{pmatrix}
      A & C\\
      0 & B
    \end{pmatrix}.
  \]
  Then by definition, we have
  \[
    \det X = \sum_{\sigma \in S_{k + \ell}}\varepsilon(\sigma) \prod_{i = 1}^{k + \ell} X_{i\sigma(i)}.
  \]
  If $j \leq k$ and $i > k$, then $X_{ij} = 0$. We only want to sum over permutations $\sigma$ such that $\sigma(i) > k$ if $i > k$. So we are permuting the last $j$ things among themselves, and hence the first $k$ things among themselves. So we can decompose this into $\sigma = \sigma_1 \sigma_2$, where $\sigma_1$ is a permutation of $\{1, \cdots, k\}$ and fixes the remaining things, while $\sigma_2$ fixes $\{1, \cdots, k\}$, and permutes the remaining. Then
  \begin{align*}
    \det X &= \sum_{\sigma = \sigma_1\sigma_2}\varepsilon(\sigma_1\sigma_2) \prod_{i = 1}^k X_{i\sigma_1(i)} \prod_{j = 1}^\ell X_{k + j\; \sigma_2(k + j)}\\
    &= \left(\sum_{\sigma_1 \in S_k} \varepsilon(\sigma_1) \prod_{i = 1}^k A_{i\sigma_1(i)}\right)\left(\sum_{\sigma_2 \in S_\ell} \varepsilon(\sigma_2) \prod_{j = 1}^\ell B_{j\sigma_2(j)}\right)\\
    &= (\det A)(\det B)
  \end{align*}
\end{proof}

\begin{cor}
  \[
    \det
    \begin{pmatrix}
      A_1 & & & \mathrm{stuff}\\
      & A_2\\
      & & \ddots\\
      0 & & & A_n
    \end{pmatrix} = \prod_{i = 1}^n \det A_i
  \]
\end{cor}

\section{Endomorphisms}
Endomorphisms are linear maps from a vector space $V$ to itself. One might wonder --- why would we want to study these linear maps in particular, when we can just work with arbitrary linear maps from any space to any other space?

When we work with arbitrary linear maps, we are free to choose any basis for the domain, and any basis for the co-domain, since it doesn't make sense to require they have the ``same'' basis. Then we proved that by choosing the right bases, we can put matrices into a nice form with only $1$'s in the diagonal.

However, when working with endomorphisms, we can require ourselves to use the same basis for the domain and co-domain, and there is much more we can say. One major objective is to classify all matrices up to similarity, where two matrices are similar if they represent the same endomorphism under different bases.

\subsection{Invariants}
\begin{defi}
  If $V$ is a (finite-dimensional) vector space over $\F$. An \emph{endomorphism} of $V$ is a linear map $\alpha: V \to V$. We write $\End(V)$ for the $\F$-vector space of all such linear maps, and $I$ for the identity map $V \to V$.
\end{defi}
When we think about matrices representing an endomorphism of $V$, we'll use the same basis for the domain and the range. We are going to study some properties of these endomorphisms that are not dependent on the basis we pick, known as \emph{invariants}.

\begin{lemma}
  Suppose $(\mathbf{e}_1, \cdots, \mathbf{e}_n)$ and $(\mathbf{f}_1, \cdots, \mathbf{f}_n)$ are bases for $V$ and $\alpha \in \End(V)$. If $A$ represents $\alpha$ with respect to $(\mathbf{e}_1, \cdots, \mathbf{e}_n)$ and $B$ represents $\alpha$ with respect to $(\mathbf{f}_1,\cdots, \mathbf{f}_n)$, then
  \[
    B = P^{-1}AP,
  \]
  where $P$ is given by
  \[
    \mathbf{f}_i = \sum_{j = 1}^n P_{ji}\mathbf{e}_j.
  \]
\end{lemma}

\begin{proof}
  This is merely a special case of an earlier more general result for arbitrary maps and spaces.
\end{proof}

\begin{defi}[Similar matrices]
  We say matrices $A$ and $B$ are \emph{similar} or \emph{conjugate} if there is some $P$ invertible such that $B = P^{-1}AP$.
\end{defi}

Recall that $\GL_n(\F)$, the group of invertible $n\times n$ matrices. $\GL_n(\F)$ acts on $\Mat_n(\F)$ by conjugation:
\[
  (P, A) \mapsto PAP^{-1}.
\]
We are conjugating it this way so that the associativity axiom holds (otherwise we get a \emph{right} action instead of a \emph{left} action). Then $A$ and $B$ are similar iff they are in the same orbit. Since orbits always partition the set, this is an equivalence relation.

Our main goal is to classify the orbits, i.e.\ find a ``nice'' representative for each orbit.

Our initial strategy is to identify basis-independent invariants for endomorphisms. For example, we will show that the rank, trace, determinant and characteristic polynomial are all such invariants.

Recall that the trace of a matrix $A \in \Mat_n(\F)$ is the sum of the diagonal elements:
\begin{defi}[Trace]
  The \emph{trace} of a matrix of $A \in \Mat_n(\F)$ is defined by
  \[
    \tr A = \sum_{i = 1}^n A_{ii}.
  \]
\end{defi}

We want to show that the trace is an invariant. In fact, we will show a stronger statement (as well as the corresponding statement for determinants):
\begin{lemma}\leavevmode
  \begin{enumerate}
    \item If $A \in \Mat_{m, n}(\F)$ and $B\in \Mat_{n, m}(\F)$, then
      \[
        \tr AB = \tr BA.
      \]
    \item If $A, B \in \Mat_n(\F)$ are similar, then $\tr A = \tr B$.
    \item If $A, B \in \Mat_n(\F)$ are similar, then $\det A = \det B$.
  \end{enumerate}
\end{lemma}

\begin{proof}\leavevmode
  \begin{enumerate}
    \item We have
      \[
        \tr AB = \sum_{i = 1}^m (AB)_{ii} = \sum_{i = 1}^m \sum_{j = 1}^n A_{ij}B_{ji} = \sum_{j = 1}^n \sum_{i = 1}^m B_{ji}A_{ij} = \tr BA.
      \]
    \item Suppose $B = P^{-1}AP$. Then we have
      \[
        \tr B = \tr (P^{-1}(AP)) = \tr ((AP)P^{-1}) = \tr A.
      \]
    \item We have
      \[
        \det (P^{-1}AP) = \det P^{-1} \det A \det P = (\det P)^{-1} \det A \det P = \det A.\qedhere
      \]%\qedhere
  \end{enumerate}
\end{proof}
This allows us to define the trace and determinant of an \emph{endomorphism}.
\begin{defi}[Trace and determinant of endomorphism]
  Let $\alpha \in \End(V)$, and $A$ be a matrix representing $\alpha$ under any basis. Then the \emph{trace} of $\alpha$ is $\tr \alpha = \tr A$, and the \emph{determinant} is $\det \alpha = \det A$.
\end{defi}
The lemma tells us that the determinant and trace are well-defined. We can also define the determinant without reference to a basis, by defining more general volume forms and define the determinant as a scaling factor.

The trace is slightly more tricky to define without basis, but in IB Analysis II example sheet 4, you will find that it is the directional derivative of the determinant at the origin.

To talk about the characteristic polynomial, we need to know what eigenvalues are.
\begin{defi}[Eigenvalue and eigenvector]
  Let $\alpha \in \End(V)$. Then $\lambda \in \F$ is an \emph{eigenvalue} (or E-value) if there is some $\mathbf{v} \in V\setminus \{0\}$ such that $\alpha \mathbf{v} = \lambda \mathbf{v}$.

  $\mathbf{v}$ is an \emph{eigenvector} if $\alpha(\mathbf{v}) = \lambda \mathbf{v}$ for some $\lambda \in \F$.

  When $\lambda \in \F$, the \emph{$\lambda$-eigenspace}, written $E_\alpha(\lambda)$ or $E(\lambda)$ is the subspace of $V$ containing all the $\lambda$-eigenvectors, i.e.
  \[
    E_\alpha(\lambda) = \ker (\lambda \iota - \alpha).
  \]
  where $\iota$ is the identity function.
\end{defi}
\begin{defi}[Characteristic polynomial]
  The \emph{characteristic polynomial} of $\alpha$ is defined by
  \[
    \chi_\alpha(t) = \det (t\iota - \alpha).
  \]
\end{defi}
You might be used to the definition $\chi_\alpha(t) = \det(\alpha - t \iota)$ instead. These two definitions are obviously equivalent up to a factor of $-1$, but this definition has an advantage that $\chi_\alpha(t)$ is always monic, i.e.\ the leading coefficient is $1$. However, when doing computations in reality, we often use $\det (\alpha - t\iota)$ instead, since it is easier to negate $t \iota$ than $\alpha$.

We know that $\lambda$ is an eigenvalue of $\alpha$ iff $n(\alpha - \lambda \iota) > 0$ iff $r(\alpha - \lambda \iota) < \dim V$ iff $\chi_\alpha(\lambda) = \det(\lambda \iota - \alpha) = 0$. So the eigenvalues are precisely the roots of the characteristic polynomial.

If $A \in \Mat_n(\F)$, we can define $\chi_A(t) = \det (tI - A)$.
\begin{lemma}
  If $A$ and $B$ are similar, then they have the same characteristic polynomial.
\end{lemma}

\begin{proof}
  \[
    \det (tI - P^{-1}AP) = \det(P^{-1}(tI - A)P) = \det(tI - A).\qedhere
  \]
\end{proof}

\begin{lemma}
  Let $\alpha \in \End(V)$ and $\lambda_1, \cdots, \lambda_k$ distinct eigenvalues of $\alpha$. Then
  \[
    E(\lambda_1) + \cdots + E(\lambda_k) = \bigoplus_{i = 1}^k E(\lambda_i)
  \]
  is a direct sum.
\end{lemma}

\begin{proof}
  Suppose
  \[
    \sum_{i = 1}^k \mathbf{x}_i = \sum_{i = 1}^k \mathbf{y}_i,
  \]
  with $\mathbf{x}_i, \mathbf{y}_i \in E(\lambda_i)$. We want to show that they are equal. We are going to find some clever map that tells us what $\mathbf{x}_i$ and $\mathbf{y}_i$ are. Consider $\beta_j \in \End(V)$ defined by
  \[
    \beta_j = \prod_{r \not= j} (\alpha - \lambda_r \iota).
  \]
  Then
  \begin{align*}
    \beta_j\left(\sum_{i = 1}^k \mathbf{x}_i\right) &= \sum_{i = 1}^k \prod_{r \not= j}(\alpha - \lambda_{r}\iota)(\mathbf{x}_i)\\
    &= \sum_{i = 1}^k \prod_{r\not= j} (\lambda_i - \lambda_r)(\mathbf{x}_i).
    \intertext{Each summand is zero, unless $i \not= j$. So this is equal to}
    \beta_j\left(\sum_{i = 1}^k \mathbf{x}_i\right) &= \prod_{r \not= j}(\lambda_j - \lambda_r) (\mathbf{x}_j).
  \end{align*}
  Similarly, we obtain
  \[
    \beta_j\left(\sum_{i = 1}^k \mathbf{y}_i\right) = \prod_{r \not= j}(\lambda_j - \lambda_r) (\mathbf{y}_j).
  \]
  Since we know that $\sum \mathbf{x}_i = \sum \mathbf{y}_i$, we must have
  \[
    \prod_{r \not= j}(\lambda_j - \lambda_r) \mathbf{x}_j = \prod_{r \not= j} (\lambda_j- \lambda_r)\mathbf{y}_j.
  \]
  Since we know that $\prod_{r \not= j} (\lambda_r - \lambda_j) \not= 0$, we must have $\mathbf{x}_i = \mathbf{y}_i$ for all $i$.

  So each expression for $\sum \mathbf{x}_i$ is unique.
\end{proof}
The proof shows that any set of non-zero eigenvectors with distinct eigenvalues is linearly independent.

\begin{defi}[Diagonalizable]
  We say $\alpha \in \End(V)$ is diagonalizable if there is some basis for $V$ such that $\alpha$ is represented by a diagonal matrix, i.e.\ all terms not on the diagonal are zero.
\end{defi}
These are in some sense the nice matrices we like to work with.

\begin{thm}
  Let $\alpha \in \End(V)$ and $\lambda_1, \cdots, \lambda_k$ be distinct eigenvalues of $\alpha$. Write $E_i$ for $E(\lambda_i)$. Then the following are equivalent:
  \begin{enumerate}
    \item $\alpha$ is diagonalizable.
    \item $V$ has a basis of eigenvectors for $\alpha$.
    \item $V = \bigoplus_{i = 1}^k E_i$.
    \item $\dim V = \sum_{i = 1}^k \dim E_i$.
  \end{enumerate}
\end{thm}

\begin{proof}\leavevmode
  \begin{itemize}
    \item (i) $\Leftrightarrow$ (ii): Suppose $(\mathbf{e}_1, \cdots, \mathbf{e}_n)$ is a basis for $V$. Then
      \[
        \alpha(\mathbf{e}_i) = A_{ji} \mathbf{e}_j,
      \]
      where $A$ represents $\alpha$. Then $A$ is diagonal iff each $\mathbf{e}_i$ is an eigenvector. So done
    \item (ii) $\Leftrightarrow$ (iii): It is clear that (ii) is true iff $\sum E_i = V$, but we know that this must be a direct sum. So done.
    \item (iii) $\Leftrightarrow$ (iv): This follows from example sheet 1 Q10, which says that $V = \bigoplus_{i = 1}^k E_i$ iff the bases for $E_i$ are disjoint and their union is a basis of $V$.\qedhere
  \end{itemize}
\end{proof}
\subsection{The minimal polynomial}
\subsubsection{Aside on polynomials}
Before we talk about minimal polynomials, we first talk about polynomials in general.

\begin{defi}[Polynomial]
  A \emph{polynomial} over $\F$ is an object of the form
  \[
    f(t) = a_m t^m + a_{m - 1}t^{m - 1} + \cdots + a_1 t + a_0,
  \]
  with $m \geq 0, a_0, \cdots, a_m \in \F$.

  We write $\F[t]$ for the set of polynomials over $\F$.
\end{defi}
Note that we don't identify a polynomial $f$ with the corresponding function it represents. For example, if $\F = \Z/p\Z$, then $t^p$ and $t$ are different polynomials, even though they define the same function (by Fermat's little theorem/Lagrange's theorem). Two polynomials are equal if and only if they have the same coefficients.

However, we will later see that if $\F$ is $\R$ or $\C$, then polynomials are equal if and only if they represent the same function, and this distinction is not as important.

\begin{defi}[Degree]
  Let $f \in \F[t]$. Then the \emph{degree} of $f$, written $\deg f$ is the largest $n$ such that $a_n \not= 0$. In particular, $\deg 0 = -\infty$.
\end{defi}

Notice that $\deg fg = \deg f + \deg g$ and $\deg f + g \leq \max\{\deg f, \deg g\}$.

\begin{lemma}[Polynomial division]
  If $f, g \in \F[t]$ (and $g \not= 0$), then there exists $q, r \in \F[t]$ with $\deg r < \deg g$ such that
  \[
    f = qg + r.
  \]
\end{lemma}
Proof is omitted.

\begin{lemma}
  If $\lambda \in \F$ is a root of $f$, i.e.\ $f(\lambda) = 0$, then there is some $g$ such that
  \[
    f(t) = (t - \lambda) g(t).
  \]
\end{lemma}

\begin{proof}
  By polynomial division, let
  \[
    f(t) = (t - \lambda)g(t) + r(t)
  \]
  for some $g(t), r(t) \in \F[t]$ with $\deg r < \deg (t - \lambda) = 1$. So $r$ has to be constant, i.e.\ $r(t) = a_0$ for some $a_0 \in \F$. Now evaluate this at $\lambda$. So
  \[
    0 = f(\lambda) = (\lambda - \lambda)g(\lambda) + r(\lambda) = a_0.
  \]
  So $a_0 = 0$. So $r = 0$. So done.
\end{proof}

\begin{defi}[Multiplicity of a root]
  Let $f \in \F[t]$ and $\lambda$ a root of $f$. We say $\lambda$ has \emph{multiplicity} $k$ if $(t - \lambda)^k$ is a factor of $f$ but $(t - \lambda)^{k + 1}$ is not, i.e.
  \[
    f(t) = (t - \lambda)^k g(t)
  \]
  for some $g(t) \in \F[t]$ with $g(\lambda) \not= 0$.
\end{defi}

We can use the last lemma and induction to show that any non-zero $f \in \F[t]$ can be written as
\[
  f = g(t) \prod_{i = 1}^k (t - \lambda_i)^{a_i},
\]
where $\lambda_1, \cdots, \lambda_k$ are all distinct, $a_i > 1$, and $g$ is a polynomial with no roots in $\F$.

Hence we obtain the following:
\begin{lemma}
  A non-zero polynomial $f \in \F[t]$ has at most $\deg f$ roots, counted with multiplicity.
\end{lemma}

\begin{cor}
  Let $f, g \in \F[t]$ have degree $<n$. If there are $\lambda_1, \cdots, \lambda_n$ distinct such that $f(\lambda_i) = g(\lambda_i)$ for all $i$, then $f = g$.
\end{cor}

\begin{proof}
  Given the lemma, consider $f - g$. This has degree less than $n$, and $(f - g)(\lambda_i) = 0$ for $i = 1, \cdots, n$. Since it has at least $n \geq \deg(f - g)$ roots, we must have $f - g = 0$. So $f = g$.
\end{proof}

\begin{cor}
  If $\F$ is infinite, then $f$ and $g$ are equal if and only if they agree on all points.
\end{cor}

More importantly, we have the following:
\begin{thm}[The fundamental theorem of algebra]
  Every non-constant polynomial over $\C$ has a root in $\C$.
\end{thm}
We will not prove this.

We say $\C$ is an \emph{algebraically closed field}.

It thus follows that every polynomial over $\C$ of degree $n > 0$ has precisely $n$ roots, counted with multiplicity, since if we write $f(t) = g(t)\prod (t - \lambda_i)^{a_i}$ and $g$ has no roots, then $g$ is constant. So the number of roots is $\sum a_i = \deg f$, counted with multiplicity.

It also follows that every polynomial in $\R$ factors into linear polynomials and quadratic polynomials with no real roots (since complex roots of real polynomials come in complex conjugate pairs).

\subsubsection{Minimal polynomial}

\begin{notation}
  Given $f(t) = \sum_{i = 0}^m a_i t^i \in \F[t]$, $A \in \Mat_n(\F)$ and $\alpha \in \End(V)$, we can write
  \[
    f(A) = \sum_{i = 0}^m a_i A^i,\quad f(\alpha) = \sum_{i = 0}^m a_i \alpha^i
  \]
  where $A^0 = I$ and $\alpha^0 = \iota$.
\end{notation}

\begin{thm}[Diagonalizability theorem]
  Suppose $\alpha \in \End(V)$. Then $\alpha$ is diagonalizable if and only if there exists non-zero $p(t) \in \F[t]$ such that $p(\alpha) = 0$, and $p(t)$ can be factored as a product of \emph{distinct} linear factors.
\end{thm}

\begin{proof}
  Suppose $\alpha$ is diagonalizable. Let $\lambda_1, \cdots, \lambda_k$ be the distinct eigenvalues of $\alpha$. We have
  \[
    V = \bigoplus_{i = 1}^k E(\lambda_i).
  \]
  So each $\mathbf{v} \in V$ can be written (uniquely) as
  \[
    \mathbf{v} = \sum_{i = 1}^k \mathbf{v}_i \text{ with }\alpha(\mathbf{v}_i) = \lambda_i \mathbf{v}_i.
  \]
  Now let
  \[
    p(t) = \prod_{i = 1}^k (t - \lambda_i).
  \]
  Then for any $\mathbf{v}$, we get
  \[
    p(\alpha) (\mathbf{v}) = \sum_{i = 1}^k p(\alpha) (\mathbf{v}_i) = \sum_{i = 1}^k p(\lambda_i) \mathbf{v}_i = \mathbf{0}.
  \]
  So $p(\alpha) = 0$. By construction, $p$ has distinct linear factors.

