Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* Pick's theorem. *) | |
(* ========================================================================= *) | |
needs "Multivariate/polytope.ml";; | |
needs "Multivariate/measure.ml";; | |
needs "Multivariate/moretop.ml";; | |
prioritize_real();; | |
(* ------------------------------------------------------------------------- *) | |
(* Misc lemmas. *) | |
(* ------------------------------------------------------------------------- *) | |
let COLLINEAR_IMP_NEGLIGIBLE = prove | |
(`!s:real^2->bool. collinear s ==> negligible s`, | |
REWRITE_TAC[COLLINEAR_AFFINE_HULL] THEN | |
MESON_TAC[NEGLIGIBLE_AFFINE_HULL_2; NEGLIGIBLE_SUBSET]);; | |
let CONVEX_HULL_3_0 = prove | |
(`!a b:real^N. | |
convex hull {vec 0,a,b} = | |
{x % a + y % b | &0 <= x /\ &0 <= y /\ x + y <= &1}`, | |
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[SET_RULE `{c,a,b} = {a,b,c}`] THEN | |
REWRITE_TAC[CONVEX_HULL_3; EXTENSION; IN_ELIM_THM] THEN | |
X_GEN_TAC `y:real^N` THEN | |
AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN X_GEN_TAC `x:real` THEN | |
AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN X_GEN_TAC `y:real` THEN | |
REWRITE_TAC[VECTOR_MUL_RZERO; VECTOR_ADD_RID] THEN | |
EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THENL | |
[ASM_ARITH_TAC; EXISTS_TAC `&1 - x - y` THEN ASM_ARITH_TAC]);; | |
let INTERIOR_CONVEX_HULL_3_0 = prove | |
(`!a b:real^2. | |
~(collinear {vec 0,a,b}) | |
==> interior(convex hull {vec 0,a,b}) = | |
{x % a + y % b | &0 < x /\ &0 < y /\ x + y < &1}`, | |
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[SET_RULE `{c,a,b} = {a,b,c}`] THEN | |
STRIP_TAC THEN ASM_SIMP_TAC[INTERIOR_CONVEX_HULL_3] THEN | |
REWRITE_TAC[TAUT `a /\ x = &1 /\ b <=> x = &1 /\ a /\ b`] THEN | |
REWRITE_TAC[VECTOR_MUL_RZERO; VECTOR_ADD_RID] THEN | |
REWRITE_TAC[REAL_ARITH `x + y + z = &1 <=> &1 - x - y = z`; UNWIND_THM1] THEN | |
REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN | |
GEN_TAC THEN REPEAT(AP_TERM_TAC THEN ABS_TAC) THEN | |
EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN | |
ASM_REAL_ARITH_TAC);; | |
let MEASURE_CONVEX_HULL_2_TRIVIAL = prove | |
(`(!a:real^2. measure(convex hull {a}) = &0) /\ | |
(!a b:real^2. measure(convex hull {a,b}) = &0)`, | |
REPEAT STRIP_TAC THEN | |
MATCH_MP_TAC MEASURE_EQ_0 THEN | |
MATCH_MP_TAC COLLINEAR_IMP_NEGLIGIBLE THEN | |
REWRITE_TAC[GSYM SEGMENT_CONVEX_HULL; CONVEX_HULL_SING] THEN | |
REWRITE_TAC[COLLINEAR_SING; COLLINEAR_SEGMENT]);; | |
let NEGLIGIBLE_SEGMENT_2 = prove | |
(`!a b:real^2. negligible(segment[a,b])`, | |
SIMP_TAC[COLLINEAR_IMP_NEGLIGIBLE; COLLINEAR_SEGMENT]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Decomposing an additive function on a triangle. *) | |
(* ------------------------------------------------------------------------- *) | |
let TRIANGLE_DECOMPOSITION = prove | |
(`!a b c d:real^2. | |
d IN convex hull {a,b,c} | |
==> (convex hull {a,b,c} = | |
convex hull {d,b,c} UNION | |
convex hull {d,a,c} UNION | |
convex hull {d,a,b})`, | |
REPEAT STRIP_TAC THEN | |
MATCH_MP_TAC SUBSET_ANTISYM THEN REWRITE_TAC[UNION_SUBSET] THEN | |
CONJ_TAC THENL | |
[REWRITE_TAC[SUBSET] THEN X_GEN_TAC `x:real^2` THEN DISCH_TAC THEN | |
MP_TAC(ISPECL [`{a:real^2,b,c}`; `d:real^2`; `x:real^2`] | |
IN_CONVEX_HULL_EXCHANGE) THEN | |
ASM_REWRITE_TAC[EXISTS_IN_INSERT; NOT_IN_EMPTY; IN_UNION] THEN | |
REPEAT(MATCH_MP_TAC MONO_OR THEN CONJ_TAC) THEN | |
SPEC_TAC(`x:real^2`,`x:real^2`) THEN REWRITE_TAC[GSYM SUBSET] THEN | |
MATCH_MP_TAC HULL_MONO THEN SET_TAC[]; | |
SIMP_TAC[SUBSET_HULL; CONVEX_CONVEX_HULL] THEN | |
REWRITE_TAC[INSERT_SUBSET; EMPTY_SUBSET] THEN | |
ASM_SIMP_TAC[HULL_INC; IN_INSERT]]);; | |
let TRIANGLE_ADDITIVE_DECOMPOSITION = prove | |
(`!f:(real^2->bool)->real a b c d. | |
(!s t. compact s /\ compact t | |
==> f(s UNION t) = f(s) + f(t) - f(s INTER t)) /\ | |
~(a = b) /\ ~(a = c) /\ ~(b = c) /\ | |
~affine_dependent {a,b,c} /\ d IN convex hull {a,b,c} | |
==> f(convex hull {a,b,c}) = | |
(f(convex hull {a,b,d}) + | |
f(convex hull {a,c,d}) + | |
f(convex hull {b,c,d})) - | |
(f(convex hull {a,d}) + | |
f(convex hull {b,d}) + | |
f(convex hull {c,d})) + | |
f(convex hull {d})`, | |
REPEAT STRIP_TAC THEN | |
FIRST_ASSUM(SUBST1_TAC o MATCH_MP TRIANGLE_DECOMPOSITION) THEN | |
ASM (CONV_TAC o GEN_SIMPLIFY_CONV TOP_DEPTH_SQCONV (basic_ss []) 5) | |
[COMPACT_UNION; COMPACT_INTER; COMPACT_CONVEX_HULL; | |
FINITE_IMP_COMPACT; FINITE_INSERT; FINITE_EMPTY; | |
UNION_OVER_INTER] THEN | |
MP_TAC(ISPECL [`{a:real^2,b,c}`; `d:real^2`] | |
CONVEX_HULL_EXCHANGE_INTER) THEN | |
ASM_REWRITE_TAC[] THEN | |
SIMP_TAC[INSERT_SUBSET; EMPTY_SUBSET; IN_INSERT; NOT_IN_EMPTY; | |
SET_RULE `s SUBSET u /\ t SUBSET u ==> (s INTER t) SUBSET u`] THEN | |
ASM_REWRITE_TAC[INSERT_INTER; IN_INSERT; NOT_IN_EMPTY; INTER_EMPTY] THEN | |
DISCH_TAC THEN REWRITE_TAC[INSERT_AC] THEN REAL_ARITH_TAC);; | |
(* ------------------------------------------------------------------------- *) | |
(* Vectors all of whose coordinates are integers. *) | |
(* ------------------------------------------------------------------------- *) | |
let integral_vector = define | |
`integral_vector(x:real^N) <=> | |
!i. 1 <= i /\ i <= dimindex(:N) ==> integer(x$i)`;; | |
let INTEGRAL_VECTOR_VEC = prove | |
(`!n. integral_vector(vec n)`, | |
REWRITE_TAC[integral_vector; VEC_COMPONENT; INTEGER_CLOSED]);; | |
let INTEGRAL_VECTOR_STDBASIS = prove | |
(`!i. integral_vector(basis i:real^N)`, | |
REWRITE_TAC[integral_vector] THEN | |
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[BASIS_COMPONENT] THEN | |
COND_CASES_TAC THEN REWRITE_TAC[INTEGER_CLOSED]);; | |
let INTEGRAL_VECTOR_ADD = prove | |
(`!x y:real^N. | |
integral_vector x /\ integral_vector y ==> integral_vector(x + y)`, | |
SIMP_TAC[integral_vector; VECTOR_ADD_COMPONENT; INTEGER_CLOSED]);; | |
let INTEGRAL_VECTOR_SUB = prove | |
(`!x y:real^N. | |
integral_vector x /\ integral_vector y ==> integral_vector(x - y)`, | |
SIMP_TAC[integral_vector; VECTOR_SUB_COMPONENT; INTEGER_CLOSED]);; | |
let INTEGRAL_VECTOR_ADD_LCANCEL = prove | |
(`!x y:real^N. | |
integral_vector x ==> (integral_vector(x + y) <=> integral_vector y)`, | |
MESON_TAC[INTEGRAL_VECTOR_ADD; INTEGRAL_VECTOR_SUB; | |
VECTOR_ARITH `(x + y) - x:real^N = y`]);; | |
let FINITE_BOUNDED_INTEGER_POINTS = prove | |
(`!s:real^N->bool. bounded s ==> FINITE {x | x IN s /\ integral_vector x}`, | |
REPEAT STRIP_TAC THEN | |
FIRST_ASSUM(MP_TAC o MATCH_MP BOUNDED_SUBSET_CLOSED_INTERVAL) THEN | |
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN | |
MAP_EVERY X_GEN_TAC [`a:real^N`; `b:real^N`] THEN | |
REWRITE_TAC[SUBSET; IN_INTERVAL; integral_vector] THEN DISCH_TAC THEN | |
MATCH_MP_TAC FINITE_SUBSET THEN | |
EXISTS_TAC `{x:real^N | !i. 1 <= i /\ i <= dimindex(:N) | |
==> integer(x$i) /\ | |
(a:real^N)$i <= x$i /\ x$i <= (b:real^N)$i}` THEN | |
CONJ_TAC THENL | |
[MATCH_MP_TAC FINITE_CART THEN REWRITE_TAC[FINITE_INTSEG]; | |
ASM SET_TAC[]]);; | |
let FINITE_TRIANGLE_INTEGER_POINTS = prove | |
(`!a b c:real^N. FINITE {x | x IN convex hull {a,b,c} /\ integral_vector x}`, | |
REPEAT GEN_TAC THEN MATCH_MP_TAC FINITE_BOUNDED_INTEGER_POINTS THEN | |
SIMP_TAC[FINITE_IMP_BOUNDED_CONVEX_HULL; FINITE_INSERT; FINITE_EMPTY]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Properties of a basis for the integer lattice. *) | |
(* ------------------------------------------------------------------------- *) | |
let LINEAR_INTEGRAL_VECTOR = prove | |
(`!f:real^N->real^N. | |
linear f | |
==> ((!x. integral_vector x ==> integral_vector(f x)) <=> | |
(!i j. 1 <= i /\ i <= dimindex(:N) /\ | |
1 <= j /\ j <= dimindex(:N) | |
==> integer(matrix f$i$j)))`, | |
REPEAT STRIP_TAC THEN | |
FIRST_ASSUM(fun th -> ONCE_REWRITE_TAC[GSYM(MATCH_MP MATRIX_WORKS th)]) THEN | |
ABBREV_TAC `M = matrix(f:real^N->real^N)` THEN | |
SIMP_TAC[integral_vector; matrix_vector_mul; LAMBDA_BETA] THEN | |
EQ_TAC THEN REPEAT GEN_TAC THEN DISCH_TAC THENL | |
[MAP_EVERY X_GEN_TAC [`i:num`; `j:num`] THEN STRIP_TAC THEN | |
FIRST_X_ASSUM(MP_TAC o SPEC `basis j:real^N`) THEN | |
REWRITE_TAC[GSYM integral_vector; INTEGRAL_VECTOR_STDBASIS] THEN | |
DISCH_THEN(MP_TAC o SPEC `i:num`) THEN ASM_REWRITE_TAC[] THEN | |
ASM_SIMP_TAC[BASIS_COMPONENT; COND_RAND; COND_RATOR] THEN | |
ASM_REWRITE_TAC[REAL_MUL_RZERO; SUM_DELTA; IN_NUMSEG; REAL_MUL_RID]; | |
X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN | |
X_GEN_TAC `i:num` THEN STRIP_TAC THEN | |
MATCH_MP_TAC INTEGER_SUM THEN | |
ASM_SIMP_TAC[INTEGER_CLOSED; IN_NUMSEG]]);; | |
let INTEGRAL_BASIS_UNIMODULAR = prove | |
(`!f:real^N->real^N. | |
linear f /\ IMAGE f integral_vector = integral_vector | |
==> abs(det(matrix f)) = &1`, | |
REWRITE_TAC[GSYM SUBSET_ANTISYM_EQ; SUBSET; FORALL_IN_IMAGE] THEN | |
REWRITE_TAC[IN_IMAGE] THEN REWRITE_TAC[IN] THEN REPEAT STRIP_TAC THEN | |
SUBGOAL_THEN | |
`!i j. 1 <= i /\ i <= dimindex(:N) /\ | |
1 <= j /\ j <= dimindex(:N) | |
==> integer(matrix(f:real^N->real^N)$i$j)` | |
ASSUME_TAC THENL [ASM_SIMP_TAC[GSYM LINEAR_INTEGRAL_VECTOR]; ALL_TAC] THEN | |
SUBGOAL_THEN | |
`?g:real^N->real^N. linear g /\ (!x. g(f x) = x) /\ (!y. f(g y) = y)` | |
STRIP_ASSUME_TAC THENL | |
[MATCH_MP_TAC LINEAR_BIJECTIVE_LEFT_RIGHT_INVERSE THEN ASM_SIMP_TAC[] THEN | |
MATCH_MP_TAC(TAUT `(b ==> a) /\ b ==> a /\ b`) THEN CONJ_TAC THENL | |
[ASM_MESON_TAC[LINEAR_SURJECTIVE_IMP_INJECTIVE]; ALL_TAC] THEN | |
SUBGOAL_THEN `!y. y:real^N IN span(IMAGE f (:real^N))` MP_TAC THENL | |
[ALL_TAC; ASM_SIMP_TAC[SPAN_LINEAR_IMAGE; SPAN_UNIV] THEN SET_TAC[]] THEN | |
GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [GSYM BASIS_EXPANSION] THEN | |
MATCH_MP_TAC SPAN_VSUM THEN REWRITE_TAC[FINITE_NUMSEG; IN_NUMSEG] THEN | |
X_GEN_TAC `k:num` THEN STRIP_TAC THEN MATCH_MP_TAC SPAN_MUL THEN | |
MATCH_MP_TAC SPAN_SUPERSET THEN REWRITE_TAC[IN_IMAGE; IN_UNIV] THEN | |
ASM_MESON_TAC[INTEGRAL_VECTOR_STDBASIS]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN | |
`!i j. 1 <= i /\ i <= dimindex(:N) /\ | |
1 <= j /\ j <= dimindex(:N) | |
==> integer(matrix(g:real^N->real^N)$i$j)` | |
ASSUME_TAC THENL | |
[ASM_SIMP_TAC[GSYM LINEAR_INTEGRAL_VECTOR] THEN ASM_MESON_TAC[]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN | |
`det(matrix(f:real^N->real^N)) * det(matrix(g:real^N->real^N)) = | |
det(matrix(I:real^N->real^N))` | |
MP_TAC THENL | |
[ASM_SIMP_TAC[GSYM DET_MUL; GSYM MATRIX_COMPOSE] THEN | |
REPEAT AP_TERM_TAC THEN ASM_REWRITE_TAC[FUN_EQ_THM; o_THM; I_THM]; | |
ALL_TAC] THEN | |
DISCH_THEN(MP_TAC o AP_TERM `abs:real->real`) THEN | |
REWRITE_TAC[MATRIX_I; DET_I; REAL_ABS_NUM] THEN | |
ASM_SIMP_TAC[INTEGER_DET; INTEGER_ABS_MUL_EQ_1]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Pick's theorem for an elementary triangle. *) | |
(* ------------------------------------------------------------------------- *) | |
let PICK_ELEMENTARY_TRIANGLE_0 = prove | |
(`!a b:real^2. | |
{x | x IN convex hull {vec 0,a,b} /\ integral_vector x} = {vec 0,a,b} | |
==> measure(convex hull {vec 0,a,b}) = | |
if collinear {vec 0,a,b} then &0 else &1 / &2`, | |
REPEAT GEN_TAC THEN COND_CASES_TAC THEN | |
ASM_SIMP_TAC[MEASURE_EQ_0; COLLINEAR_IMP_NEGLIGIBLE; | |
COLLINEAR_CONVEX_HULL_COLLINEAR] THEN | |
POP_ASSUM MP_TAC THEN | |
MAP_EVERY (fun t -> | |
ASM_CASES_TAC t THENL [ASM_REWRITE_TAC[INSERT_AC; COLLINEAR_2]; ALL_TAC]) | |
[`a:real^2 = vec 0`; `b:real^2 = vec 0`; `a:real^2 = b`] THEN | |
DISCH_TAC THEN SUBGOAL_THEN `independent {a:real^2,b}` ASSUME_TAC THENL | |
[UNDISCH_TAC `~collinear{vec 0:real^2, a, b}` THEN | |
REWRITE_TAC[independent; CONTRAPOS_THM] THEN | |
REWRITE_TAC[dependent; EXISTS_IN_INSERT; NOT_IN_EMPTY] THEN STRIP_TAC THENL | |
[ONCE_REWRITE_TAC[SET_RULE `{c,a,b} = {c,b,a}`]; ALL_TAC] THEN | |
ASM_SIMP_TAC[COLLINEAR_3_AFFINE_HULL] THEN | |
ASM_SIMP_TAC[AFFINE_HULL_EQ_SPAN; HULL_INC; IN_INSERT] THEN | |
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP | |
(SET_RULE `a IN s ==> s SUBSET t ==> a IN t`)) THEN | |
MATCH_MP_TAC SPAN_MONO THEN SET_TAC[]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `span{a,b} = (:real^2)` ASSUME_TAC THENL | |
[MP_TAC(ISPECL [`(:real^2)`; `{a:real^2,b}`] CARD_EQ_DIM) THEN | |
ASM_REWRITE_TAC[SUBSET_UNIV; SUBSET; EXTENSION; IN_ELIM_THM; IN_UNIV] THEN | |
DISCH_THEN MATCH_MP_TAC THEN | |
REWRITE_TAC[HAS_SIZE; FINITE_INSERT; FINITE_EMPTY] THEN | |
SIMP_TAC[CARD_CLAUSES; FINITE_INSERT; FINITE_EMPTY; IN_INSERT] THEN | |
ASM_REWRITE_TAC[NOT_IN_EMPTY; DIM_UNIV; DIMINDEX_2; ARITH]; | |
ALL_TAC] THEN | |
REWRITE_TAC[GSYM SUBSET_ANTISYM_EQ; SUBSET; FORALL_IN_INSERT; | |
FORALL_IN_GSPEC] THEN | |
REWRITE_TAC[IN_ELIM_THM; NOT_IN_EMPTY; IN_INSERT] THEN STRIP_TAC THEN | |
MP_TAC(ISPEC `\x:real^2. transp(vector[a;b]:real^2^2) ** x` | |
INTEGRAL_BASIS_UNIMODULAR) THEN | |
REWRITE_TAC[MATRIX_OF_MATRIX_VECTOR_MUL; MATRIX_VECTOR_MUL_LINEAR] THEN | |
REWRITE_TAC[DET_2; MEASURE_TRIANGLE; VECTOR_2; DET_TRANSP; VEC_COMPONENT] THEN | |
ANTS_TAC THENL [ALL_TAC; REAL_ARITH_TAC] THEN | |
MATCH_MP_TAC SUBSET_ANTISYM THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN | |
CONJ_TAC THENL | |
[REWRITE_TAC[IN] THEN | |
SIMP_TAC[LINEAR_INTEGRAL_VECTOR; MATRIX_VECTOR_MUL_LINEAR; LAMBDA_BETA; | |
MATRIX_OF_MATRIX_VECTOR_MUL; transp; DIMINDEX_2; ARITH] THEN | |
MAP_EVERY UNDISCH_TAC | |
[`integral_vector(a:real^2)`; `integral_vector(b:real^2)`] THEN | |
REWRITE_TAC[integral_vector; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN | |
REWRITE_TAC[IMP_IMP; FORALL_2; DIMINDEX_2; VECTOR_2] THEN | |
REWRITE_TAC[CONJ_ACI]; | |
ALL_TAC] THEN | |
REWRITE_TAC[IN_IMAGE] THEN REWRITE_TAC[IN] THEN | |
X_GEN_TAC `x:real^2` THEN DISCH_TAC THEN REWRITE_TAC[EXISTS_VECTOR_2] THEN | |
REWRITE_TAC[MATRIX_VECTOR_COLUMN; TRANSP_TRANSP] THEN | |
REWRITE_TAC[DIMINDEX_2; VSUM_2; VECTOR_2; integral_vector; FORALL_2] THEN | |
SUBGOAL_THEN `(x:real^2) IN span{a,b}` MP_TAC THENL | |
[ASM_REWRITE_TAC[IN_UNIV]; ALL_TAC] THEN | |
REWRITE_TAC[SPAN_2; IN_UNIV; IN_ELIM_THM] THEN | |
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `u:real` THEN | |
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `v:real` THEN | |
DISCH_TAC THEN ASM_REWRITE_TAC[] THEN | |
FIRST_ASSUM(MP_TAC o SPEC `frac u % a + frac v % b:real^2`) THEN | |
FIRST_X_ASSUM(MP_TAC o SPEC | |
`(&1 - frac u) % a + (&1 - frac v) % b:real^2`) THEN | |
MATCH_MP_TAC(TAUT | |
`b' /\ (b' ==> b) /\ (a \/ a') /\ (c \/ c' ==> x) | |
==> (a /\ b ==> c) ==> (a' /\ b' ==> c') ==> x`) THEN | |
REPEAT CONJ_TAC THENL | |
[SUBGOAL_THEN `integral_vector(floor u % a + floor v % b:real^2)` | |
MP_TAC THENL | |
[MAP_EVERY UNDISCH_TAC | |
[`integral_vector(a:real^2)`; `integral_vector(b:real^2)`] THEN | |
SIMP_TAC[integral_vector; DIMINDEX_2; FORALL_2; | |
VECTOR_ADD_COMPONENT; VECTOR_MUL_COMPONENT] THEN | |
SIMP_TAC[FLOOR; INTEGER_CLOSED]; | |
UNDISCH_TAC `integral_vector(x:real^2)` THEN REWRITE_TAC[IMP_IMP] THEN | |
DISCH_THEN(MP_TAC o MATCH_MP INTEGRAL_VECTOR_SUB) THEN | |
ASM_REWRITE_TAC[VECTOR_ARITH | |
`(x % a + y % b) - (u % a + v % b) = (x - u) % a + (y - v) % b`] THEN | |
MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN BINOP_TAC THEN | |
AP_THM_TAC THEN AP_TERM_TAC THEN | |
REWRITE_TAC[REAL_ARITH `u - x:real = y <=> u = x + y`] THEN | |
REWRITE_TAC[GSYM FLOOR_FRAC]]; | |
REWRITE_TAC[VECTOR_ARITH | |
`(&1 - u) % a + (&1 - v) % b = (a + b) - (u % a + v % b)`] THEN | |
ASM_SIMP_TAC[INTEGRAL_VECTOR_ADD; INTEGRAL_VECTOR_SUB]; | |
REWRITE_TAC[CONVEX_HULL_3_0; IN_ELIM_THM] THEN | |
SUBGOAL_THEN | |
`&0 <= frac u /\ &0 <= frac v /\ frac u + frac v <= &1 \/ | |
&0 <= &1 - frac u /\ &0 <= &1 - frac v /\ | |
(&1 - frac u) + (&1 - frac v) <= &1` | |
MP_TAC THENL | |
[MP_TAC(SPEC `u:real` FLOOR_FRAC) THEN | |
MP_TAC(SPEC `v:real` FLOOR_FRAC) THEN REAL_ARITH_TAC; | |
MESON_TAC[]]; | |
REWRITE_TAC | |
[VECTOR_ARITH `x % a + y % b = a <=> (x - &1) % a + y % b = vec 0`; | |
VECTOR_ARITH `x % a + y % b = b <=> x % a + (y - &1) % b = vec 0`] THEN | |
ASM_SIMP_TAC[INDEPENDENT_2; GSYM REAL_FRAC_EQ_0] THEN | |
MP_TAC(SPEC `u:real` FLOOR_FRAC) THEN | |
MP_TAC(SPEC `v:real` FLOOR_FRAC) THEN REAL_ARITH_TAC]);; | |
let PICK_ELEMENTARY_TRIANGLE = prove | |
(`!a b c:real^2. | |
{x | x IN convex hull {a,b,c} /\ integral_vector x} = {a,b,c} | |
==> measure(convex hull {a,b,c}) = | |
if collinear {a,b,c} then &0 else &1 / &2`, | |
REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP (SET_RULE | |
`s = t ==> (!x. x IN s <=> x IN t) /\ s = t`)) THEN | |
REWRITE_TAC[IMP_CONJ] THEN DISCH_THEN(MP_TAC o SPEC `a:real^2`) THEN | |
REWRITE_TAC[IN_INSERT; IN_ELIM_THM] THEN | |
GEOM_ORIGIN_TAC `a:real^2`THEN | |
SIMP_TAC[INTEGRAL_VECTOR_ADD_LCANCEL; VECTOR_ADD_RID] THEN | |
REWRITE_TAC[PICK_ELEMENTARY_TRIANGLE_0]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Our form of Pick's theorem holds degenerately for a flat triangle. *) | |
(* ------------------------------------------------------------------------- *) | |
let PICK_TRIANGLE_FLAT = prove | |
(`!a b c:real^2. | |
integral_vector a /\ integral_vector b /\ integral_vector c /\ | |
c IN segment[a,b] | |
==> measure(convex hull {a,b,c}) = | |
&(CARD {x | x IN convex hull {a,b,c} /\ integral_vector x}) - | |
(&(CARD {x | x IN convex hull {b,c} /\ integral_vector x}) + | |
&(CARD {x | x IN convex hull {a,c} /\ integral_vector x}) + | |
&(CARD {x | x IN convex hull {a,b} /\ integral_vector x})) / &2 + | |
&1 / &2`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM SEGMENT_CONVEX_HULL] THEN | |
SUBGOAL_THEN `convex hull {a:real^2,b,c} = segment[a,b]` SUBST1_TAC THENL | |
[REWRITE_TAC[SEGMENT_CONVEX_HULL] THEN MATCH_MP_TAC CONVEX_HULLS_EQ THEN | |
ASM_REWRITE_TAC[GSYM SEGMENT_CONVEX_HULL; INSERT_SUBSET; EMPTY_SUBSET] THEN | |
SIMP_TAC[ENDS_IN_SEGMENT; HULL_INC; IN_INSERT]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `measure(segment[a:real^2,b]) = &0` SUBST1_TAC THENL | |
[MATCH_MP_TAC MEASURE_EQ_0 THEN | |
MATCH_MP_TAC COLLINEAR_IMP_NEGLIGIBLE THEN | |
REWRITE_TAC[COLLINEAR_SEGMENT]; | |
ALL_TAC] THEN | |
REWRITE_TAC[REAL_ARITH | |
`&0 = c - (a + b + c) / &2 + &1 / &2 <=> a + b = c + &1`] THEN | |
REWRITE_TAC[REAL_OF_NUM_ADD; REAL_OF_NUM_EQ] THEN | |
SUBGOAL_THEN | |
`segment[a:real^2,b] = segment[b,c] UNION segment[a,c]` | |
SUBST1_TAC THENL [ASM_MESON_TAC[SEGMENT_SYM; UNION_SEGMENT]; ALL_TAC] THEN | |
REWRITE_TAC[SET_RULE | |
`{x | x IN (s UNION t) /\ P x} = | |
{x | x IN s /\ P x} UNION {x | x IN t /\ P x}`] THEN | |
SIMP_TAC[CARD_UNION_GEN; FINITE_BOUNDED_INTEGER_POINTS; BOUNDED_SEGMENT] THEN | |
MATCH_MP_TAC(ARITH_RULE | |
`z:num <= x /\ z = 1 ==> x + y = (x + y) - z + 1`) THEN | |
CONJ_TAC THENL | |
[MATCH_MP_TAC CARD_SUBSET THEN | |
SIMP_TAC[FINITE_BOUNDED_INTEGER_POINTS; BOUNDED_SEGMENT] THEN SET_TAC[]; | |
REWRITE_TAC[SET_RULE `{x | x IN s /\ P x} INTER {x | x IN t /\ P x} = | |
{x | x IN (s INTER t) /\ P x}`] THEN | |
SUBGOAL_THEN | |
`segment[b:real^2,c] INTER segment[a,c] = {c}` | |
SUBST1_TAC THENL [ASM_MESON_TAC[INTER_SEGMENT; SEGMENT_SYM]; ALL_TAC] THEN | |
SUBGOAL_THEN `{x:real^2 | x IN {c} /\ integral_vector x} = {c}` | |
SUBST1_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN | |
SIMP_TAC[CARD_CLAUSES; FINITE_EMPTY; ARITH; NOT_IN_EMPTY]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Pick's theorem for a triangle. *) | |
(* ------------------------------------------------------------------------- *) | |
let PICK_TRIANGLE_ALT = prove | |
(`!a b c:real^2. | |
integral_vector a /\ integral_vector b /\ integral_vector c | |
==> measure(convex hull {a,b,c}) = | |
&(CARD {x | x IN convex hull {a,b,c} /\ integral_vector x}) - | |
(&(CARD {x | x IN convex hull {b,c} /\ integral_vector x}) + | |
&(CARD {x | x IN convex hull {a,c} /\ integral_vector x}) + | |
&(CARD {x | x IN convex hull {a,b} /\ integral_vector x})) / &2 + | |
&1 / &2`, | |
let tac a bc = | |
MATCH_MP_TAC CARD_PSUBSET THEN | |
REWRITE_TAC[FINITE_TRIANGLE_INTEGER_POINTS] THEN | |
REWRITE_TAC[PSUBSET] THEN CONJ_TAC THENL | |
[MATCH_MP_TAC(SET_RULE | |
`s SUBSET t ==> {x | x IN s /\ P x} SUBSET {x | x IN t /\ P x}`) THEN | |
MATCH_MP_TAC HULL_MINIMAL THEN REWRITE_TAC[CONVEX_CONVEX_HULL] THEN | |
ASM_SIMP_TAC[INSERT_SUBSET; EMPTY_SUBSET; IN_INSERT; HULL_INC]; | |
DISCH_TAC] THEN | |
SUBGOAL_THEN(subst[bc,`bc:real^2->bool`] | |
`convex hull {a:real^2,b,c} = convex hull bc`) | |
ASSUME_TAC THENL | |
