Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
proof-pile / formal /hol /100 /minkowski.ml
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
16.3 kB
(* ========================================================================= *)
(* Minkowski's convex body theorem. *)
(* ========================================================================= *)
needs "Multivariate/measure.ml";;
(* ------------------------------------------------------------------------- *)
(* An ad hoc lemma. *)
(* ------------------------------------------------------------------------- *)
let LEMMA = prove
(`!f:real^N->bool t s:real^N->bool.
FINITE { u | u IN f /\ ~(t u = {})} /\
measurable s /\ &1 < measure s /\
(!u. u IN f ==> measurable(t u)) /\
s SUBSET UNIONS (IMAGE t f) /\
(!u v. u IN f /\ v IN f /\ ~(u = v) ==> DISJOINT (t u) (t v)) /\
(!u. u IN f ==> (IMAGE (\x. x - u) (t u)) SUBSET interval[vec 0,vec 1])
==> ?u v. u IN f /\ v IN f /\ ~(u = v) /\
~(DISJOINT (IMAGE (\x. x - u) (t u))
(IMAGE (\x. x - v) (t v)))`,
REPEAT STRIP_TAC THEN GEN_REWRITE_TAC I [TAUT `p <=> ~ ~p`] THEN
PURE_REWRITE_TAC[NOT_EXISTS_THM] THEN
REWRITE_TAC[TAUT `~(a /\ b /\ ~c /\ ~d) <=> a /\ b /\ ~c ==> d`] THEN
DISCH_TAC THEN
MP_TAC(ISPECL [`\u:real^N. IMAGE (\x:real^N. x - u) (t u)`;
`f:real^N->bool`]
HAS_MEASURE_DISJOINT_UNIONS_IMAGE_STRONG) THEN
ASM_REWRITE_TAC[IMAGE_EQ_EMPTY; NOT_IMP] THEN CONJ_TAC THENL
[REWRITE_TAC[VECTOR_ARITH `x - u:real^N = --u + x`] THEN
ASM_REWRITE_TAC[MEASURABLE_TRANSLATION_EQ];
ALL_TAC] THEN
MP_TAC(ISPECL [`vec 0:real^N`; `vec 1:real^N`] (CONJUNCT1
HAS_MEASURE_INTERVAL)) THEN
REWRITE_TAC[CONTENT_UNIT] THEN
MATCH_MP_TAC(TAUT `(b /\ a ==> F) ==> a ==> ~b`) THEN
DISCH_THEN(MP_TAC o MATCH_MP (ONCE_REWRITE_RULE
[TAUT `a /\ b /\ c ==> d <=> a /\ b ==> c ==> d`] HAS_MEASURE_SUBSET)) THEN
ASM_REWRITE_TAC[UNIONS_SUBSET; FORALL_IN_IMAGE; REAL_NOT_LE] THEN
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH
`&1 < a ==> a <= b ==> &1 < b`)) THEN
MATCH_MP_TAC REAL_LE_TRANS THEN
EXISTS_TAC `measure(UNIONS (IMAGE (t:real^N->real^N->bool) f))` THEN
CONJ_TAC THENL
[MATCH_MP_TAC MEASURE_SUBSET THEN ASM_REWRITE_TAC[] THEN
SUBGOAL_THEN
`UNIONS (IMAGE (t:real^N->real^N->bool) f) =
UNIONS (IMAGE t {u | u IN f /\ ~(t u = {})})`
SUBST1_TAC THENL
[GEN_REWRITE_TAC I [EXTENSION] THEN
REWRITE_TAC[IN_UNIONS; IN_IMAGE; IN_ELIM_THM] THEN
MESON_TAC[NOT_IN_EMPTY];
ALL_TAC] THEN
MATCH_MP_TAC MEASURABLE_UNIONS THEN
ASM_REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE] THEN
ASM_SIMP_TAC[FINITE_IMAGE; IN_ELIM_THM] THEN ASM_MESON_TAC[];
ALL_TAC] THEN
MP_TAC(ISPECL [`t:real^N->real^N->bool`; `f:real^N->bool`]
HAS_MEASURE_DISJOINT_UNIONS_IMAGE_STRONG) THEN
ASM_REWRITE_TAC[IMAGE_EQ_EMPTY; NOT_IMP] THEN
DISCH_THEN(SUBST1_TAC o MATCH_MP MEASURE_UNIQUE) THEN
REWRITE_TAC[VECTOR_ARITH `x - u:real^N = --u + x`] THEN
ASM_SIMP_TAC[MEASURE_TRANSLATION; REAL_LE_REFL]);;
(* ------------------------------------------------------------------------- *)
(* This is also interesting, and Minkowski follows easily from it. *)
(* ------------------------------------------------------------------------- *)
let BLICHFELDT = prove
(`!s:real^N->bool.