  Conversely, suppose we have our polynomial
  \[
    p(t) = \prod_{i = 1}^k (t - \lambda_i),
  \]
  with $\lambda_1, \cdots, \lambda_k \in \F$ distinct, and $p(\alpha) = 0$ (we can wlog assume $p$ is monic, i.e.\ the leading coefficient is $1$). We will show that
  \[
    V = \sum_{i = 1}^k E_\alpha(\lambda_i).
  \]
  In other words, we want to show that for all $\mathbf{v} \in V$, there is some $\mathbf{v}_i \in E_\alpha(\lambda_i)$ for $i = 1, \cdots, k$ such that $\mathbf{v} = \sum \mathbf{v}_i$.

  To find these $\mathbf{v}_i$ out, we let
  \[
    q_j(t) = \prod_{i \not= j} \frac{t - \lambda_i}{\lambda_j - \lambda_i}.
  \]
  This is a polynomial of degree $k - 1$, and $q_j(\lambda_i) = \delta_{ij}$.

  Now consider
  \[
    q(t) = \sum_{i = 1}^k q_i(t).
  \]
  We still have $\deg q \leq k - 1$, but $q(\lambda_i) = 1$ for any $i$. Since $q$ and $1$ agree on $k$ points, we must have $q = 1$.

  Let $\pi_j: V\to V$ be given by $\pi_j = q_j(\alpha)$. Then the above says that
  \[
    \sum_{j = 1}^k \pi_j = \iota.
  \]
  Hence given $\mathbf{v} \in V$, we know that $\mathbf{v} = \sum \pi_j \mathbf{v}$.

  We now check that $\pi_j \mathbf{v} \in E_\alpha (\lambda_j)$. This is true since
  \[
    (\alpha - \lambda_j\iota) \pi_j \mathbf{v} =\frac{1}{\prod_{i \not= j}(\lambda_j - \lambda_i)} \prod_{i = 1}^k (\alpha - \lambda_\iota) (\mathbf{v}) = \frac{1}{\prod_{i \not= j}(\lambda_j - \lambda_i)} p(\alpha) (\mathbf{v}) = \mathbf{0}.
  \]
  So
  \[
    \alpha \mathbf{v}_j = \lambda_j \mathbf{v}_j.
  \]
  So done.
\end{proof}
In the above proof, if $\mathbf{v} \in E_\alpha(\lambda_i)$, then $\pi_j(\mathbf{v}) = \delta_{ij}\mathbf{v}$. So $\pi_i$ is a projection onto the $E_\alpha(\lambda_i)$.

\begin{defi}[Minimal polynomial]
  The \emph{minimal polynomial} of $\alpha \in \End(V)$ is the non-zero monic polynomial $M_\alpha(t)$ of least degree such that $M_\alpha(\alpha) = 0$.
\end{defi}
The monic requirement is just for things to look nice, since we can always divide by the leading coefficient of a polynomial to get a monic version.

Note that if $A$ represents $\alpha$, then for all $p \in \F[t]$, $p(A)$ represents $p(\alpha)$. Thus $p(\alpha)$ is zero iff $p(A) = 0$. So the minimal polynomial of $\alpha$ is the minimal polynomial of $A$ if we define $M_A$ analogously.

There are two things we want to know --- whether the minimal polynomial exists, and whether it is unique.

Existence is always guaranteed in finite-dimensional cases. If $\dim V = n < \infty$, then $\dim \End(V) = n^2$. So $\iota, \alpha, \alpha^2, \cdots, \alpha^{n^2}$ are linearly dependent. So there are some $\lambda_0, \cdots, \lambda_{n^2} \in \F$ not all zero such that
\[
  \sum_{i = 0}^{n^2} \lambda_i \alpha^i = 0.
\]
So $\deg M_\alpha \leq n^2$. So we must have a minimal polynomial.

To show that the minimal polynomial is unique, we will prove the following stronger characterization of the minimal polynomial:
\begin{lemma}
  Let $\alpha \in \End(V)$, and $p \in \F[t]$. Then $p(\alpha) = 0$ if and only if $M_\alpha(t)$ is a factor of $p(t)$. In particular, $M_\alpha$ is unique.
\end{lemma}

\begin{proof}
  For all such $p$, we can write $p(t) = q(t) M_\alpha(t) + r(t)$ for some $r$ of degree less than $\deg M_\alpha$. Then
  \[
    p(\alpha) = q(\alpha) M_\alpha(\alpha) + r(\alpha).
  \]
  So if $r(\alpha) = 0$ iff $p(\alpha) = 0$. But $\deg r < \deg M_\alpha$. By the minimality of $M_\alpha$, we must have $r(\alpha) = 0$ iff $r = 0$. So $p(\alpha) = 0$ iff $M_\alpha(t) \mid p(t)$.

  So if $M_1$ and $M_2$ are both minimal polynomials for $\alpha$, then $M_1 \mid M_2$ and $M_2 \mid M_1$. So $M_2$ is just a scalar multiple of $M_1$. But since $M_1$ and $M_2$ are monic, they must be equal.
\end{proof}

\begin{eg}
  Let $V = \F^2$, and consider the following matrices:
  \[
    A =
    \begin{pmatrix}
      1 & 0\\
      0 & 1
    \end{pmatrix},\quad
    B =
    \begin{pmatrix}
      1 & 1\\
      0 & 1
    \end{pmatrix}.
  \]
  Consider the polynomial $p(t) = (t - 1)^2$. We can compute $p(A) = p(B) = 0$. So $M_A(t)$ and $M_B(t)$ are factors of $(t - 1)^2$. There aren't many factors of $(t - 1)^2$. So the minimal polynomials are either $(t - 1)$ or $(t - 1)^2$. Since $A - I = 0$ and $B - I \not= 0$, the minimal polynomial of $A$ is $t - 1$ and the minimal polynomial of $B$ is $(t - 1)^2$.
\end{eg}

We can now re-state our diagonalizability theorem.
\begin{thm}[Diagonalizability theorem 2.0]
  Let $\alpha \in \End(V)$. Then $\alpha$ is diagonalizable if and only if $M_\alpha(t)$ is a product of its distinct linear factors.
\end{thm}

\begin{proof}
  $(\Leftarrow)$ This follows directly from the previous diagonalizability theorem.

  $(\Rightarrow)$ Suppose $\alpha$ is diagonalizable. Then there is some $p\in \F[t]$ non-zero such that $p(\alpha) = 0$ and $p$ is a product of distinct linear factors. Since $M_\alpha$ divides $p$, $M_\alpha$ also has distinct linear factors.
\end{proof}

\begin{thm}
  Let $\alpha, \beta \in \End(V)$ be both diagonalizable. Then $\alpha$ and $\beta$ are simultaneously diagonalizable (i.e.\ there exists a basis with respect to which both are diagonal) if and only if $\alpha\beta = \beta\alpha$.
\end{thm}
This is important in quantum mechanics. This means that if two operators do not commute, then they do not have a common eigenbasis. Hence we have the uncertainty principle.

\begin{proof}
  $(\Rightarrow)$ If there exists a basis $(\mathbf{e}_1, \cdots, \mathbf{e}_n)$ for $V$ such that $\alpha$ and $\beta$ are represented by $A$ and $B$ respectively, with both diagonal, then by direct computation, $AB = BA$. But $AB$ represents $\alpha\beta$ and $BA$ represents $\beta\alpha$. So $\alpha\beta = \beta\alpha$.

  $(\Leftarrow)$ Suppose $\alpha\beta = \beta\alpha$. The idea is to consider each eigenspace of $\alpha$ individually, and then diagonalize $\beta$ in each of the eigenspaces. Since $\alpha$ is diagonalizable, we can write
  \[
    V = \bigoplus_{i = 1}^k E_\alpha(\lambda_i),
  \]
  where $\lambda_i$ are the eigenvalues of $V$. We write $E_i$ for $E_\alpha (\lambda_i)$. We want to show that $\beta$ sends $E_i$ to itself, i.e.\ $\beta(E_i) \subseteq E_i$. Let $\mathbf{v} \in E_i$. Then we want $\beta(\mathbf{v})$ to be in $E_i$. This is true since
  \[
    \alpha(\beta(\mathbf{v})) = \beta(\alpha(\mathbf{v})) = \beta(\lambda_i \mathbf{v}) = \lambda_i \beta(\mathbf{v}).
  \]
  So $\beta(\mathbf{v})$ is an eigenvector of $\alpha$ with eigenvalue $\lambda_i$.

  Now we can view $\beta|_{E_i} \in \End(E_i)$. Note that
  \[
    M_\beta(\beta|_{E_i}) = M_\beta(\beta)|_{E_i} = 0.
  \]
  Since $M_\beta(t)$ is a product of its distinct linear factors, it follows that $\beta|_{E_i}$ is diagonalizable. So we can choose a basis $B_i$ of eigenvectors for $\beta|_{E_i}$. We can do this for \emph{all} $i$.

  Then since $V$ is a direct sum of the $E_i$'s, we know that $B = \bigcup_{i = 1}^k B_i$ is a basis for $V$ consisting of eigenvectors for both $\alpha$ and $\beta$. So done.
\end{proof}

\subsection{The Cayley-Hamilton theorem}
We will first state the theorem, and then prove it later.

Recall that $\chi_\alpha(t) = \det (t\iota - \alpha)$ for $\alpha \in \End(V)$. Our main theorem of the section (as you might have guessed from the title) is
\begin{thm}[Cayley-Hamilton theorem]
  Let $V$ be a finite-dimensional vector space and $\alpha \in \End(V)$. Then $\chi_\alpha(\alpha) = 0$, i.e.\ $M_\alpha(t) \mid \chi_\alpha(t)$. In particular, $\deg M_\alpha \leq n$.
\end{thm}
We will not prove this yet, but just talk about it first. It is tempting to prove this by substituting $t = \alpha$ into $\det(t\iota - \alpha)$ and get $\det (\alpha - \alpha) = 0$, but this is meaningless, since what the statement $\chi_\alpha(t) = \det (t\iota - \alpha)$ tells us to do is to expand the determinant of the matrix
\[
  \begin{pmatrix}
    t - a_{11} & a_{12} & \cdots & a_{1n}\\
    a_{21} & t - a_{22} & \cdots & a_{2n}\\
    \vdots & \vdots & \ddots & \vdots\\
    a_{n1} & a_{n2} & \cdots & t - a_{nn}
  \end{pmatrix}
\]
to obtain a polynomial, and we clearly cannot substitute $t = A$ in this expression. However, we can later show that we can use this idea to prove it, but just be a bit more careful.

Note also that if $\rho(t) \in \F[t]$ and
\[
  A =
  \begin{pmatrix}
    \lambda_1 &\\
    & \ddots\\
    & & \lambda_n
  \end{pmatrix},
\]
then
\[
  \rho(A) =
  \begin{pmatrix}
    \rho(\lambda_1) &\\
    & \ddots\\
    & & \rho(\lambda_n)
  \end{pmatrix}.
\]
Since $\chi_A(t)$ is defined as $\prod_{i = 1}^n (t - \lambda_i)$, it follows that $\chi_A(A) = 0$. So if $\alpha$ is diagonalizable, then the theorem is clear.

This was easy. Diagonalizable matrices are nice. The next best thing we can look at is upper-triangular matrices.
\begin{defi}[Triangulable]
  An endomorphism $\alpha \in \End(V)$ is \emph{triangulable} if there is a basis for $V$ such that $\alpha$ is represented by an upper triangular matrix
  \[
    \begin{pmatrix}
      a_{11} & a_{12} & \cdots & a_{1n}\\
      0 & a_{22} & \cdots & a_{2n}\\
      \vdots & \vdots & \ddots & \vdots\\
      0 & 0 & \cdots & a_{nn}
    \end{pmatrix}.
  \]
\end{defi}

We have a similar lemma telling us when matrices are triangulable.

\begin{lemma}
  An endomorphism $\alpha$ is triangulable if and only if $\chi_\alpha(t)$ can be written as a product of linear factors, not necessarily distinct. In particular, if $\F = \C$ (or any algebraically closed field), then every endomorphism is triangulable.
\end{lemma}

\begin{proof}
  Suppose that $\alpha$ is triangulable and represented by
  \[
    \begin{pmatrix}
      \lambda_1 & * & \cdots & *\\
      0 & \lambda_2 & \cdots & *\\
      \vdots & \vdots & \ddots & \vdots\\
      0 & 0 & \cdots & \lambda_n
    \end{pmatrix}.
  \]
  Then
  \[
    \chi_\alpha(t) = \det
    \begin{pmatrix}
      t - \lambda_1 & * & \cdots & *\\
      0 & t - \lambda_2 & \cdots & *\\
      \vdots & \vdots & \ddots & \vdots\\
      0 & 0 & \cdots & t - \lambda_n
    \end{pmatrix} =
    \prod_{i = 1}^n (t - \lambda_i).
  \]
  So it is a product of linear factors.

  We are going to prove the converse by induction on the dimension of our space. The base case $\dim V = 1$ is trivial, since every $1\times 1$ matrix is already upper triangular.

  Suppose $\alpha \in \End(V)$ and the result holds for all spaces of dimensions $< \dim V$, and $\chi_\alpha$ is a product of linear factors. In particular, $\chi_\alpha(t)$ has a root, say $\lambda \in \F$.

  Now let $U = E(\lambda) \not= 0$, and let $W$ be a complementary subspace to $U$ in $V$, i.e.\ $V = U \oplus W$. Let $\mathbf{u}_1, \cdots, \mathbf{u}_r$ be a basis for $U$ and $\mathbf{w}_{r + 1}, \cdots, \mathbf{w}_n$ be a basis for $W$ so that $\mathbf{u}_1, \cdots, \mathbf{u}_{r}, \mathbf{w}_{r + 1}, \cdots, \mathbf{w}_n$ is a basis for $V$, and $\alpha$ is represented by
  \[
    \begin{pmatrix}
      \lambda I_r & \text{stuff}\\
      0 & B
    \end{pmatrix}
  \]
  We know $\chi_\alpha(t) = (t - \lambda)^r \chi_B(t)$. So $\chi_B(t)$ is also a product of linear factors. We let $\beta: W\to W$ be the map defined by $B$ with respect to $\mathbf{w}_{r + 1}, \cdots, \mathbf{w}_n$.

  (Note that in general, $\beta$ is not $\alpha|_W$ in general, since $\alpha$ does not necessarily map $W$ to $W$. However, we can say that $(\alpha - \beta) (\mathbf{w}) \in U$ for all $\mathbf{w}\in W$. This can be much more elegantly expressed in terms of quotient spaces, but unfortunately that is not officially part of the course)

  Since $\dim W < \dim V$, there is a basis $\mathbf{v}_{r + 1}, \cdots, \mathbf{v}_n$ for $W$ such that $\beta$ is represented by $C$, which is upper triangular.

  For $j = 1, \cdots, n - r$, we have
  \[
    \alpha(\mathbf{v}_{j + r}) = \mathbf{u} + \sum_{k = 1}^{n - r} C_{kj} \mathbf{v}_{k + r}
  \]
  for some $\mathbf{u} \in U$. So $\alpha$ is represented by
  \[
    \begin{pmatrix}
      \lambda I_r & \text{stuff}\\
      0 & C
    \end{pmatrix}
  \]
  with respect to $(\mathbf{u}_1, \cdots, \mathbf{u}_r, \mathbf{v}_{r + 1}, \cdots, \mathbf{v}_n)$, which is upper triangular.
\end{proof}

\begin{eg}
  Consider the real rotation matrix
  \[
    \begin{pmatrix}
      \cos \theta & \sin \theta\\
      -\sin \theta & \cos \theta
    \end{pmatrix}.
  \]
  This is \emph{not} similar to a real upper triangular matrix (if $\theta$ is not an integer multiple of $\pi$). This is since the eigenvalues are $e^{\pm i\theta}$ and are not real. On the other hand, as a complex matrix, it is triangulable, and in fact diagonalizable since the eigenvalues are distinct.
\end{eg}
For this reason, in the rest of the section, we are mostly going to work in $\C$. We can now prove the Cayley-Hamilton theorem.

\begin{thm}[Cayley-Hamilton theorem]
  Let $V$ be a finite-dimensional vector space and $\alpha \in \End(V)$. Then $\chi_\alpha(\alpha) = 0$, i.e.\ $M_\alpha(t) \mid \chi_\alpha(t)$. In particular, $\deg M_\alpha \leq n$.
\end{thm}

\begin{proof}
  In this proof, we will work over $\C$. By the lemma, we can choose a basis $\{\mathbf{e}_1, \cdots, \mathbf{e}_n\}$ is represented by an upper triangular matrix.
  \[
    A =
    \begin{pmatrix}
      \lambda_1 & * & \cdots & *\\
      0 & \lambda_2 & \cdots & *\\
      \vdots & \vdots & \ddots & \vdots\\
      0 & 0 & \cdots & \lambda_n
    \end{pmatrix}.
  \]
  We must prove that
  \[
    \chi_\alpha(\alpha) = \chi_A(\alpha) = \prod_{i = 1}^n (\alpha - \lambda_i \iota) = 0.
  \]
  Write $V_j = \bra \mathbf{e}_1, \cdots, \mathbf{e}_j\ket$. So we have the inclusions
  \[
    V_0 = 0 \subseteq V_1 \subseteq \cdots \subseteq V_{n - 1} \subseteq V_n = V.
  \]
  We also know that $\dim V_j = j$. This increasing sequence is known as a \emph{flag}.

  Now note that since $A$ is upper-triangular, we get
  \[
    \alpha(\mathbf{e}_i) = \sum_{k = 1}^i A_{ki} \mathbf{e}_k \in V_i.
  \]
  So $\alpha (V_j)\subseteq V_j$ for all $j = 0, \cdots, n$.

  Moreover, we have
  \[
    (\alpha - \lambda_j\iota)(\mathbf{e}_j) = \sum_{k = 1}^{j - 1} A_{kj}\mathbf{e}_k \subseteq V_{j - 1}
  \]
  for all $j = 1, \cdots, n$. So every time we apply one of these things, we get to a smaller space. Hence by induction on $n - j$, we have
  \[
    \prod_{i = j}^n (\alpha - \lambda_i \iota) (V_n) \subseteq V_{j - 1}.
  \]
  In particular, when $j = 1$, we get
  \[
    \prod_{i = 1}^n (\alpha - \lambda_i \iota) (V) \subseteq V_0 = 0.
  \]
  So $\chi_\alpha(\alpha) = 0$ as required.