[MATCH_MP_TAC CONVEX_HULLS_EQ THEN | |
ASM_SIMP_TAC[HULL_INC; IN_INSERT; INSERT_SUBSET; EMPTY_SUBSET] THEN | |
SUBGOAL_THEN(subst [a,`x:real^2`] `x IN convex hull {a:real^2,b,c}`) | |
MP_TAC THENL | |
[SIMP_TAC[HULL_INC; IN_INSERT]; ASM SET_TAC[]]; | |
ALL_TAC] THEN | |
MP_TAC(ISPECL [`{a:real^2,b,c}`; a] | |
EXTREME_POINT_OF_CONVEX_HULL_AFFINE_INDEPENDENT) THEN | |
ASM_REWRITE_TAC[IN_INSERT] THEN | |
DISCH_THEN(MP_TAC o MATCH_MP EXTREME_POINT_OF_CONVEX_HULL) THEN | |
ASM_REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] in | |
REPEAT GEN_TAC THEN | |
WF_INDUCT_TAC `CARD {x:real^2 | x IN convex hull {a,b,c} /\ | |
integral_vector x}` THEN | |
ASM_CASES_TAC `collinear{a:real^2,b,c}` THENL | |
[FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [COLLINEAR_BETWEEN_CASES]) THEN | |
REWRITE_TAC[BETWEEN_IN_SEGMENT] THEN REPEAT STRIP_TAC THENL | |
[MP_TAC(ISPECL [`b:real^2`; `c:real^2`; `a:real^2`] PICK_TRIANGLE_FLAT); | |
MP_TAC(ISPECL [`a:real^2`; `c:real^2`; `b:real^2`] PICK_TRIANGLE_FLAT); | |
MP_TAC(ISPECL [`a:real^2`; `b:real^2`; `c:real^2`] | |
PICK_TRIANGLE_FLAT)] THEN | |
(ANTS_TAC THENL [ASM_MESON_TAC[SEGMENT_SYM]; ALL_TAC] THEN | |
REWRITE_TAC[SET_RULE `{x | x IN s /\ P x} = s INTER P`] THEN | |
REWRITE_TAC[INSERT_AC; REAL_ADD_AC]); | |
ALL_TAC] THEN | |
UNDISCH_TAC `~collinear{a:real^2,b,c}` THEN | |
MAP_EVERY | |
(fun t -> ASM_CASES_TAC t THENL | |
[ASM_REWRITE_TAC[INSERT_AC; COLLINEAR_2]; ALL_TAC]) | |
[`a:real^2 = b`; `a:real^2 = c`; `b:real^2 = c`] THEN | |
DISCH_TAC THEN STRIP_TAC THEN | |
ASM_CASES_TAC | |
`{x:real^2 | x IN convex hull {a, b, c} /\ integral_vector x} = | |
{a,b,c}` | |
THENL | |
[ASM_SIMP_TAC[PICK_ELEMENTARY_TRIANGLE] THEN | |
SUBGOAL_THEN | |
`{x | x IN convex hull {b,c} /\ integral_vector x} = {b,c} /\ | |
{x | x IN convex hull {a,c} /\ integral_vector x} = {a,c} /\ | |
{x | x IN convex hull {a,b} /\ integral_vector x} = {a:real^2,b}` | |
(REPEAT_TCL CONJUNCTS_THEN SUBST1_TAC) THENL | |
[REPEAT CONJ_TAC THEN | |
(FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE | |
`{x | x IN cs /\ P x} = s | |
==> t SUBSET s /\ t SUBSET ct /\ ct SUBSET cs /\ | |
(s DIFF t) INTER ct = {} | |
==> {x | x IN ct /\ P x} = t`)) THEN | |
REPEAT CONJ_TAC THENL | |
[SET_TAC[]; | |
MATCH_ACCEPT_TAC HULL_SUBSET; | |
MATCH_MP_TAC HULL_MONO THEN SET_TAC[]; | |
ASM_REWRITE_TAC[INSERT_DIFF; IN_INSERT; NOT_IN_EMPTY; EMPTY_DIFF] THEN | |
MATCH_MP_TAC(SET_RULE `~(x IN s) ==> {x} INTER s = {}`) THEN | |
REWRITE_TAC[GSYM SEGMENT_CONVEX_HULL; GSYM BETWEEN_IN_SEGMENT] THEN | |
DISCH_THEN(MP_TAC o MATCH_MP BETWEEN_IMP_COLLINEAR) THEN | |
UNDISCH_TAC `~collinear{a:real^2,b,c}` THEN REWRITE_TAC[INSERT_AC]]); | |
SIMP_TAC[CARD_CLAUSES; FINITE_INSERT; FINITE_EMPTY] THEN | |
ASM_REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN | |
CONV_TAC NUM_REDUCE_CONV THEN CONV_TAC REAL_RAT_REDUCE_CONV]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN | |
`?d:real^2. d IN convex hull {a, b, c} /\ integral_vector d /\ | |
~(d = a) /\ ~(d = b) /\ ~(d = c)` | |
STRIP_ASSUME_TAC THENL | |
[FIRST_X_ASSUM(MP_TAC o MATCH_MP (SET_RULE | |
`~(s = t) ==> t SUBSET s ==> ?d. d IN s /\ ~(d IN t)`)) THEN | |
REWRITE_TAC[SUBSET; FORALL_IN_INSERT; IN_ELIM_THM] THEN | |
ASM_SIMP_TAC[IN_INSERT; NOT_IN_EMPTY; DE_MORGAN_THM; GSYM CONJ_ASSOC] THEN | |
DISCH_THEN MATCH_MP_TAC THEN SIMP_TAC[HULL_INC; IN_INSERT]; | |
ALL_TAC] THEN | |
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV | |
[COLLINEAR_3_EQ_AFFINE_DEPENDENT]) THEN | |
ASM_REWRITE_TAC[] THEN DISCH_TAC THEN | |
MP_TAC(ISPECL | |
[`measure:(real^2->bool)->real`; | |
`a:real^2`; `b:real^2`; `c:real^2`; `d:real^2`] | |
TRIANGLE_ADDITIVE_DECOMPOSITION) THEN | |
SIMP_TAC[MEASURE_UNION; MEASURABLE_COMPACT] THEN | |
ASM_REWRITE_TAC[] THEN DISCH_THEN SUBST1_TAC THEN | |
REWRITE_TAC[MEASURE_CONVEX_HULL_2_TRIVIAL; REAL_ADD_RID; REAL_SUB_RZERO] THEN | |
MP_TAC(ISPECL | |
[`\s. &(CARD {x:real^2 | x IN s /\ integral_vector x})`; | |
`a:real^2`; `b:real^2`; `c:real^2`; `d:real^2`] | |
TRIANGLE_ADDITIVE_DECOMPOSITION) THEN | |
ASM_REWRITE_TAC[] THEN ANTS_TAC THENL | |
[REWRITE_TAC[SET_RULE `{x | x IN (s UNION t) /\ P x} = | |
{x | x IN s /\ P x} UNION {x | x IN t /\ P x}`; | |
SET_RULE `{x | x IN (s INTER t) /\ P x} = | |
{x | x IN s /\ P x} INTER {x | x IN t /\ P x}`] THEN | |
REPEAT STRIP_TAC THEN | |
REWRITE_TAC[REAL_ARITH `x:real = y + z - w <=> x + w = y + z`] THEN | |
REWRITE_TAC[REAL_OF_NUM_ADD; REAL_OF_NUM_EQ] THEN | |
MATCH_MP_TAC(ARITH_RULE | |
`x:num = (y + z) - w /\ w <= z ==> x + w = y + z`) THEN | |
CONJ_TAC THENL | |
[MATCH_MP_TAC CARD_UNION_GEN; | |
MATCH_MP_TAC CARD_SUBSET THEN REWRITE_TAC[INTER_SUBSET]] THEN | |
ASM_SIMP_TAC[FINITE_BOUNDED_INTEGER_POINTS; COMPACT_IMP_BOUNDED]; | |
DISCH_THEN SUBST1_TAC] THEN | |
FIRST_X_ASSUM(fun th -> | |
MP_TAC(ISPECL [`a:real^2`; `b:real^2`; `d:real^2`] th) THEN | |
MP_TAC(ISPECL [`a:real^2`; `c:real^2`; `d:real^2`] th) THEN | |
MP_TAC(ISPECL [`b:real^2`; `c:real^2`; `d:real^2`] th)) THEN | |
ASM_REWRITE_TAC[] THEN | |
ANTS_TAC THENL [tac `a:real^2` `{b:real^2,c,d}`; DISCH_THEN SUBST1_TAC] THEN | |
ANTS_TAC THENL [tac `b:real^2` `{a:real^2,c,d}`; DISCH_THEN SUBST1_TAC] THEN | |
ANTS_TAC THENL [tac `c:real^2` `{a:real^2,b,d}`; DISCH_THEN SUBST1_TAC] THEN | |
SUBGOAL_THEN `{x:real^2 | x IN convex hull {d} /\ integral_vector x} = {d}` | |
SUBST1_TAC THENL | |
[REWRITE_TAC[CONVEX_HULL_SING] THEN ASM SET_TAC[]; ALL_TAC] THEN | |
SIMP_TAC[CARD_CLAUSES; FINITE_RULES; NOT_IN_EMPTY] THEN | |
CONV_TAC NUM_REDUCE_CONV THEN | |
REWRITE_TAC[SET_RULE `{x | x IN s /\ P x} = s INTER P`] THEN | |
REWRITE_TAC[INSERT_AC] THEN REAL_ARITH_TAC);; | |
let PICK_TRIANGLE = prove | |
(`!a b c:real^2. | |
integral_vector a /\ integral_vector b /\ integral_vector c | |
==> measure(convex hull {a,b,c}) = | |
if collinear {a,b,c} then &0 | |
else &(CARD {x | x IN interior(convex hull {a,b,c}) /\ | |
integral_vector x}) + | |
&(CARD {x | x IN frontier(convex hull {a,b,c}) /\ | |
integral_vector x}) / &2 - &1`, | |
REPEAT STRIP_TAC THEN COND_CASES_TAC THEN | |
ASM_SIMP_TAC[MEASURE_EQ_0; COLLINEAR_IMP_NEGLIGIBLE; | |
COLLINEAR_CONVEX_HULL_COLLINEAR] THEN | |
ASM_SIMP_TAC[PICK_TRIANGLE_ALT] THEN | |
REWRITE_TAC[INTERIOR_OF_TRIANGLE; FRONTIER_OF_TRIANGLE] THEN | |
REWRITE_TAC[SET_RULE | |
`{x | x IN (s DIFF t) /\ P x} = | |
{x | x IN s /\ P x} DIFF {x | x IN t /\ P x}`] THEN | |
MATCH_MP_TAC(REAL_ARITH | |
`i + c = s /\ ccc = c + &3 | |
==> s - ccc / &2 + &1 / &2 = i + c / &2 - &1`) THEN | |
CONJ_TAC THENL | |
[REWRITE_TAC[REAL_OF_NUM_ADD; REAL_OF_NUM_EQ] THEN | |
MATCH_MP_TAC(ARITH_RULE `y:num <= x /\ x - y = z ==> z + y = x`) THEN | |
CONJ_TAC THENL | |
[MATCH_MP_TAC CARD_SUBSET; MATCH_MP_TAC(GSYM CARD_DIFF)] THEN | |
ASM_SIMP_TAC[FINITE_BOUNDED_INTEGER_POINTS; | |
FINITE_IMP_BOUNDED_CONVEX_HULL; FINITE_INSERT; FINITE_EMPTY] THEN | |
MATCH_MP_TAC(SET_RULE | |
`s SUBSET t ==> {x | x IN s /\ P x} SUBSET {x | x IN t /\ P x}`) THEN | |
REWRITE_TAC[UNION_SUBSET; SEGMENT_CONVEX_HULL] THEN | |
REPEAT CONJ_TAC THEN MATCH_MP_TAC HULL_MONO THEN SET_TAC[]; | |
REWRITE_TAC[SET_RULE | |
`{x | x IN (s UNION t) /\ P x} = | |
{x | x IN s /\ P x} UNION {x | x IN t /\ P x}`] THEN | |
SIMP_TAC[CARD_UNION_GEN; FINITE_BOUNDED_INTEGER_POINTS; | |
FINITE_INTER; FINITE_UNION; BOUNDED_SEGMENT; UNION_OVER_INTER] THEN | |
REWRITE_TAC[SET_RULE | |
`{x | x IN s /\ P x} INTER {x | x IN t /\ P x} = | |
{x | x IN (s INTER t) /\ P x}`] THEN | |
SUBGOAL_THEN | |
`segment[b:real^2,c] INTER segment [c,a] = {c} /\ | |
segment[a,b] INTER segment [b,c] = {b} /\ | |
segment[a,b] INTER segment [c,a] = {a}` | |
(REPEAT_TCL CONJUNCTS_THEN SUBST1_TAC) THENL | |
[ASM_MESON_TAC[INTER_SEGMENT; SEGMENT_SYM; INSERT_AC]; ALL_TAC] THEN | |
ASM_SIMP_TAC[SET_RULE `P a ==> {x | x IN {a} /\ P x} = {a}`] THEN | |
ASM_CASES_TAC `b:real^2 = a` THENL | |
[ASM_MESON_TAC[COLLINEAR_2; INSERT_AC]; ALL_TAC] THEN | |
ASM_SIMP_TAC[SET_RULE `~(a = b) ==> {b} INTER {a} = {}`] THEN | |
REWRITE_TAC[REAL_OF_NUM_ADD; REAL_OF_NUM_EQ] THEN | |
REWRITE_TAC[NOT_IN_EMPTY; EMPTY_GSPEC; CARD_CLAUSES; SUB_0] THEN | |
MATCH_MP_TAC(ARITH_RULE | |
`c:num <= ca /\ a <= ab /\ b <= bc /\ | |
bc' + ac' + ab' + a + b + c = ab + bc + ca + 3 | |
==> bc' + ac' + ab' = (ab + (bc + ca) - c) - (b + a) + 3`) THEN | |
ASM_SIMP_TAC[CARD_SUBSET; SING_SUBSET; IN_ELIM_THM; ENDS_IN_SEGMENT; | |
FINITE_BOUNDED_INTEGER_POINTS; BOUNDED_SEGMENT] THEN | |
SIMP_TAC[NOT_IN_EMPTY; EMPTY_GSPEC; CARD_CLAUSES; FINITE_INSERT; | |
FINITE_EMPTY] THEN CONV_TAC NUM_REDUCE_CONV THEN | |
REWRITE_TAC[SET_RULE `{x | x IN s /\ P x} = s INTER P`] THEN | |
REWRITE_TAC[SEGMENT_CONVEX_HULL; INSERT_AC] THEN ARITH_TAC]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Parity lemma for segment crossing a polygon. *) | |
(* ------------------------------------------------------------------------- *) | |
let PARITY_LEMMA = prove | |
(`!a b c d p x:real^2. | |
simple_path(p ++ linepath(a,b)) /\ | |
pathstart p = b /\ pathfinish p = a /\ | |
segment(a,b) INTER segment(c,d) = {x} /\ | |
segment[c,d] INTER path_image p = {} | |
==> (c IN inside(path_image(p ++ linepath(a,b))) <=> | |
d IN outside(path_image(p ++ linepath(a,b))))`, | |
let lemma = prove | |
(`!a b x y:real^N. | |
collinear{y,a,b} /\ between x (a,b) /\ | |
dist(y,x) < dist(x,b) /\ dist(y,x) < dist(x,a) | |
==> y IN segment(a,b)`, | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC COLLINEAR_DIST_IN_OPEN_SEGMENT THEN | |
ASM_REWRITE_TAC[] THEN | |
REPEAT(POP_ASSUM MP_TAC) THEN REWRITE_TAC[between; DIST_SYM] THEN | |
NORM_ARITH_TAC) | |
and symlemma = prove | |
(`(!n. P(--n) <=> P (n)) /\ (!n. &0 < n dot x ==> P n) | |
==> !n:real^N. ~(n dot x = &0) ==> P n`, | |
STRIP_TAC THEN GEN_TAC THEN | |
REWRITE_TAC[REAL_ARITH `~(x = &0) <=> &0 < x \/ &0 < --x`] THEN | |
REWRITE_TAC[GSYM DOT_LNEG] THEN ASM_MESON_TAC[]) in | |
REPEAT STRIP_TAC THEN | |
MP_TAC(ISPECL [`p:real^1->real^2`; `linepath(a:real^2,b)`] | |
SIMPLE_PATH_JOIN_LOOP_EQ) THEN | |
FIRST_ASSUM(MP_TAC o MATCH_MP SIMPLE_PATH_IMP_PATH) THEN | |
ASM_SIMP_TAC[PATH_JOIN; PATHSTART_LINEPATH; PATHFINISH_LINEPATH] THEN | |
DISCH_THEN(ASSUME_TAC o CONJUNCT1) THEN STRIP_TAC THEN | |
MP_TAC(ISPECL [`(a:real^2) INSERT b INSERT c INSERT d INSERT path_image p`; | |
`x:real^2`] | |
DISTANCE_ATTAINS_INF) THEN | |
REWRITE_TAC[FORALL_IN_INSERT] THEN | |
ONCE_REWRITE_TAC[SET_RULE `a INSERT b INSERT c INSERT d INSERT s = | |
{a,b,c,d} UNION s`] THEN | |
ASM_SIMP_TAC[CLOSED_UNION; FINITE_IMP_CLOSED; CLOSED_PATH_IMAGE; | |
FINITE_INSERT; FINITE_EMPTY] THEN | |
ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN | |
DISCH_THEN(X_CHOOSE_THEN `cp:real^2` MP_TAC) THEN | |
DISJ_CASES_TAC(NORM_ARITH `cp = x \/ &0 < dist(x:real^2,cp)`) THENL | |
[FIRST_X_ASSUM SUBST_ALL_TAC THEN | |
MATCH_MP_TAC(TAUT `~a ==> a /\ b ==> c`) THEN | |
FIRST_ASSUM(MP_TAC o MATCH_MP (SET_RULE `a = {x} ==> x IN a`)) THEN | |
REWRITE_TAC[open_segment; IN_DIFF; IN_UNION; IN_INSERT; NOT_IN_EMPTY; | |
IN_INTER; DE_MORGAN_THM] THEN | |
STRIP_TAC THEN ASM_REWRITE_TAC[] THEN | |
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE | |
`p INTER s SUBSET u ==> x IN (s DIFF u) ==> ~(x IN p)`)) THEN | |
ASM_REWRITE_TAC[IN_DIFF; IN_INSERT; NOT_IN_EMPTY; PATH_IMAGE_LINEPATH]; | |
ALL_TAC] THEN | |
ABBREV_TAC `e = dist(x:real^2,cp)` THEN FIRST_X_ASSUM(K ALL_TAC o SYM) THEN | |
DISCH_THEN(STRIP_ASSUME_TAC o CONJUNCT2) THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[ARC_LINEPATH_EQ]) THEN | |
MP_TAC(ISPECL [`a:real^2`; `b:real^2`; `c:real^2`; `d:real^2`] | |
FINITE_INTER_COLLINEAR_OPEN_SEGMENTS) THEN | |
MP_TAC(ISPECL [`a:real^2`; `b:real^2`; `d:real^2`; `c:real^2`] | |
FINITE_INTER_COLLINEAR_OPEN_SEGMENTS) THEN | |
SUBST1_TAC(MESON[SEGMENT_SYM] `segment(d:real^2,c) = segment(c,d)`) THEN | |
ASM_REWRITE_TAC[FINITE_SING; NOT_INSERT_EMPTY] THEN REPEAT DISCH_TAC THEN | |
SUBGOAL_THEN `~(a IN segment[c:real^2,d]) /\ ~(b IN segment[c,d])` | |
STRIP_ASSUME_TAC THENL | |
[ASM_MESON_TAC[PATHSTART_IN_PATH_IMAGE; PATHFINISH_IN_PATH_IMAGE; | |
IN_INTER; NOT_IN_EMPTY]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `~(c:real^2 = a) /\ ~(c = b) /\ ~(d = a) /\ ~(d = b)` | |
STRIP_ASSUME_TAC THENL [ASM_MESON_TAC[ENDS_IN_SEGMENT]; ALL_TAC] THEN | |
SUBGOAL_THEN `x IN segment(a:real^2,b) /\ x IN segment(c,d)` MP_TAC THENL | |
[ASM SET_TAC[]; ALL_TAC] THEN | |
REWRITE_TAC[IN_OPEN_SEGMENT_ALT] THEN STRIP_TAC THEN | |
SUBGOAL_THEN | |
`{c,d} INTER path_image(p ++ linepath(a:real^2,b)) = {}` | |
ASSUME_TAC THENL | |
[ASM_SIMP_TAC[PATH_IMAGE_JOIN; PATH_LINEPATH; PATHSTART_LINEPATH] THEN | |
REWRITE_TAC[SET_RULE | |
`{c,d} INTER (s UNION t) = {} <=> | |
(~(c IN s) /\ ~(d IN s)) /\ ~(c IN t) /\ ~(d IN t)`] THEN | |
CONJ_TAC THENL | |
[ASM_MESON_TAC[ENDS_IN_SEGMENT; IN_INTER; NOT_IN_EMPTY]; | |
REWRITE_TAC[PATH_IMAGE_LINEPATH; GSYM BETWEEN_IN_SEGMENT] THEN | |
CONJ_TAC THEN DISCH_THEN(ASSUME_TAC o MATCH_MP BETWEEN_IMP_COLLINEAR) THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[INSERT_AC]) THEN ASM_MESON_TAC[]]; | |
ALL_TAC] THEN | |
MP_TAC(ISPEC `b - x:real^2` ORTHOGONAL_TO_VECTOR_EXISTS) THEN | |
REWRITE_TAC[DIMINDEX_2; LE_REFL; LEFT_IMP_EXISTS_THM] THEN | |
X_GEN_TAC `n:real^2` THEN STRIP_TAC THEN | |
SUBGOAL_THEN `(x:real^2) IN segment(a,b) /\ x IN segment(c,d)` MP_TAC THENL | |
[ASM SET_TAC[]; | |
SIMP_TAC[IN_OPEN_SEGMENT_ALT; GSYM BETWEEN_IN_SEGMENT] THEN STRIP_TAC] THEN | |
SUBGOAL_THEN `~collinear{a:real^2, b, c, d}` ASSUME_TAC THENL | |
[UNDISCH_TAC `~collinear{a:real^2,b,c}` THEN REWRITE_TAC[CONTRAPOS_THM] THEN | |
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] COLLINEAR_SUBSET) THEN SET_TAC[]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `~(n dot (d - x:real^2) = &0)` MP_TAC THENL | |
[REWRITE_TAC[GSYM orthogonal] THEN DISCH_TAC THEN | |
MP_TAC(SPECL [`n:real^2`; `d - x:real^2`; `b - x:real^2`] | |
ORTHOGONAL_TO_ORTHOGONAL_2D) THEN | |
ANTS_TAC THENL [ASM_MESON_TAC[ORTHOGONAL_SYM]; ALL_TAC] THEN | |
REWRITE_TAC[GSYM COLLINEAR_3] THEN DISCH_TAC THEN | |
UNDISCH_TAC `~collinear{a:real^2, b, c, d}` THEN ASM_REWRITE_TAC[] THEN | |
ONCE_REWRITE_TAC[SET_RULE `{a,b,c,d} = {b,d,a,c}`] THEN | |
ASM_SIMP_TAC[COLLINEAR_4_3] THEN CONJ_TAC THENL | |
[MATCH_MP_TAC COLLINEAR_SUBSET THEN EXISTS_TAC `{b:real^2,x,a,d}` THEN | |
CONJ_TAC THENL [ASM_SIMP_TAC[COLLINEAR_4_3]; SET_TAC[]] THEN | |
ONCE_REWRITE_TAC[SET_RULE `{a,b,c} = {c,b,a}`] THEN | |
ASM_SIMP_TAC[BETWEEN_IMP_COLLINEAR]; | |
MATCH_MP_TAC COLLINEAR_SUBSET THEN EXISTS_TAC `{d:real^2,x,b,c}` THEN | |
CONJ_TAC THENL [ASM_SIMP_TAC[COLLINEAR_4_3]; SET_TAC[]] THEN | |
ONCE_REWRITE_TAC[SET_RULE `{a,b,c} = {c,b,a}`] THEN | |
ASM_SIMP_TAC[BETWEEN_IMP_COLLINEAR]]; | |
ALL_TAC] THEN | |
DISCH_THEN(fun th -> POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN | |
MP_TAC th) THEN | |
SPEC_TAC(`n:real^2`,`n:real^2`) THEN | |
MATCH_MP_TAC symlemma THEN CONJ_TAC THENL | |
[REWRITE_TAC[ORTHOGONAL_RNEG; VECTOR_NEG_EQ_0]; ALL_TAC] THEN | |
GEN_TAC THEN DISCH_TAC THEN STRIP_TAC THEN | |
SUBGOAL_THEN `n dot (c - x:real^2) < &0` ASSUME_TAC THENL | |
[UNDISCH_TAC `&0 < n dot (d - x:real^2)` THEN | |
SUBGOAL_THEN `(x:real^2) IN segment(c,d)` MP_TAC THENL | |
[ASM SET_TAC[]; ALL_TAC] THEN | |
ASM_REWRITE_TAC[IN_SEGMENT] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[VECTOR_ARITH | |
`d - ((&1 - u) % c + u % d):real^N = (&1 - u) % (d - c) /\ | |
c - ((&1 - u) % c + u % d) = --u % (d - c)`] THEN | |
REWRITE_TAC[DOT_RMUL; REAL_MUL_LNEG; REAL_ARITH `--x < &0 <=> &0 < x`] THEN | |
ASM_SIMP_TAC[REAL_LT_MUL_EQ; REAL_SUB_LT]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN | |
`!y. y IN ball(x:real^2,e) | |
==> y IN segment(a,b) \/ | |
&0 < n dot (y - x) \/ | |
n dot (y - x) < &0` | |
ASSUME_TAC THENL | |
[REWRITE_TAC[IN_BALL] THEN REPEAT STRIP_TAC THEN | |
MATCH_MP_TAC(TAUT `(~c /\ ~b ==> a) ==> a \/ b \/ c`) THEN | |
REWRITE_TAC[REAL_ARITH `~(x < &0) /\ ~(&0 < x) <=> x = &0`] THEN | |
REWRITE_TAC[GSYM orthogonal] THEN DISCH_TAC THEN | |
MP_TAC(SPECL [`n:real^2`; `y - x:real^2`; `b - x:real^2`] | |
ORTHOGONAL_TO_ORTHOGONAL_2D) THEN | |
ANTS_TAC THENL [ASM_MESON_TAC[ORTHOGONAL_SYM]; ALL_TAC] THEN | |
REWRITE_TAC[GSYM COLLINEAR_3] THEN DISCH_TAC THEN | |
MATCH_MP_TAC lemma THEN EXISTS_TAC `x:real^2` THEN | |
ASM_REWRITE_TAC[] THEN CONJ_TAC THENL | |
[ALL_TAC; ASM_MESON_TAC[REAL_LTE_TRANS; DIST_SYM]] THEN | |
ONCE_REWRITE_TAC[SET_RULE `{y,a,b} = {a,b,y}`] THEN | |
MATCH_MP_TAC COLLINEAR_3_TRANS THEN EXISTS_TAC `x:real^2` THEN | |
ASM_REWRITE_TAC[] THEN UNDISCH_TAC `collinear{y:real^2, x, b}` THEN | |
MP_TAC(MATCH_MP BETWEEN_IMP_COLLINEAR (ASSUME | |
`between (x:real^2) (a,b)`)) THEN | |
SIMP_TAC[INSERT_AC]; | |
ALL_TAC] THEN | |
MP_TAC(SPEC `p ++ linepath(a:real^2,b)` JORDAN_INSIDE_OUTSIDE) THEN | |
ASM_REWRITE_TAC[PATHFINISH_JOIN; PATHSTART_JOIN; PATHFINISH_LINEPATH] THEN | |
STRIP_TAC THEN | |
SUBGOAL_THEN | |
`~(connected_component((:real^2) DIFF path_image(p ++ linepath (a,b))) c d)` | |
MP_TAC THENL | |
[DISCH_TAC; | |
ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN | |
DISCH_THEN(MP_TAC o SPEC `path_image(p ++ linepath(a:real^2,b))` o | |
MATCH_MP (SET_RULE | |
`~(x IN s <=> y IN t) | |
==> !p. s UNION t = (:real^2) DIFF p /\ {x,y} INTER p = {} | |
==> x IN s /\ y IN s \/ x IN t /\ y IN t`)) THEN | |
ASM_REWRITE_TAC[connected_component] THEN | |
ASM_REWRITE_TAC[SET_RULE `t SUBSET UNIV DIFF s <=> t INTER s = {}`] THEN | |
ASM_MESON_TAC[INSIDE_NO_OVERLAP; OUTSIDE_NO_OVERLAP]] THEN | |
MP_TAC(SPEC `p ++ linepath(a:real^2,b)` JORDAN_DISCONNECTED) THEN | |
ASM_REWRITE_TAC[PATHFINISH_JOIN; PATHSTART_JOIN; PATHFINISH_LINEPATH] THEN | |
REWRITE_TAC[CONNECTED_IFF_CONNECTED_COMPONENT] THEN | |
SUBGOAL_THEN | |
`!u v. u IN inside(path_image(p ++ linepath(a,b))) /\ | |
v IN outside(path_image(p ++ linepath(a,b))) | |
==> connected_component | |
((:real^2) DIFF path_image (p ++ linepath (a,b))) u v` | |
ASSUME_TAC THENL | |
[ALL_TAC; | |
MAP_EVERY X_GEN_TAC [`u:real^2`; `v:real^2`] THEN | |
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) | |
[SYM(ASSUME `inside (path_image (p ++ linepath (a,b))) UNION | |
outside (path_image (p ++ linepath (a,b))) = | |
(:real^2) DIFF path_image (p ++ linepath (a,b))`)] THEN | |
REWRITE_TAC[IN_UNION; CONNECTED_IFF_CONNECTED_COMPONENT] THEN | |
STRIP_TAC THENL | |
[REWRITE_TAC[connected_component] THEN | |
EXISTS_TAC `inside(path_image(p ++ linepath(a:real^2,b)))`; | |
ASM_MESON_TAC[]; | |
ASM_MESON_TAC[CONNECTED_COMPONENT_SYM]; | |
REWRITE_TAC[connected_component] THEN | |
EXISTS_TAC `outside(path_image(p ++ linepath(a:real^2,b)))`] THEN | |
ASM_REWRITE_TAC[SET_RULE `s SUBSET UNIV DIFF t <=> s INTER t = {}`] THEN | |
REWRITE_TAC[OUTSIDE_NO_OVERLAP; INSIDE_NO_OVERLAP]] THEN | |
SUBGOAL_THEN `(x:real^2) IN path_image(p ++ linepath(a,b))` ASSUME_TAC THENL | |
[ASM_SIMP_TAC[PATHSTART_LINEPATH; PATH_IMAGE_JOIN; PATH_LINEPATH] THEN | |
REWRITE_TAC[IN_UNION; PATH_IMAGE_LINEPATH] THEN DISJ2_TAC THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[open_segment]) THEN ASM SET_TAC[]; | |
ALL_TAC] THEN | |
MAP_EVERY X_GEN_TAC [`u:real^2`; `v:real^2`] THEN STRIP_TAC THEN | |
UNDISCH_TAC | |
`frontier(inside(path_image(p ++ linepath(a:real^2,b)))) = | |
path_image(p ++ linepath(a,b))` THEN | |
REWRITE_TAC[EXTENSION] THEN | |
DISCH_THEN(MP_TAC o SPEC `x:real^2`) THEN ASM_REWRITE_TAC[frontier] THEN | |
REWRITE_TAC[IN_DIFF; CLOSURE_APPROACHABLE] THEN | |
DISCH_THEN(MP_TAC o SPEC `e:real` o CONJUNCT1) THEN | |
ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN | |
X_GEN_TAC `w:real^2` THEN STRIP_TAC THEN | |
MATCH_MP_TAC CONNECTED_COMPONENT_TRANS THEN EXISTS_TAC `w:real^2` THEN | |
CONJ_TAC THENL | |
[REWRITE_TAC[connected_component] THEN | |
EXISTS_TAC `inside(path_image(p ++ linepath(a:real^2,b)))` THEN | |
ASM_REWRITE_TAC[SET_RULE `s SUBSET UNIV DIFF t <=> s INTER t = {}`] THEN | |
REWRITE_TAC[INSIDE_NO_OVERLAP]; | |
ALL_TAC] THEN | |
UNDISCH_TAC | |
`frontier(outside(path_image(p ++ linepath(a:real^2,b)))) = | |
path_image(p ++ linepath(a,b))` THEN | |
REWRITE_TAC[EXTENSION] THEN | |
DISCH_THEN(MP_TAC o SPEC `x:real^2`) THEN ASM_REWRITE_TAC[frontier] THEN | |
REWRITE_TAC[IN_DIFF; CLOSURE_APPROACHABLE] THEN | |
DISCH_THEN(MP_TAC o SPEC `e:real` o CONJUNCT1) THEN | |
ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN | |
X_GEN_TAC `z:real^2` THEN STRIP_TAC THEN | |