measurable s /\ &1 < measure s
==> ?x y. x IN s /\ y IN s /\ ~(x = y) /\
!i. 1 <= i /\ i <= dimindex(:N) ==> integer(x$i - y$i)`,
SUBGOAL_THEN
`!s:real^N->bool.
bounded s /\ measurable s /\ &1 < measure s
==> ?x y. x IN s /\ y IN s /\ ~(x = y) /\
!i. 1 <= i /\ i <= dimindex(:N) ==> integer(x$i - y$i)`
ASSUME_TAC THENL
[ALL_TAC;
REPEAT STRIP_TAC THEN
FIRST_ASSUM(MP_TAC o SPEC `measure(s:real^N->bool) - &1` o
MATCH_MP (REWRITE_RULE[IMP_CONJ] MEASURABLE_INNER_COMPACT)) THEN
ASM_REWRITE_TAC[REAL_SUB_LT; LEFT_IMP_EXISTS_THM] THEN
X_GEN_TAC `c:real^N->bool` THEN STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `c:real^N->bool`) THEN
ASM_SIMP_TAC[COMPACT_IMP_BOUNDED] THEN
ANTS_TAC THENL [ASM_REAL_ARITH_TAC; ASM SET_TAC[]]] THEN
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`{ u:real^N | !i. 1 <= i /\ i <= dimindex(:N)
==> integer(u$i) }`;
`\u. {x | (x:real^N) IN s /\
!i. 1 <= i /\ i <= dimindex(:N)
==> (u:real^N)$i <= x$i /\ x$i < u$i + &1 }`;
`s:real^N->bool`]
LEMMA) THEN
ASM_REWRITE_TAC[IN_ELIM_THM] THEN ANTS_TAC THENL
[ALL_TAC;
REWRITE_TAC[DISJOINT; GSYM MEMBER_NOT_EMPTY; LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`u:real^N`; `v:real^N`] THEN
REWRITE_TAC[EXISTS_IN_IMAGE; IN_INTER] THEN
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `x:real^N` THEN
REWRITE_TAC[IN_IMAGE; IN_ELIM_THM] THEN
REWRITE_TAC[VECTOR_ARITH `x - u:real^N = y - v <=> x + (v - u) = y`] THEN
REWRITE_TAC[UNWIND_THM1] THEN STRIP_TAC THEN
EXISTS_TAC `x + (v - u):real^N` THEN
ASM_REWRITE_TAC[VECTOR_ARITH `x = x + (v - u) <=> v:real^N = u`] THEN
ASM_SIMP_TAC[VECTOR_SUB_COMPONENT; VECTOR_ADD_COMPONENT] THEN
ASM_SIMP_TAC[REAL_ARITH `x - (x + v - u):real = u - v`;
INTEGER_CLOSED]] THEN
REPEAT CONJ_TAC THENL
[SUBGOAL_THEN
`?N. !x:real^N i. x IN s /\ 1 <= i /\ i <= dimindex(:N) ==> abs(x$i) < &N`
STRIP_ASSUME_TAC THENL
[FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [BOUNDED_POS]) THEN
DISCH_THEN(X_CHOOSE_TAC `B:real`) THEN
MP_TAC(SPEC `B:real` (MATCH_MP REAL_ARCH REAL_LT_01)) THEN
MATCH_MP_TAC MONO_EXISTS THEN REWRITE_TAC[REAL_MUL_RID] THEN
X_GEN_TAC `N:num` THEN
REWRITE_TAC[REAL_ABS_MUL; REAL_ABS_POW; REAL_ABS_NUM] THEN
SIMP_TAC[GSYM REAL_LT_RDIV_EQ; REAL_LT_POW2] THEN
ASM_MESON_TAC[COMPONENT_LE_NORM; REAL_LE_TRANS; REAL_LET_TRANS];
ALL_TAC] THEN
MATCH_MP_TAC FINITE_SUBSET THEN
EXISTS_TAC
`{u:real^N | !i. 1 <= i /\ i <= dimindex(:N)
==> integer (u$i) /\ abs(u$i) <= &N}` THEN
CONJ_TAC THENL
[MATCH_MP_TAC FINITE_CART THEN
REWRITE_TAC[GSYM REAL_BOUNDS_LE; FINITE_INTSEG];
ALL_TAC] THEN
REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN X_GEN_TAC `u:real^N` THEN