  Note that if our field $\F$ is not $\C$ but just a subfield of $\C$, say $\R$, we can just pretend it is a complex matrix, do the same proof.
\end{proof}
We can see this proof more ``visually'' as follows: for simplicity of expression, we suppose $n = 4$. In the basis where $\alpha$ is upper-triangular, the matrices $A - \lambda_i I$ look like this
\begin{align*}
  A - \lambda_1 I &=
  \begin{pmatrix}
    0 & * & * & *\\
    0 & * & * & *\\
    0 & 0 & * & *\\
    0 & 0 & 0 & *
  \end{pmatrix}&
  A - \lambda_2 I &=
  \begin{pmatrix}
    * & * & * & *\\
    0 & 0 & * & *\\
    0 & 0 & * & *\\
    0 & 0 & 0 & *
  \end{pmatrix}\\
  A - \lambda_3 I &=
  \begin{pmatrix}
    * & * & * & *\\
    0 & * & * & *\\
    0 & 0 & 0 & *\\
    0 & 0 & 0 & *
  \end{pmatrix}&
  A - \lambda_4 I &=
  \begin{pmatrix}
    * & * & * & *\\
    0 & * & * & *\\
    0 & 0 & * & *\\
    0 & 0 & 0 & 0
  \end{pmatrix}
\end{align*}
Then we just multiply out directly (from the right):
\begin{align*}
  \prod_{i = 1}^4 (A - \lambda_i I) &=
  \begin{pmatrix}
    0 & * & * & *\\
    0 & * & * & *\\
    0 & 0 & * & *\\
    0 & 0 & 0 & *
  \end{pmatrix}
  \begin{pmatrix}
    * & * & * & *\\
    0 & 0 & * & *\\
    0 & 0 & * & *\\
    0 & 0 & 0 & *
  \end{pmatrix}
  \begin{pmatrix}
    * & * & * & *\\
    0 & * & * & *\\
    0 & 0 & 0 & *\\
    0 & 0 & 0 & *
  \end{pmatrix}
  \begin{pmatrix}
    * & * & * & *\\
    0 & * & * & *\\
    0 & 0 & * & *\\
    0 & 0 & 0 & 0
  \end{pmatrix}\\
  &=
  \begin{pmatrix}
    0 & * & * & *\\
    0 & * & * & *\\
    0 & 0 & * & *\\
    0 & 0 & 0 & *
  \end{pmatrix}
  \begin{pmatrix}
    * & * & * & *\\
    0 & 0 & * & *\\
    0 & 0 & * & *\\
    0 & 0 & 0 & *
  \end{pmatrix}
  \begin{pmatrix}
    * & * & * & *\\
    0 & * & * & *\\
    0 & 0 & 0 & 0\\
    0 & 0 & 0 & 0
  \end{pmatrix}\\
  &=
  \begin{pmatrix}
    0 & * & * & *\\
    0 & * & * & *\\
    0 & 0 & * & *\\
    0 & 0 & 0 & *
  \end{pmatrix}
  \begin{pmatrix}
    * & * & * & *\\
    0 & 0 & 0 & 0\\
    0 & 0 & 0 & 0\\
    0 & 0 & 0 & 0
  \end{pmatrix}\\
  &=
  \begin{pmatrix}
    0 & 0 & 0 & 0\\
    0 & 0 & 0 & 0\\
    0 & 0 & 0 & 0\\
    0 & 0 & 0 & 0
  \end{pmatrix}.
\end{align*}
This is exactly what we showed in the proof --- after multiplying out the first $k$ elements of the product (counting from the right), the image is contained in the span of the first $n - k$ basis vectors.
\begin{proof}
  We'll now prove the theorem again, which is somewhat a formalization of the ``nonsense proof'' where we just substitute $t = \alpha$ into $\det (\alpha - t\iota)$.

  Let $\alpha$ be represented by $A$, and $B = tI - A$. Then
  \[
    B\adj B = \det B I_n = \chi_\alpha(t) I_n.
  \]
  But we know that $\adj B$ is a matrix with entries in $\F[t]$ of degree at most $n - 1$. So we can write
  \[
    \adj B = B_{n - 1}t^{n - 1} + B_{n - 2}t^{n - 2} + \cdots + B_0,
  \]
  with $B_i \in \Mat_n (\F)$. We can also write
  \[
    \chi_\alpha(t) = t^n + a_{n - 1}t^{n - 1} + \cdots + a_0.
  \]
  Then we get the result
  \[
    (tI_n - A) (B_{n - 1}t^{n - 1} + B_{n - 2} t^{n - 2} + \cdots + B_0) = (t^n + a_{n - 1} t^{n - 1} + \cdots + a_0)I_n.
  \]
  We would like to just throw in $t = A$, and get the desired result, but in all these derivations, $t$ is assumed to be a real number, and, $tI_n - A$ is the matrix
  \[
    \begin{pmatrix}
      t - a_{11} & a_{12} & \cdots & a_{1n}\\
      a_{21} & t - a_{22} & \cdots & a_{2n}\\
      \vdots & \vdots & \ddots & \vdots\\
      a_{n1} & a_{n2} & \cdots & t - a_{nn}
    \end{pmatrix}
  \]
  It doesn't make sense to put our $A$ in there.

  However, what we \emph{can} do is to note that since this is true for all values of $t$, the coefficients on both sides must be equal. Equating coefficients in $t^k$, we have
  \begin{align*}
    -A B_0 &= a_0I_n\\
    B_0 - AB_1 &= a_1I_n\\
    &\vdots\\
    B_{n - 2} - AB_{n - 1} &= a_{n - 1}I_n\\
    AB_{n - 1} - 0 &= I_n
  \end{align*}
  We now multiply each row a suitable power of $A$ to obtain
  \begin{align*}
    -A B_0 &= a_0 I_n\\
    A B_0 - A^2B_1 &= a_1 A\\
    &\;\;\vdots\\
    A^{n - 1}B_{n - 2} - A^n B_{n - 1} &= a_{n - 1} A^{n - 1}\\
    A^{n}B_{n - 1} - 0 &= A^n.
  \end{align*}
  Summing this up then gives $\chi_\alpha(A) = 0$.
\end{proof}
This proof suggests that we \emph{really} ought to be able to just substitute in $t = \alpha$ and be done. In fact, we can do this, after we develop sufficient machinery. This will be done in the IB Groups, Rings and Modules course.

\begin{lemma}
  Let $\alpha \in \End(V), \lambda \in \F$. Then the following are equivalent:
  \begin{enumerate}
    \item $\lambda$ is an eigenvalue of $\alpha$.
    \item $\lambda$ is a root of $\chi_\alpha(t)$.
    \item $\lambda$ is a root of $M_\alpha(t)$.
  \end{enumerate}
\end{lemma}

\begin{proof}\leavevmode
  \begin{itemize}
    \item (i) $\Leftrightarrow$ (ii): $\lambda$ is an eigenvalue of $\alpha$ if and only if $(\alpha - \lambda \iota)(\mathbf{v}) = 0$ has a non-trivial root, iff $\det(\alpha - \lambda \iota) = 0$.
    \item (iii) $\Rightarrow$ (ii): This follows from Cayley-Hamilton theorem since $M_\alpha \mid \chi_\alpha$.
    \item (i) $\Rightarrow$ (iii): Let $\lambda$ be an eigenvalue, and $\mathbf{v}$ be a corresponding eigenvector. Then by definition of $M_\alpha$, we have
      \[
        M_\alpha(\alpha)(\mathbf{v}) = 0(\mathbf{v}) = 0.
      \]
      We also know that
      \[
        M_\alpha(\alpha)(\mathbf{v}) = M_\alpha(\lambda)\mathbf{v}.
      \]
      Since $\mathbf{v}$ is non-zero, we must have $M_\alpha(\lambda) =0$.

    \item (iii) $\Rightarrow$ (i): This is not necessary since it follows from the above, but we could as well do it explicitly. Suppose $\lambda$ is a root of $M_\alpha(t)$. Then $M_\alpha(t) = (t - \lambda) g(t)$ for some $g \in \F[t]$. But $\deg g < \deg M_\alpha$. Hence by minimality of $M_\alpha$, we must have $g(\alpha) \not= 0$. So there is some $\mathbf{v}\in V$ such that $g(\alpha)(\mathbf{v}) \not=0$. Then
      \[
        (\alpha - \lambda\iota)g(\alpha)(\mathbf{v}) = M_\alpha(\alpha)\mathbf{v} = 0.
      \]
      So we must have $\alpha (g(\alpha)(\mathbf{v})) = \lambda g(\alpha)(\mathbf{v})$. So $g(\alpha)(\mathbf{v}) \in E_\alpha(\lambda) \setminus \{0\}$. So (i) holds.\qedhere
  \end{itemize}
\end{proof}

\begin{eg}
  What is the minimal polynomial of
  \[
    A =
    \begin{pmatrix}
      1 & 0 & -2\\
      0 & 1 & 1\\
      0 & 0 & 2
    \end{pmatrix}?
  \]
  We can compute $\chi_A(t) = (t - 1)^2 (t - 2)$. So we know that the minimal polynomial is one of $(t - 1)^2(t - 2)$ and $(t - 1)(t - 2)$.

  By direct and boring computations, we can find $(A - I)(A - 2I) = 0$. So we know that $M_A(t) = (t - 1)(t - 2)$. So $A$ is diagonalizable.
\end{eg}
\subsection{Multiplicities of eigenvalues and Jordan normal form}
We will want to put our matrices in their ``Jordan normal forms'', which is a unique form for each equivalence class of similar matrices. The following properties will help determine which Jordan normal form a matrix can have.
\begin{defi}[Algebraic and geometry multiplicity]
  Let $\alpha \in \End (V)$ and $\lambda$ an eigenvalue of $\alpha$. Then
  \begin{enumerate}
    \item The \emph{algebraic multiplicity} of $\lambda$, written $a_\lambda$, is the multiplicity of $\lambda$ as a root of $\chi_\alpha(t)$.
    \item The \emph{geometric multiplicity} of $\lambda$, written $g_\lambda$, is the dimension of the corresponding eigenspace, $\dim E_\alpha(\lambda)$.
    \item $c_\lambda$ is the multiplicity of $\lambda$ as a root of the minimal polynomial $m_\alpha(t)$.
  \end{enumerate}
\end{defi}

We will look at some extreme examples:
\begin{eg}\leavevmode
  \begin{itemize}
    \item Let
      \[
        A =
        \begin{pmatrix}
          \lambda & 1 & \cdots & 0\\
          0 & \lambda & \ddots & \vdots\\
          \vdots & \vdots & \ddots & 1\\
          0 & 0 & \cdots & \lambda
        \end{pmatrix}.
      \]
      We will later show that $a_\lambda = n = c_\lambda$ and $g_\lambda = 1$.
    \item Consider $A = \lambda I$. Then $a_\lambda = g_\lambda = n$, $c_\lambda = 1$.
  \end{itemize}
\end{eg}

\begin{lemma}
  If $\lambda$ is an eigenvalue of $\alpha$, then
  \begin{enumerate}
    \item $1 \leq g_\lambda \leq a_\lambda$
    \item $1 \leq c_\lambda \leq a_\lambda$.
  \end{enumerate}
\end{lemma}
\begin{proof}\leavevmode
  \begin{enumerate}
    \item The first inequality is easy. If $\lambda$ is an eigenvalue, then $E(\lambda) \not= 0$. So $g_\lambda = \dim E(\lambda) \geq 1$. To prove the other inequality, if $\mathbf{v}_1, \cdots, \mathbf{v}_g$ is a basis for $E(\lambda)$, then we can extend it to a basis for $V$, and then $\alpha$ is represented by
      \[
        \begin{pmatrix}
          \lambda I_g & *\\
          0 & B
        \end{pmatrix}
      \]
      So $\chi_\alpha(t) = (t - \lambda)^g \chi_B(t)$. So $a_\lambda > g = g_\lambda$.
    \item This is straightforward since $M_\alpha(\lambda) = 0$ implies $1 \leq c_\lambda$, and since $M_\alpha(t) \mid \chi_\alpha(t)$, we know that $c_\lambda \leq \alpha_\lambda$.\qedhere
  \end{enumerate}
\end{proof}

\begin{lemma}
  Suppose $\F = \C$ and $\alpha \in \End(V)$. Then the following are equivalent:
  \begin{enumerate}
    \item $\alpha$ is diagonalizable.
    \item $g_\lambda = a_\lambda$ for all eigenvalues of $\alpha$.
    \item $c_\lambda = 1$ for all $\lambda$.
  \end{enumerate}
\end{lemma}

\begin{proof}\leavevmode
  \begin{itemize}
    \item (i) $\Leftrightarrow$ (ii): $\alpha$ is diagonalizable iff $\dim V = \sum \dim E_\alpha (\lambda_i)$. But this is equivalent to
      \[
       \dim V = \sum g_{\lambda_i} \leq \sum a_{\lambda_i} = \deg \chi_\alpha = \dim V.
     \]
     So we must have $\sum g_{\lambda_i} = \sum a_{\lambda_i}$. Since each $g_{\lambda_i}$ is at most $a_{\lambda_i}$, they must be individually equal.

   \item (i) $\Leftrightarrow$ (iii): $\alpha$ is diagonalizable if and only if $M_\alpha(t)$ is a product of distinct linear factors if and only if $c_\lambda = 1$ for all eigenvalues $\lambda$.\qedhere
  \end{itemize}
\end{proof}

\begin{defi}[Jordan normal form]
  We say $A \in \Mat_N(\C)$ is in \emph{Jordan normal form} if it is a block diagonal of the form
  \[
    \begin{pmatrix}
      J_{n_1}(\lambda_1) & & & 0\\
      & J_{n_2}(\lambda_2)\\
      & & \ddots\\\
      0 & & & J_{n_k} (\lambda_k)
    \end{pmatrix}
  \]
  where $k \geq 1$, $n_1, \cdots, n_k \in \N$ such that $n = \sum n_i$, $\lambda_1, \cdots, \lambda_k$ not necessarily distinct, and
  \[
    J_m (\lambda) =
    \begin{pmatrix}
      \lambda & 1 & \cdots & 0\\
      0 & \lambda & \ddots & \vdots\\
      \vdots & \vdots & \ddots & 1\\
      0 & 0 & \cdots & \lambda
    \end{pmatrix}
  \]
  is an $m \times m$ matrix. Note that $J_m(\lambda) = \lambda I_m + J_m(0)$.
\end{defi}
For example, it might look something like
\[\arraycolsep=1.4pt
  \begin{pmatrix}
    \lambda_1 & 1\\
    & \lambda_1 & 1\\
    & & \lambda_1 & 0\\
    & & & \lambda_2 & 0\\
    & & & & \lambda_3 & 1\\
    & & & & & \lambda_3 & 0\\
    & & & & & & \ddots & \ddots\\
    & & & & & & & \lambda_n & 1\\
    & & & & & & & & \lambda_n
  \end{pmatrix}
\]
with all other entries zero.

Then we have the following theorem:
\begin{thm}[Jordan normal form theorem]
  Every matrix $A \in \Mat_n(\C)$ is similar to a matrix in Jordan normal form. Moreover, this Jordan normal form matrix is unique up to permutation of the blocks.
\end{thm}
This is a complete solution to the classification problem of matrices, at least in $\C$. We will not prove this completely. We will only prove the uniqueness part, and then reduce the existence part to a special form of endomorphisms. The remainder of the proof is left for IB Groups, Rings and Modules.

We can rephrase this result using linear maps. If $\alpha \in \End(V)$ is an endomorphism of a finite-dimensional vector space $V$ over $\C$, then the theorem says there exists a basis such that $\alpha$ is represented by a matrix in Jordan normal form, and this is unique as before.

Note that the permutation thing is necessary, since if two matrices in Jordan normal form differ only by a rearrangement of blocks, then they are similar, by permuting the basis.

\begin{eg}
  Every $2\times 2$ matrix in Jordan normal form is one of the three types:
  \begin{center}
    \begin{tabular}{cccc}
      \toprule
      Jordan normal form & $\chi_A$ & $M_A$\\
      \midrule
      $\begin{pmatrix} \lambda & 0\\ 0 & \lambda \end{pmatrix}$ & $(t - \lambda)^2$ & $(t - \lambda)$\\\addlinespace
      $\begin{pmatrix} \lambda & 0\\ 0 & \mu \end{pmatrix}$ & $(t - \lambda)(t - \mu)$ & $(t - \lambda)(t - \mu)$\\\addlinespace
      $\begin{pmatrix} \lambda & 1\\ 0 & \lambda \end{pmatrix}$ & $(t - \lambda)^2$ & $(t - \lambda)^2$\\
      \bottomrule
    \end{tabular}
  \end{center}
  with $\lambda, \mu \in \C$ distinct. We see that $M_A$ determines the Jordan normal form of $A$, but $\chi_A$ does not.

  Every $3\times 3$ matrix in Jordan normal form is one of the six types. Here $\lambda_1, \lambda_2$ and $\lambda_3$ are distinct complex numbers.
  \begin{center}
    \begin{tabular}{ccccccc}
      \toprule
      Jordan normal form & $\chi_A$ & $M_A$\\
      \midrule
      $\begin{pmatrix} \lambda_1 & 0 & 0\\ 0 & \lambda_2 & 0\\ 0 & 0 & \lambda_3 \end{pmatrix}$ & $(t - \lambda_1)(t - \lambda_2)(t- \lambda_3)$ & $(t - \lambda_1)(t - \lambda_2)(t- \lambda_3)$\\\addlinespace
      $\begin{pmatrix} \lambda_1 & 0 & 0\\ 0 & \lambda_1 & 0\\ 0 & 0 & \lambda_2 \end{pmatrix}$ & $(t - \lambda_1)^2 (t - \lambda_2)$ & $(t - \lambda_1) (t - \lambda_2)$\\\addlinespace
      $\begin{pmatrix} \lambda_1 & 1 & 0\\ 0 & \lambda_1 & 0\\ 0 & 0 & \lambda_2 \end{pmatrix}$ & $(t - \lambda_1)^2 (t - \lambda_2)$ & $(t - \lambda_1)^2 (t - \lambda_2)$\\\addlinespace
      $\begin{pmatrix} \lambda_1 & 0 & 0\\ 0 & \lambda_1 & 0\\ 0 & 0 & \lambda_1 \end{pmatrix}$ & $(t - \lambda_1)^3$ & $(t - \lambda_1)$\\\addlinespace
      $\begin{pmatrix} \lambda_1 & 1 & 0\\ 0 & \lambda_1 & 0\\ 0 & 0 & \lambda_1 \end{pmatrix}$ & $(t - \lambda_1)^3$ & $(t - \lambda_1)^2$\\\addlinespace
      $\begin{pmatrix} \lambda_1 & 1 & 0\\ 0 & \lambda_1 & 1\\ 0 & 0 & \lambda_1 \end{pmatrix}$ & $(t - \lambda_1)^3$ & $(t - \lambda_1)^3$\\
      \bottomrule
    \end{tabular}
  \end{center}
  Notice that $\chi_A$ and $M_A$ together determine the Jordan normal form of a $3\times 3$ complex matrix. We do indeed need $\chi_A$ in the second case, since if we are given $M_A = (t - \lambda_1)(t - \lambda_2)$, we know one of the roots is double, but not which one.
\end{eg}

In general, though, even $\chi_A$ and $M_A$ together does not suffice.