MATCH_MP_TAC CONNECTED_COMPONENT_TRANS THEN EXISTS_TAC `z:real^2` THEN | |
CONJ_TAC THENL | |
[ALL_TAC; | |
REWRITE_TAC[connected_component] THEN | |
EXISTS_TAC `outside(path_image(p ++ linepath(a:real^2,b)))` THEN | |
ASM_REWRITE_TAC[SET_RULE `s SUBSET UNIV DIFF t <=> s INTER t = {}`] THEN | |
REWRITE_TAC[OUTSIDE_NO_OVERLAP]] THEN | |
SUBGOAL_THEN | |
`!y. dist(y,x) < e /\ ~(y IN path_image(p ++ linepath (a,b))) | |
==> connected_component | |
((:real^2) DIFF path_image(p ++ linepath(a,b))) c y` | |
ASSUME_TAC THENL | |
[ALL_TAC; | |
MATCH_MP_TAC CONNECTED_COMPONENT_TRANS THEN EXISTS_TAC `c:real^2` THEN | |
CONJ_TAC THENL [MATCH_MP_TAC CONNECTED_COMPONENT_SYM; ALL_TAC] THEN | |
FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN | |
ASM_MESON_TAC[INSIDE_NO_OVERLAP; OUTSIDE_NO_OVERLAP; IN_INTER; | |
NOT_IN_EMPTY]] THEN | |
X_GEN_TAC `y:real^2` THEN STRIP_TAC THEN | |
SUBGOAL_THEN `segment[c,d] INTER path_image(p ++ linepath(a,b)) = {x:real^2}` | |
ASSUME_TAC THENL | |
[MATCH_MP_TAC(SET_RULE | |
`{c,d} INTER p = {} /\ (segment[c,d] DIFF {c,d}) INTER p = {x} | |
==> segment[c,d] INTER p = {x}`) THEN | |
ASM_SIMP_TAC[PATH_IMAGE_JOIN; PATHSTART_LINEPATH; PATH_LINEPATH] THEN | |
MATCH_MP_TAC(SET_RULE | |
`cd INTER p = {} /\ l INTER (cd DIFF {c,d}) = {x} | |
==> (cd DIFF {c,d}) INTER (p UNION l) = {x}`) THEN | |
ASM_REWRITE_TAC[GSYM open_segment; PATH_IMAGE_LINEPATH] THEN | |
MATCH_MP_TAC(SET_RULE | |
`~(a IN segment[c,d]) /\ ~(b IN segment[c,d]) /\ | |
segment(a,b) INTER segment(c,d) = {x} /\ | |
segment(a,b) = segment[a,b] DIFF {a,b} /\ | |
segment(c,d) = segment[c,d] DIFF {c,d} | |
==> segment[a,b] INTER segment(c,d) = {x}`) THEN | |
ASM_REWRITE_TAC[] THEN REWRITE_TAC[open_segment]; | |
ALL_TAC] THEN | |
UNDISCH_THEN | |
`!y. y IN ball(x:real^2,e) | |
==> y IN segment(a,b) \/ &0 < n dot (y - x) \/ n dot (y - x) < &0` | |
(MP_TAC o SPEC `y:real^2`) THEN | |
REWRITE_TAC[IN_BALL] THEN ONCE_REWRITE_TAC[DIST_SYM] THEN | |
ASM_REWRITE_TAC[] THEN | |
DISCH_THEN(REPEAT_TCL DISJ_CASES_THEN MP_TAC) THENL | |
[MATCH_MP_TAC(TAUT `~p ==> p ==> q`) THEN | |
UNDISCH_TAC `~(y IN path_image(p ++ linepath(a:real^2,b)))` THEN | |
ASM_SIMP_TAC[PATHSTART_LINEPATH; PATH_IMAGE_JOIN; PATH_LINEPATH] THEN | |
SIMP_TAC[CONTRAPOS_THM; open_segment; IN_DIFF; IN_UNION; | |
PATH_IMAGE_LINEPATH]; | |
DISCH_TAC THEN MATCH_MP_TAC CONNECTED_COMPONENT_TRANS THEN | |
EXISTS_TAC `d:real^2` THEN ASM_REWRITE_TAC[] THEN | |
MATCH_MP_TAC CONNECTED_COMPONENT_TRANS THEN | |
EXISTS_TAC `x + min (&1 / &2) (e / &2 / norm(d - x)) % (d - x):real^2` THEN | |
REWRITE_TAC[connected_component] THEN CONJ_TAC THENL | |
[EXISTS_TAC `segment[x:real^2,d] DELETE x` THEN | |
SIMP_TAC[CONVEX_SEMIOPEN_SEGMENT; CONVEX_CONNECTED] THEN | |
ASM_REWRITE_TAC[IN_DELETE; ENDS_IN_SEGMENT] THEN REPEAT CONJ_TAC THENL | |
[FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE | |
`cd INTER p = {x} | |
==> xd SUBSET cd | |
==> (xd DELETE x) SUBSET (UNIV DIFF p)`)) THEN | |
REWRITE_TAC[SUBSET_SEGMENT; ENDS_IN_SEGMENT] THEN | |
UNDISCH_TAC `segment (a,b) INTER segment (c,d) = {x:real^2}` THEN | |
REWRITE_TAC[open_segment] THEN SET_TAC[]; | |
REWRITE_TAC[IN_SEGMENT; VECTOR_ARITH | |
`x + a % (y - x):real^N = (&1 - a) % x + a % y`] THEN | |
EXISTS_TAC `min (&1 / &2) (e / &2 / norm(d - x:real^2))` THEN | |
REWRITE_TAC[] THEN CONJ_TAC THENL [ALL_TAC; REAL_ARITH_TAC] THEN | |
REWRITE_TAC[REAL_LE_MIN] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN | |
ASM_SIMP_TAC[REAL_LE_DIV; REAL_POS; NORM_POS_LE; REAL_LT_IMP_LE]; | |
ASM_REWRITE_TAC[VECTOR_MUL_EQ_0; VECTOR_SUB_EQ; | |
VECTOR_ARITH `x + a:real^N = x <=> a = vec 0`] THEN | |
MATCH_MP_TAC(REAL_ARITH `&0 < x ==> ~(min (&1 / &2) x = &0)`) THEN | |
MATCH_MP_TAC REAL_LT_DIV THEN ASM_REWRITE_TAC[REAL_HALF] THEN | |
ASM_REWRITE_TAC[NORM_POS_LT; VECTOR_SUB_EQ]]; | |
EXISTS_TAC `ball(x,e) INTER {w:real^2 | &0 < n dot (w - x)}` THEN | |
REPEAT CONJ_TAC THENL | |
[MATCH_MP_TAC CONVEX_CONNECTED THEN MATCH_MP_TAC CONVEX_INTER THEN | |
REWRITE_TAC[CONVEX_BALL; DOT_RSUB; REAL_SUB_LT] THEN | |
REWRITE_TAC[GSYM real_gt; CONVEX_HALFSPACE_GT]; | |
ASM_SIMP_TAC[PATHSTART_LINEPATH; PATH_IMAGE_JOIN; PATH_LINEPATH] THEN | |
MATCH_MP_TAC(SET_RULE | |
`p SUBSET (UNIV DIFF b) /\ l INTER w = {} | |
==> (b INTER w) SUBSET (UNIV DIFF (p UNION l))`) THEN | |
ASM_REWRITE_TAC[SUBSET; IN_DIFF; IN_UNIV; IN_BALL; REAL_NOT_LT] THEN | |
MATCH_MP_TAC(SET_RULE | |
`!t. t INTER u = {} /\ s SUBSET t ==> s INTER u = {}`) THEN | |
EXISTS_TAC `affine hull {x:real^2,b}` THEN CONJ_TAC THENL | |
[REWRITE_TAC[AFFINE_HULL_2; FORALL_IN_GSPEC; SET_RULE | |
`s INTER t = {} <=> !x. x IN s ==> ~(x IN t)`] THEN | |
REWRITE_TAC[IN_ELIM_THM] THEN | |
SIMP_TAC[REAL_ARITH `u + v = &1 <=> u = &1 - v`] THEN | |
REWRITE_TAC[DOT_RMUL; VECTOR_ARITH | |
`((&1 - v) % x + v % b) - x:real^N = v % (b - x)`] THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[orthogonal]) THEN | |
ONCE_REWRITE_TAC[DOT_SYM] THEN | |
ASM_REWRITE_TAC[REAL_MUL_RZERO; REAL_LT_REFL]; | |
REWRITE_TAC[PATH_IMAGE_LINEPATH; SEGMENT_CONVEX_HULL] THEN | |
SIMP_TAC[SUBSET_HULL; AFFINE_IMP_CONVEX; AFFINE_AFFINE_HULL] THEN | |
REWRITE_TAC[INSERT_SUBSET; EMPTY_SUBSET] THEN | |
SIMP_TAC[HULL_INC; IN_INSERT] THEN | |
ASM_SIMP_TAC[GSYM COLLINEAR_3_AFFINE_HULL] THEN | |
ONCE_REWRITE_TAC[SET_RULE `{x,b,a} = {a,x,b}`] THEN | |
MATCH_MP_TAC BETWEEN_IMP_COLLINEAR THEN ASM_REWRITE_TAC[]]; | |
REWRITE_TAC[IN_BALL; IN_INTER; IN_ELIM_THM; dist] THEN | |
REWRITE_TAC[NORM_ARITH `norm(x - (x + a):real^N) = norm a`] THEN | |
REWRITE_TAC[VECTOR_ARITH `(x + a) - x:real^N = a`] THEN CONJ_TAC THENL | |
[ASM_SIMP_TAC[NORM_MUL; GSYM REAL_LT_RDIV_EQ; NORM_POS_LT; | |
VECTOR_SUB_EQ] THEN | |
MATCH_MP_TAC(REAL_ARITH | |
`&0 < x /\ x < e ==> abs(min (&1 / &2) x) < e`) THEN | |
ASM_SIMP_TAC[REAL_LT_DIV; REAL_HALF; NORM_POS_LT; VECTOR_SUB_EQ; | |
REAL_LT_DIV2_EQ] THEN ASM_REAL_ARITH_TAC; | |
REWRITE_TAC[DOT_RMUL] THEN MATCH_MP_TAC REAL_LT_MUL THEN | |
ASM_REWRITE_TAC[REAL_LT_MIN] THEN | |
ASM_SIMP_TAC[REAL_LT_DIV; REAL_HALF; NORM_POS_LT; VECTOR_SUB_EQ; | |
REAL_LT_01]]; | |
REWRITE_TAC[IN_BALL; IN_INTER; IN_ELIM_THM] THEN | |
ONCE_REWRITE_TAC[DIST_SYM] THEN ASM_REWRITE_TAC[]]]; | |
DISCH_TAC THEN MATCH_MP_TAC CONNECTED_COMPONENT_TRANS THEN | |
EXISTS_TAC `x + min (&1 / &2) (e / &2 / norm(c - x)) % (c - x):real^2` THEN | |
REWRITE_TAC[connected_component] THEN CONJ_TAC THENL | |
[EXISTS_TAC `segment[x:real^2,c] DELETE x` THEN | |
SIMP_TAC[CONVEX_SEMIOPEN_SEGMENT; CONVEX_CONNECTED] THEN | |
ASM_REWRITE_TAC[IN_DELETE; ENDS_IN_SEGMENT] THEN REPEAT CONJ_TAC THENL | |
[FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE | |
`cd INTER p = {x} | |
==> xd SUBSET cd | |
==> (xd DELETE x) SUBSET (UNIV DIFF p)`)) THEN | |
REWRITE_TAC[SUBSET_SEGMENT; ENDS_IN_SEGMENT] THEN | |
UNDISCH_TAC `segment (a,b) INTER segment (c,d) = {x:real^2}` THEN | |
REWRITE_TAC[open_segment] THEN SET_TAC[]; | |
REWRITE_TAC[IN_SEGMENT; VECTOR_ARITH | |
`x + a % (y - x):real^N = (&1 - a) % x + a % y`] THEN | |
EXISTS_TAC `min (&1 / &2) (e / &2 / norm(c - x:real^2))` THEN | |
REWRITE_TAC[] THEN CONJ_TAC THENL [ALL_TAC; REAL_ARITH_TAC] THEN | |
REWRITE_TAC[REAL_LE_MIN] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN | |
ASM_SIMP_TAC[REAL_LE_DIV; REAL_POS; NORM_POS_LE; REAL_LT_IMP_LE]; | |
ASM_REWRITE_TAC[VECTOR_MUL_EQ_0; VECTOR_SUB_EQ; | |
VECTOR_ARITH `x + a:real^N = x <=> a = vec 0`] THEN | |
MATCH_MP_TAC(REAL_ARITH `&0 < x ==> ~(min (&1 / &2) x = &0)`) THEN | |
MATCH_MP_TAC REAL_LT_DIV THEN ASM_REWRITE_TAC[REAL_HALF] THEN | |
ASM_REWRITE_TAC[NORM_POS_LT; VECTOR_SUB_EQ]]; | |
EXISTS_TAC `ball(x,e) INTER {w:real^2 | n dot (w - x) < &0}` THEN | |
REPEAT CONJ_TAC THENL | |
[MATCH_MP_TAC CONVEX_CONNECTED THEN MATCH_MP_TAC CONVEX_INTER THEN | |
REWRITE_TAC[CONVEX_BALL; DOT_RSUB; REAL_ARITH `a - b < &0 <=> a < b`; | |
CONVEX_HALFSPACE_LT]; | |
ASM_SIMP_TAC[PATHSTART_LINEPATH; PATH_IMAGE_JOIN; PATH_LINEPATH] THEN | |
MATCH_MP_TAC(SET_RULE | |
`p SUBSET (UNIV DIFF b) /\ l INTER w = {} | |
==> (b INTER w) SUBSET (UNIV DIFF (p UNION l))`) THEN | |
ASM_REWRITE_TAC[SUBSET; IN_DIFF; IN_UNIV; IN_BALL; REAL_NOT_LT] THEN | |
MATCH_MP_TAC(SET_RULE | |
`!t. t INTER u = {} /\ s SUBSET t ==> s INTER u = {}`) THEN | |
EXISTS_TAC `affine hull {x:real^2,b}` THEN CONJ_TAC THENL | |
[REWRITE_TAC[AFFINE_HULL_2; FORALL_IN_GSPEC; SET_RULE | |
`s INTER t = {} <=> !x. x IN s ==> ~(x IN t)`] THEN | |
REWRITE_TAC[IN_ELIM_THM] THEN | |
SIMP_TAC[REAL_ARITH `u + v = &1 <=> u = &1 - v`] THEN | |
REWRITE_TAC[DOT_RMUL; VECTOR_ARITH | |
`((&1 - v) % x + v % b) - x:real^N = v % (b - x)`] THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[orthogonal]) THEN | |
ONCE_REWRITE_TAC[DOT_SYM] THEN | |
ASM_REWRITE_TAC[REAL_MUL_RZERO; REAL_LT_REFL]; | |
REWRITE_TAC[PATH_IMAGE_LINEPATH; SEGMENT_CONVEX_HULL] THEN | |
SIMP_TAC[SUBSET_HULL; AFFINE_IMP_CONVEX; AFFINE_AFFINE_HULL] THEN | |
REWRITE_TAC[INSERT_SUBSET; EMPTY_SUBSET] THEN | |
SIMP_TAC[HULL_INC; IN_INSERT] THEN | |
ASM_SIMP_TAC[GSYM COLLINEAR_3_AFFINE_HULL] THEN | |
ONCE_REWRITE_TAC[SET_RULE `{x,b,a} = {a,x,b}`] THEN | |
MATCH_MP_TAC BETWEEN_IMP_COLLINEAR THEN ASM_REWRITE_TAC[]]; | |
REWRITE_TAC[IN_BALL; IN_INTER; IN_ELIM_THM; dist] THEN | |
REWRITE_TAC[NORM_ARITH `norm(x - (x + a):real^N) = norm a`] THEN | |
REWRITE_TAC[VECTOR_ARITH `(x + a) - x:real^N = a`] THEN CONJ_TAC THENL | |
[ASM_SIMP_TAC[NORM_MUL; GSYM REAL_LT_RDIV_EQ; NORM_POS_LT; | |
VECTOR_SUB_EQ] THEN | |
MATCH_MP_TAC(REAL_ARITH | |
`&0 < x /\ x < e ==> abs(min (&1 / &2) x) < e`) THEN | |
ASM_SIMP_TAC[REAL_LT_DIV; REAL_HALF; NORM_POS_LT; VECTOR_SUB_EQ; | |
REAL_LT_DIV2_EQ] THEN ASM_REAL_ARITH_TAC; | |
REWRITE_TAC[DOT_RMUL; REAL_ARITH `x * y < &0 <=> &0 < x * --y`] THEN | |
MATCH_MP_TAC REAL_LT_MUL THEN ASM_REWRITE_TAC[REAL_LT_MIN] THEN | |
ASM_REWRITE_TAC[REAL_ARITH `&0 < --x <=> x < &0`] THEN | |
ASM_SIMP_TAC[REAL_LT_DIV; REAL_HALF; NORM_POS_LT; VECTOR_SUB_EQ; | |
REAL_LT_01]]; | |
REWRITE_TAC[IN_BALL; IN_INTER; IN_ELIM_THM] THEN | |
ONCE_REWRITE_TAC[DIST_SYM] THEN ASM_REWRITE_TAC[]]]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Polygonal path; 0 in the empty case is just for linear invariance. *) | |
(* Note that we *are* forced to assume non-emptiness for translation. *) | |
(* ------------------------------------------------------------------------- *) | |
let polygonal_path = define | |
`polygonal_path[] = linepath(vec 0,vec 0) /\ | |
polygonal_path[a] = linepath(a,a) /\ | |
polygonal_path [a;b] = linepath(a,b) /\ | |
polygonal_path (CONS a (CONS b (CONS c l))) = | |
linepath(a,b) ++ polygonal_path(CONS b (CONS c l))`;; | |
let POLYGONAL_PATH_CONS_CONS = prove | |
(`!a b p. ~(p = []) | |
==> polygonal_path(CONS a (CONS b p)) = | |
linepath(a,b) ++ polygonal_path(CONS b p)`, | |
GEN_TAC THEN GEN_TAC THEN LIST_INDUCT_TAC THEN | |
REWRITE_TAC[polygonal_path]);; | |
let POLYGONAL_PATH_TRANSLATION = prove | |
(`!a b p. polygonal_path (MAP (\x. a + x) (CONS b p)) = | |
(\x. a + x) o (polygonal_path (CONS b p))`, | |
GEN_TAC THEN ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN | |
MATCH_MP_TAC list_INDUCT THEN | |
REWRITE_TAC[MAP; polygonal_path; LINEPATH_TRANSLATION] THEN | |
ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN | |
MATCH_MP_TAC list_INDUCT THEN | |
ASM_SIMP_TAC[MAP; polygonal_path; LINEPATH_TRANSLATION] THEN | |
REWRITE_TAC[JOINPATHS_TRANSLATION]);; | |
add_translation_invariants [POLYGONAL_PATH_TRANSLATION];; | |
let POLYGONAL_PATH_LINEAR_IMAGE = prove | |
(`!f p. linear f ==> polygonal_path (MAP f p) = f o polygonal_path p`, | |
REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN GEN_TAC THEN DISCH_TAC THEN | |
MATCH_MP_TAC list_INDUCT THEN | |
REWRITE_TAC[polygonal_path; MAP] THEN CONJ_TAC THENL | |
[REWRITE_TAC[LINEPATH_REFL; o_DEF; FUN_EQ_THM] THEN ASM_MESON_TAC[LINEAR_0]; | |
ONCE_REWRITE_TAC[SWAP_FORALL_THM]] THEN | |
MATCH_MP_TAC list_INDUCT THEN REWRITE_TAC[polygonal_path; MAP] THEN | |
CONJ_TAC THENL | |
[ASM_MESON_TAC[LINEPATH_LINEAR_IMAGE]; | |
ONCE_REWRITE_TAC[SWAP_FORALL_THM]] THEN | |
MATCH_MP_TAC list_INDUCT THEN REWRITE_TAC[polygonal_path; MAP] THEN | |
ASM_SIMP_TAC[GSYM JOINPATHS_LINEAR_IMAGE; GSYM LINEPATH_LINEAR_IMAGE]);; | |
add_linear_invariants [POLYGONAL_PATH_LINEAR_IMAGE];; | |
let PATHSTART_POLYGONAL_PATH = prove | |
(`!p. pathstart(polygonal_path p) = if p = [] then vec 0 else HD p`, | |
MATCH_MP_TAC list_INDUCT THEN | |
REWRITE_TAC[polygonal_path; PATHSTART_LINEPATH] THEN | |
GEN_TAC THEN MATCH_MP_TAC list_INDUCT THEN | |
REWRITE_TAC[polygonal_path; PATHSTART_LINEPATH; NOT_CONS_NIL; HD] THEN | |
GEN_TAC THEN MATCH_MP_TAC list_INDUCT THEN | |
REWRITE_TAC[polygonal_path; PATHSTART_LINEPATH; HD; PATHSTART_JOIN]);; | |
let PATHFINISH_POLYGONAL_PATH = prove | |
(`!p. pathfinish(polygonal_path p) = if p = [] then vec 0 else LAST p`, | |
MATCH_MP_TAC list_INDUCT THEN | |
REWRITE_TAC[polygonal_path; PATHFINISH_LINEPATH] THEN | |
GEN_TAC THEN MATCH_MP_TAC list_INDUCT THEN | |
REWRITE_TAC[polygonal_path; PATHFINISH_LINEPATH; NOT_CONS_NIL; LAST] THEN | |
GEN_TAC THEN MATCH_MP_TAC list_INDUCT THEN | |
REWRITE_TAC[polygonal_path; PATHFINISH_LINEPATH; PATHFINISH_JOIN]);; | |
let VERTICES_IN_PATH_IMAGE_POLYGONAL_PATH = prove | |
(`!p:(real^N)list. set_of_list p SUBSET path_image (polygonal_path p)`, | |
MATCH_MP_TAC list_INDUCT THEN REWRITE_TAC[set_of_list; EMPTY_SUBSET] THEN | |
GEN_TAC THEN MATCH_MP_TAC list_INDUCT THEN | |
REWRITE_TAC[set_of_list; polygonal_path; PATH_IMAGE_LINEPATH] THEN | |
REWRITE_TAC[SEGMENT_REFL; INSERT_AC; SUBSET_REFL] THEN | |
GEN_TAC THEN MATCH_MP_TAC list_INDUCT THEN | |
REWRITE_TAC[set_of_list; polygonal_path] THEN CONJ_TAC THENL | |
[REWRITE_TAC[PATH_IMAGE_LINEPATH; INSERT_SUBSET; ENDS_IN_SEGMENT] THEN | |
REWRITE_TAC[EMPTY_SUBSET]; | |
REPEAT GEN_TAC THEN REPLICATE_TAC 3 DISCH_TAC THEN | |
ONCE_REWRITE_TAC[INSERT_SUBSET] THEN | |
SIMP_TAC[PATH_IMAGE_JOIN; PATHFINISH_LINEPATH; PATHSTART_POLYGONAL_PATH; | |
HD; NOT_CONS_NIL; IN_UNION; ENDS_IN_SEGMENT; PATH_IMAGE_LINEPATH] THEN | |
ASM SET_TAC[]]);; | |
let ARC_POLYGONAL_PATH_IMP_DISTINCT = prove | |
(`!p:(real^N)list. arc(polygonal_path p) ==> PAIRWISE (\x y. ~(x = y)) p`, | |
MATCH_MP_TAC list_INDUCT THEN | |
REWRITE_TAC[polygonal_path; ARC_LINEPATH_EQ] THEN | |
X_GEN_TAC `a:real^N` THEN MATCH_MP_TAC list_INDUCT THEN | |
REWRITE_TAC[polygonal_path; ARC_LINEPATH_EQ] THEN | |
X_GEN_TAC `b:real^N` THEN | |
MATCH_MP_TAC list_INDUCT THEN | |
REWRITE_TAC[polygonal_path; ARC_LINEPATH_EQ] THEN CONJ_TAC THENL | |
[REWRITE_TAC[PAIRWISE; ALL]; ALL_TAC] THEN | |
MAP_EVERY X_GEN_TAC [`c:real^N`; `p:(real^N)list`] THEN | |
REPLICATE_TAC 3 DISCH_TAC THEN | |
SIMP_TAC[ARC_JOIN_EQ; PATHFINISH_LINEPATH; PATHSTART_POLYGONAL_PATH; | |
HD; NOT_CONS_NIL; ARC_LINEPATH_EQ] THEN | |
STRIP_TAC THEN ONCE_REWRITE_TAC[PAIRWISE] THEN | |
ASM_SIMP_TAC[] THEN REWRITE_TAC[ALL] THEN | |
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [SUBSET]) THEN | |
DISCH_THEN(MP_TAC o SPEC `a:real^N`) THEN | |
ASM_REWRITE_TAC[IN_INTER; IN_SING; ENDS_IN_SEGMENT; PATH_IMAGE_LINEPATH] THEN | |
DISCH_THEN(MP_TAC o MATCH_MP (ONCE_REWRITE_RULE[GSYM CONTRAPOS_THM] | |
(REWRITE_RULE[SUBSET] VERTICES_IN_PATH_IMAGE_POLYGONAL_PATH))) THEN | |
ASM_REWRITE_TAC[IN_SET_OF_LIST; MEM; DE_MORGAN_THM; GSYM ALL_MEM] THEN | |
MESON_TAC[]);; | |
let PATH_POLYGONAL_PATH = prove | |
(`!p:(real^N)list. path(polygonal_path p)`, | |
MATCH_MP_TAC list_INDUCT THEN | |
REWRITE_TAC[polygonal_path; PATH_LINEPATH] THEN | |
GEN_TAC THEN MATCH_MP_TAC list_INDUCT THEN | |
REWRITE_TAC[polygonal_path; PATH_LINEPATH] THEN | |
GEN_TAC THEN MATCH_MP_TAC list_INDUCT THEN | |
REWRITE_TAC[polygonal_path; PATH_LINEPATH] THEN | |
SIMP_TAC[PATH_JOIN; PATHFINISH_LINEPATH; PATHSTART_POLYGONAL_PATH; | |
NOT_CONS_NIL; HD; PATH_LINEPATH]);; | |
let PATH_IMAGE_POLYGONAL_PATH_SUBSET_CONVEX_HULL = prove | |
(`!p. ~(p = []) | |
==> path_image(polygonal_path p) SUBSET convex hull (set_of_list p)`, | |
MATCH_MP_TAC list_INDUCT THEN REWRITE_TAC[] THEN GEN_TAC THEN | |
MATCH_MP_TAC list_INDUCT THEN REWRITE_TAC[NOT_CONS_NIL] THEN CONJ_TAC THENL | |
[REWRITE_TAC[polygonal_path; PATH_IMAGE_LINEPATH; set_of_list] THEN | |
REWRITE_TAC[SEGMENT_REFL; CONVEX_HULL_SING] THEN SET_TAC[]; | |
GEN_TAC THEN MATCH_MP_TAC list_INDUCT THEN | |
REWRITE_TAC[polygonal_path] THEN CONJ_TAC THENL | |
[REWRITE_TAC[polygonal_path; PATH_IMAGE_LINEPATH; set_of_list] THEN | |
REWRITE_TAC[SEGMENT_CONVEX_HULL; SUBSET_REFL]; | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_PATH_IMAGE_JOIN THEN | |
REWRITE_TAC[PATH_IMAGE_LINEPATH; SEGMENT_CONVEX_HULL; set_of_list] THEN | |
SIMP_TAC[HULL_MONO; INSERT_SUBSET; EMPTY_SUBSET; IN_INSERT] THEN | |
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP | |
(REWRITE_RULE[IMP_CONJ] SUBSET_TRANS)) THEN | |
MATCH_MP_TAC HULL_MONO THEN REWRITE_TAC[set_of_list] THEN | |
SET_TAC[]]]);; | |
let PATH_IMAGE_POLYGONAL_PATH_SUBSET_SEGMENTS = prove | |
(`!p x:real^N. | |
arc(polygonal_path p) /\ 3 <= LENGTH p /\ | |
x IN path_image(polygonal_path p) | |
==> ?a b. MEM a p /\ MEM b p /\ x IN segment[a,b] /\ | |
segment[a,b] SUBSET path_image(polygonal_path p) /\ | |
~(pathstart(polygonal_path p) IN segment[a,b] /\ | |
pathfinish(polygonal_path p) IN segment[a,b])`, | |
MATCH_MP_TAC list_INDUCT THEN REWRITE_TAC[LENGTH; ARITH] THEN | |
X_GEN_TAC `a:real^N` THEN | |
MATCH_MP_TAC list_INDUCT THEN REWRITE_TAC[LENGTH; ARITH] THEN | |
X_GEN_TAC `b:real^N` THEN | |
MATCH_MP_TAC list_INDUCT THEN REWRITE_TAC[LENGTH; ARITH] THEN | |
X_GEN_TAC `c:real^N` THEN X_GEN_TAC `p:(real^N)list` THEN | |
REPEAT DISCH_TAC THEN REWRITE_TAC[polygonal_path] THEN | |
X_GEN_TAC `x:real^N` THEN | |
REWRITE_TAC[PATHSTART_JOIN; PATHFINISH_JOIN] THEN | |
SIMP_TAC[PATH_IMAGE_JOIN; PATHFINISH_LINEPATH; PATHSTART_POLYGONAL_PATH; | |
ARC_JOIN_EQ; NOT_CONS_NIL; HD] THEN | |
REWRITE_TAC[PATHSTART_LINEPATH; PATH_IMAGE_LINEPATH; ARC_LINEPATH] THEN | |
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN | |
GEN_REWRITE_TAC LAND_CONV [IN_UNION] THEN STRIP_TAC THENL | |
[MAP_EVERY EXISTS_TAC [`a:real^N`; `b:real^N`] THEN | |
ASM_REWRITE_TAC[MEM; SUBSET_UNION; ENDS_IN_SEGMENT] THEN | |
FIRST_X_ASSUM(CONJUNCTS_THEN MP_TAC) THEN | |
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN | |
DISCH_THEN(MP_TAC o MATCH_MP ARC_DISTINCT_ENDS) THEN | |
REWRITE_TAC[PATHSTART_POLYGONAL_PATH; HD; NOT_CONS_NIL] THEN | |
DISCH_TAC THEN REWRITE_TAC[ARC_LINEPATH_EQ] THEN DISCH_TAC THEN | |
MATCH_MP_TAC(SET_RULE | |
`!p b. (s INTER p) SUBSET {b} /\ | |
x IN p /\ b IN s /\ ~(x = b) | |
==> ~(x IN s)`) THEN | |
MAP_EVERY EXISTS_TAC | |
[`path_image(polygonal_path (CONS (b:real^N) (CONS c p)))`; | |
`b:real^N`] THEN | |
ASM_REWRITE_TAC[ENDS_IN_SEGMENT; PATHFINISH_IN_PATH_IMAGE]; | |
FIRST_X_ASSUM(MP_TAC o SPEC `x:real^N`) THEN | |
ASM_REWRITE_TAC[ARITH_RULE `3 <= SUC(SUC p) <=> ~(p = 0)`] THEN | |
REWRITE_TAC[LENGTH_EQ_NIL] THEN ASM_CASES_TAC `p:(real^N)list = []` THENL | |
[ASM_REWRITE_TAC[LENGTH; polygonal_path] THEN | |
REWRITE_TAC[PATHFINISH_LINEPATH; PATH_IMAGE_LINEPATH] THEN | |
UNDISCH_TAC | |
`x IN path_image(polygonal_path (CONS (b:real^N) (CONS c p)))` THEN | |
ASM_REWRITE_TAC[polygonal_path; PATH_IMAGE_LINEPATH] THEN | |
DISCH_TAC THEN MAP_EVERY EXISTS_TAC [`b:real^N`; `c:real^N`] THEN | |
ASM_REWRITE_TAC[MEM; SUBSET_UNION; ENDS_IN_SEGMENT] THEN | |
FIRST_X_ASSUM(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
ASM_REWRITE_TAC[polygonal_path; PATH_IMAGE_LINEPATH] THEN | |
REWRITE_TAC[ARC_LINEPATH_EQ] THEN | |
MP_TAC(ISPECL [`a:real^N`; `b:real^N`] ENDS_IN_SEGMENT) THEN | |
FIRST_ASSUM(MP_TAC o MATCH_MP ARC_DISTINCT_ENDS) THEN | |
REWRITE_TAC[PATHSTART_LINEPATH; PATHFINISH_LINEPATH] THEN SET_TAC[]; | |
ASM_REWRITE_TAC[LENGTH_EQ_NIL] THEN | |
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `d:real^N` THEN | |
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `e:real^N` THEN | |
REWRITE_TAC[PATHSTART_POLYGONAL_PATH; NOT_CONS_NIL; HD] THEN | |
REPEAT STRIP_TAC THENL | |
[ASM_MESON_TAC[MEM]; | |
ASM_MESON_TAC[MEM]; | |
ASM_REWRITE_TAC[]; | |
ASM SET_TAC[]; | |
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE | |
`(sab INTER p) SUBSET {b} | |
==> !sde a. sde SUBSET p /\ | |
~(b IN sde) /\ d IN sde /\ a IN sde /\ a IN sab | |
==> F`) o el 2 o CONJUNCTS) THEN | |