STRIP_TAC THEN X_GEN_TAC `k:num` THEN STRIP_TAC THEN ASM_SIMP_TAC[] THEN
MATCH_MP_TAC REAL_LE_REVERSE_INTEGERS THEN
ASM_SIMP_TAC[INTEGER_CLOSED] THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN
REWRITE_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN
X_GEN_TAC `y:real^N` THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `k:num`)) THEN
FIRST_X_ASSUM(MP_TAC o SPECL [`y:real^N`; `k:num`]) THEN
ASM_SIMP_TAC[] THEN REAL_ARITH_TAC;
X_GEN_TAC `u:real^N` THEN DISCH_TAC THEN
MATCH_MP_TAC MEASURABLE_ALMOST THEN
EXISTS_TAC `s INTER interval[u:real^N,u + vec 1]` THEN
ASM_SIMP_TAC[MEASURABLE_INTER_INTERVAL] THEN
EXISTS_TAC `interval[u:real^N,u + vec 1] DIFF interval(u,u + vec 1)` THEN
REWRITE_TAC[NEGLIGIBLE_FRONTIER_INTERVAL] THEN
MATCH_MP_TAC(SET_RULE
`s' SUBSET i /\ j INTER s' = j INTER s
==> (s INTER i) UNION (i DIFF j) = s' UNION (i DIFF j)`) THEN
REWRITE_TAC[SUBSET; IN_ELIM_THM; IN_INTERVAL; IN_INTER; EXTENSION;
IN_ELIM_THM] THEN
CONJ_TAC THEN X_GEN_TAC `x:real^N` THEN
ASM_CASES_TAC `(x:real^N) IN s` THEN ASM_REWRITE_TAC[] THEN TRY EQ_TAC THEN
REWRITE_TAC[AND_FORALL_THM] THEN MATCH_MP_TAC MONO_FORALL THEN
REWRITE_TAC[TAUT `(a ==> b) /\ (a ==> c) <=> a ==> b /\ c`] THEN
GEN_TAC THEN DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN
ASM_SIMP_TAC[VECTOR_ADD_COMPONENT; VEC_COMPONENT] THEN REAL_ARITH_TAC;
REWRITE_TAC[SUBSET; IN_UNIONS; EXISTS_IN_IMAGE; IN_ELIM_THM] THEN
X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN
EXISTS_TAC `(lambda i. floor((x:real^N)$i)):real^N` THEN
ASM_SIMP_TAC[LAMBDA_BETA; FLOOR];
MAP_EVERY X_GEN_TAC [`u:real^N`; `v:real^N`] THEN
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
ASM_SIMP_TAC[CART_EQ; REAL_EQ_INTEGERS] THEN
REWRITE_TAC[NOT_FORALL_THM; LEFT_IMP_EXISTS_THM; NOT_IMP; REAL_NOT_LT] THEN
X_GEN_TAC `k:num` THEN STRIP_TAC THEN REWRITE_TAC[DISJOINT] THEN
REWRITE_TAC[EXTENSION; IN_INTER; NOT_IN_EMPTY; IN_ELIM_THM] THEN
REPEAT STRIP_TAC THEN
REPEAT(FIRST_X_ASSUM (MP_TAC o SPEC `k:num`)) THEN
ASM_REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC;
X_GEN_TAC `u:real^N` THEN DISCH_THEN(K ALL_TAC) THEN
REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_ELIM_THM; IN_INTERVAL] THEN
GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN
SIMP_TAC[VECTOR_SUB_COMPONENT; VEC_COMPONENT] THEN
MATCH_MP_TAC MONO_IMP THEN REWRITE_TAC[] THEN REAL_ARITH_TAC]);;
(* ------------------------------------------------------------------------- *)
(* The usual form of the theorem. *)
(* ------------------------------------------------------------------------- *)
let MINKOWSKI = prove
(`!s:real^N->bool.