We now want to understand the Jordan normal blocks better. Recall the definition
\[
  J_n(\lambda) =
  \begin{pmatrix}
    \lambda & 1 & \cdots & 0\\
    0 & \lambda & \ddots & \vdots\\
    \vdots & \vdots & \ddots & 1\\
    0 & 0 & \cdots & \lambda
  \end{pmatrix} = \lambda I_n + J_n(0).
\]
If $(\mathbf{e}_1, \cdots, \mathbf{e}_n)$ is the standard basis for $\C^n$, we have
\[
  J_n(0)(\mathbf{e}_1) = 0, \quad J_n(0) (\mathbf{e}_i) = \mathbf{e}_{i - 1}\text{ for } 2\leq i \leq n.
\]
Thus we know
\[
  J_n(0)^k(\mathbf{e}_i) =
  \begin{cases}
    0 & i \leq k\\
    \mathbf{e}_{i - k} & k < i \leq n
  \end{cases}
\]
In other words, for $k < n$, we have
\[
  (J_n(\lambda) - \lambda I)^k = J_n(0)^k =
  \begin{pmatrix}
    0 & I_{n - k}\\
    0 & 0
  \end{pmatrix}.
\]
If $k \geq n$, then we have $(J_n(\lambda) - \lambda I)^k = 0$.
Hence we can summarize this as
\[
  n((J_m(\lambda) - \lambda I_m)^r) = \min\{r, m\}.
\]
Note that if $A = J_n(\lambda)$, then $\chi_A(t) = M_A(t) = (t - \lambda)^n$. So $\lambda$ is the only eigenvalue of $A$. So $a_\lambda = c_\lambda = n$. We also know that $n(A - \lambda I) = n - r(A - \lambda I) = 1$. So $g_\lambda = 1$.

Recall that a general Jordan normal form is a block diagonal matrix of Jordan blocks. We have just studied individual Jordan blocks. Next, we want to look at some properties of block diagonal matrices in general. If $A$ is the block diagonal matrix
\[
  A =
  \begin{pmatrix}
    A_1\\
    & A_2\\
    & & \ddots\\
    & & & A_k
  \end{pmatrix},
\]
then
\[
  \chi_A(t) = \prod_{i = 1}^k \chi_{A_i}(k).
\]
Moreover, if $\rho \in \F[t]$, then
\[
  \rho (A) =
  \begin{pmatrix}
    \rho(A_1)\\
    & \rho(A_2)\\
    & & \ddots\\
    & & & \rho(A_k)
  \end{pmatrix}.
\]
Hence
\[
  M_A(t) = \lcm (M_{A_1}(t), \cdots, M_{A_k} (t)).
\]
By the rank-nullity theorem, we have
\[
  n(\rho(A)) = \sum_{i = 1}^k n(\rho(A_i)).
\]
Thus if $A$ is in Jordan normal form, we get the following:
\begin{itemize}
  \item $g_\lambda$ is the number of Jordan blocks in $A$ with eigenvalue $\lambda$.
  \item $a_\lambda$ is the sum of sizes of the Jordan blocks of $A$ with eigenvalue $\lambda$.
  \item $c_\lambda$ is the size of the largest Jordan block with eigenvalue $\lambda$.
\end{itemize}

We are now going to prove the uniqueness part of Jordan normal form theorem.
\begin{thm}
  Let $\alpha \in \End(V)$, and $A$ in Jordan normal form representing $\alpha$. Then the number of Jordan blocks $J_n(\lambda)$ in $A$ with $n \geq r$ is
  \[
    n((\alpha - \lambda\iota)^r) - n((\alpha - \lambda\iota)^{r - 1}).
  \]
\end{thm}
This is clearly independent of the choice of basis. Also, given this information, we can figure out how many Jordan blocks of size exactly $n$ by doing the right subtraction. Hence this tells us that Jordan normal forms are unique up to permutation of blocks.

\begin{proof}
  We work blockwise for
  \[
    A =
    \begin{pmatrix}
      J_{n_1}(\lambda_1)\\
      & J_{n_2}(\lambda_2)\\
      & & \ddots\\\
      & & & J_{n_k} (\lambda_k)
    \end{pmatrix}.
  \]
  We have previously computed
  \[
    n((J_m(\lambda) - \lambda I_m)^r) =
    \begin{cases}
      r & r \leq m\\
      m & r > m
    \end{cases}.
  \]
  Hence we know
  \[
    n((J_m(\lambda) - \lambda I_m)^r) - n((J_m(\lambda) - \lambda I_m)^{r - 1}) =
    \begin{cases}
      1 & r \leq m\\
      0 & \text{otherwise}.
    \end{cases}
  \]
  It is also easy to see that for $\mu \not= \lambda$,
  \[
    n((J_m(\mu) - \lambda I_m)^r) = n(J_m(\mu - \lambda)^r) = 0
  \]
  Adding up for each block, for $r \geq 1$, we have
  \[
    n((\alpha - \lambda \iota)^r) - n((\alpha - \lambda \iota)^{r - 1}) =\text{ number of Jordan blocks }J_n(\lambda)\text{ with } n \geq r.\qedhere
  \]
\end{proof}
We can interpret this result as follows: if $r \leq m$, when we take an additional power of $J_m(\lambda) - \lambda I_m$, we get from $\begin{pmatrix}0 & I_{m - r}\\ 0 & 0\end{pmatrix}$ to $\begin{pmatrix}0 & I_{m - r - 1}\\ 0 & 0\end{pmatrix}$. So we kill off one more column in the matrix, and the nullity increase by one. This happens until $(J_m(\lambda) - \lambda I_m)^r = 0$, in which case increasing the power no longer affects the matrix. So when we look at the difference in nullity, we are counting the number of blocks that are affected by the increase in power, which is the number of blocks of size at least $r$.

We have now proved uniqueness, but existence is not yet clear. To show this, we will reduce it to the case where there is exactly one eigenvalue. This reduction is easy if the matrix is diagonalizable, because we can decompose the matrix into each eigenspace and then work in the corresponding eigenspace. In general, we need to work with ``generalized eigenspaces''.

\begin{thm}[Generalized eigenspace decomposition]
  Let $V$ be a finite-dimensional vector space $\C$ such that $\alpha \in \End(V)$. Suppose that
  \[
    M_\alpha(t) = \prod_{i = 1}^k (t - \lambda_i)^{c_i},
  \]
  with $\lambda_1, \cdots, \lambda_k \in \C$ distinct. Then
  \[
    V = V_1 \oplus \cdots \oplus V_k,
  \]
  where $V_i = \ker((\alpha - \lambda_i \iota)^{c_i})$ is the \emph{generalized eigenspace}.
\end{thm}
This allows us to decompose $V$ into a block diagonal matrix, and then each block will only have one eigenvalue.

Note that if $c_1 = \cdots = c_k = 1$, then we recover the diagonalizability theorem. Hence, it is not surprising that the proof of this is similar to the diagonalizability theorem. We will again prove this by constructing projection maps to each of the $V_i$.

\begin{proof}
  Let
  \[
    p_j(t) = \prod_{i \not= j} (t - \lambda_i)^{c_i}.
  \]
  Then $p_1, \cdots, p_k$ have no common factors, i.e.\ they are coprime. Thus by Euclid's algorithm, there exists $q_1, \cdots, q_k \in \C[t]$ such that
  \[
    \sum p_i q_i = 1.
  \]
  We now define the endomorphism
  \[
    \pi_j = q_j(\alpha) p_j(\alpha)
  \]
  for $j = 1, \cdots, k$.

  Then $\sum \pi_j = \iota$. Since $M_\alpha(\alpha) = 0$ and $M_\alpha(t) = (t - \lambda_j \iota)^{c_j} p_j(t)$, we get
  \[
    (\alpha - \lambda_j \iota)^{c_j} \pi_j = 0.
  \]
  So $\im \pi_j \subseteq V_j$.

  Now suppose $\mathbf{v} \in V$. Then
  \[
    \mathbf{v} = \iota (\mathbf{v}) = \sum_{j = 1}^k \pi_j (\mathbf{v}) \in \sum V_j.
  \]
  So
  \[
    V = \sum V_j.
  \]
  To show this is a direct sum, note that $\pi_i \pi_j = 0$, since the product contains $M_\alpha(\alpha)$ as a factor. So
  \[
    \pi_i = \iota \pi_i = \left(\sum \pi_j\right) \pi_i = \pi_i^2.
  \]
  So $\pi$ is a projection, and $\pi_j|_{V_j} = \iota_{V_j}$. So if $\mathbf{v} = \sum \mathbf{v}_i$, then applying $\pi_i$ to both sides gives $\mathbf{v}_i = \pi_i (\mathbf{v})$. Hence there is a unique way of writing $\mathbf{v}$ as a sum of things in $V_i$. So $V = \bigoplus V_j$ as claimed.
\end{proof}
Note that we didn't really use the fact that the vector space is over $\C$, except to get that the minimal polynomial is a product of linear factors. In fact, for arbitrary vector spaces, if the minimal polynomial of a matrix is a product of linear factors, then it can be put into Jordan normal form. The converse is also true --- if it can be put into Jordan normal form, then the minimal polynomial is a product of linear factors, since we've seen that a necessary and sufficient condition for the minimal polynomial to be a product of linear factors is for there to be a basis in which the matrix is upper triangular.

Using this theorem, by restricting $\alpha$ to its generalized eigenspaces, we can reduce the existence part of the Jordan normal form theorem to the case $M_\alpha(t) = (t - \lambda)^c$. Further by replacing $\alpha$ by $\alpha - \lambda \iota$, we can reduce this to the case where $0$ is the only eigenvalue.

\begin{defi}[Nilpotent]
  We say $\alpha \in \End(V)$ is nilpotent if there is some $r$ such that $\alpha^r = 0$.
\end{defi}
Over $\C$, $\alpha$ is nilpotent if and only if the only eigenvalue of $\alpha$ is $0$. This is since $\alpha$ is nilpotent if the minimal polynomial is $t^r$ for some $r$.

We've now reduced the problem of classifying complex endomorphisms to the classifying nilpotent endomorphisms. This is the point where we stop. For the remainder of the proof, see IB Groups, Rings and Modules. There is in fact an elementary proof of it, and we're not doing it not because it's hard, but because we don't have time.

\begin{eg}
  Let
  \[
    A =
    \begin{pmatrix}
      3 & -2 & 0\\
      1 & 0 & 0\\
      1 & 0 & 1
    \end{pmatrix}
  \]
  We know we can find the Jordan normal form by just computing the minimal polynomial and characteristic polynomial. But we can do better and try to find a $P$ such that $P^{-1}AP$ is in Jordan normal form.

  We first compute the eigenvalues of $A$. The characteristic polynomial is
  \[
    \det \begin{pmatrix}
      t - 3 & -2 & 0\\
      1 & t & 0\\
      1 & 0 & t - 1
    \end{pmatrix} = (t - 1)((t - 3)t + 2) = (t - 1)^2 (t - 2).
  \]
  We now compute the eigenspaces of $A$. We have
  \[
    A - I =
    \begin{pmatrix}
      2 & -2 & 0\\
      1 & -1 & 0\\
      1 & 0 & 0
    \end{pmatrix}
  \]
  We see this has rank $2$ and hence nullity $1$, and the eigenspace is the kernel
  \[
    E_A(1) = \left\bra
    \begin{pmatrix}
      0\\0\\1
    \end{pmatrix}\right\ket
  \]
  We can also compute the other eigenspace. We have
  \[
    A - 2I =
    \begin{pmatrix}
      1 & -2 & 0\\
      1 & -2 & 0\\
      1 & 0 & -1
    \end{pmatrix}
  \]
  This has rank $2$ and
  \[
    E_A(2) = \left\bra
    \begin{pmatrix}
      2 \\ 1 \\ 2
    \end{pmatrix}\right\ket.
  \]
  Since
  \[
    \dim E_A(1) + \dim E_A(2) = 2 < 3,
  \]
  this is not diagonalizable. So the minimal polynomial must also be $M_A(t) = \chi_A(t) = (t - 1)^2 (t - 2)$. From the classificaion last time, we know that $A$ is similar to
  \[
    \begin{pmatrix}
      1 & 1 & 0\\
      0 & 1 & 0\\
      0 & 0 & 2
    \end{pmatrix}
  \]
  We now want to compute a basis that transforms $A$ to this. We want a basis $(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$ of $\C^3$ such that
  \[
    A\mathbf{v}_1 = \mathbf{v}_1,\quad A\mathbf{v}_2 = \mathbf{v}_1 + \mathbf{v}_2,\quad A \mathbf{v}_3 = 2\mathbf{v}_3.
  \]
  Equivalently, we have
  \[
    (A - I)\mathbf{v}_1 = \mathbf{0},\quad (A - I)\mathbf{v}_2 = \mathbf{v}_1, \quad (A - 2I)\mathbf{v}_3 = \mathbf{0}.
  \]
  There is an obvious choices $\mathbf{v}_3$, namely the eigenvector of eigenvalue $2$.

  To find $\mathbf{v}_1$ and $\mathbf{v}_2$, the idea is to find some $\mathbf{v}_2$ such that $(A - I) \mathbf{v}_2 \not= \mathbf{0}$ but $(A - I)^2 \mathbf{v}_2 = \mathbf{0}$. Then we can let $\mathbf{v}_1 = (A - I) \mathbf{v}_1$.

  We can compute the kernel of $(A - I)^2$. We have
  \[
    (A - I)^2 =
    \begin{pmatrix}
      2 & -2 & 0\\
      1 & -1 & 0\\
      2 & -2 & 0
    \end{pmatrix}
  \]
  The kernel of this is
  \[
    \ker (A - I)^2 = \left\bra
    \begin{pmatrix}
      0 \\ 0 \\ 1
    \end{pmatrix},
    \begin{pmatrix}
      1 \\ 1 \\ 0
    \end{pmatrix}
    \right\ket.
  \]
  We need to pick our $\mathbf{v}_2$ that is in this kernel but not in the kernel of $A - I$ (which is the eigenspace $E_1$ we have computed above). So we have
  \[
    \mathbf{v}_2 =
    \begin{pmatrix}
      1\\1\\0
    \end{pmatrix},\quad
    \mathbf{v}_1 =
    \begin{pmatrix}
      0\\0\\1
    \end{pmatrix},\quad
    \mathbf{v}_3 =
    \begin{pmatrix}
      2\\1\\2
    \end{pmatrix}.
  \]
  Hence we have
  \[
    P =
    \begin{pmatrix}
      0 & 1 & 2\\
      0 & 1 & 1\\
      1 & 0 & 2
    \end{pmatrix}
  \]
  and
  \[
    P^{-1} AP = \begin{pmatrix}
      1 & 1 & 0\\
      0 & 1 & 0\\
      0 & 0 & 2
    \end{pmatrix}.
  \]
\end{eg}

\section{Bilinear forms II}
\label{sec:bilin2}
In Chapter~\ref{sec:bilin1}, we have looked at bilinear forms in general. Here, we want to look at bilinear forms on a single space, since often there is just one space we are interested in. We are also not looking into general bilinear forms on a single space, but just those that are symmetric.

\subsection{Symmetric bilinear forms and quadratic forms}
\begin{defi}[Symmetric bilinear form]
  Let $V$ is a vector space over $\F$. A bilinear form $\phi: V \times V \to \F$ is \emph{symmetric} if
  \[
    \phi(\mathbf{v}, \mathbf{w}) = \phi(\mathbf{w}, \mathbf{v})
  \]
  for all $\mathbf{v}, \mathbf{w} \in V$.
\end{defi}

\begin{eg}
  If $S \in \Mat_n(\F)$ is a symmetric matrix, i.e.\ $S^T = S$, the bilinear form $\phi: \F^n \times \F^n \to \F$ defined by
  \[
    \phi(\mathbf{x}, \mathbf{y}) = \mathbf{x}^T S\mathbf{x} = \sum_{i, j = 1}^n x_i S_{ij} y_j
  \]
  is a symmetric bilinear form.
\end{eg}
This example is typical in the following sense:

\begin{lemma}
  Let $V$ be a finite-dimensional vector space over $\F$, and $\phi: V\times V \to \F$ is a symmetric bilinear form. Let $(\mathbf{e}_1, \cdots, \mathbf{e}_n)$ be a basis for $V$, and let $M$ be the matrix representing $\phi$ with respect to this basis, i.e.\ $M_{ij} = \phi(\mathbf{e}_i, \mathbf{e}_j)$. Then $\phi$ is symmetric if and only if $M$ is symmetric.
\end{lemma}

\begin{proof}
  If $\phi$ is symmetric, then
  \[
    M_{ij} = \phi(\mathbf{e}_i, \mathbf{e}_j) = \phi(\mathbf{e}_j, \mathbf{e}_i) = M_{ji}.
  \]
  So $M^T = M$. So $M$ is symmetric.

  If $M$ is symmetric, then
  \begin{align*}
    \phi(\mathbf{x}, \mathbf{y}) &= \phi\left(\sum x_i \mathbf{e}_i, \sum y_j \mathbf{e}_j\right)\\
    &= \sum_{i, j} x_i M_{ij} y_j\\
    &= \sum_{i, j}^n y_j M_{ji} x_i\\
    &= \phi(\mathbf{y}, \mathbf{x}).\qedhere
  \end{align*}
\end{proof}

We are going to see what happens when we change basis. As in the case of endomorphisms, we will require to change basis in the same ways on both sides.

\begin{lemma}
  Let $V$ is a finite-dimensional vector space, and $\phi: V\times V \to \F$ a bilinear form. Let $(\mathbf{e}_1, \cdots, \mathbf{e}_n)$ and $(\mathbf{f}_1, \cdots, \mathbf{f}_n)$ be bases of $V$ such that
  \[
    \mathbf{f}_i = \sum_{k = 1}^n P_{ki} \mathbf{e}_k.
  \]
  If $A$ represents $\phi$ with respect to $(\mathbf{e}_i)$ and $B$ represents $\phi$ with respect to $(\mathbf{f}_i)$, then
  \[
    B = P^T AP.
  \]
\end{lemma}

\begin{proof}
  Special case of general formula proven before.
\end{proof}

This motivates the following definition:
\begin{defi}[Congruent matrices]
  Two square matrices $A, B$ are \emph{congruent} if there exists some invertible $P$ such that
  \[
    B = P^T AP.
  \]
\end{defi}
It is easy to see that congruence is an equivalence relation. Two matrices are congruent if and only if represent the same bilinear form with respect to different bases.

Thus, to classify (symmetric) bilinear forms is the same as classifying (symmetric) matrices up to congruence.