MAP_EVERY EXISTS_TAC [`segment[d:real^N,e]`; `a:real^N`] THEN | |
ASM_REWRITE_TAC[ENDS_IN_SEGMENT] THEN ASM_MESON_TAC[]]]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Rotating the starting point to move a preferred vertex forward. *) | |
(* ------------------------------------------------------------------------- *) | |
let SET_OF_LIST_POLYGONAL_PATH_ROTATE = prove | |
(`!p. ~(p = []) ==> set_of_list(CONS (LAST p) (BUTLAST p)) = set_of_list p`, | |
REPEAT STRIP_TAC THEN | |
FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) | |
[GSYM(MATCH_MP APPEND_BUTLAST_LAST th)]) THEN | |
REWRITE_TAC[SET_OF_LIST_APPEND; set_of_list] THEN SET_TAC[]);; | |
let PROPERTIES_POLYGONAL_PATH_SNOC = prove | |
(`!p d:real^N. | |
2 <= LENGTH p | |
==> path_image(polygonal_path(APPEND p [d])) = | |
path_image(polygonal_path p ++ linepath(LAST p,d)) /\ | |
(arc(polygonal_path(APPEND p [d])) <=> | |
arc(polygonal_path p ++ linepath(LAST p,d))) /\ | |
(simple_path(polygonal_path(APPEND p [d])) <=> | |
simple_path(polygonal_path p ++ linepath(LAST p,d)))`, | |
MATCH_MP_TAC list_INDUCT THEN REWRITE_TAC[LENGTH; ARITH] THEN | |
X_GEN_TAC `a:real^N` THEN MATCH_MP_TAC list_INDUCT THEN | |
REWRITE_TAC[LENGTH; ARITH] THEN X_GEN_TAC `b:real^N` THEN | |
MATCH_MP_TAC list_INDUCT THEN CONJ_TAC THENL | |
[REWRITE_TAC[APPEND; polygonal_path; LAST; NOT_CONS_NIL]; ALL_TAC] THEN | |
MAP_EVERY X_GEN_TAC [`c:real^N`; `p:(real^N)list`] THEN REPEAT DISCH_TAC THEN | |
X_GEN_TAC `d:real^N` THEN DISCH_TAC THEN REWRITE_TAC[APPEND] THEN | |
ONCE_REWRITE_TAC[LAST] THEN REWRITE_TAC[NOT_CONS_NIL] THEN | |
ONCE_REWRITE_TAC[polygonal_path] THEN | |
FIRST_X_ASSUM(MP_TAC o SPEC `d:real^N`) THEN POP_ASSUM_LIST(K ALL_TAC) THEN | |
REWRITE_TAC[APPEND; LENGTH; ARITH_RULE `2 <= SUC(SUC n)`] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
SIMP_TAC[GSYM ARC_ASSOC; GSYM SIMPLE_PATH_ASSOC; PATHSTART_JOIN; | |
PATHFINISH_JOIN; PATHSTART_POLYGONAL_PATH; | |
PATHFINISH_POLYGONAL_PATH; | |
PATHSTART_LINEPATH; PATHFINISH_LINEPATH; NOT_CONS_NIL; HD] THEN | |
DISCH_TAC THEN CONJ_TAC THENL | |
[ASM_SIMP_TAC[PATH_IMAGE_JOIN; PATHSTART_JOIN; PATHFINISH_JOIN; | |
PATHSTART_POLYGONAL_PATH; PATHFINISH_POLYGONAL_PATH; | |
PATHSTART_LINEPATH; PATHFINISH_LINEPATH; NOT_CONS_NIL; HD] THEN | |
REWRITE_TAC[UNION_ACI]; | |
ALL_TAC] THEN | |
ASM_CASES_TAC `a:real^N = d` THENL | |
[MATCH_MP_TAC(TAUT | |
`(~p /\ ~p') /\ (q <=> q') ==> (p <=> p') /\ (q <=> q')`) THEN | |
CONJ_TAC THENL | |
[REWRITE_TAC[ARC_SIMPLE_PATH; PATHSTART_JOIN; PATHFINISH_JOIN] THEN | |
REWRITE_TAC[PATHSTART_LINEPATH; PATHFINISH_LINEPATH] THEN | |
ASM_REWRITE_TAC[PATHFINISH_POLYGONAL_PATH; NOT_CONS_NIL; LAST; | |
APPEND_EQ_NIL; LAST_APPEND]; | |
ALL_TAC] THEN | |
ASM_REWRITE_TAC[] THEN | |
W(MP_TAC o PART_MATCH (lhs o rand) SIMPLE_PATH_JOIN_LOOP_EQ o | |
lhs o snd) THEN | |
ANTS_TAC THENL | |
[REWRITE_TAC[PATHSTART_POLYGONAL_PATH; PATHFINISH_LINEPATH] THEN | |
REWRITE_TAC[PATHFINISH_POLYGONAL_PATH; PATHSTART_LINEPATH] THEN | |
REWRITE_TAC[NOT_CONS_NIL; HD; LAST; LAST_APPEND; APPEND_EQ_NIL]; | |
DISCH_THEN SUBST1_TAC] THEN | |
W(MP_TAC o PART_MATCH (lhs o rand) SIMPLE_PATH_JOIN_LOOP_EQ o | |
rhs o snd) THEN | |
ANTS_TAC THENL | |
[REWRITE_TAC[PATHSTART_JOIN; PATHFINISH_JOIN; PATHSTART_LINEPATH; | |
PATHFINISH_LINEPATH; PATHSTART_POLYGONAL_PATH; | |
PATHFINISH_POLYGONAL_PATH] THEN | |
REWRITE_TAC[NOT_CONS_NIL; HD; LAST; LAST_APPEND; APPEND_EQ_NIL]; | |
DISCH_THEN SUBST1_TAC] THEN | |
ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[PATHSTART_JOIN; PATHSTART_POLYGONAL_PATH; NOT_CONS_NIL; HD]; | |
MATCH_MP_TAC(TAUT | |
`((q <=> p) /\ (q' <=> p')) /\ (p <=> p') | |
==> (p <=> p') /\ (q <=> q')`) THEN | |
CONJ_TAC THENL | |
[CONJ_TAC THEN MATCH_MP_TAC SIMPLE_PATH_EQ_ARC THEN | |
REWRITE_TAC[PATHSTART_JOIN; PATHFINISH_JOIN; PATHSTART_LINEPATH; | |
PATHFINISH_LINEPATH; PATHSTART_POLYGONAL_PATH; | |
PATHFINISH_POLYGONAL_PATH] THEN | |
ASM_REWRITE_TAC[NOT_CONS_NIL; HD; LAST; LAST_APPEND; APPEND_EQ_NIL]; | |
ALL_TAC] THEN | |
W(MP_TAC o PART_MATCH (lhs o rand) ARC_JOIN_EQ o lhs o snd) THEN | |
ANTS_TAC THENL | |
[REWRITE_TAC[PATHSTART_POLYGONAL_PATH; PATHFINISH_LINEPATH] THEN | |
REWRITE_TAC[NOT_CONS_NIL; HD]; | |
DISCH_THEN SUBST1_TAC] THEN | |
W(MP_TAC o PART_MATCH (lhs o rand) ARC_JOIN_EQ o rhs o snd) THEN | |
ANTS_TAC THENL | |
[SIMP_TAC[PATHSTART_POLYGONAL_PATH; PATHFINISH_LINEPATH; PATHSTART_JOIN; | |
NOT_CONS_NIL; HD]; | |
DISCH_THEN SUBST1_TAC] THEN | |
ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[PATHSTART_JOIN; PATHSTART_POLYGONAL_PATH; NOT_CONS_NIL; HD]]);; | |
let PATH_IMAGE_POLYGONAL_PATH_ROTATE = prove | |
(`!p:(real^N)list. | |
2 <= LENGTH p /\ LAST p = HD p | |
==> path_image(polygonal_path(APPEND (TL p) [HD(TL p)])) = | |
path_image(polygonal_path p)`, | |
MATCH_MP_TAC list_INDUCT THEN REWRITE_TAC[LENGTH; ARITH] THEN | |
X_GEN_TAC `a:real^N` THEN | |
MATCH_MP_TAC list_INDUCT THEN REWRITE_TAC[LENGTH; ARITH] THEN | |
X_GEN_TAC `b:real^N` THEN REWRITE_TAC[HD; TL] THEN | |
MATCH_MP_TAC list_INDUCT THEN REWRITE_TAC[LENGTH; ARITH] THEN CONJ_TAC THENL | |
[REWRITE_TAC[LAST; APPEND; NOT_CONS_NIL] THEN MESON_TAC[]; ALL_TAC] THEN | |
MAP_EVERY X_GEN_TAC [`c:real^N`; `p:(real^N)list`] THEN | |
REPLICATE_TAC 3 (DISCH_THEN(K ALL_TAC)) THEN | |
DISCH_THEN(MP_TAC o CONJUNCT2) THEN | |
REWRITE_TAC[LAST; NOT_CONS_NIL] THEN ONCE_REWRITE_TAC[GSYM LAST] THEN | |
DISCH_TAC THEN | |
SIMP_TAC[PROPERTIES_POLYGONAL_PATH_SNOC; LENGTH; | |
ARITH_RULE `2 <= SUC(SUC n)`] THEN | |
ONCE_REWRITE_TAC[LAST] THEN ASM_REWRITE_TAC[NOT_CONS_NIL] THEN | |
GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [polygonal_path] THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[LAST]) THEN | |
ASM_SIMP_TAC[PATH_IMAGE_JOIN; PATHSTART_LINEPATH; PATHFINISH_LINEPATH; | |
PATHSTART_POLYGONAL_PATH; PATHFINISH_POLYGONAL_PATH; | |
LAST; NOT_CONS_NIL; HD] THEN | |
REWRITE_TAC[UNION_ACI]);; | |
let SIMPLE_PATH_POLYGONAL_PATH_ROTATE = prove | |
(`!p:(real^N)list. | |
2 <= LENGTH p /\ LAST p = HD p | |
==> (simple_path(polygonal_path(APPEND (TL p) [HD(TL p)])) = | |
simple_path(polygonal_path p))`, | |
MATCH_MP_TAC list_INDUCT THEN REWRITE_TAC[LENGTH; ARITH] THEN | |
X_GEN_TAC `a:real^N` THEN | |
MATCH_MP_TAC list_INDUCT THEN REWRITE_TAC[LENGTH; ARITH] THEN | |
X_GEN_TAC `b:real^N` THEN REWRITE_TAC[HD; TL] THEN | |
MATCH_MP_TAC list_INDUCT THEN REWRITE_TAC[LENGTH; ARITH] THEN CONJ_TAC THENL | |
[REWRITE_TAC[LAST; APPEND; NOT_CONS_NIL] THEN MESON_TAC[]; ALL_TAC] THEN | |
MAP_EVERY X_GEN_TAC [`c:real^N`; `p:(real^N)list`] THEN | |
REPLICATE_TAC 3 (DISCH_THEN(K ALL_TAC)) THEN | |
DISCH_THEN(MP_TAC o CONJUNCT2) THEN | |
REWRITE_TAC[LAST; NOT_CONS_NIL] THEN ONCE_REWRITE_TAC[GSYM LAST] THEN | |
DISCH_TAC THEN | |
SIMP_TAC[PROPERTIES_POLYGONAL_PATH_SNOC; LENGTH; | |
ARITH_RULE `2 <= SUC(SUC n)`] THEN | |
ONCE_REWRITE_TAC[LAST] THEN ASM_REWRITE_TAC[NOT_CONS_NIL] THEN | |
GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [polygonal_path] THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[LAST]) THEN | |
ASM_SIMP_TAC[SIMPLE_PATH_JOIN_LOOP_EQ; PATHSTART_LINEPATH; | |
PATHFINISH_LINEPATH; PATHSTART_POLYGONAL_PATH; | |
PATHFINISH_POLYGONAL_PATH; LAST; NOT_CONS_NIL; HD] THEN | |
REWRITE_TAC[INSERT_AC; INTER_ACI; CONJ_ACI]);; | |
let ROTATE_LIST_TO_FRONT_1 = prove | |
(`!P l a:A. | |
(!l. P(l) ==> 3 <= LENGTH l /\ LAST l = HD l) /\ | |
(!l. P(l) ==> P(APPEND (TL l) [HD(TL l)])) /\ | |
P l /\ MEM a l | |
==> ?l'. EL 1 l' = a /\ P l'`, | |
let lemma0 = prove | |
(`!P. (!i. P i /\ 0 < i ==> P(i - 1)) /\ (?k. 0 < k /\ P k) | |
==> P 1`, | |
REPEAT STRIP_TAC THEN | |
SUBGOAL_THEN `!i:num. i < k ==> P(k - i)` MP_TAC THENL | |
[INDUCT_TAC THEN ASM_REWRITE_TAC[SUB_0] THEN DISCH_TAC THEN | |
REWRITE_TAC[ARITH_RULE `k - SUC i = k - i - 1`] THEN | |
FIRST_X_ASSUM MATCH_MP_TAC THEN | |
CONJ_TAC THEN TRY(FIRST_X_ASSUM MATCH_MP_TAC) THEN ASM_ARITH_TAC; | |
DISCH_THEN(MP_TAC o SPEC `k - 1`) THEN | |
ASM_SIMP_TAC[ARITH_RULE `0 < k ==> k - 1 < k /\ k - (k - 1) = 1`]]) in | |
REPEAT STRIP_TAC THEN | |
SUBGOAL_THEN | |
`?i l'. 0 < i /\ i < LENGTH l' /\ P l' /\ EL i l' = (a:A)` | |
MP_TAC THENL | |
[SUBGOAL_THEN `~(l:A list = [])` ASSUME_TAC THENL | |
[ASM_MESON_TAC[LENGTH; ARITH_RULE `~(3 <= 0)`]; ALL_TAC] THEN | |
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [MEM_EXISTS_EL]) THEN | |
DISCH_THEN(X_CHOOSE_THEN `i:num` STRIP_ASSUME_TAC) THEN | |
DISJ_CASES_THEN2 SUBST_ALL_TAC ASSUME_TAC (ARITH_RULE `i = 0 \/ 0 < i`) | |
THENL | |
[EXISTS_TAC `LENGTH(l:A list) - 2` THEN | |
EXISTS_TAC `(APPEND (TL l) [HD(TL l):A])` THEN | |
ASM_SIMP_TAC[LENGTH_APPEND; LENGTH_TL; EL_APPEND] THEN | |
REWRITE_TAC[LT_REFL; LENGTH; SUB_REFL; EL; HD] THEN | |
SUBGOAL_THEN `3 <= LENGTH(l:A list)` ASSUME_TAC THENL | |
[ASM_MESON_TAC[]; ALL_TAC] THEN | |
REPLICATE_TAC 2 (CONJ_TAC THENL [ASM_ARITH_TAC; ALL_TAC]) THEN | |
ASM_SIMP_TAC[ARITH_RULE `3 <= n ==> n - 2 < n - 1`] THEN | |
ASM_SIMP_TAC[EL_TL; ARITH_RULE `3 <= n ==> n - 2 + 1 = n - 1`] THEN | |
ASM_MESON_TAC[LAST_EL]; | |
MAP_EVERY EXISTS_TAC [`i:num`; `l:A list`] THEN ASM_REWRITE_TAC[]]; | |
REWRITE_TAC[RIGHT_EXISTS_AND_THM] THEN | |
DISCH_THEN(MP_TAC o MATCH_MP (ONCE_REWRITE_RULE[IMP_CONJ_ALT] lemma0)) THEN | |
ANTS_TAC THENL [ALL_TAC; MESON_TAC[]] THEN X_GEN_TAC `k:num` THEN | |
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN | |
DISCH_THEN(X_CHOOSE_THEN `m:A list` STRIP_ASSUME_TAC) THEN | |
EXISTS_TAC `APPEND (TL m) [HD(TL m):A]` THEN | |
SUBGOAL_THEN `~(m:A list = [])` ASSUME_TAC THENL | |
[ASM_MESON_TAC[LENGTH; ARITH_RULE `~(3 <= 0)`]; ALL_TAC] THEN | |
ASM_SIMP_TAC[LENGTH_APPEND; LENGTH_TL; EL_APPEND] THEN | |
ASM_REWRITE_TAC[LENGTH] THEN CONJ_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN | |
COND_CASES_TAC THENL [ALL_TAC; ASM_ARITH_TAC] THEN | |
ASM_SIMP_TAC[EL_TL; ARITH_RULE `0 < k ==> k - 1 + 1 = k`]]);; | |
let ROTATE_LIST_TO_FRONT_0 = prove | |
(`!P l a:A. | |
(!l. P(l) ==> 3 <= LENGTH l /\ LAST l = HD l) /\ | |
(!l. P(l) ==> P(APPEND (TL l) [HD(TL l)])) /\ | |
P l /\ MEM a l | |
==> ?l'. HD l' = a /\ P l'`, | |
REPEAT STRIP_TAC THEN | |
MP_TAC(ISPECL [`P:A list->bool`; `l:A list`; `a:A`] | |
ROTATE_LIST_TO_FRONT_1) THEN | |
ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `l':A list` THEN | |
STRIP_TAC THEN EXISTS_TAC `APPEND (TL l') [HD(TL l'):A]` THEN | |
ASM_SIMP_TAC[] THEN UNDISCH_TAC `EL 1 l' = (a:A)` THEN | |
SUBGOAL_THEN `3 <= LENGTH(l':A list)` MP_TAC THENL | |
[ASM_MESON_TAC[]; ALL_TAC] THEN | |
SPEC_TAC(`l':A list`,`p:A list`) THEN | |
MATCH_MP_TAC list_INDUCT THEN REWRITE_TAC[LENGTH; ARITH] THEN | |
GEN_TAC THEN MATCH_MP_TAC list_INDUCT THEN REWRITE_TAC[LENGTH; ARITH] THEN | |
REWRITE_TAC[APPEND; HD; TL; num_CONV `1`; EL]);; | |
(* ------------------------------------------------------------------------- *) | |
(* We can pick a transformation to make all y coordinates distinct. *) | |
(* ------------------------------------------------------------------------- *) | |
let DISTINGUISHING_ROTATION_EXISTS_PAIR = prove | |
(`!x y. ~(x = y) | |
==> FINITE {t | &0 <= t /\ t < &2 * pi /\ | |
(rotate2d t x)$2 = (rotate2d t y)$2}`, | |
REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[GSYM REAL_SUB_0] THEN | |
ONCE_REWRITE_TAC[GSYM VECTOR_SUB_COMPONENT] THEN | |
ONCE_REWRITE_TAC[GSYM ROTATE2D_SUB] THEN | |
REWRITE_TAC[GSYM IM_DEF; GSYM real; GSYM ARG_EQ_0_PI] THEN | |
REWRITE_TAC[FINITE_UNION; SET_RULE | |
`{x | p x /\ q x /\ (r x \/ s x)} = | |
{x | p x /\ q x /\ r x} UNION {x | p x /\ q x /\ s x}`] THEN | |
CONJ_TAC THEN | |
MATCH_MP_TAC(MESON[FINITE_SING; FINITE_SUBSET] | |
`(?a. s SUBSET {a}) ==> FINITE s`) THEN | |
MATCH_MP_TAC(SET_RULE | |
`(!x y. x IN s /\ y IN s ==> x = y) ==> ?a. s SUBSET {a}`) THEN | |
REWRITE_TAC[IN_ELIM_THM] THEN REPEAT STRIP_TAC THEN | |
MATCH_MP_TAC ARG_ROTATE2D_UNIQUE_2PI THEN EXISTS_TAC `x - y:complex` THEN | |
ASM_REWRITE_TAC[COMPLEX_SUB_0]);; | |
let DISTINGUISHING_ROTATION_EXISTS = prove | |
(`!s. FINITE s ==> ?t. pairwise (\x y. ~(x$2 = y$2)) (IMAGE (rotate2d t) s)`, | |
REPEAT STRIP_TAC THEN | |
SUBGOAL_THEN | |
`INFINITE ({t | &0 <= t /\ t < &2 * pi} DIFF | |
UNIONS (IMAGE (\(x,y). {t | &0 <= t /\ t < &2 * pi /\ | |
(rotate2d t x)$2 = (rotate2d t y)$2}) | |
({(x,y) | x IN s /\ y IN s /\ ~(x = y)})))` | |
MP_TAC THENL | |
[MATCH_MP_TAC INFINITE_DIFF_FINITE THEN | |
REWRITE_TAC[INFINITE; FINITE_REAL_INTERVAL; REAL_NOT_LE] THEN | |
CONJ_TAC THENL [MP_TAC PI_POS THEN REAL_ARITH_TAC; ALL_TAC] THEN | |
REWRITE_TAC[FINITE_UNIONS] THEN CONJ_TAC THENL | |
[MATCH_MP_TAC FINITE_IMAGE THEN MATCH_MP_TAC FINITE_SUBSET THEN | |
EXISTS_TAC `{(x:real^2,y:real^2) | x IN s /\ y IN s}` THEN | |
ASM_SIMP_TAC[FINITE_PRODUCT_DEPENDENT] THEN SET_TAC[]; | |
REWRITE_TAC[FORALL_IN_IMAGE; FORALL_IN_GSPEC] THEN | |
ASM_SIMP_TAC[DISTINGUISHING_ROTATION_EXISTS_PAIR]]; | |
DISCH_THEN(MP_TAC o MATCH_MP (MESON[FINITE_EMPTY; INFINITE] | |
`INFINITE s ==> ~(s = {})`)) THEN | |
REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; IN_DIFF; IN_ELIM_THM] THEN | |
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `t:real` THEN | |
DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC) THEN | |
REWRITE_TAC[UNIONS_IMAGE; EXISTS_IN_GSPEC] THEN | |
REWRITE_TAC[pairwise; IN_ELIM_THM] THEN | |
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE] THEN | |
ASM_REWRITE_TAC[ROTATE2D_EQ] THEN MESON_TAC[]]);; | |
let DISTINGUISHING_ROTATION_EXISTS_POLYGON = prove | |
(`!p:(real^2)list. | |
?f q. (?g. orthogonal_transformation g /\ f = MAP g) /\ | |
(!x y. MEM x q /\ MEM y q /\ ~(x = y) ==> ~(x$2 = y$2)) /\ | |
f q = p`, | |
GEN_TAC THEN MP_TAC(ISPEC | |
`set_of_list(p:(real^2)list)` DISTINGUISHING_ROTATION_EXISTS) THEN | |
REWRITE_TAC[FINITE_SET_OF_LIST; pairwise] THEN | |
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE] THEN | |
REWRITE_TAC[IN_SET_OF_LIST; ROTATE2D_EQ] THEN | |
REWRITE_TAC[IMP_IMP; RIGHT_IMP_FORALL_THM; GSYM CONJ_ASSOC] THEN | |
DISCH_THEN(X_CHOOSE_THEN `t:real` STRIP_ASSUME_TAC) THEN | |
EXISTS_TAC `MAP (rotate2d(--t))` THEN | |
EXISTS_TAC `MAP (rotate2d t) p` THEN | |
REWRITE_TAC[GSYM MAP_o; o_DEF; GSYM ROTATE2D_ADD] THEN | |
REWRITE_TAC[REAL_ADD_LINV; ROTATE2D_ZERO; MAP_ID] THEN | |
CONJ_TAC THENL [MESON_TAC[ORTHOGONAL_TRANSFORMATION_ROTATE2D]; ALL_TAC] THEN | |
REWRITE_TAC[GSYM IN_SET_OF_LIST; SET_OF_LIST_MAP] THEN | |
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE] THEN | |
ASM_REWRITE_TAC[IN_SET_OF_LIST; ROTATE2D_EQ] THEN ASM_MESON_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Proof that we can chop a polygon's inside in two. *) | |
(* ------------------------------------------------------------------------- *) | |
let POLYGON_CHOP_IN_TWO = prove | |
(`!p:(real^2)list. | |
simple_path(polygonal_path p) /\ | |
pathfinish(polygonal_path p) = pathstart(polygonal_path p) /\ | |
5 <= LENGTH p | |
==> ?a b. ~(a = b) /\ MEM a p /\ MEM b p /\ | |
segment(a,b) SUBSET inside(path_image(polygonal_path p))`, | |
let wlog_lemma = MESON[] | |
`(!x. ?f:A->A y. transform f /\ nice y /\ f y = x) | |
==> !P. (!f x. transform f ==> (P(f x) <=> P x)) /\ | |
(!x. nice x ==> P x) | |
==> !x. P x` in | |
let between_lemma = prove | |
(`!a c u v m:real^N. | |
collinear {a,c,u,v,m} /\ m IN segment[u,v] /\ m IN segment(a,c) | |
==> u IN segment(a,c) \/ v IN segment(a,c) \/ | |
segment[a,c] SUBSET segment[u,v]`, | |
REPEAT GEN_TAC THEN | |
ONCE_REWRITE_TAC[IMP_CONJ] THEN REWRITE_TAC[COLLINEAR_AFFINE_HULL] THEN | |
REWRITE_TAC[INSERT_SUBSET; LEFT_IMP_EXISTS_THM; EMPTY_SUBSET] THEN | |
MAP_EVERY X_GEN_TAC [`origin:real^N`; `dir:real^N`] THEN | |
GEOM_ORIGIN_TAC `origin:real^N` THEN | |
REWRITE_TAC[AFFINE_HULL_2; VECTOR_MUL_RZERO; VECTOR_ADD_LID] THEN | |
REWRITE_TAC[IN_ELIM_THM] THEN REPEAT GEN_TAC THEN STRIP_TAC THEN | |
ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `dir:real^N = vec 0` THENL | |
[ASM_REWRITE_TAC[VECTOR_MUL_RZERO; SEGMENT_REFL; SUBSET_REFL]; | |
ALL_TAC] THEN | |
REWRITE_TAC[SUBSET_SEGMENT] THEN | |
ASM_SIMP_TAC[SEGMENT_SCALAR_MULTIPLE; IN_ELIM_THM] THEN | |
ASM_REWRITE_TAC[VECTOR_MUL_RCANCEL] THEN | |
REWRITE_TAC[ONCE_REWRITE_RULE[CONJ_SYM] UNWIND_THM1] THEN | |
REAL_ARITH_TAC) in | |
MATCH_MP_TAC(MATCH_MP wlog_lemma DISTINGUISHING_ROTATION_EXISTS_POLYGON) THEN | |
CONJ_TAC THENL | |
[REWRITE_TAC[MESON[] `(!x y. (?z. P z /\ x = f z) ==> Q x y) <=> | |
(!z y. P z ==> Q (f z) y)`] THEN | |
REWRITE_TAC[ORTHOGONAL_TRANSFORMATION] THEN | |
GEOM_TRANSFORM_TAC []; | |
ALL_TAC] THEN | |
X_GEN_TAC `q:(real^2)list` THEN DISCH_TAC THEN STRIP_TAC THEN | |
SUBGOAL_THEN | |
`?b:real^2. MEM b q /\ !d. MEM d q ==> b$2 <= d$2` | |
STRIP_ASSUME_TAC THENL | |
[MP_TAC(ISPEC `IMAGE (\x:real^2. x$2) (set_of_list q)` | |
INF_FINITE) THEN | |
SIMP_TAC[FINITE_SET_OF_LIST; FINITE_IMAGE] THEN | |
REWRITE_TAC[IMAGE_EQ_EMPTY; SET_OF_LIST_EQ_EMPTY] THEN | |
UNDISCH_TAC `5 <= LENGTH(q:(real^2)list)` THEN | |
ASM_CASES_TAC `q:(real^2)list = []` THEN | |
ASM_REWRITE_TAC[LENGTH; ARITH; FORALL_IN_IMAGE] THEN DISCH_TAC THEN | |
REWRITE_TAC[IN_IMAGE; LEFT_AND_EXISTS_THM; IN_SET_OF_LIST] THEN | |
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `b:real^2` THEN | |
DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC) THEN | |
ASM_REWRITE_TAC[]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN | |
`?p:(real^2)list. | |
EL 1 p = b /\ LAST p = HD p /\ | |
LENGTH p = LENGTH q /\ set_of_list p = set_of_list q /\ | |
path_image(polygonal_path p) = path_image(polygonal_path q) /\ | |
simple_path(polygonal_path p) /\ | |
pathfinish(polygonal_path p) = pathstart(polygonal_path p)` | |
MP_TAC THENL | |
[MATCH_MP_TAC ROTATE_LIST_TO_FRONT_1 THEN EXISTS_TAC `q:(real^2)list` THEN | |
ASM_REWRITE_TAC[] THEN CONJ_TAC THENL | |
[REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN ASM_ARITH_TAC; ALL_TAC] THEN | |
MAP_EVERY UNDISCH_TAC | |
[`pathfinish(polygonal_path(q:(real^2)list)) = | |
pathstart(polygonal_path q)`; | |
`5 <= LENGTH(q:(real^2)list)`] THEN | |
ASM_CASES_TAC `q:(real^2)list = []` THEN | |
ASM_REWRITE_TAC[LENGTH; ARITH] THEN | |
ASM_REWRITE_TAC[PATHSTART_POLYGONAL_PATH; PATHFINISH_POLYGONAL_PATH] THEN | |
DISCH_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN | |
X_GEN_TAC `l:(real^2)list` THEN | |
REWRITE_TAC[APPEND_EQ_NIL; NOT_CONS_NIL] THEN | |
ASM_CASES_TAC `l:(real^2)list = []` THENL | |
[ASM_MESON_TAC[LENGTH_EQ_NIL]; ALL_TAC] THEN | |
ASM_REWRITE_TAC[] THEN DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN | |
ASM_REWRITE_TAC[] THEN | |
SUBGOAL_THEN `~(TL l:(real^2)list = [])` ASSUME_TAC THENL | |
[DISCH_THEN(MP_TAC o AP_TERM `LENGTH:(real^2)list->num`) THEN | |
ASM_SIMP_TAC[LENGTH; LENGTH_TL] THEN ASM_ARITH_TAC; | |
ALL_TAC] THEN | |
ASM_SIMP_TAC[LAST_APPEND; LENGTH_APPEND; LENGTH_TL; NOT_CONS_NIL] THEN | |
ASM_REWRITE_TAC[LAST; HD_APPEND; LENGTH] THEN REPEAT CONJ_TAC THENL | |
[ASM_ARITH_TAC; | |
MAP_EVERY UNDISCH_TAC | |
[`HD(l:(real^2)list) = LAST l`; `5 <= LENGTH(q:(real^2)list)`; | |
`~(l:(real^2)list = [])`] THEN | |
ASM_REWRITE_TAC[] THEN | |
SPEC_TAC(`l:(real^2)list`,`l:(real^2)list`) THEN | |
LIST_INDUCT_TAC THEN REWRITE_TAC[HD; TL; APPEND] THEN | |
REWRITE_TAC[SET_OF_LIST_APPEND; set_of_list] THEN | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC(SET_RULE | |
`a IN s /\ b IN s ==> s UNION {a} = b INSERT s`) THEN | |
ASM_REWRITE_TAC[LAST] THEN ONCE_ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[LAST] THEN UNDISCH_TAC `5 <= LENGTH(CONS (h:real^2) t)` THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[LENGTH; ARITH] THEN | |
REWRITE_TAC[IN_SET_OF_LIST; MEM_EXISTS_EL; LENGTH] THEN | |
DISCH_TAC THEN CONJ_TAC THENL | |
[EXISTS_TAC `0` THEN REWRITE_TAC[EL] THEN ASM_ARITH_TAC; | |
EXISTS_TAC `LENGTH(t:(real^2)list) - 1` THEN | |
ASM_SIMP_TAC[LAST_EL] THEN ASM_ARITH_TAC]; | |
MATCH_MP_TAC PATH_IMAGE_POLYGONAL_PATH_ROTATE THEN | |
ASM_REWRITE_TAC[] THEN ASM_ARITH_TAC; | |
MP_TAC(ISPEC `l:(real^2)list` SIMPLE_PATH_POLYGONAL_PATH_ROTATE) THEN | |
ASM_REWRITE_TAC[] THEN DISCH_THEN MATCH_MP_TAC THEN ASM_ARITH_TAC]; | |
ALL_TAC] THEN | |
UNDISCH_THEN `pathfinish(polygonal_path(q:(real^2)list)) = | |
pathstart(polygonal_path q)` (K ALL_TAC) THEN | |
UNDISCH_THEN `simple_path(polygonal_path(q:(real^2)list))` (K ALL_TAC) THEN | |
DISCH_THEN(X_CHOOSE_THEN `r:(real^2)list` MP_TAC) THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
DISCH_THEN(CONJUNCTS_THEN2 (SUBST_ALL_TAC o SYM) MP_TAC) THEN | |