convex s /\
(!x. x IN s ==> (--x) IN s) /\
&2 pow dimindex(:N) < measure s
==> ?u. ~(u = vec 0) /\
(!i. 1 <= i /\ i <= dimindex(:N) ==> integer(u$i)) /\
u IN s`,
SUBGOAL_THEN
`!s:real^N->bool.
convex s /\
bounded s /\
(!x. x IN s ==> (--x) IN s) /\
&2 pow dimindex(:N) < measure s
==> ?u. ~(u = vec 0) /\
(!i. 1 <= i /\ i <= dimindex(:N) ==> integer(u$i)) /\
u IN s`
ASSUME_TAC THENL
[ALL_TAC;
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`s:real^N->bool`; `&2 pow dimindex(:N)`]
CHOOSE_LARGE_COMPACT_SUBSET_ALT) THEN
ASM_SIMP_TAC[LEBESGUE_MEASURABLE_CONVEX] THEN
DISCH_THEN(X_CHOOSE_THEN `c:real^N->bool` STRIP_ASSUME_TAC) THEN
FIRST_ASSUM(MP_TAC o MATCH_MP COMPACT_IMP_BOUNDED) THEN
DISCH_THEN(X_CHOOSE_THEN `r:real` STRIP_ASSUME_TAC o SPEC `vec 0:real^N` o
MATCH_MP BOUNDED_SUBSET_BALL) THEN
FIRST_X_ASSUM(MP_TAC o SPEC `s INTER ball(vec 0:real^N,r)`) THEN
ANTS_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN
SIMP_TAC[BOUNDED_INTER; BOUNDED_BALL] THEN
ASM_SIMP_TAC[CONVEX_INTER; CONVEX_BALL; IN_INTER] THEN
SIMP_TAC[IN_BALL_0; NORM_NEG] THEN
TRANS_TAC REAL_LTE_TRANS `measure(c:real^N->bool)` THEN
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MEASURE_SUBSET THEN
ASM_SIMP_TAC[MEASURABLE_COMPACT; SUBSET_INTER] THEN
MATCH_MP_TAC MEASURABLE_CONVEX THEN
SIMP_TAC[BOUNDED_INTER; BOUNDED_BALL] THEN
ASM_SIMP_TAC[CONVEX_INTER; CONVEX_BALL]] THEN
REPEAT STRIP_TAC THEN
MP_TAC(ISPEC `IMAGE (\x:real^N. (&1 / &2) % x) s` BLICHFELDT) THEN
ASM_SIMP_TAC[MEASURABLE_SCALING; MEASURE_SCALING; MEASURABLE_CONVEX;
BOUNDED_SCALING] THEN
REWRITE_TAC[real_div; REAL_MUL_LID; REAL_ABS_INV; REAL_ABS_NUM] THEN
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
REWRITE_TAC[GSYM real_div; REAL_POW_INV] THEN
ASM_SIMP_TAC[REAL_LT_RDIV_EQ; REAL_LT_POW2; REAL_MUL_LID] THEN
REWRITE_TAC[RIGHT_EXISTS_AND_THM; EXISTS_IN_IMAGE] THEN
REWRITE_TAC[VECTOR_ARITH `inv(&2) % x:real^N = inv(&2) % y <=> x = y`] THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM; RIGHT_AND_EXISTS_THM] THEN
SIMP_TAC[VECTOR_MUL_COMPONENT; GSYM REAL_SUB_LDISTRIB] THEN
MAP_EVERY X_GEN_TAC [`u:real^N`; `v:real^N`] THEN STRIP_TAC THEN
EXISTS_TAC `inv(&2) % (u - v):real^N` THEN