Before we do the classification, we first look at quadratic forms, which are something derived from bilinear forms.

\begin{defi}[Quadratic form]
  A \emph{function} $q: V \to \F$ is a \emph{quadratic form} if there exists some bilinear form $\phi$ such that
  \[
    q(\mathbf{v}) = \phi(\mathbf{v}, \mathbf{v})
  \]
  for all $\mathbf{v} \in V$.
\end{defi}
Note that quadratic forms are \emph{not} linear maps (they are quadratic).

\begin{eg}
  Let $V = \R^2$ and $\phi$ be represented by $A$ with respect to the standard basis. Then
  \[
    q\left(
    \begin{pmatrix}
      x\\y
    \end{pmatrix}\right) =
    \begin{pmatrix}
      x & y
    \end{pmatrix}
    \begin{pmatrix}
      A_{11} & A_{12}\\
      A_{21} & A_{22}
    \end{pmatrix}
    \begin{pmatrix}
      x\\y
    \end{pmatrix}
    = A_{11} x^2 + (A_{12} + A_{21}) xy + A_{22}y^2.
  \]
\end{eg}
Notice that if $A$ is replaced the symmetric matrix
\[
  \frac{1}{2}(A + A^T),
\]
then we get a different $\phi$, but the same $q$. This is in fact true in general.

\begin{prop}[Polarization identity]
  Suppose that $\Char \F \not= 2$, i.e.\ $1 + 1 \not= 0$ on $\F$ (e.g.\ if $\F$ is $\R$ or $\C$). If $q: V\to \F$ is a quadratic form, then there exists a \emph{unique} symmetric bilinear form $\phi: V \times V\to \F$ such that
  \[
    q(\mathbf{v}) = \phi(\mathbf{v}, \mathbf{v}).
  \]
\end{prop}

\begin{proof}
  Let $\psi: V \times V\to \F$ be a bilinear form such that $\psi(\mathbf{v}, \mathbf{v}) = q(\mathbf{v})$. We define $\phi: V \times V\to \F$ by
  \[
    \phi(\mathbf{v}, \mathbf{w}) = \frac{1}{2}(\psi(\mathbf{v}, \mathbf{w}) + \psi(\mathbf{w}, \mathbf{v}))
  \]
  for all $\mathbf{v}, \mathbf{w} \in \F$. This is clearly a bilinear form, and it is also clearly symmetric and satisfies the condition we wants. So we have proved the existence part.

  To prove uniqueness, we want to find out the values of $\phi(\mathbf{v}, \mathbf{w})$ in terms of what $q$ tells us. Suppose $\phi$ is such a symmetric bilinear form. We compute
  \begin{align*}
    q(\mathbf{v} + \mathbf{w}) &= \phi(\mathbf{v} + \mathbf{w}, \mathbf{v} + \mathbf{w}) \\
    &= \phi(\mathbf{v}, \mathbf{v}) + \phi(\mathbf{v}, \mathbf{w}) + \phi(\mathbf{w}, \mathbf{v}) + \phi(\mathbf{w}, \mathbf{w})\\
    &= q(\mathbf{v}) + 2\phi(\mathbf{v}, \mathbf{w}) + q(\mathbf{w}).
  \end{align*}
  So we have
  \[
    \phi(\mathbf{v}, \mathbf{w}) = \frac{1}{2}(q(\mathbf{v} + \mathbf{w}) - q(\mathbf{v}) - q(\mathbf{w})).
  \]
  So it is determined by $q$, and hence unique.
\end{proof}

\begin{thm}
  Let $V$ be a finite-dimensional vector space over $\F$, and $\phi: V\times V \to \F$ a symmetric bilinear form. Then there exists a basis $(\mathbf{e}_1, \cdots, \mathbf{e}_n)$ for $V$ such that $\phi$ is represented by a diagonal matrix with respect to this basis.
\end{thm}
This tells us classifying symmetric bilinear forms is easier than classifying endomorphisms, since for endomorphisms, even over $\C$, we cannot always make it diagonal, but we can for bilinear forms over arbitrary fields.

\begin{proof}
  We induct over $n = \dim V$. The cases $n = 0$ and $n = 1$ are trivial, since all matrices are diagonal.

  Suppose we have proven the result for all spaces of dimension less than $n$. First consider the case where $\phi(\mathbf{v}, \mathbf{v}) = 0$ for all $\mathbf{v} \in V$. We want to show that we must have $\phi = 0$. This follows from the polarization identity, since this $\phi$ induces the zero quadratic form, and we know that there is a unique bilinear form that induces the zero quadratic form. Since we know that the zero bilinear form also induces the zero quadratic form, we must have $\phi = 0$. Then $\phi$ will be represented by the zero matrix with respect to any basis, which is trivially diagonal.

  If not, pick $\mathbf{e}_1 \in V$ such that $\phi(\mathbf{e}_1, \mathbf{e}_1) \not= 0$. Let
  \[
    U = \ker \phi(\mathbf{e}_1, \ph) = \{\mathbf{u} \in V: \phi(\mathbf{e}_1, \mathbf{u}) = 0\}.
  \]
  Since $\phi(\mathbf{e}_1, \ph) \in V^* \setminus \{0\}$, we know that $\dim U = n - 1$ by the rank-nullity theorem.

  Our objective is to find other basis elements $\mathbf{e}_2, \cdots, \mathbf{e}_n$ such that $\phi(\mathbf{e}_1, \mathbf{e}_j) = 0$ for all $j > 1$. For this to happen, we need to find them inside $U$.

  Now consider $\phi|_{U\times U}: U\times U \to \F$, a symmetric bilinear form. By the induction hypothesis, we can find a basis $\mathbf{e}_2, \cdots, \mathbf{e}_n$ for $U$ such that $\phi|_{U\times U}$ is represented by a diagonal matrix with respect to this basis.

  Now by construction, $\phi(\mathbf{e}_i, \mathbf{e}_j) = 0$ for all $1 \leq i \not= j \leq n$ and $(\mathbf{e}_1, \cdots, \mathbf{e}_n)$ is a basis for $V$. So we're done.
\end{proof}

\begin{eg}
  Let $q$ be a quadratic form on $\R^3$ given by
  \[
    q\left(
    \begin{pmatrix}
      x\\y\\z
    \end{pmatrix}\right) = x^2 + y^2 + z^2 + 2xy + 4yz + 6xz.
  \]
  We want to find a basis $\mathbf{f}_1, \mathbf{f}_2, \mathbf{f}_3$ for $\R^3$ such that $q$ is of the form
  \[
    q(a\mathbf{f}_1 + b\mathbf{f}_2 + c\mathbf{f}_3) = \lambda a^2 + \mu b^2 + \nu c^2
  \]
  for some $\lambda, \mu, \nu \in \R$.

  There are two ways to do this. The first way is to follow the proof we just had. We first find our symmetric bilinear form. It is the bilinear form represented by the matrix
  \[
    A =
    \begin{pmatrix}
      1 & 1 & 3\\
      1 & 1 & 2\\
      3 & 2 & 1
    \end{pmatrix}.
  \]
  We then find $\mathbf{f}_1$ such that $\phi(\mathbf{f}_1, \mathbf{f}_1) \not= 0$. We note that $q(\mathbf{e}_1) = 1\not= 0$. So we pick
  \[
    \mathbf{f}_1 = \mathbf{e}_1 =
    \begin{pmatrix}
      1\\0\\0
    \end{pmatrix}.
  \]
  Then
  \[
    \phi(\mathbf{e}_1, \mathbf{v}) =
    \begin{pmatrix}
      1 & 0 & 0
    \end{pmatrix}
    \begin{pmatrix}
      1 & 1 & 3\\
      1 & 1 & 2\\
      3 & 2 & 1
    \end{pmatrix}
    \begin{pmatrix}
      v_1\\v_2\\v_3
    \end{pmatrix} = v_1 + v_2 + 3v_3.
  \]
  Next we need to pick our $\mathbf{f}_2$. Since it is in the kernel of $\phi(\mathbf{f}_1, \ph)$, it must satisfy
  \[
    \phi(\mathbf{f}_1, \mathbf{f}_2) = 0.
  \]
  To continue our proof inductively, we also have to pick an $\mathbf{f}_2$ such that
  \[
    \quad \phi(\mathbf{f}_2, \mathbf{f}_2) \not= 0.
  \]
  For example, we can pick
  \[
    \mathbf{f}_2 =
    \begin{pmatrix}
      3\\0\\-1
    \end{pmatrix}.
  \]
  Then we have $q(\mathbf{f}_2) = -8$.

  Then we have
  \[
    \phi(\mathbf{f}_2, \mathbf{v}) =
    \begin{pmatrix}
      3 & 0 & -1
    \end{pmatrix}
    \begin{pmatrix}
      1 & 1 & 3\\
      1 & 1 & 2\\
      3 & 2 & 1
    \end{pmatrix}
    \begin{pmatrix}
      v_1\\v_2\\v_3
    \end{pmatrix} = v_2 + 8v_3
  \]
  Finally, we want $\phi(\mathbf{f}_1, \mathbf{f}_3) = \phi(\mathbf{f}_2, \mathbf{f}_3) = 0$. Then
  \[
    \mathbf{f}_3 =
    \begin{pmatrix}
      5 \\ -8 \\1
    \end{pmatrix}
  \]
  works. We have $q(\mathbf{f}_3) = 8$.

  With these basis elements, we have
  \begin{align*}
    q(a \mathbf{f}_1 + b\mathbf{f}_2 + c \mathbf{f}_3) &= \phi(a \mathbf{f}_1 + b \mathbf{f}_2 + c \mathbf{f}_3, a \mathbf{f}_1 + b \mathbf{f}_2 + c \mathbf{f}_3) \\
    &= a^2 q (\mathbf{f}_1) + b^2 q(\mathbf{f}_2) + c^2 q(\mathbf{f}_3) \\
    &= a^2 - 8b^2 + 8c^2.
  \end{align*}
  Alternatively, we can solve the problem by completing the square. We have
  \begin{align*}
    x^2 + y^2 + z^2 + 2xy + 4yz + 6xz &= (x + y + 3z)^2 - 2yz - 8z^2\\
    &= (x + y + 3z)^2 - 8\left(z + \frac{y}{8}\right)^2 + \frac{1}{8}y^2.
  \end{align*}
  We now see
  \[
    \phi\left(
    \begin{pmatrix}
      x\\y\\z
    \end{pmatrix},
    \begin{pmatrix}
      x'\\y'\\z'
    \end{pmatrix}\right) = (x + y + 3z)(x' + y' + 3z') - 8\left(z + \frac{y}{8}\right)\left(z' + \frac{y'}{8}\right) + \frac{1}{8}yy'.
  \]
  Why do we know this? This is clearly a symmetric bilinear form, and this also clearly induces the $q$ given above. By uniqueness, we know that this is the right symmetric bilinear form.

  We now use this form to find our $\mathbf{f}_1, \mathbf{f}_2, \mathbf{f}_3$ such that $\phi(\mathbf{f}_i, \mathbf{f}_j) = \delta_{ij}$.

  To do so, we just solve the equations
  \begin{align*}
    x + y + 3z &= 1\\
    z + \frac{1}{8}y &= 0\\
    y &= 0.
  \end{align*}
  This gives our first vector as
  \[
    \mathbf{f}_1 =
    \begin{pmatrix}
      1\\0\\0
    \end{pmatrix}.
  \]
  We then solve
  \begin{align*}
    x + y + 3z &= 0\\
    z + \frac{1}{8}y &= 1\\
    y &= 0.
  \end{align*}
  So we have
  \[
    \mathbf{f}_2 =
    \begin{pmatrix}
      -3\\0\\1
    \end{pmatrix}.
  \]
  Finally, we solve
  \begin{align*}
    x + y + 3z &= 0\\
    z + \frac{1}{8}y &= 0\\
    y &= 1.
  \end{align*}
  This gives
  \[
    \mathbf{f}_3 =
    \begin{pmatrix}
      -5/8\\ 1 \\ -1/8.
    \end{pmatrix}.
  \]
  Then we can see that the result follows, and we get
  \[
    q(a\mathbf{f}_1 + b\mathbf{f}_2 + c\mathbf{f}_3) = a^2 - 8b^2 + \frac{1}{8}c^2.
  \]
\end{eg}
We see that the diagonal matrix we get is not unique. We can re-scale our basis by any constant, and get an equivalent expression.

\begin{thm}
  Let $\phi$ be a symmetric bilinear form over a complex vector space $V$. Then there exists a basis $(\mathbf{v}_1, \cdots, \mathbf{v}_m)$ for $V$ such that $\phi$ is represented by
  \[
    \begin{pmatrix}
      I_r & 0\\
      0 & 0
    \end{pmatrix}
  \]
  with respect to this basis, where $r = r(\phi)$.
\end{thm}

\begin{proof}
  We've already shown that there exists a basis $(\mathbf{e}_1, \cdots, \mathbf{e}_n)$ such that $\phi(\mathbf{e}_i, \mathbf{e}_j) = \lambda_i \delta_{ij}$ for some $\lambda_{ij}$. By reordering the $\mathbf{e}_i$, we can assume that $\lambda_1, \cdots, \lambda_r \not= 0$ and $\lambda_{r + 1},\cdots, \lambda_n = 0$.

  For each $1 \leq i \leq r$, there exists some $\mu_i$ such that $\mu_i^2 = \lambda_i$. For $r + 1 \leq r \leq n$, we let $\mu_i = 1$ (or anything non-zero). We define
  \[
    \mathbf{v}_i = \frac{\mathbf{e}_i}{\mu_i}.
  \]
  Then
  \[
    \phi(\mathbf{v}_i, \mathbf{v}_j) = \frac{1}{\mu_i \mu_j} \phi(\mathbf{e}_i, \mathbf{e}_j) =
    \begin{cases}
      0 & i\not= j\text{ or }i = j > r\\
      1 & i = j < r.
    \end{cases}
  \]
  So done.
\end{proof}
Note that it follows that for the corresponding quadratic form $q$, we have
\[
  q\left(\sum_{i = 1}^n a_i \mathbf{v}_i\right) = \sum_{i = 1}^r a_i^2.
\]
\begin{cor}
  Every symmetric $A \in \Mat_n(\C)$ is congruent to a unique matrix of the form
  \[
    \begin{pmatrix}
      I_r & 0\\
      0 & 0
    \end{pmatrix}.
  \]
\end{cor}
Now this theorem is a bit too strong, and we are going to fix that next lecture, by talking about Hermitian forms and sesquilinear forms. Before that, we do the equivalent result for real vector spaces.
\begin{thm}
  Let $\phi$ be a symmetric bilinear form of a finite-dimensional vector space over $\R$. Then there exists a basis $(\mathbf{v}_1, \cdots, \mathbf{v}_n)$ for $V$ such that $\phi$ is represented
  \[
    \begin{pmatrix}
      I_p\\
      & -I_q\\
      & & 0
    \end{pmatrix},
  \]
  with $p + q = r(\phi)$, $p, q \geq 0$. Equivalently, the corresponding quadratic forms is given by
  \[
    q\left(\sum_{i = 1}^n a_i \mathbf{v}_i\right) = \sum_{i = 1}^p a_i^2 - \sum_{j = p + 1}^{p + q} a_j^2.
  \]
\end{thm}
Note that we have seen these things in special relativity, where the Minkowski inner product is given by the symmetric bilinear form represented by
\[
  \begin{pmatrix}
    -1 & 0 & 0 & 0 \\
    0 & 1 & 0 & 0 \\
    0 & 0 & 1 & 0\\
    0 & 0 & 0 & 1
  \end{pmatrix},
\]
in units where $c = 1$.

\begin{proof}
  We've already shown that there exists a basis $(\mathbf{e}_1, \cdots, \mathbf{e}_n)$ such that $\phi(\mathbf{e}_i, \mathbf{e}_j) = \lambda_i \delta_{ij}$ for some $\lambda_1, \cdots, \lambda_n \in \R$. By reordering, we may assume
  \[
    \begin{cases}
      \lambda_i > 0 & 1 \leq i \leq p\\
      \lambda_i < 0 & p + 1 \leq i \leq r\\
      \lambda_i = 0 & i > r
    \end{cases}
  \]
  We let $\mu_i$ be defined by
  \[
    \mu_i =
    \begin{cases}
      \sqrt{\lambda_i} & 1 \leq i \leq p\\
      \sqrt{-\lambda_i} & p + 1 \leq i \leq r\\
      1 & i > r
    \end{cases}
  \]
  Defining
  \[
    \mathbf{v}_i = \frac{1}{\mu_i}\mathbf{e}_i,
  \]
  we find that $\phi$ is indeed represented by
  \[
    \begin{pmatrix}
      I_p\\
      & -I_q\\
      & & 0
    \end{pmatrix},\qedhere
  \]
\end{proof}
We will later show that this form is indeed unique. Before that, we will have a few definitions, that really only make sense over $\R$.

\begin{defi}[Positive/negative (semi-)definite]
  Let $\phi$ be a symmetric bilinear form on a finite-dimensional real vector space $V$. We say
  \begin{enumerate}
    \item $\phi$ is \emph{positive definite} if $\phi(\mathbf{v}, \mathbf{v}) > 0$ for all $\mathbf{v} \in V\setminus \{0\}$.
    \item $\phi$ is \emph{positive semi-definite} if $\phi(\mathbf{v}, \mathbf{v}) \geq 0$ for all $\mathbf{v} \in V$.
    \item $\phi$ is \emph{negative definite} if $\phi(\mathbf{v}, \mathbf{v}) < 0$ for all $\mathbf{v} \in V\setminus \{0\}$.
    \item $\phi$ is \emph{negative semi-definite} if $\phi(\mathbf{v}, \mathbf{v}) \leq 0$ for all $\mathbf{v} \in V$.
  \end{enumerate}
\end{defi}

We are going to use these notions to prove uniqueness. It is easy to see that if $p = 0$ and $q = n$, then we are negative definite; if $p = 0$ and $q \not= n$, then we are negative semi-definite etc.

\begin{eg}
  Let $\phi$ be a symmetric bilinear form on $\R^n$ represented by
  \[
    \begin{pmatrix}
      I_p & 0\\
      0 & 0_{n - p}
    \end{pmatrix}.
  \]
  Then $\phi$ is positive semi-definite. $\phi$ is positive definite if and only if $n = p$.

  If instead $\phi$ is represented by
  \[
    \begin{pmatrix}
      -I_p & 0\\
      0 & 0_{n - p}
    \end{pmatrix},
  \]
  then $\phi$ is negative semi-definite. $\phi$ is negative definite precisely if $n = q$.
\end{eg}

We are going to use this to prove the uniqueness part of our previous theorem.
\begin{thm}[Sylvester's law of inertia]
  Let $\phi$ be a symmetric bilinear form on a finite-dimensional real vector space $V$. Then there exists unique non-negative integers $p, q$ such that $\phi$ is represented by
  \[
    \begin{pmatrix}
      I_p & 0 & 0\\
      0 & -I_q & 0\\
      0 & 0 & 0
    \end{pmatrix}
  \]
  with respect to some basis.
\end{thm}

\begin{proof}
  We have already proved the existence part, and we just have to prove uniqueness. To do so, we characterize $p$ and $q$ in a basis-independent way. We already know that $p + q = r(\phi)$ does not depend on the basis. So it suffices to show $p$ is unique.

  To see that $p$ is unique, we show that $p$ is the largest dimension of a subspace $P \subseteq V$ such that $\phi|_{P\times P}$ is positive definite.