GEN_REWRITE_TAC (LAND_CONV o LAND_CONV) [EXTENSION] THEN | |
REWRITE_TAC[IN_SET_OF_LIST] THEN DISCH_THEN(CONJUNCTS_THEN2 | |
(fun th -> REWRITE_TAC[GSYM th] THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[GSYM th])) MP_TAC) THEN | |
DISCH_THEN(CONJUNCTS_THEN2 (SUBST_ALL_TAC o SYM) STRIP_ASSUME_TAC) THEN | |
UNDISCH_THEN `MEM (b:real^2) r` (K ALL_TAC) THEN | |
POP_ASSUM_LIST(MP_TAC o end_itlist CONJ o rev) THEN | |
SPEC_TAC(`r:(real^2)list`,`r:(real^2)list`) THEN | |
MATCH_MP_TAC list_INDUCT THEN REWRITE_TAC[LENGTH; ARITH] THEN | |
X_GEN_TAC `a:real^2` THEN | |
MATCH_MP_TAC list_INDUCT THEN REWRITE_TAC[LENGTH; ARITH] THEN | |
X_GEN_TAC `b':real^2` THEN | |
MATCH_MP_TAC list_INDUCT THEN REWRITE_TAC[LENGTH; ARITH] THEN | |
X_GEN_TAC `c:real^2` THEN X_GEN_TAC `p:(real^2)list` THEN | |
REPLICATE_TAC 3 (DISCH_THEN(K ALL_TAC)) THEN | |
REWRITE_TAC[num_CONV `1`; EL; HD; TL] THEN | |
ASM_CASES_TAC `b':real^2 = b` THEN ASM_REWRITE_TAC[] THEN | |
POP_ASSUM(K ALL_TAC) THEN | |
REWRITE_TAC[ARITH_RULE `5 <= SUC(SUC(SUC n)) <=> ~(n = 0) /\ 2 <= n`] THEN | |
ASM_CASES_TAC `p:(real^2)list = []` THEN ASM_REWRITE_TAC[LENGTH_EQ_NIL] THEN | |
ASM_SIMP_TAC[POLYGONAL_PATH_CONS_CONS; LAST; NOT_CONS_NIL] THEN | |
REWRITE_TAC[PATHSTART_JOIN; PATHSTART_LINEPATH] THEN | |
REPLICATE_TAC 2 (DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN | |
FIRST_X_ASSUM(MP_TAC o SPEC `b:real^2`) THEN | |
REWRITE_TAC[MESON[MEM] `MEM b (CONS a (CONS b l))`] THEN | |
DISCH_THEN(ASSUME_TAC o GSYM) THEN STRIP_TAC THEN | |
MP_TAC(ISPECL | |
[`linepath(a:real^2,b)`; | |
`polygonal_path(CONS (b:real^2) (CONS c p))`] | |
SIMPLE_PATH_JOIN_IMP) THEN | |
ASM_SIMP_TAC[POLYGONAL_PATH_CONS_CONS] THEN | |
REWRITE_TAC[PATHFINISH_LINEPATH; PATHSTART_JOIN; PATHSTART_LINEPATH] THEN | |
REWRITE_TAC[ARC_LINEPATH_EQ] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
DISCH_THEN(CONJUNCTS_THEN2 (fun th -> ASSUME_TAC th THEN MP_TAC th) | |
MP_TAC) THEN | |
SIMP_TAC[ARC_JOIN_EQ; PATHFINISH_LINEPATH; PATHSTART_POLYGONAL_PATH; | |
NOT_CONS_NIL; HD] THEN | |
REWRITE_TAC[ARC_LINEPATH_EQ; GSYM CONJ_ASSOC; PATH_IMAGE_LINEPATH] THEN | |
SIMP_TAC[PATH_IMAGE_JOIN; PATHFINISH_LINEPATH; PATHSTART_POLYGONAL_PATH; | |
HD; NOT_CONS_NIL] THEN | |
REWRITE_TAC[SET_RULE `s INTER (t UNION u) SUBSET v <=> | |
s INTER t SUBSET v /\ s INTER u SUBSET v`] THEN | |
ASM_CASES_TAC `a:real^2 = c` THENL | |
[DISCH_THEN(MP_TAC o CONJUNCT1) THEN | |
ASM_REWRITE_TAC[PATH_IMAGE_LINEPATH; SEGMENT_SYM; INTER_ACI] THEN | |
DISCH_THEN(MP_TAC o MATCH_MP (REWRITE_RULE [IMP_CONJ_ALT] | |
FINITE_SUBSET)) THEN | |
REWRITE_TAC[FINITE_SEGMENT; FINITE_INSERT; FINITE_EMPTY] THEN | |
ASM_MESON_TAC[]; | |
ALL_TAC] THEN | |
REWRITE_TAC[PATH_IMAGE_LINEPATH] THEN STRIP_TAC THEN STRIP_TAC THEN | |
MP_TAC(ISPEC `CONS (b:real^2) (CONS c p)` | |
ARC_POLYGONAL_PATH_IMP_DISTINCT) THEN | |
ASM_SIMP_TAC[POLYGONAL_PATH_CONS_CONS] THEN | |
REWRITE_TAC[PAIRWISE; ALL] THEN REWRITE_TAC[GSYM ALL_MEM] THEN | |
REWRITE_TAC[MESON[] `(!x. P x ==> ~(a = x)) <=> ~(P a)`] THEN | |
STRIP_TAC THEN | |
SUBGOAL_THEN `(b:real^2)$2 < (a:real^2)$2 /\ | |
(b:real^2)$2 < (c:real^2)$2 /\ | |
(!v. MEM v p ==> (b:real^2)$2 < (v:real^2)$2)` | |
STRIP_ASSUME_TAC THENL | |
[REPEAT STRIP_TAC THEN REWRITE_TAC[REAL_LT_LE] THEN | |
CONV_TAC(ONCE_DEPTH_CONV SYM_CONV) THEN | |
CONJ_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[MEM] THEN | |
ASM_MESON_TAC[]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `~collinear{a:real^2,b,c}` ASSUME_TAC THENL | |
[REWRITE_TAC[COLLINEAR_BETWEEN_CASES; BETWEEN_IN_SEGMENT] THEN | |
SUBGOAL_THEN `FINITE(segment[a:real^2,b] INTER segment[b,c])` MP_TAC THENL | |
[MATCH_MP_TAC FINITE_SUBSET THEN | |
EXISTS_TAC `{a:real^2,b}` THEN ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[FINITE_INSERT; FINITE_EMPTY]; | |
ALL_TAC] THEN | |
ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN REWRITE_TAC[] THEN | |
STRIP_TAC THENL | |
[SUBGOAL_THEN `segment[a:real^2,b] INTER segment[b,c] = segment[a,b]` | |
(fun th -> ASM_REWRITE_TAC[FINITE_SEGMENT; th]) THEN | |
REWRITE_TAC[SET_RULE `s INTER t = s <=> s SUBSET t`] THEN | |
ASM_REWRITE_TAC[SUBSET_SEGMENT; ENDS_IN_SEGMENT]; | |
DISCH_TAC THEN UNDISCH_TAC `b IN segment[c:real^2,a]` THEN | |
ASM_REWRITE_TAC[SEGMENT_CLOSED_OPEN; IN_UNION; IN_INSERT] THEN | |
ASM_REWRITE_TAC[IN_SEGMENT; NOT_IN_EMPTY] THEN | |
DISCH_THEN(X_CHOOSE_THEN `u:real` MP_TAC) THEN | |
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN | |
DISCH_THEN(MP_TAC o AP_TERM `\x:real^2. x$2`) THEN | |
REWRITE_TAC[VECTOR_ADD_COMPONENT; VECTOR_MUL_COMPONENT] THEN | |
MATCH_MP_TAC(REAL_ARITH | |
`(&1 - u) * b < (&1 - u) * c /\ u * b < u * a | |
==> ~(b = (&1 - u) * c + u * a)`) THEN | |
ASM_SIMP_TAC[REAL_LT_LMUL_EQ; REAL_SUB_LT]; | |
SUBGOAL_THEN `segment[a:real^2,b] INTER segment[b,c] = segment[b,c]` | |
(fun th -> ASM_REWRITE_TAC[FINITE_SEGMENT; th]) THEN | |
REWRITE_TAC[SET_RULE `s INTER t = t <=> t SUBSET s`] THEN | |
ASM_REWRITE_TAC[SUBSET_SEGMENT; ENDS_IN_SEGMENT]]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN | |
`?e. &0 < e /\ | |
e <= (a:real^2)$2 - (b:real^2)$2 /\ | |
e <= (c:real^2)$2 - (b:real^2)$2 /\ | |
!v. MEM v p ==> e <= (v:real^2)$2 - (b:real^2)$2` | |
STRIP_ASSUME_TAC THENL | |
[MP_TAC(ISPEC `IMAGE (\v. (v:real^2)$2 - (b:real^2)$2) | |
(set_of_list(CONS a (CONS b (CONS c p))) | |
DELETE b)` | |
INF_FINITE) THEN | |
ASM_SIMP_TAC[FINITE_SET_OF_LIST; FINITE_IMAGE; FINITE_DELETE] THEN | |
ANTS_TAC THENL | |
[REWRITE_TAC[IMAGE_EQ_EMPTY] THEN | |
REWRITE_TAC[set_of_list; GSYM MEMBER_NOT_EMPTY] THEN | |
EXISTS_TAC `a:real^2` THEN ASM_REWRITE_TAC[IN_DELETE; IN_INSERT]; | |
ALL_TAC] THEN | |
REWRITE_TAC[FORALL_IN_IMAGE] THEN REWRITE_TAC[IN_IMAGE] THEN | |
ASM_REWRITE_TAC[set_of_list; FORALL_IN_INSERT; IMP_CONJ; IN_DELETE] THEN | |
DISCH_THEN(X_CHOOSE_THEN `d:real^2` MP_TAC) THEN | |
DISCH_THEN(CONJUNCTS_THEN2 SUBST1_TAC STRIP_ASSUME_TAC) THEN | |
DISCH_TAC THEN DISCH_TAC THEN REWRITE_TAC[IN_SET_OF_LIST] THEN | |
DISCH_TAC THEN EXISTS_TAC `(d:real^2)$2 - (b:real^2)$2` THEN | |
ASM_REWRITE_TAC[REAL_SUB_LT] THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[IN_INSERT; IN_SET_OF_LIST]) THEN | |
ASM_MESON_TAC[]; | |
ALL_TAC] THEN | |
MAP_EVERY ABBREV_TAC | |
[`a':real^2 = (&1 - e / (a$2 - b$2)) % b + e / (a$2 - b$2) % a`; | |
`c':real^2 = (&1 - e / (c$2 - b$2)) % b + e / (c$2 - b$2) % c`] THEN | |
SUBGOAL_THEN | |
`a' IN segment[b:real^2,a] /\ c' IN segment[b,c]` | |
STRIP_ASSUME_TAC THENL | |
[MAP_EVERY EXPAND_TAC ["a'"; "c'"] THEN | |
REWRITE_TAC[IN_SEGMENT] THEN | |
REWRITE_TAC[VECTOR_ARITH | |
`(&1 - u) % a + u % b = (&1 - v) % a + v % b <=> | |
(u - v) % (b - a) = vec 0`] THEN | |
ASM_REWRITE_TAC[VECTOR_MUL_EQ_0; VECTOR_SUB_EQ; REAL_SUB_0] THEN | |
ONCE_REWRITE_TAC[TAUT `p /\ q /\ r <=> r /\ p /\ q`] THEN | |
REWRITE_TAC[UNWIND_THM1] THEN | |
ASM_SIMP_TAC[REAL_LT_IMP_LE; REAL_LE_DIV; REAL_SUB_LE; | |
REAL_LE_LDIV_EQ; REAL_SUB_LT; REAL_MUL_LID]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `~(a':real^2 = b) /\ ~(c':real^2 = b)` STRIP_ASSUME_TAC THENL | |
[MAP_EVERY EXPAND_TAC ["a'"; "c'"] THEN | |
REWRITE_TAC[VECTOR_ARITH | |
`(&1 - u) % a + u % b = a <=> u % (b - a) = vec 0`] THEN | |
ASM_REWRITE_TAC[VECTOR_MUL_EQ_0; VECTOR_SUB_EQ] THEN | |
ASM_SIMP_TAC[REAL_EQ_LDIV_EQ; REAL_SUB_LT] THEN | |
ASM_SIMP_TAC[REAL_MUL_LZERO; REAL_LT_IMP_NZ]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `~collinear{a':real^2,b,c'}` ASSUME_TAC THENL | |
[UNDISCH_TAC `~collinear{a:real^2,b,c}` THEN | |
REWRITE_TAC[CONTRAPOS_THM] THEN ONCE_REWRITE_TAC[COLLINEAR_3] THEN | |
MAP_EVERY EXPAND_TAC ["a'"; "c'"] THEN | |
REWRITE_TAC[VECTOR_ARITH `((&1 - u) % b + u % a) - b = u % (a - b)`] THEN | |
REWRITE_TAC[GSYM DOT_CAUCHY_SCHWARZ_EQUAL; DOT_LMUL; DOT_RMUL] THEN | |
MATCH_MP_TAC(REAL_FIELD | |
`~(a = &0) /\ ~(c = &0) | |
==> (a * c * x) pow 2 = (a * a * y) * (c * c * z) | |
==> x pow 2 = y * z`) THEN | |
ASM_SIMP_TAC[REAL_EQ_LDIV_EQ; REAL_SUB_LT] THEN | |
ASM_SIMP_TAC[REAL_MUL_LZERO; REAL_LT_IMP_NZ]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `~(a':real^2 = c')` ASSUME_TAC THENL | |
[DISCH_TAC THEN UNDISCH_TAC `~collinear{a':real^2,b,c'}` THEN | |
ASM_REWRITE_TAC[INSERT_AC; COLLINEAR_2]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `~affine_dependent{a':real^2,b,c'}` ASSUME_TAC THENL | |
[ASM_MESON_TAC[AFFINE_DEPENDENT_IMP_COLLINEAR_3]; ALL_TAC] THEN | |
MP_TAC(ISPEC `{a':real^2,b,c'}` INTERIOR_CONVEX_HULL_EQ_EMPTY) THEN | |
REWRITE_TAC[DIMINDEX_2; HAS_SIZE; ARITH; FINITE_INSERT; FINITE_EMPTY] THEN | |
SIMP_TAC[CARD_CLAUSES; FINITE_INSERT; FINITE_EMPTY] THEN | |
ASM_REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY; ARITH] THEN DISCH_TAC THEN | |
SUBGOAL_THEN `convex hull {a,b,c} INTER {x:real^2 | x$2 - b$2 <= e} = | |
convex hull {a',b,c'}` | |
ASSUME_TAC THENL | |
[MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THENL | |
[ONCE_REWRITE_TAC[SET_RULE `{a,b,c} = {b,a,c}`] THEN | |
REWRITE_TAC[CONVEX_HULL_3_ALT] THEN | |
REWRITE_TAC[SUBSET; IN_INTER; FORALL_IN_GSPEC; IMP_CONJ] THEN | |
REWRITE_TAC[IN_ELIM_THM; VECTOR_ARITH | |
`a + x:real^N = a + y <=> x = y`] THEN | |
MAP_EVERY X_GEN_TAC [`s:real`; `t:real`] THEN | |
REPLICATE_TAC 3 DISCH_TAC THEN MAP_EVERY EXPAND_TAC ["a'"; "c'"] THEN | |
REWRITE_TAC[VECTOR_ARITH | |
`((&1 - u) % b + u % a) - b:real^N = u % (a - b)`] THEN | |
REWRITE_TAC[VECTOR_ADD_COMPONENT; VECTOR_MUL_COMPONENT] THEN | |
REWRITE_TAC[REAL_ADD_SUB; VECTOR_SUB_COMPONENT] THEN STRIP_TAC THEN | |
EXISTS_TAC `(s * ((a:real^2)$2 - (b:real^2)$2)) / e` THEN | |
EXISTS_TAC `(t * ((c:real^2)$2 - (b:real^2)$2)) / e` THEN | |
ASM_SIMP_TAC[REAL_LE_DIV; REAL_LE_MUL; REAL_SUB_LT; REAL_LT_IMP_LE] THEN | |
REWRITE_TAC[REAL_ARITH `a / e + b / e:real = (a + b) / e`] THEN | |
ASM_SIMP_TAC[REAL_LE_LDIV_EQ; REAL_MUL_LID] THEN | |
REWRITE_TAC[VECTOR_MUL_ASSOC] THEN BINOP_TAC THEN | |
AP_THM_TAC THEN AP_TERM_TAC THEN MATCH_MP_TAC(REAL_FIELD | |
`y < x /\ &0 < e ==> s = (s * (x - y)) / e * e / (x - y)`) THEN | |
ASM_REWRITE_TAC[]; | |
MATCH_MP_TAC HULL_MINIMAL THEN | |
REWRITE_TAC[INSERT_SUBSET; EMPTY_SUBSET; IN_INTER; IN_ELIM_THM] THEN | |
ASM_SIMP_TAC[HULL_INC; IN_INSERT; REAL_SUB_REFL; REAL_LT_IMP_LE] THEN | |
SIMP_TAC[REAL_LE_SUB_RADD; CONVEX_INTER; CONVEX_HALFSPACE_COMPONENT_LE; | |
CONVEX_CONVEX_HULL] THEN | |
REPEAT CONJ_TAC THENL | |
[UNDISCH_TAC `a' IN segment[b:real^2,a]` THEN | |
SPEC_TAC(`a':real^2`,`x:real^2`) THEN REWRITE_TAC[GSYM SUBSET] THEN | |
REWRITE_TAC[SEGMENT_CONVEX_HULL] THEN MATCH_MP_TAC HULL_MONO THEN | |
SET_TAC[]; | |
EXPAND_TAC "a'"; | |
UNDISCH_TAC `c' IN segment[b:real^2,c]` THEN | |
SPEC_TAC(`c':real^2`,`x:real^2`) THEN REWRITE_TAC[GSYM SUBSET] THEN | |
REWRITE_TAC[SEGMENT_CONVEX_HULL] THEN MATCH_MP_TAC HULL_MONO THEN | |
SET_TAC[]; | |
EXPAND_TAC "c'"] THEN | |
REWRITE_TAC[VECTOR_ADD_COMPONENT; VECTOR_MUL_COMPONENT] THEN | |
REWRITE_TAC[REAL_ARITH | |
`(&1 - u) * b + u * a <= e + b <=> (a - b) * u <= e`] THEN | |
ASM_SIMP_TAC[REAL_DIV_LMUL; REAL_LT_IMP_NZ; REAL_SUB_LT] THEN | |
REWRITE_TAC[REAL_LE_REFL]]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN | |
`interior(convex hull {a,b,c}) INTER {x:real^2 | x$2 - b$2 < e} = | |
interior(convex hull {a',b,c'})` | |
ASSUME_TAC THENL | |
[REWRITE_TAC[REAL_LT_SUB_RADD; GSYM INTERIOR_HALFSPACE_COMPONENT_LE] THEN | |
ASM_REWRITE_TAC[GSYM INTERIOR_INTER; GSYM REAL_LE_SUB_RADD]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN | |
`?d:real^2. d IN interior(convex hull {a',b,c'}) /\ ~(d$1 = b$1)` | |
STRIP_ASSUME_TAC THENL | |
[UNDISCH_TAC `~(interior(convex hull {a':real^2,b,c'}) = {})` THEN | |
REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; LEFT_IMP_EXISTS_THM] THEN | |
X_GEN_TAC `x:real^2` THEN DISCH_TAC THEN | |
ASM_CASES_TAC `(x:real^2)$1 = (b:real^2)$1` THENL | |
[ALL_TAC; EXISTS_TAC `x:real^2` THEN ASM_REWRITE_TAC[]] THEN | |
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN_INTERIOR]) THEN | |
DISCH_THEN(X_CHOOSE_THEN `k:real` MP_TAC) THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN REWRITE_TAC[SUBSET] THEN | |
DISCH_THEN(fun th -> ASSUME_TAC th THEN MP_TAC th) THEN | |
DISCH_THEN(MP_TAC o SPEC `x + k / &2 % basis 1:real^2`) THEN ANTS_TAC THENL | |
[REWRITE_TAC[IN_BALL; NORM_ARITH `dist(x,x + e) = norm e`] THEN | |
SIMP_TAC[NORM_MUL; NORM_BASIS; DIMINDEX_GE_1; ARITH] THEN | |
UNDISCH_TAC `&0 < k` THEN REAL_ARITH_TAC; | |
DISCH_TAC] THEN | |
EXISTS_TAC `x + k / &2 % basis 1:real^2` THEN | |
REWRITE_TAC[VECTOR_ADD_COMPONENT; VECTOR_MUL_COMPONENT] THEN | |
ASM_SIMP_TAC[BASIS_COMPONENT; DIMINDEX_GE_1; ARITH; REAL_MUL_RID] THEN | |
ASM_SIMP_TAC[REAL_ARITH `&0 < k ==> ~(b + k / &2 = b)`] THEN | |
REWRITE_TAC[IN_INTERIOR] THEN EXISTS_TAC `k / &2` THEN | |
ASM_REWRITE_TAC[REAL_HALF; SUBSET] THEN X_GEN_TAC `y:real^2` THEN | |
REWRITE_TAC[IN_BALL] THEN DISCH_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN | |
REWRITE_TAC[IN_BALL] THEN MATCH_MP_TAC(NORM_ARITH | |
`!a. dist(x + a,y) < k / &2 /\ norm(a) = k / &2 ==> dist(x,y) < k`) THEN | |
EXISTS_TAC `k / &2 % basis 1:real^2` THEN ASM_REWRITE_TAC[NORM_MUL] THEN | |
SIMP_TAC[NORM_BASIS; DIMINDEX_GE_1; LE_REFL] THEN | |
UNDISCH_TAC `&0 < k` THEN REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
SUBGOAL_THEN | |
`path_image(polygonal_path(CONS a (CONS b (CONS c p)))) | |
SUBSET {x:real^2 | x$2 >= b$2}` | |
MP_TAC THENL | |
[MATCH_MP_TAC SUBSET_TRANS THEN | |
EXISTS_TAC | |
`convex hull(set_of_list(CONS (a:real^2) (CONS b (CONS c p))))` THEN | |
SIMP_TAC[PATH_IMAGE_POLYGONAL_PATH_SUBSET_CONVEX_HULL; NOT_CONS_NIL] THEN | |
MATCH_MP_TAC HULL_MINIMAL THEN | |
REWRITE_TAC[CONVEX_HALFSPACE_COMPONENT_GE] THEN | |
REWRITE_TAC[set_of_list; INSERT_SUBSET; IN_ELIM_THM; EMPTY_SUBSET] THEN | |
ASM_SIMP_TAC[SUBSET; IN_SET_OF_LIST; real_ge; IN_ELIM_THM; REAL_LT_IMP_LE; | |
REAL_LE_REFL]; | |
GEN_REWRITE_TAC LAND_CONV [SUBSET] THEN | |
ASM_SIMP_TAC[POLYGONAL_PATH_CONS_CONS; NOT_CONS_NIL] THEN | |
REWRITE_TAC[IN_ELIM_THM; real_ge] THEN DISCH_TAC] THEN | |
SUBGOAL_THEN | |
`(:real^2) DIFF {x | x$2 >= b$2} SUBSET | |
outside(path_image | |
(linepath(a,b) ++ linepath(b,c) ++ polygonal_path(CONS c p)))` | |
MP_TAC THENL | |
[MATCH_MP_TAC OUTSIDE_SUBSET_CONVEX THEN | |
REWRITE_TAC[CONVEX_HALFSPACE_COMPONENT_GE] THEN | |
ASM_REWRITE_TAC[SUBSET; real_ge; IN_ELIM_THM]; | |
REWRITE_TAC[SUBSET; real_ge; IN_ELIM_THM; IN_UNIV; | |
IN_DIFF; REAL_NOT_LE] THEN | |
DISCH_TAC] THEN | |
ABBREV_TAC | |
`d':real^2 = d - (&1 + (d:real^2)$2 - (b:real^2)$2) % basis 2` THEN | |
SUBGOAL_THEN `(d':real^2) IN outside(path_image | |
(linepath(a,b) ++ linepath(b,c) ++ polygonal_path(CONS c p)))` | |
ASSUME_TAC THENL | |
[FIRST_X_ASSUM MATCH_MP_TAC THEN EXPAND_TAC "d'" THEN | |
REWRITE_TAC[VECTOR_SUB_COMPONENT; VECTOR_MUL_COMPONENT] THEN | |
SIMP_TAC[BASIS_COMPONENT; DIMINDEX_2; ARITH] THEN REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `(a':real^2)$2 - (b:real^2)$2 = e /\ | |
(c':real^2)$2 - (b:real^2)$2 = e` | |
STRIP_ASSUME_TAC THENL | |
[MAP_EVERY EXPAND_TAC ["a'"; "c'"] THEN | |
REWRITE_TAC[VECTOR_ADD_COMPONENT; VECTOR_MUL_COMPONENT] THEN | |
REWRITE_TAC[REAL_ARITH `((&1 - u) * b + u * a) - b = u * (a - b)`] THEN | |
ASM_SIMP_TAC[REAL_DIV_RMUL; REAL_ARITH `b < a ==> ~(a - b = &0)`]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `(b:real^2)$2 < (d:real^2)$2 /\ (d:real^2)$2 < (b:real^2)$2 + e` | |
STRIP_ASSUME_TAC THENL | |
[UNDISCH_TAC `(d:real^2) IN interior(convex hull {a',b,c'})` THEN | |
ASM_SIMP_TAC[INTERIOR_CONVEX_HULL_3_MINIMAL] THEN | |
REWRITE_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN | |
MAP_EVERY X_GEN_TAC [`r:real`; `s:real`; `t:real`] THEN | |
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN | |
DISCH_THEN(SUBST1_TAC o SYM) THEN | |
REWRITE_TAC[VECTOR_ADD_COMPONENT; VECTOR_MUL_COMPONENT] THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[REAL_EQ_SUB_RADD]) THEN ASM_REWRITE_TAC[] THEN | |
FIRST_ASSUM(SUBST1_TAC o MATCH_MP (REAL_ARITH | |
`r + s + t = &1 ==> s = &1 - (r + t)`)) THEN | |
REWRITE_TAC[REAL_ARITH | |
`b < r * x + (&1 - (r + t)) * b + t * x <=> (r + t) * b < (r + t) * x`; | |
REAL_ARITH | |
`r * (e + b) + (&1 - (r + t)) * b + t * (e + b) < b + e <=> | |
(r + t) * e < &1 * e`] THEN | |
ASM_SIMP_TAC[REAL_LT_LMUL_EQ; REAL_LT_ADD; REAL_LT_RMUL_EQ] THEN | |
ASM_REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `(d':real^2)$2 + &1 = (b:real^2)$2` ASSUME_TAC THENL | |
[EXPAND_TAC "d'" THEN REWRITE_TAC[VECTOR_SUB_COMPONENT] THEN | |
SIMP_TAC[VECTOR_MUL_COMPONENT; BASIS_COMPONENT; DIMINDEX_2; ARITH] THEN | |
REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
SUBGOAL_THEN | |
`convex hull {a':real^2,b,c'} SUBSET convex hull {a,b,c}` | |
ASSUME_TAC THENL | |
[MATCH_MP_TAC HULL_MINIMAL THEN | |
REWRITE_TAC[CONVEX_CONVEX_HULL; INSERT_SUBSET; EMPTY_SUBSET] THEN | |
SIMP_TAC[HULL_INC; IN_INSERT] THEN CONJ_TAC THENL | |
[UNDISCH_TAC `(a':real^2) IN segment[b,a]` THEN | |
SPEC_TAC(`a':real^2`,`x:real^2`); | |
UNDISCH_TAC `(c':real^2) IN segment[b,c]` THEN | |
SPEC_TAC(`c':real^2`,`x:real^2`)] THEN | |
REWRITE_TAC[GSYM SUBSET] THEN REWRITE_TAC[SEGMENT_CONVEX_HULL] THEN | |
MATCH_MP_TAC HULL_MONO THEN SET_TAC[]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `~(d' IN convex hull {a:real^2,b,c})` ASSUME_TAC THENL | |
[MATCH_MP_TAC(SET_RULE | |
`!t. s SUBSET t /\ ~(x IN t) ==> ~(x IN s)`) THEN | |
EXISTS_TAC `{x | (x:real^2)$2 >= (b:real^2)$2}` THEN | |
SIMP_TAC[SUBSET_HULL; CONVEX_HALFSPACE_COMPONENT_GE] THEN | |
ASM_REWRITE_TAC[INSERT_SUBSET; EMPTY_SUBSET; IN_ELIM_THM; real_ge] THEN | |
ASM_REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `~(d' IN convex hull {a':real^2,b,c'})` ASSUME_TAC THENL | |
[ASM SET_TAC[]; ALL_TAC] THEN | |
SUBGOAL_THEN | |
`~(segment[d:real^2,d'] INTER frontier(convex hull {a',b,c'}) = {})` | |
MP_TAC THENL | |
[MATCH_MP_TAC CONNECTED_INTER_FRONTIER THEN | |
REWRITE_TAC[CONNECTED_SEGMENT; GSYM MEMBER_NOT_EMPTY] THEN CONJ_TAC THENL | |
[EXISTS_TAC `d:real^2` THEN REWRITE_TAC[ENDS_IN_SEGMENT; IN_INTER] THEN | |
ASM_MESON_TAC[INTERIOR_SUBSET; SUBSET]; | |
EXISTS_TAC `d':real^2` THEN ASM_REWRITE_TAC[ENDS_IN_SEGMENT; IN_DIFF]]; | |
ALL_TAC] THEN | |
GEN_REWRITE_TAC LAND_CONV [GSYM MEMBER_NOT_EMPTY] THEN | |
DISCH_THEN(X_CHOOSE_THEN `x:real^2` MP_TAC) THEN REWRITE_TAC[IN_INTER] THEN | |
ASM_CASES_TAC `x:real^2 = d` THENL | |
[ASM_REWRITE_TAC[IN_DIFF; frontier]; ALL_TAC] THEN | |
ASM_CASES_TAC `x:real^2 = d'` THENL | |
[ASM_REWRITE_TAC[IN_DIFF; frontier] THEN | |
SUBGOAL_THEN `closure(convex hull {a':real^2,b,c'}) = convex hull {a',b,c'}` | |
(fun th -> ASM_REWRITE_TAC[th]) THEN | |
MATCH_MP_TAC CLOSURE_CLOSED THEN MATCH_MP_TAC COMPACT_IMP_CLOSED THEN | |
MESON_TAC[COMPACT_CONVEX_HULL; FINITE_IMP_COMPACT; FINITE_RULES]; | |
ALL_TAC] THEN | |
ASM_REWRITE_TAC[SEGMENT_CLOSED_OPEN; IN_UNION; IN_INSERT; NOT_IN_EMPTY] THEN | |
STRIP_TAC THEN | |
SUBGOAL_THEN `(d':real^2)$1 = (d:real^2)$1` ASSUME_TAC THENL | |
[EXPAND_TAC "d'" THEN REWRITE_TAC[VECTOR_SUB_COMPONENT] THEN | |
SIMP_TAC[VECTOR_MUL_COMPONENT; BASIS_COMPONENT; DIMINDEX_2; ARITH] THEN | |
REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `(x:real^2)$1 = (d:real^2)$1` ASSUME_TAC THENL | |
[MP_TAC(ISPECL [`d:real^2`; `d':real^2`; `x:real^2`] SEGMENT_VERTICAL) THEN | |
ASM_REWRITE_TAC[SEGMENT_CLOSED_OPEN; IN_UNION] THEN ASM_REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `~(x:real^2 = b)` ASSUME_TAC THENL | |
[ASM_MESON_TAC[]; ALL_TAC] THEN | |
SUBGOAL_THEN `(x:real^2)$2 < (b:real^2)$2 + e` ASSUME_TAC THENL | |
[MP_TAC(ISPECL [`d:real^2`; `d':real^2`; `x:real^2`] SEGMENT_VERTICAL) THEN | |
ASM_REWRITE_TAC[SEGMENT_CLOSED_OPEN; IN_UNION] THEN ASM_REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `~(x:real^2 = a) /\ ~(x = c)` STRIP_ASSUME_TAC THENL | |
[REWRITE_TAC[CART_EQ; DIMINDEX_2; FORALL_2] THEN ASM_REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `(x:real^2) IN (segment(b,a) UNION segment(b,c))` | |
ASSUME_TAC THENL | |
[UNDISCH_TAC `(x:real^2) IN frontier(convex hull {a':real^2,b,c'})` THEN | |
ASM_SIMP_TAC[open_segment; IN_UNION; IN_DIFF; IN_INSERT; NOT_IN_EMPTY] THEN | |
REWRITE_TAC[FRONTIER_OF_TRIANGLE] THEN MATCH_MP_TAC(SET_RULE | |
`~(x IN u) /\ s SUBSET s' /\ t SUBSET t' | |
==> x IN (s UNION t UNION u) ==> x IN s' \/ x IN t'`) THEN | |