ASM_SIMP_TAC[VECTOR_ARITH `inv(&2) % (u - v):real^N = vec 0 <=> u = v`] THEN
ASM_SIMP_TAC[VECTOR_MUL_COMPONENT; VECTOR_SUB_COMPONENT] THEN
REWRITE_TAC[VECTOR_SUB; VECTOR_ADD_LDISTRIB] THEN
FIRST_ASSUM(MATCH_MP_TAC o GEN_REWRITE_RULE I [convex]) THEN
ASM_SIMP_TAC[] THEN CONV_TAC REAL_RAT_REDUCE_CONV);;
(* ------------------------------------------------------------------------- *)
(* A slightly sharper variant for use when the set is also closed. *)
(* ------------------------------------------------------------------------- *)
let MINKOWSKI_COMPACT = prove
(`!s:real^N->bool.
convex s /\ compact s /\
(!x. x IN s ==> (--x) IN s) /\
&2 pow dimindex(:N) <= measure s
==> ?u. ~(u = vec 0) /\
(!i. 1 <= i /\ i <= dimindex(:N) ==> integer(u$i)) /\
u IN s`,
GEN_TAC THEN ASM_CASES_TAC `s:real^N->bool = {}` THENL
[ASM_REWRITE_TAC[GSYM REAL_NOT_LT; MEASURE_EMPTY; REAL_LT_POW2];
ALL_TAC] THEN
STRIP_TAC THEN
SUBGOAL_THEN `(vec 0:real^N) IN s` ASSUME_TAC THENL
[FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN
DISCH_THEN(X_CHOOSE_TAC `a:real^N`) THEN
SUBST1_TAC(VECTOR_ARITH `vec 0:real^N = inv(&2) % a + inv(&2) % --a`) THEN
FIRST_X_ASSUM(MATCH_MP_TAC o GEN_REWRITE_RULE I [convex]) THEN
ASM_SIMP_TAC[] THEN CONV_TAC REAL_RAT_REDUCE_CONV;
ALL_TAC] THEN
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL
[`s:real^N->bool`;
`{u | !i. 1 <= i /\ i <= dimindex(:N) ==> integer(u$i)}
DELETE (vec 0:real^N)`]
SEPARATE_COMPACT_CLOSED) THEN
REWRITE_TAC[EXTENSION; IN_DELETE; IN_ELIM_THM; IN_INTER; NOT_IN_EMPTY] THEN
MATCH_MP_TAC(TAUT
`(~e ==> c) /\ a /\ b /\ (d ==> e)
==> (a /\ b /\ c ==> d) ==> e`) THEN
CONJ_TAC THENL [MESON_TAC[]; ASM_REWRITE_TAC[]] THEN CONJ_TAC THENL
[MATCH_MP_TAC DISCRETE_IMP_CLOSED THEN
EXISTS_TAC `&1` THEN REWRITE_TAC[REAL_LT_01; IN_DELETE; IN_ELIM_THM] THEN
REPEAT GEN_TAC THEN
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC)) THEN
ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN
REWRITE_TAC[CART_EQ; REAL_NOT_LT; NOT_FORALL_THM; NOT_IMP] THEN
DISCH_THEN(X_CHOOSE_THEN `k:num` STRIP_ASSUME_TAC) THEN
MATCH_MP_TAC REAL_LE_TRANS THEN
EXISTS_TAC `abs((y - x:real^N)$k)` THEN
ASM_SIMP_TAC[COMPONENT_LE_NORM; VECTOR_SUB_COMPONENT] THEN