  First we show we can find such at $P$. Suppose $\phi$ is represented by
  \[
    \begin{pmatrix}
      I_p & 0 & 0\\
      0 & -I_q & 0\\
      0 & 0 & 0
    \end{pmatrix}
  \]
  with respect to $(\mathbf{e}_1, \cdots, \mathbf{e}_n)$. Then $\phi$ restricted to $\bra \mathbf{e}_1, \cdots, \mathbf{e}_p\ket$ is represented by $I_p$ with respect to $\mathbf{e}_1, \cdots, \mathbf{e}_p$. So $\phi$ restricted to this is positive definite.

  Now suppose $P$ is any subspace of $V$ such that $\phi|_{P \times P}$ is positive definite. To show $P$ has dimension at most $p$, we find a subspace complementary to $P$ with dimension $n - p$.

  Let $Q = \bra \mathbf{e}_{p + 1}, \cdots, \mathbf{e}_n\ket$. Then $\phi$ restricted to $Q\times Q$ is represented by
  \[
    \begin{pmatrix}
      -I_q& 0\\
      0 & 0
    \end{pmatrix}.
  \]
  Now if $\mathbf{v} \in P\cap Q \setminus \{0\}$, then $\phi(\mathbf{v}, \mathbf{v}) > 0$ since $\mathbf{v}\in P\setminus \{0\}$ and $\phi(\mathbf{v}, \mathbf{v}) \leq 0$ since $\mathbf{v}\in Q$, which is a contradiction. So $P\cap Q = 0$.

  We have
  \[
    \dim V \geq \dim (P + Q) = \dim P + \dim Q = \dim P + (n - p).
  \]
  Rearranging gives
  \[
    \dim P \leq p.
\]
  A similar argument shows that $q$ is the maximal dimension of a subspace $Q\subseteq V$ such that $\phi|_{Q\times Q}$ is negative definite.
\end{proof}

\begin{defi}[Signature]
  The \emph{signature} of a bilinear form $\phi$ is the number $p - q$, where $p$ and $q$ are as above.
\end{defi}
Of course, we can recover $p$ and $q$ from the signature and the rank of $\phi$.

\begin{cor}
  Every real symmetric matrix is congruent to precisely one matrix of the form
  \[
    \begin{pmatrix}
      I_p & 0 & 0\\
      0 & -I_q & 0\\
      0 & 0 & 0
    \end{pmatrix}.
  \]
\end{cor}
\subsection{Hermitian form}
The above result was nice for real vector spaces. However, if $\phi$ is a bilinear form on a $\C$-vector space $V$, then $\phi(i\mathbf{v}, i\mathbf{v}) = -\phi(\mathbf{v}, \mathbf{v})$. So there can be no good notion of positive definiteness for complex bilinear forms. To make them work for complex vector spaces, we need to modify the definition slightly to obtain Hermitian forms.

\begin{defi}[Sesquilinear form]
  Let $V, W$ be complex vector spaces. Then a \emph{sesquilinear form} is a function $\phi: V \times W \to \C$ such that
  \begin{enumerate}
    \item $\phi(\lambda \mathbf{v}_1 + \mu \mathbf{v}_2, \mathbf{w}) = \bar{\lambda} \phi(\mathbf{v}_1, \mathbf{w}) + \bar{\mu}\phi(\mathbf{v}_2, \mathbf{w})$.
    \item $\phi(\mathbf{v}, \lambda \mathbf{w}_1 + \mu \mathbf{w}_2) = \lambda \phi(\mathbf{v}, \mathbf{w}_1) + \mu \phi(\mathbf{v} \mathbf{w}_2)$.
  \end{enumerate}
  for all $\mathbf{v}, \mathbf{v}_1, \mathbf{v}_2 \in V$, $\mathbf{w}, \mathbf{w}_1, \mathbf{w}_2 \in W$ and $\lambda, \mu \in \C$.
\end{defi}
Note that some people have an opposite definition, where we have linearity in the first argument and conjugate linearity in the second.

These are called sesquilinear since ``sesqui'' means ``one and a half'', and this is linear in the second argument and ``half linear'' in the first.

Alternatively, to define a sesquilinear form, we can define a new complex vector space $\bar{V}$ structure on $V$ by taking the same abelian group (i.e.\ the same underlying set and addition), but with the scalar multiplication $\C \times \bar{V} \to \bar{V}$ defined as
\[
  (\lambda, \mathbf{v}) \mapsto \bar{\lambda} \mathbf{v}.
\]
Then a sesquilinear form on $V\times W$ is a bilinear form on $\bar{V} \times W$. Alternatively, this is a linear map $W \to \bar{V}^*$.

\begin{defi}[Representation of sesquilinear form]
  Let $V, W$ be finite-dimensional complex vector spaces with basis $(\mathbf{v}_1, \cdots, \mathbf{v}_n)$ and $(\mathbf{w}_1, \cdots, \mathbf{w}_m)$ respectively, and $\phi: V \times W \to \C$ be a sesquilinear form. Then the matrix representing $\phi$ with respect to these bases is
  \[
    A_{ij} = \phi(\mathbf{v}_i, \mathbf{w}_j).
  \]
  for $1 \leq i \leq n, 1 \leq j \leq m$.
\end{defi}
As usual, this determines the whole sesquilinear form. This follows from the analogous fact for the bilinear form on $\bar{V} \times W \to \C$. Let $\mathbf{v} = \sum \lambda_i \mathbf{v}_i$ and $W = \sum \mu_j w_j$. Then we have
\[
  \phi(\mathbf{v}, \mathbf{w}) = \sum_{i, j} \overline{\lambda}_i \mu_j \phi(\mathbf{v}_i, \mathbf{w}_j) = \lambda^\dagger A \mu.
\]
We now want the right definition of symmetric sesquilinear form. We cannot just require $\phi(\mathbf{v}, \mathbf{w}) = \phi(\mathbf{w}, \mathbf{v})$, since $\phi$ is linear in the second variable and conjugate linear on the first variable. So in particular, if $\phi(\mathbf{v}, \mathbf{w}) \not= 0$, we have $\phi(i \mathbf{v}, \mathbf{w}) \not= \phi(\mathbf{v}, i\mathbf{w})$.

\begin{defi}[Hermitian sesquilinear form]
  A sesquilinear form on $V\times V$ is \emph{Hermitian} if
  \[
    \phi(\mathbf{v}, \mathbf{w}) = \overline{\phi(\mathbf{w}, \mathbf{v})}.
  \]
\end{defi}
Note that if $\phi$ is Hermitian, then $\phi(\mathbf{v}, \mathbf{v}) = \overline{\phi(\mathbf{v}, \mathbf{v})} \in \R$ for any $\mathbf{v} \in V$. So it makes sense to ask if it is positive or negative. Moreover, for any complex number $\lambda$, we have
\[
  \phi(\lambda \mathbf{v}, \lambda \mathbf{v}) = |\lambda|^2 \phi(\mathbf{v}, \mathbf{v}).
\]
So multiplying by a scalar does not change the sign. So it makes sense to talk about positive (semi-)definite and negative (semi-)definite Hermitian forms.

We will prove results analogous to what we had for real symmetric bilinear forms.
\begin{lemma}
  Let $\phi: V \times V\to \C$ be a sesquilinear form on a finite-dimensional vector space over $\C$, and $(\mathbf{e}_1, \cdots, \mathbf{e}_n)$ a basis for $V$. Then $\phi$ is Hermitian if and only if the matrix $A$ representing $\phi$ is Hermitian (i.e.\ $A = A^\dagger$).
\end{lemma}

\begin{proof}
  If $\phi$ is Hermitian, then
  \[
    A_{ij} = \phi(\mathbf{e}_i, \mathbf{e}_j) = \overline{\phi(\mathbf{e}_j, \mathbf{e}_i)} = A^{\dagger}_{ij}.
  \]
  If $A$ is Hermitian, then
  \[
    \phi\left(\sum \lambda_i \mathbf{e}_i, \sum \mu_j \mathbf{e}_j\right) = \lambda^\dagger A \mu = \overline{\mu^\dagger A^\dagger \lambda} = \overline{\phi\left(\sum \mu_j \mathbf{e}_j, \sum \lambda_j \mathbf{e}_j\right)}.
  \]
  So done.
\end{proof}

\begin{prop}[Change of basis]
  Let $\phi$ be a Hermitian form on a finite dimensional vector space $V$; $(\mathbf{e}_1, \cdots, \mathbf{e}_n)$ and $(\mathbf{v}_1, \cdots, \mathbf{v}_n)$ are bases for $V$ such that
  \[
    \mathbf{v}_i = \sum_{k = 1}^n P_{ki} \mathbf{e}_k;
  \]
  and $A, B$ represent $\phi$ with respect to $(\mathbf{e}_1, \ldots, \mathbf{e}_n)$ and $(\mathbf{v}_1, \cdots, \mathbf{v}_n)$ respectively. Then
  \[
    B = P^\dagger AP.
  \]
\end{prop}

\begin{proof}
  We have
  \begin{align*}
    B_{ij} &= \phi(\mathbf{v}_i, \mathbf{v}_j) \\
    &= \phi\left(\sum P_{ki} \mathbf{e}_k, \sum P_{\ell j} \mathbf{e}_\ell\right)\\
    &= \sum_{k, \ell = 1}^n \bar{P}_{ki} P_{\ell j} A_{k\ell}\\
    &= (P^\dagger AP)_{ij}.\qedhere
  \end{align*}
\end{proof}

\begin{lemma}[Polarization identity (again)]
  A Hermitian form $\phi$ on $V$ is determined by the function $\psi: \mathbf{v} \mapsto \phi(\mathbf{v}, \mathbf{v})$.
\end{lemma}

The proof this time is slightly more involved.
\begin{proof}
  We have the following:
  \begin{align*}
    \psi(\mathbf{x} + \mathbf{y}) &= \phi(\mathbf{x}, \mathbf{x}) + \phi(\mathbf{x}, \mathbf{y}) + \phi(\mathbf{y}, \mathbf{x}) + \phi(\mathbf{y}, \mathbf{y})\\
   -\psi(\mathbf{x} - \mathbf{y}) &= -\phi(\mathbf{x}, \mathbf{x}) + \phi(\mathbf{x}, \mathbf{y}) + \phi(\mathbf{y}, \mathbf{x}) - \phi(\mathbf{y}, \mathbf{y})\\
   i\psi(\mathbf{x} -i\mathbf{y}) &= i\phi(\mathbf{x}, \mathbf{x}) + \phi(\mathbf{x}, \mathbf{y}) - \phi(\mathbf{y}, \mathbf{x}) +i\phi(\mathbf{y}, \mathbf{y})\\
  -i\psi(\mathbf{x} +i\mathbf{y}) &=-i\phi(\mathbf{x}, \mathbf{x}) + \phi(\mathbf{x}, \mathbf{y}) - \phi(\mathbf{y}, \mathbf{x}) -i\phi(\mathbf{y}, \mathbf{y})
  \end{align*}
  So
  \[
    \phi(\mathbf{x}, \mathbf{y}) = \frac{1}{4}(\psi(\mathbf{x} + \mathbf{y}) - \psi(\mathbf{x} - \mathbf{y}) + i\psi(\mathbf{x} - i\mathbf{y}) - i \psi(\mathbf{x} + i\mathbf{y})).\qedhere
  \]
\end{proof}

\begin{thm}[Hermitian form of Sylvester's law of inertia]
  Let $V$ be a finite-dimensional complex vector space and $\phi$ a hermitian form on $V$. Then there exists unique non-negative integers $p$ and $q$ such that $\phi$ is represented by
  \[
    \begin{pmatrix}
      I_p & 0 & 0\\
      0 & -I_q & 0\\
      0 & 0 & 0
    \end{pmatrix}
  \]
  with respect to some basis.
\end{thm}

\begin{proof}
  Same as for symmetric forms over $\R$.
\end{proof}

\section{Inner product spaces}
Welcome to the last chapter, where we discuss inner products. Technically, an inner product is just a special case of a positive-definite symmetric bilinear or hermitian form. However, they are usually much more interesting and useful. Many familiar notions such as orthogonality only make sense when we have an inner product.

In this chapter, we will adopt the convention that $\F$ always means either $\R$ or $\C$, since working with other fields doesn't make much sense here.

\subsection{Definitions and basic properties}
\begin{defi}[Inner product space]
  Let $V$ be a vector space. An \emph{inner product} on $V$ is a positive-definite symmetric bilinear/hermitian form. We usually write $(x, y)$ instead of $\phi(x, y)$.

  A vector space equipped with an inner product is an \emph{inner product space}.
\end{defi}
We will see that if we have an inner product, then we can define lengths and distances in a sensible way.

\begin{eg}\leavevmode
  \begin{enumerate}
    \item $\R^n$ or $\C^n$ with the usual inner product
      \[
        (x, y) = \sum_{i = 1}^n \bar{x}_i y_i
      \]
      forms an inner product space.

      In some sense, this is the only inner product on finite-dimensional spaces, by Sylvester's law of inertia. However, we would not like to think so, and instead work with general inner products.
    \item Let $C([0, 1], \F)$ be the vector space of real/complex valued continuous functions on $[0, 1]$. Then the following is an inner product:
      \[
        (f, g) = \int_0^1 \bar{f}(t) g(t)\;\d t.
      \]
    \item More generally, for any $w: [0, 1] \to \R^+$ continuous, we can define the inner product on $C([0, 1], \F)$ as
      \[
        (f, g) = \int_0^1 w(t) \bar{f}(t) g(t) \;\d t.
      \]
  \end{enumerate}
\end{eg}
If $V$ is an inner product space, we can define a norm on $V$ by
\[
  \|\mathbf{v}\| = \sqrt{(\mathbf{v}, \mathbf{v})}.
\]
This is just the usual notion of norm on $\R^n$ and $\C^n$. This gives the notion of length in inner product spaces. Note that $\|\mathbf{v}\| > 0$ with equality if and only if $\mathbf{v} = \mathbf{0}$.

Note also that the norm $\|\ph\|$ determines the inner product by the polarization identity.

We want to see that this indeed satisfies the definition of a norm, as you might have seen from Analysis II. To prove this, we need to prove the Cauchy-Schwarz inequality.

\begin{thm}[Cauchy-Schwarz inequality]
  Let $V$ be an inner product space and $\mathbf{v}, \mathbf{w} \in V$. Then
  \[
    |(\mathbf{v}, \mathbf{w})| \leq \|\mathbf{v}\| \|\mathbf{w}\|.
  \]
\end{thm}

\begin{proof}
  If $\mathbf{w} = 0$, then this is trivial. Otherwise, since the norm is positive definite, for any $\lambda$, we get
  \[
    0 \leq (\mathbf{v} - \lambda \mathbf{w}, \mathbf{v} - \lambda \mathbf{w}) = (\mathbf{v}, \mathbf{v}) - \bar{\lambda} (\mathbf{w}, \mathbf{v}) - \lambda (\mathbf{v}, \mathbf{w}) + |\lambda|^2 (\mathbf{w}, \mathbf{w}).
  \]
  We now pick a clever value of $\lambda$. We let
  \[
    \lambda = \frac{(\mathbf{w}, \mathbf{v})}{(\mathbf{w}, \mathbf{w})}.
  \]
  Then we get
  \[
    0 \leq (\mathbf{v}, \mathbf{v}) - \frac{|(\mathbf{w}, \mathbf{v})|^2}{(\mathbf{w}, \mathbf{w})} - \frac{|(\mathbf{w}, \mathbf{v})|^2}{(\mathbf{w}, \mathbf{w})} + \frac{|(\mathbf{w}, \mathbf{v})|^2}{(\mathbf{w}, \mathbf{w})}.
  \]
  So we get
  \[
    |(\mathbf{w}, \mathbf{v})|^2 \leq (\mathbf{v}, \mathbf{v}) (\mathbf{w}, \mathbf{w}).
  \]
  So done.
\end{proof}
With this, we can prove the triangle inequality.

\begin{cor}[Triangle inequality]
  Let $V$ be an inner product space and $\mathbf{v}, \mathbf{w} \in V$. Then
  \[
    \|\mathbf{v} + \mathbf{w}\| \leq \|\mathbf{v}\| + \|\mathbf{w}\|.
  \]
\end{cor}

\begin{proof}
  We compute
  \begin{align*}
    \|\mathbf{v} + \mathbf{w}\|^2 &= (\mathbf{v} + \mathbf{w}, \mathbf{v} + \mathbf{w}) \\
    &= (\mathbf{v}, \mathbf{v}) + (\mathbf{v}, \mathbf{w}) + (\mathbf{w}, \mathbf{v}) + (\mathbf{w}, \mathbf{w})\\
    &\leq \|\mathbf{v}\|^2 + 2 \|\mathbf{v} \| \|\mathbf{w}\| + \|\mathbf{w}\|^2\\
    &= (\|\mathbf{v}\| + \|\mathbf{w}\|)^2.
  \end{align*}
  So done.
\end{proof}

The next thing we do is to define orthogonality. This generalizes the notion of being ``perpendicular''.

\begin{defi}[Orthogonal vectors]
  Let $V$ be an inner product space. Then $\mathbf{v}, \mathbf{w} \in V$ are \emph{orthogonal} if $(\mathbf{v}, \mathbf{w}) = 0$.
\end{defi}

\begin{defi}[Orthonormal set]
  Let $V$ be an inner product space. A set $\{\mathbf{v}_i: i \in I\}$ is an \emph{orthonormal set} if for any $i, j \in I$, we have
  \[
    (\mathbf{v}_i, \mathbf{v}_j) = \delta_{ij}
  \]
\end{defi}
It should be clear that an orthonormal set must be linearly independent.

\begin{defi}[Orthonormal basis]
  Let $V$ be an inner product space. A subset of $V$ is an \emph{orthonormal basis} if it is an orthonormal set and is a basis.
\end{defi}

In an inner product space, we almost always want orthonormal basis only. If we pick a basis, we should pick an orthonormal one.

However, we do not know there is always an orthonormal basis, even in the finite-dimensional case. Also, given an orthonormal set, we would like to extend it to an orthonormal basis. This is what we will do later.