ASM_REWRITE_TAC[SUBSET_SEGMENT; ENDS_IN_SEGMENT] THEN DISCH_TAC THEN | |
MP_TAC(ISPECL [`c':real^2`; `a':real^2`; `x:real^2`] | |
SEGMENT_HORIZONTAL) THEN | |
ASM_REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
SUBGOAL_THEN | |
`segment[d:real^2,d'] INTER path_image(polygonal_path(CONS c p)) = {}` | |
ASSUME_TAC THENL | |
[MATCH_MP_TAC(SET_RULE | |
`!u. t SUBSET u /\ s INTER u = {} ==> s INTER t = {}`) THEN | |
EXISTS_TAC `{x:real^2 | x$2 >= (b:real^2)$2 + e}` THEN CONJ_TAC THENL | |
[MATCH_MP_TAC SUBSET_TRANS THEN | |
EXISTS_TAC `convex hull(set_of_list(CONS c p)) :real^2->bool` THEN | |
SIMP_TAC[PATH_IMAGE_POLYGONAL_PATH_SUBSET_CONVEX_HULL; NOT_CONS_NIL] THEN | |
MATCH_MP_TAC HULL_MINIMAL THEN | |
REWRITE_TAC[CONVEX_HALFSPACE_COMPONENT_GE; | |
set_of_list; INSERT_SUBSET] THEN | |
REWRITE_TAC[SUBSET; IN_SET_OF_LIST; IN_ELIM_THM] THEN | |
ASM_SIMP_TAC[real_ge; REAL_ARITH `b + e <= x <=> e <= x - b`]; | |
REWRITE_TAC[SET_RULE `s INTER t = {} <=> !x. x IN s ==> ~(x IN t)`] THEN | |
X_GEN_TAC `y:real^2` THEN DISCH_TAC THEN | |
MP_TAC(ISPECL[`d:real^2`; `d':real^2`; `y:real^2`] SEGMENT_VERTICAL) THEN | |
ASM_REWRITE_TAC[IN_ELIM_THM; real_ge] THEN ASM_REAL_ARITH_TAC]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `(d:real^2) IN interior(convex hull {a,b,c})` ASSUME_TAC THENL | |
[UNDISCH_TAC `(d:real^2) IN interior(convex hull {a', b, c'})` THEN | |
SPEC_TAC(`d:real^2`,`d:real^2`) THEN REWRITE_TAC[GSYM SUBSET] THEN | |
MATCH_MP_TAC SUBSET_INTERIOR THEN ASM_REWRITE_TAC[]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `~(d':real^2 = d)` ASSUME_TAC THENL | |
[ASM_MESON_TAC[IN_SEGMENT]; ALL_TAC] THEN | |
SUBGOAL_THEN | |
`!y:real^2. y IN segment[d,d'] /\ | |
y IN (segment (b,a) UNION segment (b,c)) | |
==> y = x` | |
ASSUME_TAC THENL | |
[GEN_TAC THEN STRIP_TAC THEN | |
SUBGOAL_THEN `collinear {d:real^2,x,y}` MP_TAC THENL | |
[REWRITE_TAC[COLLINEAR_AFFINE_HULL] THEN | |
MAP_EVERY EXISTS_TAC [`d:real^2`; `d':real^2`] THEN | |
REWRITE_TAC[INSERT_SUBSET; EMPTY_SUBSET] THEN | |
REPEAT CONJ_TAC THEN MATCH_MP_TAC | |
(REWRITE_RULE[SUBSET] CONVEX_HULL_SUBSET_AFFINE_HULL) THEN | |
ASM_REWRITE_TAC[GSYM SEGMENT_CONVEX_HULL; ENDS_IN_SEGMENT] THEN | |
ASM_REWRITE_TAC[SEGMENT_CLOSED_OPEN; IN_UNION]; | |
ALL_TAC] THEN | |
REWRITE_TAC[COLLINEAR_BETWEEN_CASES; BETWEEN_IN_SEGMENT] THEN | |
ASM_SIMP_TAC[SEGMENT_CLOSED_OPEN; IN_UNION; IN_INSERT; NOT_IN_EMPTY] THEN | |
ASM_CASES_TAC `x:real^2 = y` THEN ASM_REWRITE_TAC[] THEN | |
SUBGOAL_THEN | |
`(x:real^2) IN frontier(convex hull {a,b,c}) /\ | |
(y:real^2) IN frontier(convex hull {a,b,c})` | |
MP_TAC THENL | |
[REWRITE_TAC[FRONTIER_OF_TRIANGLE] THEN | |
REWRITE_TAC[SEGMENT_CLOSED_OPEN; IN_UNION] THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[IN_UNION]) THEN ASM_MESON_TAC[SEGMENT_SYM]; | |
REWRITE_TAC[frontier; IN_DIFF]] THEN | |
ASM_CASES_TAC `y:real^2 = d` THEN ASM_REWRITE_TAC[] THEN | |
REPEAT STRIP_TAC THENL | |
[MAP_EVERY UNDISCH_TAC | |
[`(d:real^2) IN segment (x,y)`; | |
`(y:real^2) IN segment [d,d']`; | |
`(x:real^2) IN segment(d,d')`] THEN | |
ASM_REWRITE_TAC[IN_SEGMENT] THEN | |
REPLICATE_TAC 2 (STRIP_TAC THEN ASM_REWRITE_TAC[]) THEN | |
ASM_REWRITE_TAC[VECTOR_MUL_EQ_0; VECTOR_SUB_EQ; VECTOR_ARITH | |
`d = (&1 - w) % ((&1 - u) % d + u % d') + w % ((&1 - v) % d + v % d') <=> | |
((&1 - w) * u + w * v) % (d' - d) = vec 0`] THEN | |
DISCH_THEN(CHOOSE_THEN MP_TAC) THEN | |
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN | |
ASM_SIMP_TAC[REAL_SUB_LE; REAL_LE_MUL; REAL_LT_IMP_LE; REAL_ARITH | |
`&0 <= x /\ &0 <= y ==> (x + y = &0 <=> x = &0 /\ y = &0)`] THEN | |
REWRITE_TAC[REAL_ENTIRE] THEN ASM_REAL_ARITH_TAC; | |
UNDISCH_TAC `~(x IN interior(convex hull {a:real^2, b, c}))` THEN | |
UNDISCH_TAC `x IN segment (y:real^2,d)` THEN | |
SPEC_TAC(`x:real^2`,`x:real^2`) THEN ASM_REWRITE_TAC[GSYM SUBSET] THEN | |
ONCE_REWRITE_TAC[SEGMENT_SYM] THEN | |
MATCH_MP_TAC IN_INTERIOR_CLOSURE_CONVEX_SEGMENT THEN | |
ASM_REWRITE_TAC[CONVEX_CONVEX_HULL]; | |
UNDISCH_TAC `~(y IN interior(convex hull {a:real^2, b, c}))` THEN | |
UNDISCH_TAC `y IN segment (d:real^2,x)` THEN | |
SPEC_TAC(`y:real^2`,`y:real^2`) THEN ASM_REWRITE_TAC[GSYM SUBSET] THEN | |
MATCH_MP_TAC IN_INTERIOR_CLOSURE_CONVEX_SEGMENT THEN | |
ASM_REWRITE_TAC[CONVEX_CONVEX_HULL]]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `pathfinish(polygonal_path p) = (a:real^2)` ASSUME_TAC THENL | |
[ASM_REWRITE_TAC[PATHFINISH_POLYGONAL_PATH]; ALL_TAC] THEN | |
SUBGOAL_THEN `segment(a:real^2,b) INTER segment(b,c) = {}` ASSUME_TAC THENL | |
[UNDISCH_TAC `segment[a:real^2,b] INTER segment[b,c] SUBSET {a, b}` THEN | |
REWRITE_TAC[SUBSET; EXTENSION; IN_INTER; NOT_IN_EMPTY] THEN | |
MATCH_MP_TAC MONO_FORALL THEN | |
REWRITE_TAC[open_segment; IN_DIFF; IN_INSERT; NOT_IN_EMPTY] THEN | |
MESON_TAC[]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN | |
`(d:real^2) IN inside(path_image | |
(linepath(a,b) ++ linepath(b,c) ++ polygonal_path(CONS c p)))` | |
ASSUME_TAC THENL | |
[UNDISCH_TAC `x IN segment(b:real^2,a) UNION segment (b,c)` THEN | |
REWRITE_TAC[IN_UNION] THEN STRIP_TAC THENL | |
[MP_TAC(ISPECL [`a:real^2`; `b:real^2`; `d:real^2`; `d':real^2`; | |
`linepath(b:real^2,c) ++ polygonal_path(CONS c p)`; | |
`x:real^2`] PARITY_LEMMA) THEN | |
SUBGOAL_THEN | |
`path_image((linepath(b:real^2,c) ++ polygonal_path(CONS c p)) ++ | |
linepath(a,b)) = | |
path_image(linepath(a,b) ++ linepath(b:real^2,c) ++ | |
polygonal_path(CONS c p))` | |
SUBST1_TAC THENL | |
[MATCH_MP_TAC PATH_IMAGE_SYM THEN | |
REWRITE_TAC[PATHSTART_JOIN; PATHFINISH_JOIN] THEN | |
REWRITE_TAC[PATHSTART_LINEPATH; PATHFINISH_LINEPATH] THEN | |
UNDISCH_TAC `pathfinish(linepath(a,b) ++ | |
linepath (b,c) ++ polygonal_path(CONS c p)):real^2 = a` THEN | |
ASM_REWRITE_TAC[PATHFINISH_JOIN; PATHFINISH_POLYGONAL_PATH]; | |
ALL_TAC] THEN | |
ASM_REWRITE_TAC[] THEN DISCH_THEN MATCH_MP_TAC THEN REPEAT CONJ_TAC THENL | |
[W(MP_TAC o PART_MATCH (lhs o rand) SIMPLE_PATH_SYM o snd) THEN | |
ASM_REWRITE_TAC[PATHSTART_JOIN; PATHFINISH_JOIN] THEN | |
ASM_REWRITE_TAC[PATHSTART_LINEPATH; PATHFINISH_LINEPATH] THEN | |
REWRITE_TAC[PATHFINISH_POLYGONAL_PATH] THEN | |
ASM_REWRITE_TAC[NOT_CONS_NIL; LAST]; | |
REWRITE_TAC[PATHSTART_JOIN; PATHSTART_LINEPATH]; | |
REWRITE_TAC[PATHFINISH_JOIN; PATHFINISH_POLYGONAL_PATH] THEN | |
ASM_REWRITE_TAC[NOT_CONS_NIL; LAST]; | |
MATCH_MP_TAC(SET_RULE | |
`x IN s /\ x IN t /\ (!y. y IN s /\ y IN t ==> y = x) | |
==> s INTER t = {x}`) THEN | |
SUBST1_TAC(ISPECL[`a:real^2`; `b:real^2`] (CONJUNCT2 SEGMENT_SYM)) THEN | |
ASM_REWRITE_TAC[] THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[SEGMENT_CLOSED_OPEN]) THEN ASM SET_TAC[]; | |
SIMP_TAC[PATH_IMAGE_JOIN; PATHFINISH_LINEPATH; PATH_IMAGE_LINEPATH; | |
PATHSTART_POLYGONAL_PATH; NOT_CONS_NIL; HD] THEN | |
ASM_REWRITE_TAC[SET_RULE `s INTER (t UNION u) = {} <=> | |
s INTER t = {} /\ s INTER u = {}`] THEN | |
REWRITE_TAC[EXTENSION; IN_INTER; NOT_IN_EMPTY] THEN | |
X_GEN_TAC `y:real^2` THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
SUBGOAL_THEN `(y:real^2)$1 = (d:real^2)$1` ASSUME_TAC THENL | |
[MP_TAC(ISPECL [`d:real^2`; `d':real^2`; `y:real^2`] | |
SEGMENT_VERTICAL) THEN | |
ASM_REWRITE_TAC[SEGMENT_CLOSED_OPEN; IN_UNION] THEN | |
ASM_REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
ASM_REWRITE_TAC[SEGMENT_CLOSED_OPEN; IN_UNION; | |
IN_INSERT; NOT_IN_EMPTY] THEN | |
ASM_CASES_TAC `y:real^2 = b` THENL [ASM_MESON_TAC[]; ALL_TAC] THEN | |
RULE_ASSUM_TAC(SUBS[ISPECL [`a:real^2`; `b:real^2`] | |
(CONJUNCT2 SEGMENT_SYM)]) THEN | |
ASM_CASES_TAC `y:real^2 = c` THENL [ALL_TAC; ASM SET_TAC[]] THEN | |
UNDISCH_THEN `y:real^2 = c` SUBST_ALL_TAC THEN | |
MP_TAC(ISPECL [`d:real^2`; `d':real^2`; `c:real^2`] | |
SEGMENT_VERTICAL) THEN | |
ASM_REWRITE_TAC[SEGMENT_CLOSED_OPEN; IN_UNION] THEN | |
ASM_REAL_ARITH_TAC]; | |
MP_TAC(ISPECL [`b:real^2`; `c:real^2`; `d:real^2`; `d':real^2`; | |
`polygonal_path(CONS c p) ++ linepath(a:real^2,b)`; | |
`x:real^2`] PARITY_LEMMA) THEN | |
SUBGOAL_THEN | |
`path_image((polygonal_path (CONS c p) ++ linepath (a,b)) ++ | |
linepath(b:real^2,c)) = | |
path_image(linepath(a,b) ++ linepath(b:real^2,c) ++ | |
polygonal_path(CONS c p))` | |
SUBST1_TAC THENL | |
[ASM_SIMP_TAC[PATH_IMAGE_JOIN; PATHSTART_JOIN; PATHFINISH_JOIN; | |
PATHSTART_LINEPATH; PATHFINISH_LINEPATH; | |
PATHSTART_POLYGONAL_PATH; PATHFINISH_POLYGONAL_PATH; | |
NOT_CONS_NIL; HD; LAST] THEN | |
REWRITE_TAC[UNION_ACI]; | |
ALL_TAC] THEN | |
ASM_REWRITE_TAC[] THEN DISCH_THEN MATCH_MP_TAC THEN REPEAT CONJ_TAC THENL | |
[W(MP_TAC o PART_MATCH (lhs o rand) (GSYM SIMPLE_PATH_ASSOC) o snd) THEN | |
ANTS_TAC THENL | |
[ALL_TAC; | |
DISCH_THEN SUBST1_TAC THEN | |
W(MP_TAC o PART_MATCH (lhs o rand) SIMPLE_PATH_SYM o snd) THEN | |
ANTS_TAC THENL | |
[ALL_TAC; | |
DISCH_THEN SUBST1_TAC THEN | |
W(MP_TAC o PART_MATCH (lhs o rand) (GSYM SIMPLE_PATH_ASSOC) o | |
snd) THEN | |
ASM_REWRITE_TAC[] THEN DISCH_THEN MATCH_MP_TAC]] THEN | |
ASM_SIMP_TAC[GSYM SIMPLE_PATH_ASSOC;PATHSTART_JOIN; | |
PATHFINISH_JOIN; | |
PATHSTART_LINEPATH; PATHFINISH_LINEPATH; | |
PATHSTART_POLYGONAL_PATH; PATHFINISH_POLYGONAL_PATH; | |
NOT_CONS_NIL; HD; LAST]; | |
REWRITE_TAC[PATHSTART_JOIN; PATHSTART_POLYGONAL_PATH] THEN | |
REWRITE_TAC[NOT_CONS_NIL; HD]; | |
REWRITE_TAC[PATHFINISH_JOIN; PATHFINISH_LINEPATH]; | |
MATCH_MP_TAC(SET_RULE | |
`x IN s /\ x IN t /\ (!y. y IN s /\ y IN t ==> y = x) | |
==> s INTER t = {x}`) THEN | |
SUBST1_TAC(ISPECL[`a:real^2`; `b:real^2`] (CONJUNCT2 SEGMENT_SYM)) THEN | |
ASM_REWRITE_TAC[] THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[SEGMENT_CLOSED_OPEN]) THEN ASM SET_TAC[]; | |
ASM_SIMP_TAC[PATH_IMAGE_JOIN; PATHSTART_LINEPATH; NOT_CONS_NIL; HD; | |
PATH_IMAGE_LINEPATH; PATHFINISH_POLYGONAL_PATH; LAST] THEN | |
ASM_REWRITE_TAC[SET_RULE `s INTER (t UNION u) = {} <=> | |
s INTER t = {} /\ s INTER u = {}`] THEN | |
REWRITE_TAC[EXTENSION; IN_INTER; NOT_IN_EMPTY] THEN | |
X_GEN_TAC `y:real^2` THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
SUBGOAL_THEN `(y:real^2)$1 = (d:real^2)$1` ASSUME_TAC THENL | |
[MP_TAC(ISPECL [`d:real^2`; `d':real^2`; `y:real^2`] | |
SEGMENT_VERTICAL) THEN | |
ASM_REWRITE_TAC[SEGMENT_CLOSED_OPEN; IN_UNION] THEN | |
ASM_REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
ASM_REWRITE_TAC[SEGMENT_CLOSED_OPEN; IN_UNION; | |
IN_INSERT; NOT_IN_EMPTY] THEN | |
ASM_CASES_TAC `y:real^2 = b` THENL [ASM_MESON_TAC[]; ALL_TAC] THEN | |
RULE_ASSUM_TAC(SUBS[ISPECL [`a:real^2`; `b:real^2`] | |
(CONJUNCT2 SEGMENT_SYM)]) THEN | |
ONCE_REWRITE_TAC[SEGMENT_SYM] THEN | |
ASM_CASES_TAC `y:real^2 = a` THENL [ALL_TAC; ASM SET_TAC[]] THEN | |
UNDISCH_THEN `y:real^2 = a` SUBST_ALL_TAC THEN | |
MP_TAC(ISPECL [`d:real^2`; `d':real^2`; `a:real^2`] | |
SEGMENT_VERTICAL) THEN | |
ASM_REWRITE_TAC[SEGMENT_CLOSED_OPEN; IN_UNION] THEN | |
ASM_REAL_ARITH_TAC]]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `~affine_dependent{a:real^2,b,c}` ASSUME_TAC THENL | |
[ASM_MESON_TAC[AFFINE_DEPENDENT_IMP_COLLINEAR_3]; ALL_TAC] THEN | |
ASM_CASES_TAC | |
`path_image(polygonal_path(CONS c p)) INTER | |
convex hull {a,b,c} SUBSET {a:real^2,c}` | |
THENL | |
[MAP_EVERY EXISTS_TAC [`a:real^2`; `c:real^2`] THEN | |
ASM_REWRITE_TAC[MEM] THEN X_GEN_TAC `y:real^2` THEN DISCH_TAC THEN | |
MATCH_MP_TAC INSIDE_SAME_COMPONENT THEN | |
EXISTS_TAC `d:real^2` THEN ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[connected_component] THEN | |
EXISTS_TAC `segment[d:real^2,y]` THEN | |
REWRITE_TAC[CONNECTED_SEGMENT; ENDS_IN_SEGMENT] THEN | |
MATCH_MP_TAC SUBSET_TRANS THEN EXISTS_TAC | |
`convex hull {a:real^2,b,c} DIFF (segment[a,b] UNION segment[b,c])` THEN | |
CONJ_TAC THENL | |
[ALL_TAC; | |
SIMP_TAC[PATH_IMAGE_JOIN; PATHSTART_JOIN; PATHFINISH_LINEPATH; | |
PATHSTART_LINEPATH; PATHSTART_POLYGONAL_PATH; NOT_CONS_NIL; HD] THEN | |
REWRITE_TAC[PATH_IMAGE_LINEPATH] THEN | |
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE | |
`t INTER s SUBSET c | |
==> c SUBSET (a UNION b) | |
==> s DIFF (a UNION b) SUBSET UNIV DIFF (a UNION b UNION t)`)) THEN | |
REWRITE_TAC[INSERT_SUBSET; EMPTY_SUBSET; IN_UNION; ENDS_IN_SEGMENT]] THEN | |
REWRITE_TAC[SEGMENT_CONVEX_HULL] THEN MATCH_MP_TAC HULL_MINIMAL THEN | |
REWRITE_TAC[INSERT_SUBSET; EMPTY_SUBSET] THEN REPEAT CONJ_TAC THENL | |
[REWRITE_TAC[IN_DIFF] THEN CONJ_TAC THENL | |
[ASM_MESON_TAC[INTERIOR_SUBSET; SUBSET]; ALL_TAC] THEN | |
SUBGOAL_THEN `~(d IN frontier(convex hull {a:real^2,b,c}))` MP_TAC THENL | |
[ASM_REWRITE_TAC[frontier; IN_DIFF]; | |
REWRITE_TAC[FRONTIER_OF_TRIANGLE; SEGMENT_CONVEX_HULL] THEN SET_TAC[]]; | |
REWRITE_TAC[IN_DIFF; IN_UNION] THEN REPEAT STRIP_TAC THENL | |
[UNDISCH_TAC `y IN segment(a:real^2,c)` THEN | |
REWRITE_TAC[open_segment; IN_DIFF; SEGMENT_CONVEX_HULL] THEN | |
MATCH_MP_TAC(SET_RULE `s SUBSET t ==> x IN s /\ P x ==> x IN t`) THEN | |
MATCH_MP_TAC HULL_MONO THEN SET_TAC[]; | |
UNDISCH_TAC `~collinear{a:real^2,b,c}` THEN REWRITE_TAC[] THEN | |
ONCE_REWRITE_TAC[SET_RULE `{a,b,c} = {b,a,c}`] THEN | |
MATCH_MP_TAC COLLINEAR_3_TRANS THEN EXISTS_TAC `y:real^2` THEN | |
MAP_EVERY UNDISCH_TAC | |
[`y IN convex hull {a:real^2, b}`; `y IN segment(a:real^2,c)`] THEN | |
REWRITE_TAC[open_segment; GSYM SEGMENT_CONVEX_HULL; IN_DIFF] THEN | |
REWRITE_TAC[DE_MORGAN_THM; IN_INSERT; NOT_IN_EMPTY] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC) THEN | |
ASM_REWRITE_TAC[IMP_IMP; GSYM BETWEEN_IN_SEGMENT] THEN | |
DISCH_THEN(CONJUNCTS_THEN(MP_TAC o | |
MATCH_MP BETWEEN_IMP_COLLINEAR)) THEN | |
REWRITE_TAC[INSERT_AC; IMP_IMP]; | |
UNDISCH_TAC `~collinear{a:real^2,b,c}` THEN REWRITE_TAC[] THEN | |
ONCE_REWRITE_TAC[SET_RULE `{a,b,c} = {b,c,a}`] THEN | |
MATCH_MP_TAC COLLINEAR_3_TRANS THEN EXISTS_TAC `y:real^2` THEN | |
MAP_EVERY UNDISCH_TAC | |
[`y IN convex hull {b:real^2, c}`; `y IN segment(a:real^2,c)`] THEN | |
REWRITE_TAC[open_segment; GSYM SEGMENT_CONVEX_HULL; IN_DIFF] THEN | |
REWRITE_TAC[DE_MORGAN_THM; IN_INSERT; NOT_IN_EMPTY] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC) THEN | |
ASM_REWRITE_TAC[IMP_IMP; GSYM BETWEEN_IN_SEGMENT] THEN | |
DISCH_THEN(CONJUNCTS_THEN(MP_TAC o | |
MATCH_MP BETWEEN_IMP_COLLINEAR)) THEN | |
REWRITE_TAC[INSERT_AC; IMP_IMP]]; | |
REWRITE_TAC[SET_RULE | |
`s DIFF (t UNION u) = (s DIFF t) INTER (s DIFF u)`] THEN | |
MATCH_MP_TAC CONVEX_INTER THEN CONJ_TAC THENL | |
[MP_TAC(ISPECL [`convex hull {a:real^2,b,c}`; `convex hull{a:real^2,b}`] | |
FACE_OF_STILLCONVEX) THEN | |
REWRITE_TAC[CONVEX_CONVEX_HULL] THEN MATCH_MP_TAC(TAUT | |
`p ==> (p <=> q /\ r /\ s) ==> r`) THEN | |
ASM_SIMP_TAC[FACE_OF_CONVEX_HULL_AFFINE_INDEPENDENT] THEN | |
EXISTS_TAC `{a:real^2,b}` THEN SET_TAC[]; | |
MP_TAC(ISPECL [`convex hull {a:real^2,b,c}`; `convex hull{b:real^2,c}`] | |
FACE_OF_STILLCONVEX) THEN | |
REWRITE_TAC[CONVEX_CONVEX_HULL] THEN MATCH_MP_TAC(TAUT | |
`p ==> (p <=> q /\ r /\ s) ==> r`) THEN | |
ASM_SIMP_TAC[FACE_OF_CONVEX_HULL_AFFINE_INDEPENDENT] THEN | |
EXISTS_TAC `{b:real^2,c}` THEN SET_TAC[]]]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN | |
`?n:real^2. | |
~(n = vec 0) /\ orthogonal n (c - a) /\ | |
&0 < n dot (c - b)` | |
STRIP_ASSUME_TAC THENL | |
[SUBGOAL_THEN `?n:real^2. ~(n = vec 0) /\ orthogonal n (c - a)` | |
STRIP_ASSUME_TAC THENL | |
[ONCE_REWRITE_TAC[ORTHOGONAL_SYM] THEN | |
MATCH_MP_TAC ORTHOGONAL_TO_VECTOR_EXISTS THEN | |
REWRITE_TAC[DIMINDEX_2; LE_REFL]; | |
ALL_TAC] THEN | |
REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC (REAL_ARITH | |
`&0 < n dot (c - b) \/ &0 < --(n dot (c - b)) \/ | |
(n:real^2) dot (c - b) = &0`) | |
THENL | |
[EXISTS_TAC `n:real^2` THEN ASM_REWRITE_TAC[]; | |
EXISTS_TAC `--n:real^2` THEN ASM_REWRITE_TAC[DOT_LNEG] THEN | |
ASM_REWRITE_TAC[VECTOR_NEG_EQ_0; ORTHOGONAL_LNEG]; | |
UNDISCH_TAC `~collinear{a:real^2,b,c}` THEN | |
ONCE_REWRITE_TAC[SET_RULE `{a,b,c} = {a,c,b}`] THEN | |
MATCH_MP_TAC(TAUT `p ==> ~p ==> q`) THEN | |
ONCE_REWRITE_TAC[COLLINEAR_3] THEN | |
MATCH_MP_TAC ORTHOGONAL_TO_ORTHOGONAL_2D THEN | |
EXISTS_TAC `n:real^2` THEN | |
ONCE_REWRITE_TAC[GSYM ORTHOGONAL_RNEG] THEN | |
ASM_REWRITE_TAC[VECTOR_NEG_SUB] THEN | |
ASM_REWRITE_TAC[orthogonal]]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `n dot (a - b:real^2) = n dot (c - b)` ASSUME_TAC THENL | |
[REWRITE_TAC[DOT_RSUB; real_sub; REAL_EQ_ADD_RCANCEL] THEN | |
ONCE_REWRITE_TAC[REAL_ARITH `x = y <=> y - x = &0`] THEN | |
ASM_REWRITE_TAC[GSYM DOT_RSUB; GSYM orthogonal]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN | |
`!y:real^2. y IN convex hull {a,b,c} /\ ~(y = b) ==> &0 < n dot (y - b)` | |
ASSUME_TAC THENL | |
[REWRITE_TAC[CONVEX_HULL_3_ALT; FORALL_IN_GSPEC; IMP_CONJ] THEN | |
REWRITE_TAC[VECTOR_ARITH | |
`(a + u % (b - a) + v % (c - a)) - b = | |
(&1 - u - v) % (a - b) + v % (c - b)`] THEN | |
ASM_REWRITE_TAC[DOT_RADD; DOT_RMUL] THEN | |
MAP_EVERY X_GEN_TAC [`r:real`; `s:real`] THEN REPEAT STRIP_TAC THEN | |
REWRITE_TAC[REAL_ARITH `(&1 - u - v) * x + v * x = (&1 - u) * x`] THEN | |
MATCH_MP_TAC REAL_LT_MUL THEN ASM_REWRITE_TAC[] THEN | |
ASM_CASES_TAC `r = &1 /\ s = &0` THENL [ALL_TAC; ASM_REAL_ARITH_TAC] THEN | |
UNDISCH_TAC `~(a + r % (b - a) + s % (c - a):real^2 = b)` THEN | |
ASM_REWRITE_TAC[REAL_LT_REFL; REAL_SUB_LT] THEN VECTOR_ARITH_TAC; | |
ALL_TAC] THEN | |
SUBGOAL_THEN | |
`!y:real^2. y IN convex hull {a,b,c} ==> &0 <= n dot (y - b)` | |
ASSUME_TAC THENL | |
[GEN_TAC THEN ASM_CASES_TAC `y:real^2 = b` THEN | |
ASM_REWRITE_TAC[VECTOR_SUB_REFL; DOT_RZERO; REAL_LE_REFL] THEN | |
ASM_MESON_TAC[REAL_LT_IMP_LE]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN | |
`!y:real^2. y IN convex hull {a,b,c} ==> n dot (y - b) <= n dot (c - b)` | |
ASSUME_TAC THENL | |
[REWRITE_TAC[CONVEX_HULL_3_ALT; FORALL_IN_GSPEC] THEN | |
REWRITE_TAC[VECTOR_ARITH | |
`(a + u % (b - a) + v % (c - a)) - b = | |
(&1 - u - v) % (a - b) + v % (c - b)`] THEN | |
ASM_REWRITE_TAC[DOT_RADD; DOT_RMUL; REAL_ARITH | |
`(&1 - u - v) * x + v * x <= x <=> &0 <= u * x`] THEN | |
ASM_SIMP_TAC[REAL_LE_MUL; REAL_LT_IMP_LE]; | |
ALL_TAC] THEN | |
MP_TAC(ISPECL [`\x:real^2. n dot (x - b)`; | |
`path_image (polygonal_path(CONS c p)) INTER convex hull {a:real^2,b,c}`] | |
CONTINUOUS_ATTAINS_INF) THEN | |
REWRITE_TAC[] THEN ANTS_TAC THENL | |
[REPEAT CONJ_TAC THENL | |
[MATCH_MP_TAC COMPACT_INTER THEN | |
SIMP_TAC[COMPACT_PATH_IMAGE; PATH_POLYGONAL_PATH] THEN | |
SIMP_TAC[COMPACT_CONVEX_HULL; FINITE_IMP_COMPACT; | |
FINITE_INSERT; FINITE_EMPTY]; | |
ASM SET_TAC[]; | |
SUBGOAL_THEN | |
`(\x:real^2. n dot (x - b)) = (\x. n dot x) o (\x. x - b)` | |
SUBST1_TAC THENL [REWRITE_TAC[o_DEF]; ALL_TAC] THEN | |
REWRITE_TAC[o_ASSOC] THEN MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN | |
REWRITE_TAC[CONTINUOUS_ON_LIFT_DOT] THEN | |
SIMP_TAC[CONTINUOUS_ON_SUB; CONTINUOUS_ON_CONST; CONTINUOUS_ON_ID]]; | |
ALL_TAC] THEN | |
DISCH_TAC THEN | |
SUBGOAL_THEN | |
`?mx:real^2. | |
~(mx = a) /\ ~(mx = c) /\ | |
mx IN path_image(polygonal_path(CONS c p)) INTER convex hull {a, b, c} /\ | |
(!y. y IN | |
path_image(polygonal_path(CONS c p)) INTER convex hull {a, b, c} | |
==> n dot (mx - b) <= n dot (y - b))` | |
STRIP_ASSUME_TAC THENL | |
[FIRST_X_ASSUM(X_CHOOSE_THEN `mx:real^2` STRIP_ASSUME_TAC) THEN | |
SUBGOAL_THEN `n dot (mx - b:real^2) <= n dot (c - b)` MP_TAC THENL | |
[ASM SET_TAC[]; ALL_TAC] THEN | |
GEN_REWRITE_TAC LAND_CONV [REAL_LE_LT] THEN STRIP_TAC THENL | |
[EXISTS_TAC `mx:real^2` THEN ASM_MESON_TAC[REAL_LT_REFL]; ALL_TAC] THEN | |
UNDISCH_TAC `~(path_image(polygonal_path(CONS c p)) INTER | |
convex hull {a, b, c} SUBSET {a:real^2, c})` THEN | |
REWRITE_TAC[SUBSET; NOT_FORALL_THM; NOT_IMP; IN_INSERT; NOT_IN_EMPTY] THEN | |
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `my:real^2` THEN | |
REWRITE_TAC[DE_MORGAN_THM] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN | |
X_GEN_TAC `y:real^2` THEN REWRITE_TAC[IN_INTER] THEN STRIP_TAC THEN | |
MATCH_MP_TAC REAL_LE_TRANS THEN | |
EXISTS_TAC `n dot (mx - b:real^2)` THEN CONJ_TAC THENL | |
[ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM SET_TAC[]; | |
FIRST_X_ASSUM MATCH_MP_TAC THEN ASM SET_TAC[]]; | |
FIRST_X_ASSUM(CHOOSE_THEN (K ALL_TAC))] THEN | |
ABBREV_TAC `m = (n:real^2) dot (mx - b)` THEN | |
SUBGOAL_THEN `&0 < m` ASSUME_TAC THENL | |
[EXPAND_TAC "m" THEN FIRST_X_ASSUM MATCH_MP_TAC THEN | |
CONJ_TAC THENL [ASM SET_TAC[]; DISCH_THEN SUBST_ALL_TAC] THEN | |
UNDISCH_TAC | |