ASM_MESON_TAC[REAL_EQ_INTEGERS; REAL_NOT_LE];
ALL_TAC] THEN
SIMP_TAC[dist] THEN DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN
FIRST_ASSUM(MP_TAC o MATCH_MP COMPACT_IMP_BOUNDED) THEN
REWRITE_TAC[BOUNDED_POS; LEFT_IMP_EXISTS_THM] THEN
X_GEN_TAC `B:real` THEN STRIP_TAC THEN
MP_TAC(ISPEC `IMAGE (\x:real^N. (&1 + d / &2 / B) % x) s` MINKOWSKI) THEN
ANTS_TAC THENL
[ASM_SIMP_TAC[CONVEX_SCALING; BOUNDED_SCALING; COMPACT_IMP_BOUNDED] THEN
ASM_SIMP_TAC[MEASURABLE_COMPACT; MEASURE_SCALING] THEN CONJ_TAC THENL
[REWRITE_TAC[FORALL_IN_IMAGE; IN_IMAGE] THEN
REWRITE_TAC[VECTOR_MUL_EQ_0; VECTOR_ARITH
`--(a % x):real^N = a % y <=> a % (x + y) = vec 0`] THEN
ASM_MESON_TAC[VECTOR_ADD_RINV];
ALL_TAC] THEN
FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH
`d <= m ==> m < n ==> d < n`)) THEN
REWRITE_TAC[REAL_ARITH `m < a * m <=> &0 < m * (a - &1)`] THEN
MATCH_MP_TAC REAL_LT_MUL THEN CONJ_TAC THENL
[ASM_SIMP_TAC[MEASURABLE_COMPACT; MEASURABLE_MEASURE_POS_LT] THEN
REWRITE_TAC[GSYM HAS_MEASURE_0] THEN
DISCH_THEN(SUBST_ALL_TAC o MATCH_MP MEASURE_UNIQUE) THEN
ASM_MESON_TAC[REAL_NOT_LT; REAL_LT_POW2];
ALL_TAC] THEN
REWRITE_TAC[REAL_SUB_LT] THEN MATCH_MP_TAC REAL_POW_LT_1 THEN
REWRITE_TAC[DIMINDEX_NONZERO] THEN
MATCH_MP_TAC(REAL_ARITH `&0 < x ==> &1 < abs(&1 + x)`) THEN
ASM_SIMP_TAC[REAL_LT_DIV; REAL_OF_NUM_LT; ARITH];
ALL_TAC] THEN
ONCE_REWRITE_TAC[TAUT `a /\ b /\ c <=> c /\ b /\ a`] THEN
REWRITE_TAC[EXISTS_IN_IMAGE; VECTOR_MUL_EQ_0; DE_MORGAN_THM] THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `u:real^N` THEN
STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
FIRST_X_ASSUM(MP_TAC o SPECL
[`u:real^N`; `(&1 + d / &2 / B) % u:real^N`]) THEN
ASM_REWRITE_TAC[VECTOR_MUL_EQ_0] THEN
REWRITE_TAC[VECTOR_ARITH `u - (&1 + e) % u:real^N = --(e % u)`] THEN
REWRITE_TAC[NORM_NEG; NORM_MUL] THEN
MATCH_MP_TAC(TAUT `~p ==> p ==> q`) THEN REWRITE_TAC[REAL_NOT_LE] THEN
MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `abs(d / &2 / B) * B` THEN
ASM_SIMP_TAC[REAL_LE_LMUL; REAL_ABS_POS] THEN
ASM_REWRITE_TAC[REAL_ABS_DIV; REAL_ABS_NUM] THEN
ASM_SIMP_TAC[REAL_ARITH `&0 < x ==> abs x = x`] THEN
ASM_SIMP_TAC[REAL_DIV_RMUL; REAL_LT_IMP_NZ] THEN
UNDISCH_TAC `&0 < d` THEN REAL_ARITH_TAC);;