Before that, we first note that given an orthonormal basis, it is easy to find the coordinates of any vector in this basis. Suppose $V$ is a finite-dimensional inner product space with an orthonormal basis $\mathbf{v}_1, \cdots, \mathbf{v}_n$. Given
\[
  \mathbf{v} = \sum_{i = 1}^n \lambda_i \mathbf{v}_i,
\]
we have
\[
  (\mathbf{v}_j, \mathbf{v}) = \sum_{i = 1}^n \lambda_i (\mathbf{v}_j, \mathbf{v}_i) = \lambda_j.
\]
So $\mathbf{v} \in V$ can always be written as
\[
  \sum_{i = 1}^n (\mathbf{v}_i, \mathbf{v}) \mathbf{v}_i.
\]
\begin{lemma}[Parseval's identity]
  Let $V$ be a finite-dimensional inner product space with an orthonormal basis $\mathbf{v}_1, \cdots, \mathbf{v}_n$, and $\mathbf{v}, \mathbf{w} \in V$. Then
  \[
    (\mathbf{v}, \mathbf{w}) = \sum_{i = 1}^n \overline{(\mathbf{v}_i, \mathbf{v})} (\mathbf{v}_i, \mathbf{w}).
  \]
  In particular,
  \[
    \|\mathbf{v}\|^2 = \sum_{i = 1}^n |(\mathbf{v}_i, \mathbf{v})|^2.
  \]
\end{lemma}
This is something we've seen in IB Methods, for infinite dimensional spaces. However, we will only care about finite-dimensional ones now.

\begin{proof}
  \begin{align*}
    (\mathbf{v}, \mathbf{w}) &= \left(\sum_{i = 1}^n (\mathbf{v}_i, \mathbf{v}) \mathbf{v}_i, \sum_{j = 1}^n (\mathbf{v}_j, \mathbf{w}) \mathbf{v}_j\right)\\
    &= \sum_{i, j = 1}^n \overline{(\mathbf{v}_i, \mathbf{v})} (\mathbf{v}_j, \mathbf{w}) (\mathbf{v}_i, \mathbf{v}_j)\\
    &= \sum_{i, j = 1}^n \overline{(\mathbf{v}_i, \mathbf{v})} (\mathbf{v}_j, \mathbf{w}) \delta_{ij}\\
    &= \sum_{i = 1}^n \overline{(\mathbf{v}_i, \mathbf{v})} (\mathbf{v}_i, \mathbf{w}).\qedhere
  \end{align*}
\end{proof}

\subsection{Gram-Schmidt orthogonalization}
As mentioned, we want to make sure every vector space has an orthonormal basis, and we can extend any orthonormal set to an orthonormal basis, at least in the case of finite-dimensional vector spaces. The idea is to start with an arbitrary basis, which we know exists, and produce an orthonormal basis out of it. The way to do this is the Gram-Schmidt process.
\begin{thm}[Gram-Schmidt process]
  Let $V$ be an inner product space and $\mathbf{e}_1, \mathbf{e}_2, \cdots$ a linearly independent set. Then we can construct an orthonormal set $\mathbf{v}_1, \mathbf{v}_2, \cdots$ with the property that
  \[
    \bra \mathbf{v}_1, \cdots, \mathbf{v}_k\ket = \bra \mathbf{e}_1, \cdots, \mathbf{e}_k\ket
  \]
  for every $k$.
\end{thm}
Note that we are not requiring the set to be finite. We are just requiring it to be countable.

\begin{proof}
  We construct it iteratively, and prove this by induction on $k$. The base case $k = 0$ is contentless.

  Suppose we have already found $\mathbf{v}_1, \cdots, \mathbf{v}_k$ that satisfies the properties. We define
  \[
    \mathbf{u}_{k + 1} = \mathbf{e}_{k + 1} - \sum_{i = 1}^k (\mathbf{v}_i, \mathbf{e}_{i + 1}) \mathbf{v}_i.
  \]
  We want to prove that this is orthogonal to all the other $\mathbf{v}_i$'s for $i \leq k$. We have
  \[
    (\mathbf{v}_j, \mathbf{u}_{k + 1}) = (\mathbf{v}_j, \mathbf{e}_{k + 1}) - \sum_{i = 1}^k (\mathbf{v}_i, \mathbf{e}_{k + 1}) \delta_{ij} = (\mathbf{v}_j, \mathbf{e}_{k + 1}) - (\mathbf{v}_j, \mathbf{e}_{k + 1}) = 0.
  \]
  So it is orthogonal.

  We want to argue that $\mathbf{u}_{k + 1}$ is non-zero. Note that
  \[
    \bra \mathbf{v}_1, \cdots, \mathbf{v}_k, \mathbf{u}_{k + 1}\ket = \bra \mathbf{v}_1, \cdots, \mathbf{v}_k, \mathbf{e}_{k + 1}\ket
  \]
  since we can recover $\mathbf{e}_{k + 1}$ from $\mathbf{v}_1, \cdots, \mathbf{v}_k$ and $\mathbf{u}_{k + 1}$ by construction. We also know
  \[
    \bra \mathbf{v}_1, \cdots, \mathbf{v}_k, \mathbf{e}_{k + 1}\ket = \bra \mathbf{e}_1, \cdots, \mathbf{e}_k, \mathbf{e}_{k + 1}\ket
  \]
  by assumption. We know $\bra \mathbf{e}_1, \cdots, \mathbf{e}_k, \mathbf{e}_{k + 1}\ket$ has dimension $k + 1$ since the $\mathbf{e}_i$ are linearly independent. So we must have $\mathbf{u}_{k + 1}$ non-zero, or else $\bra \mathbf{v}_1, \cdots, \mathbf{v}_k\ket$ will be a set of size $k$ spanning a space of dimension $k + 1$, which is clearly nonsense.

  Therefore, we can define
  \[
    \mathbf{v}_{k + 1} = \frac{\mathbf{u}_{k + 1}}{\|\mathbf{u}_{k + 1}\|}.
  \]
  Then $\mathbf{v}_1, \cdots, \mathbf{v}_{k + 1}$ is orthonormal and $\bra \mathbf{v}_1, \cdots, \mathbf{v}_{k + 1}\ket = \bra \mathbf{e}_1, \cdots, \mathbf{e}_{k + 1}\ket$ as required.
\end{proof}

\begin{cor}
  If $V$ is a finite-dimensional inner product space, then any orthonormal set can be extended to an orthonormal basis.
\end{cor}

\begin{proof}
  Let $\mathbf{v}_1, \cdots, \mathbf{v}_k$ be an orthonormal set. Since this is linearly independent, we can extend it to a basis $(\mathbf{v}_1,\cdots, \mathbf{v}_k, \mathbf{x}_{k + 1}, \cdots, \mathbf{x}_n)$.

  We now apply the Gram-Schmidt process to this basis to get an orthonormal basis of $V$, say $(\mathbf{u}_1, \cdots, \mathbf{u}_n)$. Moreover, we can check that the process does not modify our $\mathbf{v}_1, \cdots, \mathbf{v}_k$, i.e.\ $\mathbf{u}_i = \mathbf{v}_i$ for $1 \leq i \leq k$. So done.
\end{proof}

\begin{defi}[Orthogonal internal direct sum]
  Let $V$ be an inner product space and $V_1, V_2 \leq V$. Then $V$ is the \emph{orthogonal internal direct sum} of $V_1$ and $V_2$ if it is a direct sum and $V_1$ and $V_2$ are orthogonal. More precisely, we require
  \begin{enumerate}
    \item $V = V_1 + V_2$
    \item $V_1 \cap V_2 = 0$
    \item $(\mathbf{v}_1, \mathbf{v}_2) = 0$ for all $\mathbf{v}_1 \in V_1$ and $\mathbf{v}_2 \in V_2$.
  \end{enumerate}
  Note that condition (iii) implies (ii), but we write it for the sake of explicitness.

  We write $V = V_1 \perp V_2$.
\end{defi}

\begin{defi}[Orthogonal complement]
  If $W \leq V$ is a subspace of an inner product space $V$, then the \emph{orthogonal complement} of $W$ in $V$ is the subspace
  \[
    W^\perp = \{\mathbf{v} \in V: (\mathbf{v}, \mathbf{w}) = 0, \forall \mathbf{w} \in W\}.
  \]
\end{defi}
It is true that the orthogonal complement is a complement and orthogonal, i.e.\ $V$ is the orthogonal direct sum of $W$ and $W^\perp$.

\begin{prop}
  Let $V$ be a finite-dimensional inner product space, and $W \leq V$. Then
  \[
    V = W \perp W^\perp.
  \]
\end{prop}

\begin{proof}
  There are three things to prove, and we know (iii) implies (ii). Also, (iii) is obvious by definition of $W^\perp$. So it remains to prove (i), i.e.\ $V = W + W^\perp$.

  Let $\mathbf{w}_1, \cdots, \mathbf{w}_k$ be an orthonormal basis for $W$, and pick $\mathbf{v}\in V$. Now let
  \[
    \mathbf{w} = \sum_{i = 1}^k (\mathbf{w}_i, \mathbf{v}) \mathbf{w}_i.
  \]
  Clearly, we have $\mathbf{w} \in W$. So we need to show $\mathbf{v} - \mathbf{w} \in W^\perp$. For each $j$, we can compute
  \begin{align*}
    (\mathbf{w}_j, \mathbf{v} - \mathbf{w}) &= (\mathbf{w}_j, \mathbf{v}) - \sum_{i = 1}^k (\mathbf{w}_i, \mathbf{v})(\mathbf{w}_j, \mathbf{w}_i)\\
    &= (\mathbf{w}_j, \mathbf{v}) - \sum_{i = 1}^k (\mathbf{w}_i, \mathbf{v}) \delta_{ij}\\
    &= 0.
  \end{align*}
  Hence for any $\lambda_i$, we have
  \[
    \left(\sum \lambda_j \mathbf{w}_j, \mathbf{v} - \mathbf{w}\right) = 0.
  \]
  So we have $\mathbf{v}-\mathbf{w} \in W^\perp$. So done.
\end{proof}

\begin{defi}[Orthogonal external direct sum]
  Let $V_1, V_2$ be inner product spaces. The \emph{orthogonal external direct sum} of $V_1$ and $V_2$ is the vector space $V_1 \oplus V_2$ with the inner product defined by
  \[
    (\mathbf{v}_1 + \mathbf{v}_2, \mathbf{w}_1 + \mathbf{w}_2) = (\mathbf{v}_1, \mathbf{w}_1) + (\mathbf{v}_2, \mathbf{w}_2),
  \]
  with $\mathbf{v}_1, \mathbf{w}_1 \in V_1$, $\mathbf{v}_2, \mathbf{w}_2 \in V_2$.

  Here we write $\mathbf{v}_1 + \mathbf{v}_2 \in V_1 \oplus V_2$ instead of $(\mathbf{v}_1, \mathbf{v}_2)$ to avoid confusion.
\end{defi}
This external direct sum is equivalent to the internal direct sum of $\{(\mathbf{v}_1, \mathbf{0}): \mathbf{v}_1 \in V_1\}$ and $\{(\mathbf{0}, \mathbf{v}_2): \mathbf{v}_2 \in V_2\}$.

\begin{prop}
  Let $V$ be a finite-dimensional inner product space and $W \leq V$. Let $(\mathbf{e}_1, \cdots, \mathbf{e}_k)$ be an orthonormal basis of $W$. Let $\pi$ be the orthonormal projection of $V$ onto $W$, i.e.\ $\pi: V \to W$ is a function that satisfies $\ker \pi = W^\perp$, $\pi|_W = \id$. Then
  \begin{enumerate}
    \item $\pi$ is given by the formula
      \[
        \pi(\mathbf{v}) = \sum_{i = 1}^k (\mathbf{e}_i, \mathbf{v}) \mathbf{e}_i.
      \]
    \item For all $\mathbf{v}\in V, \mathbf{w} \in W$, we have
      \[
        \|\mathbf{v} - \pi(\mathbf{v})\| \leq \|\mathbf{v} - \mathbf{w}\|,
      \]
      with equality if and only if $\pi(\mathbf{v}) = \mathbf{w}$. This says $\pi(\mathbf{v})$ is the point on $W$ that is closest to $\mathbf{v}$.
      \begin{center}
        \begin{tikzpicture}
          \draw (0, 0) -- (5, 0) -- (7, 2.5) -- (2, 2.5) -- cycle;
          \draw [->] (3, 1.25) -- (3, 3) node [above] {$W^\perp$};
          \draw [dashed] (4, 1.25) node [left] {$\mathbf{w}$} -- (5, 3) node [above] {$\mathbf{v}$};
          \draw [->] (5, 3) -- (5, 1.25) node [right] {$\pi(\mathbf{v})$};
          \draw [dashed] (4, 1.25) -- (5, 1.25);
          \node at (5, 3) [circ] {};
          \node at (4, 1.25) [circ] {};
          \node at (5, 1.25) [circ] {};
        \end{tikzpicture}
      \end{center}
  \end{enumerate}
\end{prop}

\begin{proof}\leavevmode
  \begin{enumerate}
    \item Let $\mathbf{v} \in V$, and define
      \[
        \mathbf{w} = \sum_{i = 1} (\mathbf{e}_i, \mathbf{v}) \mathbf{e}_i.
      \]
      We want to show this is $\pi(\mathbf{v})$. We need to show $\mathbf{v} - \mathbf{w} \in W^\perp$. We can compute
      \[
        (\mathbf{e}_j, \mathbf{v} - \mathbf{w}) = (\mathbf{e}_j, \mathbf{v}) - \sum_{i = 1}^k (\mathbf{e}_i, \mathbf{v}) (\mathbf{e}_j, \mathbf{e}_i) = 0.
      \]
      So $\mathbf{v} - \mathbf{w}$ is orthogonal to every basis vector in $\mathbf{w}$, i.e.\ $\mathbf{v} - \mathbf{w} \in W^\perp$.So
      \[
        \pi(\mathbf{v}) = \pi(\mathbf{w}) + \pi(\mathbf{v} - \mathbf{w}) = \mathbf{w}
      \]
      as required.
    \item This is just Pythagoras' theorem. Note that if $\mathbf{x}$ and $\mathbf{y}$ are orthogonal, then
      \begin{align*}
        \|\mathbf{x} + \mathbf{y}\|^2 &= (\mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y}) \\
        &= (\mathbf{x}, \mathbf{x}) + (\mathbf{x}, \mathbf{y}) + (\mathbf{y}, \mathbf{x}) + (\mathbf{y}. \mathbf{y})\\
        &= \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2.
      \end{align*}
      We apply this to our projection. For any $\mathbf{w} \in W$, we have
      \[
        \|\mathbf{v} - \mathbf{w}\|^2 = \|\mathbf{v} - \pi (\mathbf{v})\|^2 + \|\pi(\mathbf{v}) - \mathbf{w}\|^2 \geq \|\mathbf{v} - \pi(\mathbf{v})\|^2
      \]
      with equality if and only if $\|\pi(\mathbf{v}) - \mathbf{w}\| = 0$, i.e.\ $\pi(\mathbf{v}) = \mathbf{w}$.\qedhere
  \end{enumerate}
\end{proof}

\subsection{Adjoints, orthogonal and unitary maps}
\subsubsection*{Adjoints}
\begin{lemma}
  Let $V$ and $W$ be finite-dimensional inner product spaces and $\alpha: V \to W$ is a linear map. Then there exists a unique linear map $\alpha^*: W \to V$ such that
  \[
    (\alpha \mathbf{v}, \mathbf{w}) = (\mathbf{v}, \alpha^* \mathbf{w})\tag{$*$}
  \]
  for all $\mathbf{v} \in V$, $\mathbf{w} \in W$.
\end{lemma}

\begin{proof}
  There are two parts. We have to prove existence and uniqueness. We'll first prove it concretely using matrices, and then provide a conceptual reason of what this means.

  Let $(\mathbf{v}_1, \cdots, \mathbf{v}_n)$ and $(\mathbf{w}_1, \cdots, \mathbf{w}_m)$ be orthonormal basis for $V$ and $W$. Suppose $\alpha$ is represented by $A$.

  To show uniqueness, suppose $\alpha^*: W \to V$ satisfies $(\alpha \mathbf{v}, \mathbf{w}) = (\mathbf{v}, \alpha^* \mathbf{w})$ for all $\mathbf{v} \in V$, $\mathbf{w} \in W$, then for all $i, j$, by definition, we know
  \begin{align*}
    (\mathbf{v}_i, \alpha^*(\mathbf{w}_j)) &= (\alpha(\mathbf{v}_i), \mathbf{w}_j) \\
    &= \left(\sum_k A_{ki} \mathbf{w}_k, \mathbf{w}_j\right)\\
    &= \sum_k \bar{A}_{ki} (\mathbf{w}_k, \mathbf{w}_j) = \bar{A}_{ji}.
  \end{align*}
  So we get
  \[
    \alpha^*(\mathbf{w}_j) = \sum_i (\mathbf{v}_i, \alpha^*(\mathbf{w}_j)) \mathbf{v}_i = \sum_i \bar{A}_{ji} \mathbf{v}_i.
  \]
  Hence $\alpha^*$ must be represented by $A^\dagger$. So $\alpha^*$ is unique.

  To show existence, all we have to do is to show $A^\dagger$ indeed works. Now let $\alpha^*$ be represented by $A^\dagger$. We can compute the two sides of $(*)$ for arbitrary $\mathbf{v}, \mathbf{w}$. We have
  \begin{align*}
    \left(\alpha\left(\sum \lambda_i \mathbf{v}_i\right), \sum \mu_j \mathbf{w}_j\right) &= \sum_{i, j} \bar{\lambda}_i \mu_j (\alpha(\mathbf{v}_i), \mathbf{w}_j)\\
    &= \sum_{i, j} \bar{\lambda}_i \mu_j \left(\sum_k A_{ki} \mathbf{w}_k, \mathbf{w}_j\right)\\
    &= \sum_{i, j} \bar{\lambda}_i \bar{A}_{ji} \mu_j.
  \end{align*}
  We can compute the other side and get
  \begin{align*}
    \left(\sum \lambda_i \mathbf{v}_i, \alpha^*\left(\sum \mu_j \mathbf{w}_j\right)\right) &= \sum_{i, j} \bar{\lambda}_i \mu_j \left(\mathbf{v}_i, \sum_k A^{\dagger}_{kj} \mathbf{v}_k\right)\\
    &= \sum_{i, j} \bar{\lambda}_i \bar{A}_{ji} \mu_j.
  \end{align*}
  So done.
\end{proof}
What does this mean, conceptually? Note that the inner product $V$ defines an isomorphism $V \to \bar{V}^*$ by $\mathbf{v} \mapsto (\ph,\mathbf{v})$. Similarly, we have an isomorphism $W \to \bar{W}^*$. We can then put them in the following diagram:
\[
  \begin{tikzcd}
    V \ar[r, "\alpha"] \ar[d, "\cong"] & W \ar[d, "\cong"]\\
    \bar{V}^* & \bar{W}^* \ar[l, dashed, "\alpha^*"]
  \end{tikzcd}
\]
Then $\alpha^*$ is what fills in the dashed arrow. So $\alpha^*$ is in some sense the ``dual'' of the map $\alpha$.

\begin{defi}[Adjoint]
  We call the map $\alpha^*$ the \emph{adjoint} of $\alpha$.
\end{defi}
We have just seen that if $\alpha$ is represented by $A$ with respect to some orthonormal bases, then $\alpha^*$ is represented by $A^\dagger$.

\begin{defi}[Self-adjoint]
  Let $V$ be an inner product space, and $\alpha \in \End(V)$. Then $\alpha$ is \emph{self-adjoint} if $\alpha = \alpha^*$, i.e.
  \[
    (\alpha(\mathbf{v}), \mathbf{w}) = (\mathbf{v}, \alpha(\mathbf{w}))
  \]
  for all $\mathbf{v}, \mathbf{w}$.
\end{defi}
Thus if $V = \R^n$ with the usual inner product, then $A \in \Mat_n(\R)$ is self-adjoint if and only if it is symmetric, i.e.\ $A = A^T$. If $V = \C^n$ with the usual inner product, then $A \in \Mat_n(\C)$ is self-adjoint if and only if $A$ is Hermitian, i.e.\ $A = A^\dagger$.

Self-adjoint endomorphisms are important, as you may have noticed from IB Quantum Mechanics. We will later see that these have real eigenvalues with an orthonormal basis of eigenvectors.