`segment[b:real^2,c] INTER path_image (polygonal_path (CONS c p)) | |
SUBSET {c}` THEN | |
REWRITE_TAC[SUBSET; IN_INTER] THEN | |
DISCH_THEN(MP_TAC o SPEC `b:real^2`) THEN | |
ASM_REWRITE_TAC[IN_SING; ENDS_IN_SEGMENT] THEN ASM SET_TAC[]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN | |
`?z:real^2. MEM z p /\ | |
z IN (convex hull {a,b,c} DIFF {a,c}) /\ | |
n dot (z - b) = m` | |
STRIP_ASSUME_TAC THENL | |
[ALL_TAC; | |
MAP_EVERY EXISTS_TAC [`b:real^2`; `z:real^2`] THEN | |
ASM_REWRITE_TAC[MEM] THEN | |
MATCH_MP_TAC(TAUT `p /\ (p ==> q) ==> p /\ q`) THEN | |
CONJ_TAC THENL [ASM_MESON_TAC[REAL_LT_REFL]; DISCH_TAC] THEN | |
X_GEN_TAC `w:real^2` THEN DISCH_TAC THEN | |
MATCH_MP_TAC INSIDE_SAME_COMPONENT THEN | |
EXISTS_TAC `d:real^2` THEN ASM_REWRITE_TAC[] THEN | |
SUBGOAL_THEN `~(z:real^2 = a) /\ ~(z = c)` STRIP_ASSUME_TAC THENL | |
[ASM SET_TAC[]; ALL_TAC] THEN | |
SUBGOAL_THEN | |
`(z:real^2) IN path_image(polygonal_path(CONS c p)) /\ | |
(z:real^2) IN path_image(polygonal_path p)` | |
STRIP_ASSUME_TAC THENL | |
[CONJ_TAC THEN MATCH_MP_TAC | |
(REWRITE_RULE[SUBSET] VERTICES_IN_PATH_IMAGE_POLYGONAL_PATH) THEN | |
ASM_REWRITE_TAC[IN_SET_OF_LIST; MEM]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `~(z IN segment[a:real^2,b]) /\ ~(z IN segment[b,c])` | |
STRIP_ASSUME_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN | |
SUBGOAL_THEN `~collinear{b:real^2,a,z} /\ ~collinear{b,c,z}` | |
STRIP_ASSUME_TAC THENL | |
[ASM_SIMP_TAC[COLLINEAR_3_AFFINE_HULL] THEN | |
MATCH_MP_TAC(SET_RULE | |
`!c. x IN c /\ ~(x IN (a INTER c)) /\ ~(x IN (b INTER c)) | |
==> ~(x IN a) /\ ~(x IN b)`) THEN | |
EXISTS_TAC `convex hull {a:real^2,b,c}` THEN | |
CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN | |
ASM_SIMP_TAC[GSYM AFFINE_INDEPENDENT_CONVEX_AFFINE_HULL; | |
INSERT_SUBSET; EMPTY_SUBSET; IN_INSERT] THEN | |
ASM_REWRITE_TAC[GSYM SEGMENT_CONVEX_HULL] THEN | |
ONCE_REWRITE_TAC[SEGMENT_SYM] THEN ASM_REWRITE_TAC[]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN | |
`segment(b:real^2,z) INTER segment[a,b] = {} /\ | |
segment(b,z) INTER segment[b,c] = {}` | |
STRIP_ASSUME_TAC THENL | |
[REWRITE_TAC[EXTENSION; IN_INTER; NOT_IN_EMPTY] THEN | |
CONJ_TAC THEN X_GEN_TAC `v:real^2` THEN STRIP_TAC THENL | |
[UNDISCH_TAC `~collinear{b:real^2,a,z}`; | |
UNDISCH_TAC `~collinear{b:real^2,c,z}`] THEN | |
REWRITE_TAC[] THEN | |
ONCE_REWRITE_TAC[SET_RULE `{a,b,c} = {b,a,c}`] THEN | |
MATCH_MP_TAC COLLINEAR_3_TRANS THEN | |
EXISTS_TAC `v:real^2` THEN | |
UNDISCH_TAC `v IN segment(b:real^2,z)` THEN | |
REWRITE_TAC[open_segment; IN_DIFF; IN_INSERT; NOT_IN_EMPTY] THEN | |
REWRITE_TAC[DE_MORGAN_THM; IMP_CONJ] THENL | |
[UNDISCH_TAC `v IN segment[a:real^2,b]`; | |
UNDISCH_TAC `v IN segment[b:real^2,c]`] THEN | |
ONCE_REWRITE_TAC[IMP_IMP] THEN REWRITE_TAC[GSYM BETWEEN_IN_SEGMENT] THEN | |
DISCH_THEN(CONJUNCTS_THEN(MP_TAC o MATCH_MP BETWEEN_IMP_COLLINEAR)) THEN | |
REWRITE_TAC[INSERT_AC] THEN SIMP_TAC[]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `segment[b:real^2,z] SUBSET convex hull {a,b,c}` | |
ASSUME_TAC THENL | |
[REWRITE_TAC[SEGMENT_CONVEX_HULL] THEN MATCH_MP_TAC HULL_MINIMAL THEN | |
REWRITE_TAC[CONVEX_CONVEX_HULL; INSERT_SUBSET; EMPTY_SUBSET] THEN | |
SIMP_TAC[HULL_INC; IN_INSERT] THEN ASM SET_TAC[]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `segment(b:real^2,z) SUBSET convex hull {a,b,c}` | |
ASSUME_TAC THENL | |
[REWRITE_TAC[open_segment] THEN ASM SET_TAC[]; ALL_TAC] THEN | |
SUBGOAL_THEN | |
`segment(b:real^2,z) INTER path_image(polygonal_path(CONS c p)) = {}` | |
ASSUME_TAC THENL | |
[REWRITE_TAC[EXTENSION; IN_INTER; NOT_IN_EMPTY] THEN | |
X_GEN_TAC `v:real^2` THEN STRIP_TAC THEN | |
SUBGOAL_THEN `m <= n dot (v - b:real^2)` MP_TAC THENL | |
[FIRST_X_ASSUM MATCH_MP_TAC THEN ASM SET_TAC[]; ALL_TAC] THEN | |
REWRITE_TAC[REAL_NOT_LE] THEN | |
UNDISCH_TAC `v IN segment(b:real^2,z)` THEN REWRITE_TAC[IN_SEGMENT] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
DISCH_THEN(X_CHOOSE_THEN `t:real` STRIP_ASSUME_TAC) THEN | |
ASM_REWRITE_TAC[DOT_RMUL; VECTOR_ARITH | |
`((&1 - t) % a + t % b) - a:real^N = t % (b - a)`] THEN | |
ONCE_REWRITE_TAC[REAL_ARITH `t * m < m <=> &0 < m * (&1 - t)`] THEN | |
MATCH_MP_TAC REAL_LT_MUL THEN ASM_REWRITE_TAC[REAL_SUB_LT]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `segment(b:real^2,z) SUBSET interior(convex hull {a,b,c})` | |
ASSUME_TAC THENL | |
[MATCH_MP_TAC SUBSET_TRANS THEN EXISTS_TAC | |
`(convex hull {a:real^2,b,c}) DIFF frontier(convex hull {a,b,c})` THEN | |
CONJ_TAC THENL | |
[ALL_TAC; | |
REWRITE_TAC[frontier] THEN MATCH_MP_TAC(SET_RULE | |
`s SUBSET u ==> s DIFF (u DIFF t) SUBSET t`) THEN | |
REWRITE_TAC[CLOSURE_SUBSET]] THEN | |
REWRITE_TAC[FRONTIER_OF_TRIANGLE] THEN MATCH_MP_TAC(SET_RULE | |
`s INTER a = {} /\ s INTER b = {} /\ s INTER c = {} /\ s SUBSET u | |
==> s SUBSET u DIFF (a UNION b UNION c)`) THEN | |
ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[EXTENSION; IN_INTER; NOT_IN_EMPTY] THEN | |
X_GEN_TAC `v:real^2` THEN REWRITE_TAC[IN_SEGMENT] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 | |
(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) MP_TAC) THEN | |
DISCH_THEN(X_CHOOSE_THEN `s:real` STRIP_ASSUME_TAC) THEN | |
ASM_REWRITE_TAC[NOT_EXISTS_THM] THEN X_GEN_TAC `t:real` THEN | |
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN | |
DISCH_THEN(MP_TAC o AP_TERM `\x:real^2. n dot (x - b)`) THEN | |
REWRITE_TAC[VECTOR_ARITH | |
`((&1 - u) % c + u % a) - b = | |
(&1 - u) % (c - b) + u % (a - b)`] THEN | |
ASM_REWRITE_TAC[VECTOR_SUB_REFL; VECTOR_ADD_LID; VECTOR_MUL_RZERO] THEN | |
ASM_REWRITE_TAC[DOT_RADD; DOT_RMUL] THEN MATCH_MP_TAC(REAL_ARITH | |
`&0 < m * (&1 - t) /\ m <= x ==> ~((&1 - s) * x + s * x = t * m)`) THEN | |
ASM_SIMP_TAC[REAL_LT_MUL; REAL_SUB_LT] THEN | |
FIRST_X_ASSUM MATCH_MP_TAC THEN | |
SIMP_TAC[IN_INTER; IN_INSERT; HULL_INC] THEN MATCH_MP_TAC | |
(REWRITE_RULE[SUBSET] VERTICES_IN_PATH_IMAGE_POLYGONAL_PATH) THEN | |
REWRITE_TAC[set_of_list; IN_INSERT]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN | |
`?y:real^2. y IN segment(b,z) /\ y IN interior(convex hull {a',b,c'})` | |
STRIP_ASSUME_TAC THENL | |
[REWRITE_TAC[INTER; GSYM(ASSUME | |
`interior(convex hull {a, b, c}) INTER {x:real^2 | x$2 - b$2 < e} = | |
interior(convex hull {a', b, c'})`)] THEN | |
REWRITE_TAC[IN_ELIM_THM] THEN MATCH_MP_TAC(SET_RULE | |
`(?y. y IN s /\ P y) /\ s SUBSET t | |
==> ?y. y IN s /\ y IN t /\ P y`) THEN | |
ASM_REWRITE_TAC[] THEN ASM_REWRITE_TAC[IN_SEGMENT] THEN EXISTS_TAC | |
`b + min (&1 / &2) (e / &2 / norm(z - b)) % (z - b):real^2` THEN | |
CONJ_TAC THENL | |
[EXISTS_TAC `min (&1 / &2) (e / &2 / norm (z - b:real^2))` THEN | |
REPEAT CONJ_TAC THENL [ALL_TAC; REAL_ARITH_TAC; VECTOR_ARITH_TAC] THEN | |
REWRITE_TAC[REAL_LT_MIN] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN | |
ASM_SIMP_TAC[REAL_HALF; REAL_LT_DIV; NORM_POS_LT; VECTOR_SUB_EQ]; | |
REWRITE_TAC[VECTOR_ADD_COMPONENT; REAL_ADD_SUB] THEN | |
MATCH_MP_TAC(REAL_ARITH | |
`abs(x$2) <= norm x /\ norm x <= e / &2 /\ &0 < e ==> x$2 < e`) THEN | |
SIMP_TAC[COMPONENT_LE_NORM; DIMINDEX_2; ARITH] THEN | |
ASM_REWRITE_TAC[NORM_MUL] THEN | |
ASM_SIMP_TAC[GSYM REAL_LE_RDIV_EQ; NORM_POS_LT; VECTOR_SUB_EQ] THEN | |
MATCH_MP_TAC(REAL_ARITH `&0 <= x ==> abs(min (&1 / &2) x) <= x`) THEN | |
MATCH_MP_TAC REAL_LT_IMP_LE THEN MATCH_MP_TAC REAL_LT_DIV THEN | |
ASM_REWRITE_TAC[REAL_HALF; NORM_POS_LT; VECTOR_SUB_EQ]]; | |
ALL_TAC] THEN | |
MATCH_MP_TAC CONNECTED_COMPONENT_TRANS THEN EXISTS_TAC `y:real^2` THEN | |
CONJ_TAC THENL | |
[REWRITE_TAC[connected_component] THEN | |
EXISTS_TAC `interior(convex hull {a':real^2,b,c'})` THEN | |
ASM_REWRITE_TAC[] THEN | |
SIMP_TAC[CONVEX_CONNECTED; CONVEX_INTERIOR; CONVEX_CONVEX_HULL] THEN | |
SIMP_TAC[PATH_IMAGE_JOIN; PATHSTART_JOIN; PATHSTART_LINEPATH; | |
PATHFINISH_LINEPATH; PATHSTART_POLYGONAL_PATH; NOT_CONS_NIL; HD] THEN | |
REWRITE_TAC[SET_RULE `s SUBSET UNIV DIFF (a UNION b UNION c) <=> | |
s INTER a = {} /\ s INTER b = {} /\ s INTER c = {}`] THEN | |
REPEAT CONJ_TAC THENL | |
[MATCH_MP_TAC(SET_RULE | |
`!t. s SUBSET t /\ t INTER u = {} ==> s INTER u = {}`) THEN | |
EXISTS_TAC `interior(convex hull {a:real^2,b,c})` THEN | |
ASM_SIMP_TAC[SUBSET_INTERIOR] THEN | |
MP_TAC(ISPECL [`a:real^2`; `b:real^2`; `c:real^2`] | |
FRONTIER_OF_TRIANGLE) THEN | |
REWRITE_TAC[PATH_IMAGE_LINEPATH; frontier] THEN | |
MATCH_MP_TAC(SET_RULE | |
`!s. i SUBSET s /\ s SUBSET c | |
==> c DIFF i = a UNION b ==> i INTER a = {}`) THEN | |
EXISTS_TAC `convex hull {a:real^2,b,c}` THEN | |
REWRITE_TAC[INTERIOR_SUBSET; CLOSURE_SUBSET]; | |
MATCH_MP_TAC(SET_RULE | |
`!t. s SUBSET t /\ t INTER u = {} ==> s INTER u = {}`) THEN | |
EXISTS_TAC `interior(convex hull {a:real^2,b,c})` THEN | |
ASM_SIMP_TAC[SUBSET_INTERIOR] THEN | |
MP_TAC(ISPECL [`a:real^2`; `b:real^2`; `c:real^2`] | |
FRONTIER_OF_TRIANGLE) THEN | |
REWRITE_TAC[PATH_IMAGE_LINEPATH; frontier] THEN | |
MATCH_MP_TAC(SET_RULE | |
`!s. i SUBSET s /\ s SUBSET c | |
==> c DIFF i = a UNION b UNION d ==> i INTER b = {}`) THEN | |
EXISTS_TAC `convex hull {a:real^2,b,c}` THEN | |
REWRITE_TAC[INTERIOR_SUBSET; CLOSURE_SUBSET]; | |
MATCH_MP_TAC(SET_RULE | |
`!t. s SUBSET t /\ u INTER t = {} ==> s INTER u = {}`) THEN | |
EXISTS_TAC `{x | (x:real^2)$2 - (b:real^2)$2 < e}` THEN | |
CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN | |
REWRITE_TAC[SET_RULE `s INTER t = {} <=> s SUBSET (UNIV DIFF t)`] THEN | |
REWRITE_TAC[SUBSET; IN_DIFF; IN_ELIM_THM; REAL_NOT_LT; IN_UNIV] THEN | |
MP_TAC(ISPEC `CONS (c:real^2) p` | |
PATH_IMAGE_POLYGONAL_PATH_SUBSET_CONVEX_HULL) THEN | |
REWRITE_TAC[NOT_CONS_NIL] THEN | |
MATCH_MP_TAC(SET_RULE | |
`t SUBSET {x | P x} ==> s SUBSET t ==> !x. x IN s ==> P x`) THEN | |
REWRITE_TAC[REAL_ARITH `e <= x - b <=> x >= b + e`] THEN | |
SIMP_TAC[SUBSET_HULL; CONVEX_HALFSPACE_COMPONENT_GE] THEN | |
REWRITE_TAC[set_of_list; REAL_ARITH `x >= b + e <=> e <= x - b`] THEN | |
ASM_REWRITE_TAC[INSERT_SUBSET; IN_ELIM_THM] THEN | |
ASM_REWRITE_TAC[SUBSET; IN_SET_OF_LIST; IN_ELIM_THM]]; | |
REWRITE_TAC[connected_component] THEN | |
EXISTS_TAC `segment(b:real^2,z)` THEN ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[CONNECTED_SEGMENT] THEN | |
SIMP_TAC[PATH_IMAGE_JOIN; PATHSTART_JOIN; PATHSTART_LINEPATH; | |
PATHFINISH_LINEPATH; PATHSTART_POLYGONAL_PATH; NOT_CONS_NIL; HD] THEN | |
REWRITE_TAC[PATH_IMAGE_LINEPATH] THEN ASM SET_TAC[]]] THEN | |
SUBGOAL_THEN | |
`?u v:real^2. | |
MEM u (CONS c p) /\ MEM v (CONS c p) /\ | |
mx IN segment[u,v] /\ | |
segment[u,v] SUBSET path_image(polygonal_path(CONS c p)) /\ | |
~(a IN segment[u,v] /\ c IN segment[u,v]) /\ | |
n dot (u - b) <= m` | |
STRIP_ASSUME_TAC THENL | |
[MP_TAC(ISPECL [`CONS (c:real^2) p`; `mx:real^2`] | |
PATH_IMAGE_POLYGONAL_PATH_SUBSET_SEGMENTS) THEN | |
ANTS_TAC THENL | |
[ASM_REWRITE_TAC[LENGTH; ARITH_RULE `3 <= SUC n <=> 2 <= n`] THEN | |
ASM SET_TAC[]; | |
ALL_TAC] THEN | |
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN | |
MAP_EVERY X_GEN_TAC [`u:real^2`; `v:real^2`] THEN | |
ASM_REWRITE_TAC[PATHSTART_POLYGONAL_PATH; PATHFINISH_POLYGONAL_PATH] THEN | |
ASM_REWRITE_TAC[NOT_CONS_NIL; LAST; HD] THEN STRIP_TAC THEN | |
SUBGOAL_THEN `n dot (u - b) <= m \/ n dot (v - b:real^2) <= m` | |
STRIP_ASSUME_TAC THENL | |
[REWRITE_TAC[GSYM REAL_NOT_LT; GSYM DE_MORGAN_THM] THEN STRIP_TAC THEN | |
UNDISCH_TAC `n dot (mx - b:real^2) = m` THEN | |
UNDISCH_TAC `(mx:real^2) IN segment[u,v]` THEN | |
REWRITE_TAC[IN_SEGMENT] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[VECTOR_ARITH | |
`((&1 - u) % x + u % y) - a:real^N = | |
(&1 - u) % (x - a) + u % (y - a)`] THEN | |
MATCH_MP_TAC(REAL_ARITH `--x < --m ==> ~(x = m)`) THEN | |
REWRITE_TAC[GSYM DOT_LNEG] THEN REWRITE_TAC[DOT_RADD; DOT_RMUL] THEN | |
MATCH_MP_TAC REAL_CONVEX_BOUND_LT THEN | |
ASM_REWRITE_TAC[DOT_LNEG; REAL_LT_NEG2] THEN ASM_REAL_ARITH_TAC; | |
MAP_EVERY EXISTS_TAC [`u:real^2`; `v:real^2`] THEN ASM_REWRITE_TAC[] THEN | |
ONCE_REWRITE_TAC[CONJ_SYM] THEN ASM_REWRITE_TAC[]; | |
MAP_EVERY EXISTS_TAC [`v:real^2`; `u:real^2`] THEN | |
ONCE_REWRITE_TAC[SEGMENT_SYM] THEN ASM_REWRITE_TAC[] THEN | |
ONCE_REWRITE_TAC[CONJ_SYM] THEN ASM_REWRITE_TAC[]]; | |
ALL_TAC] THEN | |
ASM_CASES_TAC `n dot (u - b:real^2) < n dot (c - b)` THENL | |
[SUBGOAL_THEN `~(u:real^2 = a) /\ ~(u = c)` STRIP_ASSUME_TAC THENL | |
[ASM_MESON_TAC[REAL_LT_REFL]; ALL_TAC] THEN | |
UNDISCH_TAC `MEM (u:real^2) (CONS c p)` THEN | |
ASM_REWRITE_TAC[MEM] THEN DISCH_TAC THEN EXISTS_TAC `u:real^2` THEN | |
ASM_REWRITE_TAC[IN_DIFF; IN_INSERT; NOT_IN_EMPTY] THEN | |
ASM_CASES_TAC `mx:real^2 = u` THENL [ASM SET_TAC[]; ALL_TAC] THEN | |
MATCH_MP_TAC(TAUT `(a ==> b) /\ a ==> a /\ b`) THEN CONJ_TAC THENL | |
[DISCH_TAC THEN ASM_REWRITE_TAC[GSYM REAL_LE_ANTISYM] THEN | |
FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[IN_INTER] THEN | |
MATCH_MP_TAC(REWRITE_RULE[SUBSET] | |
VERTICES_IN_PATH_IMAGE_POLYGONAL_PATH) THEN | |
ASM_REWRITE_TAC[IN_SET_OF_LIST; MEM]; | |
ALL_TAC] THEN | |
MP_TAC(ISPECL | |
[`segment(u:real^2,mx)`; `convex hull {a:real^2,b,c}`] | |
CONNECTED_INTER_FRONTIER) THEN | |
REWRITE_TAC[CONNECTED_SEGMENT] THEN MATCH_MP_TAC(SET_RULE | |
`(s SUBSET c ==> u IN c) /\ s INTER f = {} /\ ~(s INTER c = {}) | |
==> (~(s INTER c = {}) /\ ~(s DIFF c = {}) ==> ~(s INTER f = {})) | |
==> u IN c`) THEN | |
REPEAT CONJ_TAC THENL | |
[DISCH_TAC THEN | |
SUBGOAL_THEN `closure(segment(u:real^2,mx)) SUBSET convex hull {a,b,c}` | |
MP_TAC THENL | |
[MATCH_MP_TAC CLOSURE_MINIMAL THEN ASM_REWRITE_TAC[] THEN | |
MATCH_MP_TAC COMPACT_IMP_CLOSED THEN | |
MATCH_MP_TAC COMPACT_CONVEX_HULL THEN | |
SIMP_TAC[FINITE_IMP_COMPACT; FINITE_INSERT; FINITE_EMPTY]; | |
ASM_REWRITE_TAC[SUBSET; CLOSURE_SEGMENT] THEN | |
DISCH_THEN MATCH_MP_TAC THEN REWRITE_TAC[ENDS_IN_SEGMENT]]; | |
REWRITE_TAC[FRONTIER_OF_TRIANGLE] THEN | |
MATCH_MP_TAC(SET_RULE | |
`!a b c t u. | |
s SUBSET t /\ t SUBSET u /\ | |
a IN ca /\ c IN ca /\ | |
ab INTER u SUBSET {a,b} /\ bc INTER u SUBSET {c} /\ | |
~(b IN u) /\ s INTER ca = {} | |
==> s INTER (ab UNION bc UNION ca) = {}`) THEN | |
MAP_EVERY EXISTS_TAC | |
[`a:real^2`; `b:real^2`; `c:real^2`; `segment[u:real^2,v]`; | |
`path_image(polygonal_path(CONS (c:real^2) p))`] THEN | |
ASM_REWRITE_TAC[ENDS_IN_SEGMENT; SUBSET_SEGMENT] THEN CONJ_TAC THENL | |
[MP_TAC(ISPEC `CONS (c:real^2) p` | |
PATH_IMAGE_POLYGONAL_PATH_SUBSET_CONVEX_HULL) THEN | |
REWRITE_TAC[NOT_CONS_NIL] THEN MATCH_MP_TAC(SET_RULE | |
`~(x IN t) ==> s SUBSET t ==> ~(x IN s)`) THEN | |
MATCH_MP_TAC(SET_RULE | |
`!t. ~(b IN t) /\ s SUBSET t ==> ~(b IN s)`) THEN | |
EXISTS_TAC `{x:real^2 | (x:real^2)$2 >= (b:real^2)$2 + e}` THEN | |
ASM_REWRITE_TAC[IN_ELIM_THM; real_ge; REAL_NOT_LE; REAL_LT_ADDR] THEN | |
MATCH_MP_TAC HULL_MINIMAL THEN | |
REWRITE_TAC[GSYM real_ge; CONVEX_HALFSPACE_COMPONENT_GE] THEN | |
REWRITE_TAC[SUBSET; set_of_list; FORALL_IN_INSERT; IN_ELIM_THM] THEN | |
ASM_REWRITE_TAC[IN_SET_OF_LIST; REAL_ARITH | |
`x >= b + e <=> e <= x - b`]; | |
REWRITE_TAC[EXTENSION; IN_INTER; NOT_IN_EMPTY] THEN | |
X_GEN_TAC `y:real^2` THEN REWRITE_TAC[IN_SEGMENT] THEN | |
DISCH_THEN(CONJUNCTS_THEN MP_TAC) THEN | |
DISCH_THEN(X_CHOOSE_THEN `s:real` STRIP_ASSUME_TAC) THEN | |
ASM_REWRITE_TAC[NOT_EXISTS_THM] THEN X_GEN_TAC `t:real` THEN | |
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN | |
DISCH_THEN(MP_TAC o AP_TERM `\x:real^2. n dot (x - b)`) THEN | |
REWRITE_TAC[VECTOR_ARITH | |
`((&1 - u) % c + u % a) - b = | |
(&1 - u) % (c - b) + u % (a - b)`] THEN | |
ASM_REWRITE_TAC[DOT_RADD; DOT_RMUL] THEN MATCH_MP_TAC(REAL_ARITH | |
`(&1 - t) * a < (&1 - t) * m /\ t * b <= t * m | |
==> ~((&1 - s) * m + s * m = (&1 - t) * a + t * b)`) THEN | |
ASM_SIMP_TAC[REAL_LT_LMUL; REAL_SUB_LT] THEN | |
MATCH_MP_TAC REAL_LE_LMUL THEN | |
CONJ_TAC THENL [ASM_REAL_ARITH_TAC; FIRST_X_ASSUM MATCH_MP_TAC] THEN | |
SIMP_TAC[IN_INTER; HULL_INC; IN_INSERT] THEN | |
MATCH_MP_TAC(REWRITE_RULE[SUBSET] | |
VERTICES_IN_PATH_IMAGE_POLYGONAL_PATH) THEN | |
REWRITE_TAC[set_of_list; IN_INSERT]]; | |
ALL_TAC] THEN | |
ASM_CASES_TAC `mx IN interior(convex hull {a:real^2,b,c})` THENL | |
[UNDISCH_TAC `mx IN interior(convex hull {a:real^2,b,c})` THEN | |
REWRITE_TAC[IN_INTERIOR_CBALL; SUBSET; IN_CBALL] THEN | |
DISCH_THEN(X_CHOOSE_THEN `ee:real` STRIP_ASSUME_TAC) THEN | |
REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; IN_INTER] THEN | |
ONCE_REWRITE_TAC[SEGMENT_SYM] THEN ASM_REWRITE_TAC[IN_SEGMENT] THEN | |
REWRITE_TAC[MESON[] | |
`(?x. (?u. P u /\ Q u /\ x = f u) /\ R x) <=> | |
(?u. P u /\ Q u /\ R(f u))`] THEN | |
EXISTS_TAC `min (&1 / &2) (ee / norm(u - mx:real^2))` THEN | |
REPEAT CONJ_TAC THENL | |
[MATCH_MP_TAC(REAL_ARITH `&0 < x ==> &0 < min (&1 / &2) x`) THEN | |
ASM_SIMP_TAC[REAL_LT_DIV; NORM_POS_LT; VECTOR_SUB_EQ]; | |
REAL_ARITH_TAC; | |
FIRST_X_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[dist; VECTOR_ARITH | |
`a - ((&1 - u) % a + u % b):real^N = u % (a - b)`] THEN | |
ASM_SIMP_TAC[NORM_MUL; GSYM REAL_LE_RDIV_EQ; NORM_POS_LT; | |
VECTOR_SUB_EQ] THEN | |
REWRITE_TAC[NORM_SUB] THEN MATCH_MP_TAC(REAL_ARITH | |
`&0 < x ==> abs(min (&1 / &2) x) <= x`) THEN | |
ASM_SIMP_TAC[REAL_LT_DIV; NORM_POS_LT; VECTOR_SUB_EQ]]; | |
ALL_TAC] THEN | |
MP_TAC(ISPEC `{a:real^2,b,c}` AFFINE_INDEPENDENT_SPAN_EQ) THEN | |
ANTS_TAC THENL | |
[ASM_REWRITE_TAC[] THEN | |
SIMP_TAC[CARD_CLAUSES; FINITE_INSERT; FINITE_EMPTY] THEN | |
ASM_REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY; DIMINDEX_2] THEN | |
CONV_TAC NUM_REDUCE_CONV; | |
ALL_TAC] THEN | |
GEN_REWRITE_TAC LAND_CONV [EXTENSION] THEN | |
REWRITE_TAC[AFFINE_HULL_3; IN_UNIV] THEN | |
DISCH_THEN(MP_TAC o SPEC `u:real^2`) THEN | |
REWRITE_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN | |
MAP_EVERY X_GEN_TAC [`r:real`; `s:real`; `t:real`] THEN STRIP_TAC THEN | |
SUBGOAL_THEN `mx IN convex hull {a:real^2,b,c}` MP_TAC THENL | |
[ASM SET_TAC[]; ALL_TAC] THEN | |
ONCE_REWRITE_TAC[SEGMENT_SYM] THEN REWRITE_TAC[CONVEX_HULL_3] THEN | |
REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; IN_ELIM_THM] THEN | |
ONCE_REWRITE_TAC[INTER_COMM] THEN | |
REWRITE_TAC[IN_INTER; EXISTS_IN_GSPEC] THEN | |
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN | |
MAP_EVERY X_GEN_TAC [`rx:real`; `sx:real`; `tx:real`] THEN | |
ASM_CASES_TAC `rx = &0` THENL | |
[ASM_REWRITE_TAC[REAL_LE_REFL; REAL_ADD_LID] THEN | |
REWRITE_TAC[VECTOR_MUL_LZERO; VECTOR_ADD_LID] THEN STRIP_TAC THEN | |
UNDISCH_TAC | |
`segment[b:real^2,c] INTER path_image(polygonal_path(CONS c p)) | |
SUBSET {c}` THEN | |
REWRITE_TAC[SUBSET] THEN | |
DISCH_THEN(MP_TAC o SPEC `mx:real^2`) THEN | |
MATCH_MP_TAC(TAUT `~q /\ p ==> (p ==> q) ==> r`) THEN | |
REWRITE_TAC[IN_SING] THEN CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN | |
REWRITE_TAC[IN_INTER; SEGMENT_CONVEX_HULL] THEN | |
CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN | |
REWRITE_TAC[CONVEX_HULL_2; IN_ELIM_THM] THEN ASM_MESON_TAC[]; | |
ALL_TAC] THEN | |
ASM_CASES_TAC `rx = &1` THENL | |
[ASM_REWRITE_TAC[] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
SUBGOAL_THEN `sx = &0 /\ tx = &0` ASSUME_TAC THENL | |
[ASM_REAL_ARITH_TAC; ASM_REWRITE_TAC[]] THEN | |
ASM_REWRITE_TAC[VECTOR_MUL_LZERO; VECTOR_MUL_LID; VECTOR_ADD_RID]; | |
ALL_TAC] THEN | |
ASM_CASES_TAC `tx = &0` THENL | |
[ASM_REWRITE_TAC[REAL_LE_REFL; REAL_ADD_RID] THEN | |
REWRITE_TAC[VECTOR_MUL_LZERO; VECTOR_ADD_RID] THEN STRIP_TAC THEN | |
UNDISCH_TAC | |
`segment[a:real^2,b] INTER path_image(polygonal_path(CONS c p)) | |
SUBSET {a,b}` THEN | |
REWRITE_TAC[SUBSET] THEN | |
DISCH_THEN(MP_TAC o SPEC `mx:real^2`) THEN | |
MATCH_MP_TAC(TAUT `~q /\ p ==> (p ==> q) ==> r`) THEN CONJ_TAC THENL | |
[REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY; DE_MORGAN_THM] THEN | |
CONJ_TAC THENL [ASM_MESON_TAC[]; DISCH_THEN SUBST_ALL_TAC] THEN | |
UNDISCH_TAC `n dot (b - b:real^2) = m` THEN | |
REWRITE_TAC[VECTOR_SUB_REFL; DOT_RZERO] THEN | |
ASM_REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
REWRITE_TAC[IN_INTER; SEGMENT_CONVEX_HULL] THEN | |
CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN | |
REWRITE_TAC[CONVEX_HULL_2; IN_ELIM_THM] THEN ASM_MESON_TAC[]; | |
ALL_TAC] THEN | |
ASM_CASES_TAC `tx = &1` THENL | |
[ASM_REWRITE_TAC[] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
SUBGOAL_THEN `sx = &0 /\ rx = &0` ASSUME_TAC THENL | |
[ASM_REAL_ARITH_TAC; ASM_REWRITE_TAC[]] THEN | |