\subsubsection*{Orthogonal maps}
Another important class of endomorphisms is those that preserve lengths. We will first do this for real vector spaces, since the real and complex versions have different names.
\begin{defi}[Orthogonal endomorphism]
  Let $V$ be a real inner product space. Then $\alpha \in \End(V)$ is \emph{orthogonal} if
  \[
    (\alpha(\mathbf{v}), \alpha(\mathbf{w})) = (\mathbf{v}, \mathbf{w})
  \]
  for all $\mathbf{v}, \mathbf{w} \in V$.
\end{defi}
By the polarization identity, $\alpha$ is orthogonal if and only if $\|\alpha(\mathbf{v})\| = \|\mathbf{v}\|$ for all $\mathbf{v} \in V$.

A real square matrix (as an endomorphism of $\R^n$ with the usual inner product) is orthogonal if and only if its columns are an orthonormal set.

There is also an alternative way of characterizing these orthogonal maps.

\begin{lemma}
  Let $V$ be a finite-dimensional space and $\alpha \in \End(V)$. Then $\alpha$ is orthogonal if and only if $\alpha^{-1} = \alpha^*$.
\end{lemma}

\begin{proof}
  $(\Leftarrow)$ Suppose $\alpha^{-1} = \alpha^*$. If $\alpha^{-1} = \alpha^*$, then
  \[
    (\alpha \mathbf{v}, \alpha \mathbf{v}) = (\mathbf{v}, \alpha^* \alpha \mathbf{v}) = (\mathbf{v}, \alpha^{-1} \alpha \mathbf{v}) = (\mathbf{v}, \mathbf{v}).
  \]
  $(\Rightarrow)$ If $\alpha$ is orthogonal and $(\mathbf{v}_1, \cdots, \mathbf{v}_n)$ is an orthonormal basis for $V$, then for $1 \leq i, j \leq n$, we have
  \[
    \delta_{ij} = (\mathbf{v}_i, \mathbf{v}_j) = (\alpha \mathbf{v}_i, \alpha \mathbf{v}_j) = (\mathbf{v}_i, \alpha^* \alpha \mathbf{v}_j).
  \]
  So we know
  \[
    \alpha^* \alpha (\mathbf{v}_j) = \sum_{i = 1}^n (\mathbf{v}_i, \alpha^* \alpha \mathbf{v}_j)) \mathbf{v}_i = \mathbf{v}_j.
  \]
  So by linearity of $\alpha^* \alpha$, we know $\alpha^* \alpha = \id_V$. So $\alpha^* = \alpha^{-1}$.
\end{proof}

\begin{cor}
  $\alpha \in \End(V)$ is orthogonal if and only if $\alpha$ is represented by an orthogonal matrix, i.e.\ a matrix $A$ such that $A^T A = AA^T = I$, with respect to any orthonormal basis.
\end{cor}

\begin{proof}
  Let $(\mathbf{e}_1, \cdots, \mathbf{e}_n)$ be an orthonormal basis for $V$. Then suppose $\alpha$ is represented by $A$. So $\alpha^*$ is represented by $A^T$. Then $A^* = A^{-1}$ if and only if $AA^T = A^T A = I$.
\end{proof}

\begin{defi}[Orthogonal group]
  Let $V$ be a real inner product space. Then the \emph{orthogonal group} of $V$ is
  \[
    \Or(V) = \{\alpha \in \End(V): \alpha\text{ is orthogonal}\}.
  \]
\end{defi}
It follows from the fact that $\alpha^* = \alpha^{-1}$ that $\alpha$ is invertible, and it is clear from definition that $\Or(V)$ is closed under multiplication and inverses. So this is indeed a group.

\begin{prop}
  Let $V$ be a finite-dimensional real inner product space and $(\mathbf{e}_1, \cdots, \mathbf{e}_n)$ is an orthonormal basis of $V$. Then there is a bijection
  \begin{align*}
    \Or(V) &\to \{\text{orthonormal basis for }V\}\\
    \alpha &\mapsto (\alpha(\mathbf{e}_1, \cdots, \mathbf{e}_n)).
  \end{align*}
\end{prop}
This is analogous to our result for general vector spaces and general bases, where we replace $\Or(V)$ with $\GL(V)$.

\begin{proof}
  Same as the case for general vector spaces and general bases.
\end{proof}

\subsubsection*{Unitary maps}
We are going to study the complex version of orthogonal maps, known as \emph{unitary maps}. The proofs are almost always identical to the real case, and we will not write the proofs again.

\begin{defi}[Unitary map]
  Let $V$ be a finite-dimensional complex vector space. Then $\alpha \in \End(V)$ is \emph{unitary} if
  \[
    (\alpha(\mathbf{v}), \alpha(\mathbf{w})) = (\mathbf{v}, \mathbf{w})
  \]
  for all $\mathbf{v}, \mathbf{w} \in V$.
\end{defi}
By the polarization identity, $\alpha$ is unitary if and only if $\|\alpha(\mathbf{v})\| = \|\mathbf{v}\|$ for all $\mathbf{v} \in V$.

\begin{lemma}
  Let $V$ be a finite dimensional complex inner product space and $\alpha \in \End(V)$. Then $\alpha$ is unitary if and only if $\alpha$ is invertible and $\alpha^* = \alpha^{-1}$.
\end{lemma}

\begin{cor}
  $\alpha \in \End(V)$ is unitary if and only if $\alpha$ is represented by a unitary matrix $A$ with respect to any orthonormal basis, i.e.\ $A^{-1} = A^\dagger$.
\end{cor}

\begin{defi}[Unitary group]
  Let $V$ be a finite-dimensional complex inner product space. Then the \emph{unitary group} of $V$ is
  \[
    U(V) = \{\alpha \in \End(V): \alpha\text{ is unitary}\}.
  \]
\end{defi}

\begin{prop}
  Let $V$ be a finite-dimensional complex inner product space. Then there is a bijection
  \begin{align*}
    U(V) &\to \{\text{orthonormal basis of } V\}\\
    \alpha &\mapsto \{\alpha(\mathbf{e}_1), \cdots, \alpha (\mathbf{e}_n)\}.
  \end{align*}
\end{prop}

\subsection{Spectral theory}
We are going to classify matrices in inner product spaces. Recall that for general vector spaces, what we effectively did was to find the orbits of the conjugation action of $\GL(V)$ on $\Mat_n(\F)$. If we have inner product spaces, we will want to look at the action of $O(V)$ or $U(V)$ on $\Mat_n(\F)$. In a more human language, instead of allowing arbitrary basis transformations, we only allow transforming between orthonormal basis.

We are not going to classify all endomorphisms, but just self-adjoint and orthogonal/unitary ones.

\begin{lemma}
  Let $V$ be a finite-dimensional inner product space, and $\alpha \in \End(V)$ self-adjoint. Then
  \begin{enumerate}
    \item $\alpha$ has a real eigenvalue, and all eigenvalues of $\alpha$ are real.
    \item Eigenvectors of $\alpha$ with distinct eigenvalues are orthogonal.
  \end{enumerate}
\end{lemma}

\begin{proof}
  We are going to do real and complex cases separately.
  \begin{enumerate}
    \item Suppose first $V$ is a complex inner product space. Then by the fundamental theorem of algebra, $\alpha$ has an eigenvalue, say $\lambda$. We pick $\mathbf{v} \in V\setminus \{0\}$ such that $\alpha \mathbf{v} = \lambda \mathbf{v}$. Then
      \[
        \bar{\lambda}(\mathbf{v}, \mathbf{v}) = (\lambda \mathbf{v}, \mathbf{v}) = (\alpha \mathbf{v}, \mathbf{v}) = (\mathbf{v}, \alpha \mathbf{v}) = (\mathbf{v}, \lambda \mathbf{v}) = \lambda (\mathbf{v}, \mathbf{v}).
      \]
      Since $\mathbf{v}\not= \mathbf{0}$, we know $(\mathbf{v}, \mathbf{v})\not= 0$. So $\lambda = \bar{\lambda}$.

      For the real case, we pretend we are in the complex case. Let $\mathbf{e}_1, \cdots, \mathbf{e}_n$ be an orthonormal basis for $V$. Then $\alpha$ is represented by a symmetric matrix $A$ (with respect to this basis). Since real symmetric matrices are Hermitian viewed as complex matrices, this gives a self-adjoint endomorphism of $\C^n$. By the complex case, $A$ has real eigenvalues only. But the eigenvalues of $A$ are the eigenvalues of $\alpha$ and $M_A(t) = M_\alpha(t)$. So done.

      Alternatively, we can prove this without reducing to the complex case. We know every irreducible factor of $M_\alpha(t)$ in $\R[t]$ must have degree $1$ or $2$, since the roots are either real or come in complex conjugate pairs. Suppose $f(t)$ were an irreducible factor of degree $2$. Then
      \[
        \left(\frac{m_\alpha}{f}\right)(\alpha) \not= 0
      \]
      since it has degree less than the minimal polynomial. So there is some $\mathbf{v} \in V$ such that
      \[
        \left(\frac{M_\alpha}{f}\right)(\alpha)(\mathbf{v}) \not= \mathbf{0}.
      \]
      So it must be that $f(\alpha)(\mathbf{v}) = \mathbf{0}$. Let $U = \bra \mathbf{v}, \alpha (\mathbf{v})\ket$. Then this is an $\alpha$-invariant subspace of $V$ since $f$ has degree $2$.

      Now $\alpha|_U \in \End(U)$ is self-adjoint. So if $(\mathbf{e}_1, \mathbf{e}_2)$ is an orthonormal basis of $U$, then $\alpha$ is represented by a real symmetric matrix, say
      \[
        \begin{pmatrix}
          a & b\\
          b & a
        \end{pmatrix}
      \]
      But then $\chi_{\alpha|_U}(t) = (t - a)^2 - b^2$, which has real roots, namely $a \pm b$. This is a contradiction, since $M_{\alpha|_U} = f$, but $f$ is irreducible.
    \item Now suppose $\alpha \mathbf{v} = \lambda \mathbf{v}$, $\alpha \mathbf{w} = \mu \mathbf{w}$ and $\lambda \not= \mu$. We need to show $(\mathbf{v}, \mathbf{w}) = 0$. We know
      \[
        (\alpha \mathbf{v}, \mathbf{w}) = (\mathbf{v}, \alpha \mathbf{w})
      \]
      by definition. This then gives
      \[
        \lambda (\mathbf{v}, \mathbf{w}) = \mu (\mathbf{v}, \mathbf{w})
      \]
      Since $\lambda \not= \mu$, we must have $(\mathbf{v}, \mathbf{w}) = 0$.\qedhere
  \end{enumerate}
\end{proof}

\begin{thm}
  Let $V$ be a finite-dimensional inner product space, and $\alpha \in \End(V)$ self-adjoint. Then $V$ has an orthonormal basis of eigenvectors of $\alpha$.
\end{thm}

\begin{proof}
  By the previous lemma, $\alpha$ has a real eigenvalue, say $\lambda$. Then we can find an eigenvector $\mathbf{v} \in V\setminus \{0\}$ such that $\alpha \mathbf{v} = \lambda \mathbf{v}$.

  Let $U = \bra \mathbf{v}\ket ^\perp$. Then we can write
  \[
    V = \bra \mathbf{v}\ket \perp U.
  \]
  We now want to prove $\alpha$ sends $U$ into $U$. Suppose $\mathbf{u} \in U$. Then
  \[
    (\mathbf{v}, \alpha (\mathbf{u})) = (\alpha \mathbf{v}, \mathbf{u}) = \lambda (\mathbf{v}, \mathbf{u}) = 0.
  \]
  So $\alpha (\mathbf{u}) \in \bra \mathbf{v}\ket^\perp = U$. So $\alpha|_U \in \End(U)$ and is self-adjoint.

  By induction on $\dim V$, $U$ has an orthonormal basis $(\mathbf{v}_2, \cdots, \mathbf{v}_n)$ of $\alpha$ eigenvectors. Now let
  \[
    \mathbf{v}_1 = \frac{\mathbf{v}}{\|\mathbf{v}\|}.
  \]
  Then $(\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n)$ is an orthonormal basis of eigenvectors for $\alpha$.
\end{proof}

\begin{cor}
  Let $V$ be a finite-dimensional vector space and $\alpha$ self-adjoint. Then $V$ is the orthogonal (internal) direct sum of its $\alpha$-eigenspaces.
\end{cor}

\begin{cor}
  Let $A \in \Mat_n(\R)$ be symmetric. Then there exists an orthogonal matrix $P$ such that $P^TAP = P^{-1}AP$ is diagonal.
\end{cor}

\begin{proof}
  Let $(\ph, \ph)$ be the standard inner product on $\R^n$. Then $A$ is self-adjoint as an endomorphism of $\R^n$. So $\R^n$ has an orthonormal basis of eigenvectors for $A$, say $(\mathbf{v}_1, \cdots, \mathbf{v}_n)$. Taking $P = (\mathbf{v}_1\; \mathbf{v}_2\; \cdots \; \mathbf{v}_n)$ gives the result.
\end{proof}

\begin{cor}
  Let $V$ be a finite-dimensional real inner product space and $\psi: V\times V \to \R$ a symmetric bilinear form. Then there exists an orthonormal basis $(\mathbf{v}_1, \cdots, \mathbf{v}_n)$ for $V$ with respect to which $\psi$ is represented by a diagonal matrix.
\end{cor}

\begin{proof}
  Let $(\mathbf{u}_1, \cdots, \mathbf{u}_n)$ be any orthonormal basis for $V$. Then $\psi$ is represented by a symmetric matrix $A$. Then there exists an orthogonal matrix $P$ such that $P^T AP$ is diagonal. Now let $\mathbf{v}_i = \sum P_{ki} \mathbf{u}_k$. Then $(\mathbf{v}_1, \cdots, \mathbf{v}_n)$ is an orthonormal basis since
  \begin{align*}
    (\mathbf{v}_i, \mathbf{v}_j) &= \left(\sum P_{ki} \mathbf{u}_k, \sum P_{\ell j} \mathbf{u}_\ell\right) \\
    &= \sum P_{ik}^T (\mathbf{u}_k, \mathbf{u}_\ell) P_{\ell j}\\
    &= [P^T P]_{ij}\\
    &= \delta_{ij}.
  \end{align*}
  Also, $\psi$ is represented by $P^T AP$ with respect to $(\mathbf{v}_1, \cdots, \mathbf{v}_n)$.
\end{proof}
Note that the diagonal values of $P^T AP$ are just the eigenvalues of $A$. So the signature of $\psi$ is just the number of positive eigenvalues of $A$ minus the number of negative eigenvalues of $A$.

\begin{cor}
  Let $V$ be a finite-dimensional real vector space and $\phi, \psi$ symmetric bilinear forms on $V$ such that $\phi$ is positive-definite. Then we can find a basis $(\mathbf{v}_1, \cdots, \mathbf{v}_n)$ for $V$ such that both $\phi$ and $\psi$ are represented by diagonal matrices with respect to this basis.
\end{cor}

\begin{proof}
  We use $\phi$ to define an inner product. Choose an orthonormal basis for $V$ (equipped with $\phi$) $(\mathbf{v}_1, \cdots, \mathbf{v}_n)$ with respect to which $\psi$ is diagonal. Then $\phi$ is represented by $I$ with respect to this basis, since $\psi(\mathbf{v}_i, \mathbf{v}_j) = \delta_{ij}$. So done.
\end{proof}

\begin{cor}
  If $A, B \in \Mat_n(\R)$ are symmetric and $A$ is positive definitive (i.e.\ $\mathbf{v}^T A \mathbf{v} > 0$ for all $\mathbf{v} \in \R^n \setminus \{0\}$). Then there exists an invertible matrix $Q$ such that $Q^T AQ$ and $Q^T BQ$ are both diagonal.
\end{cor}

We can deduce similar results for complex finite-dimensional vector spaces, with the same proofs. In particular,
\begin{prop}\leavevmode
  \begin{enumerate}
    \item If $A \in \Mat_n(\C)$ is Hermitian, then there exists a unitary matrix $U \in \Mat_n(\C)$ such that
      \[
        U^{-1}AU = U^\dagger AU
      \]
      is diagonal.
    \item If $\psi$ is a Hermitian form on a finite-dimensional complex inner product space $V$, then there is an orthonormal basis for $V$ diagonalizing $\psi$.
    \item If $\phi, \psi$ are Hermitian forms on a finite-dimensional complex vector space and $\phi$ is positive definite, then there exists a basis for which $\phi$ and $\psi$ are diagonalized.
    \item Let $A, B \in \Mat_n(\C)$ be Hermitian, and $A$ positive definitive (i.e.\ $\mathbf{v}^\dagger A \mathbf{v} > 0$ for $\mathbf{v} \in V \setminus \{0\}$). Then there exists some invertible $Q$ such that $Q^\dagger AQ$ and $Q^\dagger BQ$ are diagonal.
  \end{enumerate}
\end{prop}

That's all for self-adjoint matrices. How about unitary matrices?
\begin{thm}
  Let $V$ be a finite-dimensional complex vector space and $\alpha \in U(V)$ be unitary. Then $V$ has an orthonormal basis of $\alpha$ eigenvectors.
\end{thm}

\begin{proof}
  By the fundamental theorem of algebra, there exists $\mathbf{v} \in V\setminus \{0\}$ and $\lambda \in \C$ such that $\alpha \mathbf{v} = \lambda \mathbf{v}$. Now consider $W = \bra \mathbf{v}\ket^\perp$. Then
  \[
    V = W \perp \bra \mathbf{v}\ket.
  \]
  We want to show $\alpha$ restricts to a (unitary) endomorphism of $W$. Let $\mathbf{w} \in W$. We need to show $\alpha(\mathbf{w})$ is orthogonal to $\mathbf{v}$. We have
  \[
    (\alpha \mathbf{w}, \mathbf{v}) = (\mathbf{w}, \alpha^{-1}\mathbf{v}) = (\mathbf{w}, \lambda^{-1} \mathbf{v}) = 0.
  \]
  So $\alpha(\mathbf{w}) \in W$ and $\alpha|_W \in \End(W)$. Also, $\alpha|_W$ is unitary since $\alpha$ is. So by induction on $\dim V$, $W$ has an orthonormal basis of $\alpha$ eigenvectors. If we add $\mathbf{v}/\|\mathbf{v}\|$ to this basis, we get an orthonormal basis of $V$ itself comprised of $\alpha$ eigenvectors.
\end{proof}
This theorem and the analogous one for self-adjoint endomorphisms have a common generalization, at least for complex inner product spaces. The key fact that leads to the existence of an orthonormal basis of eigenvectors is that $\alpha$ and $\alpha^*$ commute. This is clearly a necessary condition, since if $\alpha$ is diagonalizable, then $\alpha^*$ is diagonal in the same basis (since it is just the transpose (and conjugate)), and hence they commute. It turns out this is also a sufficient condition, as you will show in example sheet 4.

However, we cannot generalize this in the real orthogonal case. For example,
\[
  \begin{pmatrix}
    \cos \theta & \sin \theta\\
    - \sin \theta & \cos \theta
  \end{pmatrix} \in O(\R^2)
\]
cannot be diagonalized (if $\theta \not\in \pi \Z$). However, in example sheet 4, you will find a classification of $O(V)$, and you will see that the above counterexample is the worst that can happen in some sense.
\end{document}