ASM_REWRITE_TAC[VECTOR_MUL_LZERO; VECTOR_MUL_LID; VECTOR_ADD_LID]; | |
ALL_TAC] THEN | |
ASM_CASES_TAC `sx = &1` THENL | |
[ASM_REWRITE_TAC[] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
SUBGOAL_THEN `rx = &0 /\ tx = &0` ASSUME_TAC THENL | |
[ASM_REAL_ARITH_TAC; ASM_REWRITE_TAC[]] THEN | |
ASM_REWRITE_TAC[VECTOR_MUL_LZERO; VECTOR_MUL_LID; VECTOR_ADD_LID; | |
VECTOR_ADD_RID] THEN | |
DISCH_THEN SUBST_ALL_TAC THEN | |
UNDISCH_TAC `n dot (b - b:real^2) = m` THEN | |
REWRITE_TAC[VECTOR_SUB_REFL; DOT_RZERO] THEN | |
ASM_REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
ASM_CASES_TAC `sx = &0` THENL | |
[ALL_TAC; | |
STRIP_TAC THEN | |
UNDISCH_TAC `~(mx IN interior(convex hull {a:real^2, b, c}))` THEN | |
MATCH_MP_TAC(TAUT `p ==> ~p ==> q`) THEN | |
ASM_SIMP_TAC[INTERIOR_CONVEX_HULL_3] THEN | |
REWRITE_TAC[IN_ELIM_THM] THEN | |
MAP_EVERY EXISTS_TAC [`rx:real`; `sx:real`; `tx:real`] THEN | |
REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC] THEN | |
UNDISCH_THEN `sx = &0` SUBST_ALL_TAC THEN | |
REWRITE_TAC[VECTOR_MUL_LZERO; VECTOR_ADD_LID; REAL_LE_REFL] THEN | |
REWRITE_TAC[REAL_ADD_LID] THEN STRIP_TAC THEN | |
SUBGOAL_THEN | |
`&0 < rx /\ rx < &1 /\ &0 < tx /\ tx < &1` | |
STRIP_ASSUME_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN | |
ASM_REWRITE_TAC[IN_SEGMENT] THEN | |
SUBGOAL_THEN | |
`?q. q * (rx - r) <= rx /\ | |
q * (tx - t) <= tx /\ | |
&0 < q /\ q < &1` | |
STRIP_ASSUME_TAC THENL | |
[EXISTS_TAC | |
`min (&1 / &2) | |
(min (if rx:real = r then &1 / &2 else rx / abs(rx - r)) | |
(if tx:real = t then &1 / &2 else tx / abs(tx - t)))` THEN | |
REWRITE_TAC[REAL_LT_MIN; REAL_MIN_LT] THEN | |
CONV_TAC REAL_RAT_REDUCE_CONV THEN REPEAT CONJ_TAC THENL | |
[ASM_CASES_TAC `r:real = rx` THENL | |
[ASM_REWRITE_TAC[REAL_SUB_REFL; REAL_MUL_RZERO]; ALL_TAC] THEN | |
MATCH_MP_TAC(REAL_ARITH `abs x <= a ==> x <= a`) THEN | |
REWRITE_TAC[REAL_ABS_MUL] THEN | |
ASM_SIMP_TAC[GSYM REAL_LE_RDIV_EQ; REAL_ARITH | |
`~(x = y) ==> &0 < abs(x - y)`] THEN | |
MATCH_MP_TAC(REAL_ARITH | |
`&0 <= a /\ &0 <= x /\ &0 <= b ==> abs(min a (min x b)) <= x`) THEN | |
CONV_TAC REAL_RAT_REDUCE_CONV THEN | |
COND_CASES_TAC THEN ASM_SIMP_TAC[REAL_LE_DIV; REAL_ABS_POS] THEN | |
CONV_TAC REAL_RAT_REDUCE_CONV; | |
ASM_CASES_TAC `t:real = tx` THENL | |
[ASM_REWRITE_TAC[REAL_SUB_REFL; REAL_MUL_RZERO]; ALL_TAC] THEN | |
MATCH_MP_TAC(REAL_ARITH `abs x <= a ==> x <= a`) THEN | |
REWRITE_TAC[REAL_ABS_MUL] THEN | |
ASM_SIMP_TAC[GSYM REAL_LE_RDIV_EQ; REAL_ARITH | |
`~(x = y) ==> &0 < abs(x - y)`] THEN | |
MATCH_MP_TAC(REAL_ARITH | |
`&0 <= a /\ &0 <= x /\ &0 <= b ==> abs(min a (min b x)) <= x`) THEN | |
CONV_TAC REAL_RAT_REDUCE_CONV THEN | |
COND_CASES_TAC THEN ASM_SIMP_TAC[REAL_LE_DIV; REAL_ABS_POS] THEN | |
CONV_TAC REAL_RAT_REDUCE_CONV; | |
COND_CASES_TAC THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN | |
MATCH_MP_TAC REAL_LT_DIV THEN ASM_REAL_ARITH_TAC; | |
COND_CASES_TAC THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN | |
MATCH_MP_TAC REAL_LT_DIV THEN ASM_REAL_ARITH_TAC]; | |
ALL_TAC] THEN | |
MAP_EVERY EXISTS_TAC | |
[`(&1 - q) * rx + q * r`; | |
`q * s:real`; | |
`(&1 - q) * tx + q * t:real`] THEN | |
REWRITE_TAC[CONJ_ASSOC] THEN CONJ_TAC THENL | |
[ALL_TAC; | |
EXISTS_TAC `q:real` THEN ASM_REWRITE_TAC[] THEN VECTOR_ARITH_TAC] THEN | |
REWRITE_TAC[REAL_ARITH | |
`((&1 - q) * rx + q * r) + | |
q * s + | |
((&1 - q) * tx + q * t) = | |
(rx + tx) + q * ((r + s + t) - (rx + tx))`] THEN | |
ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [ALL_TAC; REAL_ARITH_TAC] THEN | |
REWRITE_TAC[REAL_ARITH | |
`&0 <= (&1 - q) * r + q * s <=> q * (r - s) <= r`] THEN | |
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LE_MUL THEN | |
ASM_SIMP_TAC[REAL_LT_IMP_LE] THEN | |
UNDISCH_TAC `n dot (u - b:real^2) < n dot (c - b)` THEN | |
ASM_REWRITE_TAC[VECTOR_ARITH | |
`(r % a + s % b + t % c) - b = | |
r % (a - b) + t % (c - b) + ((r + s + t) - &1) % b`] THEN | |
REWRITE_TAC[REAL_SUB_REFL; VECTOR_MUL_LZERO; VECTOR_ADD_RID] THEN | |
ASM_REWRITE_TAC[DOT_RADD; DOT_RMUL] THEN | |
REWRITE_TAC[REAL_ARITH | |
`r * x + s * x < x <=> &0 < (&1 - r - s) * x`] THEN | |
ASM_SIMP_TAC[REAL_LT_MUL_EQ] THEN ASM_REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `n dot (u - b) = m /\ n dot (c - b) = m` MP_TAC THENL | |
[MATCH_MP_TAC(REAL_ARITH | |
`!mx. n dot (u - b) <= m /\ | |
~(n dot (u - b) < n dot (c - b)) /\ | |
n dot (mx - b) = m /\ | |
n dot (mx - b) <= n dot (c - b) | |
==> n dot (u - b) = m /\ n dot (c - b) = m`) THEN | |
EXISTS_TAC `mx:real^2` THEN ASM_REWRITE_TAC[] THEN | |
FIRST_X_ASSUM MATCH_MP_TAC THEN | |
SIMP_TAC[IN_INTER; HULL_INC; IN_INSERT] THEN | |
MATCH_MP_TAC(REWRITE_RULE[SUBSET] | |
VERTICES_IN_PATH_IMAGE_POLYGONAL_PATH) THEN | |
REWRITE_TAC[set_of_list; IN_INSERT]; | |
ALL_TAC] THEN | |
DISCH_THEN(CONJUNCTS_THEN | |
(fun th -> SUBST_ALL_TAC th THEN ASSUME_TAC th)) THEN | |
MAP_EVERY (C UNDISCH_THEN (K ALL_TAC)) [`m <= m`; `~(m < m)`] THEN | |
SUBGOAL_THEN | |
`collinear {a:real^2,mx,c} /\ collinear {a,u,c}` | |
STRIP_ASSUME_TAC THENL | |
[SUBGOAL_THEN | |
`!y:real^2. n dot (y - b) = m ==> collinear {a,y,c}` | |
(fun th -> CONJ_TAC THEN MATCH_MP_TAC th THEN ASM_REWRITE_TAC[]) THEN | |
X_GEN_TAC `y:real^2` THEN DISCH_TAC THEN | |
ONCE_REWRITE_TAC[SET_RULE `{a,b,c} = {a,c,b}`] THEN | |
ONCE_REWRITE_TAC[COLLINEAR_3] THEN | |
MATCH_MP_TAC ORTHOGONAL_TO_ORTHOGONAL_2D THEN | |
EXISTS_TAC `n:real^2` THEN ASM_REWRITE_TAC[] THEN | |
ONCE_REWRITE_TAC[GSYM ORTHOGONAL_RNEG] THEN | |
ASM_REWRITE_TAC[VECTOR_NEG_SUB] THEN | |
MAP_EVERY UNDISCH_TAC | |
[`n dot (y - b:real^2) = m`; `n dot (c - b:real^2) = m`] THEN | |
REWRITE_TAC[orthogonal; DOT_RSUB] THEN REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
ASM_CASES_TAC `mx:real^2 = u` THENL | |
[UNDISCH_THEN `mx:real^2 = u` SUBST_ALL_TAC THEN | |
UNDISCH_TAC `MEM (u:real^2) (CONS c p)` THEN | |
ASM_REWRITE_TAC[MEM] THEN DISCH_TAC THEN EXISTS_TAC `u:real^2` THEN | |
ASM_REWRITE_TAC[IN_DIFF; IN_INSERT; NOT_IN_EMPTY] THEN | |
ASM SET_TAC[]; | |
ALL_TAC] THEN | |
ASM_CASES_TAC `mx:real^2 = v` THENL | |
[UNDISCH_THEN `mx:real^2 = v` SUBST_ALL_TAC THEN | |
UNDISCH_TAC `MEM (v:real^2) (CONS c p)` THEN | |
ASM_REWRITE_TAC[MEM] THEN DISCH_TAC THEN EXISTS_TAC `v:real^2` THEN | |
ASM_REWRITE_TAC[IN_DIFF; IN_INSERT; NOT_IN_EMPTY] THEN | |
ASM SET_TAC[]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `collinear {a:real^2,c,mx,u}` ASSUME_TAC THENL | |
[ASM_SIMP_TAC[COLLINEAR_4_3] THEN | |
ONCE_REWRITE_TAC[SET_RULE `{a,c,b} = {a,b,c}`] THEN ASM_REWRITE_TAC[]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `collinear {a:real^2,u,v}` ASSUME_TAC THENL | |
[MATCH_MP_TAC COLLINEAR_3_TRANS THEN EXISTS_TAC `mx:real^2` THEN | |
ASM_REWRITE_TAC[] THEN CONJ_TAC THENL | |
[MATCH_MP_TAC COLLINEAR_SUBSET THEN | |
EXISTS_TAC `{a:real^2,c,mx,u}` THEN ASM_REWRITE_TAC[] THEN SET_TAC[]; | |
MATCH_MP_TAC BETWEEN_IMP_COLLINEAR THEN | |
ASM_REWRITE_TAC[BETWEEN_IN_SEGMENT]]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `collinear {c:real^2,u,v}` ASSUME_TAC THENL | |
[MATCH_MP_TAC COLLINEAR_3_TRANS THEN EXISTS_TAC `mx:real^2` THEN | |
ASM_REWRITE_TAC[] THEN CONJ_TAC THENL | |
[MATCH_MP_TAC COLLINEAR_SUBSET THEN | |
EXISTS_TAC `{a:real^2,c,mx,u}` THEN ASM_REWRITE_TAC[] THEN SET_TAC[]; | |
MATCH_MP_TAC BETWEEN_IMP_COLLINEAR THEN | |
ASM_REWRITE_TAC[BETWEEN_IN_SEGMENT]]; | |
ALL_TAC] THEN | |
ASM_CASES_TAC `u:real^2 = v` THENL | |
[UNDISCH_THEN `u:real^2 = v` SUBST_ALL_TAC THEN | |
ASM_MESON_TAC[SEGMENT_REFL; IN_SING]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `collinear {a:real^2,v,c}` ASSUME_TAC THENL | |
[MATCH_MP_TAC COLLINEAR_3_TRANS THEN EXISTS_TAC `u:real^2` THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[INSERT_AC]) THEN | |
ASM_REWRITE_TAC[INSERT_AC]; | |
ALL_TAC] THEN | |
MP_TAC(ISPECL [`a:real^2`; `c:real^2`; `u:real^2`; `v:real^2`; | |
`mx:real^2`] between_lemma) THEN | |
ASM_REWRITE_TAC[] THEN ANTS_TAC THENL | |
[CONJ_TAC THENL | |
[W(MP_TAC o PART_MATCH (lhs o rand) COLLINEAR_TRIPLES o snd) THEN | |
ASM_REWRITE_TAC[FORALL_IN_INSERT; NOT_IN_EMPTY] THEN | |
DISCH_THEN SUBST1_TAC THEN | |
ONCE_REWRITE_TAC[SET_RULE `{a,b,c} = {a,c,b}`] THEN | |
ASM_REWRITE_TAC[]; | |
ASM_REWRITE_TAC[open_segment; IN_DIFF; IN_INSERT; NOT_IN_EMPTY] THEN | |
MP_TAC(ISPECL [`{a:real^2,b,c}`; `{a:real^2,c}`] | |
AFFINE_INDEPENDENT_CONVEX_AFFINE_HULL) THEN | |
ASM_REWRITE_TAC[SEGMENT_CONVEX_HULL] THEN | |
ANTS_TAC THENL [SET_TAC[]; DISCH_THEN SUBST1_TAC] THEN | |
REWRITE_TAC[IN_INTER] THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN | |
ASM_SIMP_TAC[GSYM COLLINEAR_3_AFFINE_HULL] THEN | |
MATCH_MP_TAC COLLINEAR_SUBSET THEN | |
EXISTS_TAC `{a:real^2,c,mx,u}` THEN | |
ASM_REWRITE_TAC[] THEN SET_TAC[]]; | |
ALL_TAC] THEN | |
STRIP_TAC THENL | |
[EXISTS_TAC `u:real^2` THEN | |
MP_TAC(ASSUME `u IN segment(a:real^2,c)`) THEN | |
REWRITE_TAC[open_segment; IN_DIFF; IN_INSERT; NOT_IN_EMPTY] THEN | |
REWRITE_TAC[DE_MORGAN_THM] THEN STRIP_TAC THEN | |
UNDISCH_TAC `MEM (u:real^2) (CONS c p)` THEN | |
ASM_REWRITE_TAC[MEM] THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN | |
UNDISCH_TAC `(u:real^2) IN segment[a,c]` THEN | |
REWRITE_TAC[SEGMENT_CONVEX_HULL] THEN | |
SPEC_TAC(`u:real^2`,`u:real^2`) THEN REWRITE_TAC[GSYM SUBSET] THEN | |
MATCH_MP_TAC HULL_MONO THEN SET_TAC[]; | |
EXISTS_TAC `v:real^2` THEN | |
MP_TAC(ASSUME `v IN segment(a:real^2,c)`) THEN | |
REWRITE_TAC[open_segment; IN_DIFF; IN_INSERT; NOT_IN_EMPTY] THEN | |
REWRITE_TAC[DE_MORGAN_THM] THEN STRIP_TAC THEN | |
UNDISCH_TAC `MEM (v:real^2) (CONS c p)` THEN | |
ASM_REWRITE_TAC[MEM] THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN | |
CONJ_TAC THENL | |
[UNDISCH_TAC `(v:real^2) IN segment[a,c]` THEN | |
REWRITE_TAC[SEGMENT_CONVEX_HULL] THEN | |
SPEC_TAC(`v:real^2`,`v:real^2`) THEN REWRITE_TAC[GSYM SUBSET] THEN | |
MATCH_MP_TAC HULL_MONO THEN SET_TAC[]; | |
UNDISCH_TAC `collinear {a:real^2, v, c}` THEN | |
ONCE_REWRITE_TAC[SET_RULE `{a,v,c} = {a,c,v}`] THEN | |
ASM_SIMP_TAC[COLLINEAR_3_AFFINE_HULL] THEN | |
REWRITE_TAC[AFFINE_HULL_2; IN_ELIM_THM] THEN | |
STRIP_TAC THEN ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[VECTOR_ARITH | |
`(u % a + v % c) - b:real^N = | |
u % (a - b) + v % (c - b) + ((u + v) - &1) % b`] THEN | |
ASM_REWRITE_TAC[DOT_RADD; DOT_RMUL; REAL_SUB_REFL] THEN | |
ASM_REWRITE_TAC[REAL_MUL_LZERO; REAL_ADD_RID; GSYM REAL_ADD_RDISTRIB; | |
REAL_MUL_LID]]; | |
UNDISCH_TAC `segment[a:real^2,c] SUBSET segment[u,v]` THEN | |
ASM_REWRITE_TAC[SUBSET_SEGMENT]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Hence the final Pick theorem by induction on number of polygon segments. *) | |
(* ------------------------------------------------------------------------- *) | |
let PICK = prove | |
(`!p:(real^2)list. | |
(!x. MEM x p ==> integral_vector x) /\ | |
simple_path (polygonal_path p) /\ | |
pathfinish (polygonal_path p) = pathstart (polygonal_path p) | |
==> measure(inside(path_image(polygonal_path p))) = | |
&(CARD {x | x IN inside(path_image(polygonal_path p)) /\ | |
integral_vector x}) + | |
&(CARD {x | x IN path_image(polygonal_path p) /\ | |
integral_vector x}) / &2 - &1`, | |
GEN_TAC THEN WF_INDUCT_TAC `LENGTH(p:(real^2)list)` THEN DISJ_CASES_TAC | |
(ARITH_RULE `LENGTH(p:(real^2)list) <= 4 \/ 5 <= LENGTH p`) THENL | |
[UNDISCH_TAC `LENGTH(p:(real^2)list) <= 4` THEN | |
POP_ASSUM(K ALL_TAC) THEN SPEC_TAC(`p:(real^2)list`,`p:(real^2)list`) THEN | |
MATCH_MP_TAC list_INDUCT THEN | |
REWRITE_TAC[polygonal_path; SIMPLE_PATH_LINEPATH_EQ] THEN | |
X_GEN_TAC `a:real^2` THEN MATCH_MP_TAC list_INDUCT THEN | |
REWRITE_TAC[polygonal_path; SIMPLE_PATH_LINEPATH_EQ] THEN | |
X_GEN_TAC `b:real^2` THEN MATCH_MP_TAC list_INDUCT THEN CONJ_TAC THENL | |
[REWRITE_TAC[polygonal_path; SIMPLE_PATH_LINEPATH_EQ; | |
PATHSTART_LINEPATH; PATHFINISH_LINEPATH] THEN | |
MESON_TAC[]; | |
ALL_TAC] THEN | |
X_GEN_TAC `c:real^2` THEN MATCH_MP_TAC list_INDUCT THEN CONJ_TAC THENL | |
[REPLICATE_TAC 4 (DISCH_THEN(K ALL_TAC)) THEN | |
REWRITE_TAC[polygonal_path] THEN | |
REWRITE_TAC[PATHSTART_JOIN; PATHFINISH_JOIN; PATHSTART_LINEPATH; | |
PATHFINISH_LINEPATH] THEN | |
ASM_CASES_TAC `c:real^2 = a` THEN ASM_REWRITE_TAC[] THEN | |
ASM_SIMP_TAC[SIMPLE_PATH_JOIN_LOOP_EQ; PATHSTART_LINEPATH; | |
PATHFINISH_LINEPATH] THEN | |
REWRITE_TAC[ARC_LINEPATH_EQ] THEN | |
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN | |
REWRITE_TAC[PATH_IMAGE_LINEPATH] THEN | |
SUBST1_TAC(ISPECL [`b:real^2`; `a:real^2`] (CONJUNCT1 SEGMENT_SYM)) THEN | |
REWRITE_TAC[INTER_IDEMPOT] THEN DISCH_THEN(MP_TAC o MATCH_MP | |
(REWRITE_RULE[IMP_CONJ_ALT] FINITE_SUBSET)) THEN | |
ASM_REWRITE_TAC[FINITE_SEGMENT; FINITE_INSERT; FINITE_EMPTY]; | |
ALL_TAC] THEN | |
X_GEN_TAC `d:real^2` THEN MATCH_MP_TAC list_INDUCT THEN CONJ_TAC THENL | |
[REPLICATE_TAC 5 (DISCH_THEN(K ALL_TAC)); | |
REWRITE_TAC[LENGTH; ARITH_RULE `~(SUC(SUC(SUC(SUC(SUC n)))) <= 4)`]] THEN | |
REWRITE_TAC[polygonal_path; PATHSTART_JOIN; PATHFINISH_JOIN] THEN | |
REWRITE_TAC[GSYM IN_SET_OF_LIST; set_of_list] THEN | |
REWRITE_TAC[FORALL_IN_INSERT; NOT_IN_EMPTY] THEN | |
REWRITE_TAC[PATHSTART_LINEPATH; PATHFINISH_LINEPATH] THEN | |
ASM_CASES_TAC `d:real^2 = a` THEN ASM_REWRITE_TAC[] THEN | |
FIRST_X_ASSUM SUBST1_TAC THEN | |
DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC) THEN | |
SIMP_TAC[SIMPLE_PATH_JOIN_LOOP_EQ; PATH_IMAGE_JOIN; PATHSTART_LINEPATH; | |
ARC_JOIN_EQ; PATHSTART_JOIN; PATHFINISH_JOIN; PATHFINISH_LINEPATH] THEN | |
REWRITE_TAC[PATH_IMAGE_LINEPATH] THEN REWRITE_TAC[INSIDE_OF_TRIANGLE] THEN | |
REWRITE_TAC[GSYM FRONTIER_OF_TRIANGLE] THEN | |
SIMP_TAC[MEASURE_INTERIOR; NEGLIGIBLE_CONVEX_FRONTIER; | |
CONVEX_CONVEX_HULL; FINITE_IMP_BOUNDED_CONVEX_HULL; | |
FINITE_INSERT; FINITE_EMPTY] THEN | |
ASM_SIMP_TAC[PICK_TRIANGLE] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[ARC_LINEPATH_EQ] THEN | |
MATCH_MP_TAC(TAUT `~p ==> p ==> q`) THEN REWRITE_TAC[UNION_OVER_INTER] THEN | |
REWRITE_TAC[UNION_SUBSET] THEN STRIP_TAC THEN | |
SUBGOAL_THEN | |
`segment[b:real^2,c] INTER segment [c,a] = segment[b,c] \/ | |
segment[b,c] INTER segment [c,a] = segment[c,a] \/ | |
segment[a,b] INTER segment [b,c] = segment[b,c]` | |
(REPEAT_TCL DISJ_CASES_THEN SUBST_ALL_TAC) THENL | |
[REWRITE_TAC[SET_RULE `s INTER t = s <=> s SUBSET t`; | |
SET_RULE `s INTER t = t <=> t SUBSET s`] THEN | |
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [COLLINEAR_BETWEEN_CASES]) THEN | |
REWRITE_TAC[SUBSET_SEGMENT; BETWEEN_IN_SEGMENT; ENDS_IN_SEGMENT] THEN | |
REWRITE_TAC[SEGMENT_SYM; DISJ_ACI]; | |
UNDISCH_TAC `segment [b,c] SUBSET {c:real^2}`; | |
UNDISCH_TAC `segment [c,a] SUBSET {c:real^2}`; | |
UNDISCH_TAC `segment [b,c] SUBSET {a:real^2, b}`] THEN | |
DISCH_THEN(MP_TAC o MATCH_MP | |
(REWRITE_RULE[IMP_CONJ_ALT] FINITE_SUBSET)) THEN | |
ASM_REWRITE_TAC[FINITE_SEGMENT; FINITE_INSERT; FINITE_EMPTY]; | |
STRIP_TAC] THEN | |
MP_TAC(ISPEC `p:(real^2)list` POLYGON_CHOP_IN_TWO) THEN | |
ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN | |
MAP_EVERY X_GEN_TAC [`a:real^2`;`b:real^2`] THEN STRIP_TAC THEN | |
SUBGOAL_THEN | |
`?p':(real^2)list. | |
HD p' = a /\ | |
LENGTH p' = LENGTH p /\ | |
path_image(polygonal_path p') = path_image(polygonal_path p) /\ | |
set_of_list p' = set_of_list p /\ | |
simple_path(polygonal_path p') /\ | |
pathfinish(polygonal_path p') = pathstart(polygonal_path p')` | |
STRIP_ASSUME_TAC THENL | |
[MATCH_MP_TAC ROTATE_LIST_TO_FRONT_0 THEN | |
EXISTS_TAC `p:(real^2)list` THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL | |
[ASM_SIMP_TAC[ARITH_RULE `5 <= p ==> 3 <= p`] THEN | |
REWRITE_TAC[PATHSTART_POLYGONAL_PATH; PATHFINISH_POLYGONAL_PATH] THEN | |
GEN_TAC THEN COND_CASES_TAC THEN ASM_SIMP_TAC[LENGTH] THEN | |
ASM_ARITH_TAC; | |
ALL_TAC] THEN | |
MAP_EVERY UNDISCH_TAC | |
[`pathfinish(polygonal_path(p:(real^2)list)) = | |
pathstart(polygonal_path p)`; | |
`5 <= LENGTH(p:(real^2)list)`] THEN | |
ASM_CASES_TAC `p:(real^2)list = []` THEN | |
ASM_REWRITE_TAC[LENGTH; ARITH] THEN | |
ASM_REWRITE_TAC[PATHSTART_POLYGONAL_PATH; PATHFINISH_POLYGONAL_PATH] THEN | |
DISCH_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN | |
X_GEN_TAC `l:(real^2)list` THEN | |
REWRITE_TAC[APPEND_EQ_NIL; NOT_CONS_NIL] THEN | |
ASM_CASES_TAC `l:(real^2)list = []` THENL | |
[ASM_MESON_TAC[LENGTH_EQ_NIL]; ALL_TAC] THEN | |
ASM_REWRITE_TAC[] THEN DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN | |
ASM_REWRITE_TAC[] THEN | |
SUBGOAL_THEN `~(TL l:(real^2)list = [])` ASSUME_TAC THENL | |
[DISCH_THEN(MP_TAC o AP_TERM `LENGTH:(real^2)list->num`) THEN | |
ASM_SIMP_TAC[LENGTH; LENGTH_TL] THEN ASM_ARITH_TAC; | |
ALL_TAC] THEN | |
ASM_SIMP_TAC[LAST_APPEND; LENGTH_APPEND; LENGTH_TL; NOT_CONS_NIL] THEN | |
ASM_REWRITE_TAC[LAST; HD_APPEND; LENGTH] THEN REPEAT CONJ_TAC THENL | |
[ASM_ARITH_TAC; | |
MATCH_MP_TAC PATH_IMAGE_POLYGONAL_PATH_ROTATE THEN | |
ASM_REWRITE_TAC[] THEN ASM_ARITH_TAC; | |
MAP_EVERY UNDISCH_TAC | |
[`HD(l:(real^2)list) = LAST l`; `5 <= LENGTH(p:(real^2)list)`; | |
`~(l:(real^2)list = [])`] THEN | |
ASM_REWRITE_TAC[] THEN | |
SPEC_TAC(`l:(real^2)list`,`l:(real^2)list`) THEN | |
LIST_INDUCT_TAC THEN REWRITE_TAC[HD; TL; APPEND] THEN | |
REWRITE_TAC[SET_OF_LIST_APPEND; set_of_list] THEN | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC(SET_RULE | |
`a IN s /\ b IN s ==> s UNION {a} = b INSERT s`) THEN | |
ASM_REWRITE_TAC[LAST] THEN ONCE_ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[LAST] THEN UNDISCH_TAC `5 <= LENGTH(CONS (h:real^2) t)` THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[LENGTH; ARITH] THEN | |
REWRITE_TAC[IN_SET_OF_LIST; MEM_EXISTS_EL; LENGTH] THEN | |
DISCH_TAC THEN CONJ_TAC THENL | |
[EXISTS_TAC `0` THEN REWRITE_TAC[EL] THEN ASM_ARITH_TAC; | |
EXISTS_TAC `LENGTH(t:(real^2)list) - 1` THEN | |
ASM_SIMP_TAC[LAST_EL] THEN ASM_ARITH_TAC]; | |
MP_TAC(ISPEC `l:(real^2)list` SIMPLE_PATH_POLYGONAL_PATH_ROTATE) THEN | |
ASM_REWRITE_TAC[] THEN DISCH_THEN MATCH_MP_TAC THEN ASM_ARITH_TAC]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `!x:real^2. MEM x p <=> MEM x p'` | |
(fun th -> REWRITE_TAC[th] THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[th])) | |
THENL [ASM_REWRITE_TAC[GSYM IN_SET_OF_LIST]; ALL_TAC] THEN | |
MAP_EVERY (C UNDISCH_THEN (SUBST_ALL_TAC o SYM)) | |
[`set_of_list(p':(real^2)list) = set_of_list p`; | |
`path_image(polygonal_path(p':(real^2)list)) = | |
path_image (polygonal_path p)`; | |
`LENGTH(p':(real^2)list) = LENGTH(p:(real^2)list)`] THEN | |
MAP_EVERY (C UNDISCH_THEN (K ALL_TAC)) | |
[`simple_path(polygonal_path(p:(real^2)list))`; | |
`pathfinish(polygonal_path(p:(real^2)list)) = | |
pathstart(polygonal_path p)`] THEN | |
POP_ASSUM_LIST(MP_TAC o end_itlist CONJ o rev) THEN | |
SPEC_TAC(`p':(real^2)list`,`p:(real^2)list`) THEN | |
GEN_TAC THEN STRIP_TAC THEN | |
SUBGOAL_THEN | |
`?q r. 2 <= LENGTH q /\ 2 <= LENGTH r /\ | |
LENGTH q + LENGTH r = LENGTH p + 1 /\ | |
set_of_list q UNION set_of_list r = set_of_list p /\ | |
pathstart(polygonal_path q) = pathstart(polygonal_path p) /\ | |
pathfinish(polygonal_path q) = (b:real^2) /\ | |
pathstart(polygonal_path r) = b /\ | |
pathfinish(polygonal_path r) = pathfinish(polygonal_path p) /\ | |
simple_path(polygonal_path q ++ polygonal_path r) /\ | |
path_image(polygonal_path q ++ polygonal_path r) = | |
path_image(polygonal_path p)` | |
STRIP_ASSUME_TAC THENL | |
[SUBGOAL_THEN | |
`simple_path(polygonal_path p) /\ | |
2 <= LENGTH p /\ MEM (b:real^2) p /\ | |
~(pathstart(polygonal_path p) = b) /\ | |
~(pathfinish(polygonal_path p) = b)` | |
MP_TAC THENL | |
[ASM_SIMP_TAC[ARITH_RULE `5 <= p ==> 2 <= p`] THEN | |
ASM_REWRITE_TAC[PATHSTART_POLYGONAL_PATH; CONJ_ASSOC] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[MEM]; | |
POP_ASSUM_LIST(K ALL_TAC)] THEN | |
WF_INDUCT_TAC `LENGTH(p:(real^2)list)` THEN POP_ASSUM MP_TAC THEN | |
SPEC_TAC(`p:(real^2)list`,`p:(real^2)list`) THEN | |
MATCH_MP_TAC list_INDUCT THEN REWRITE_TAC[LENGTH; ARITH] THEN | |
X_GEN_TAC `a:real^2` THEN | |
MATCH_MP_TAC list_INDUCT THEN REWRITE_TAC[LENGTH; ARITH] THEN | |
X_GEN_TAC `x:real^2` THEN | |
MATCH_MP_TAC list_INDUCT THEN CONJ_TAC THENL | |
[REWRITE_TAC[polygonal_path; PATHSTART_LINEPATH; PATHFINISH_LINEPATH; | |
MEM] THEN | |
MESON_TAC[]; | |
REWRITE_TAC[LENGTH; ARITH]] THEN | |
MAP_EVERY X_GEN_TAC [`y:real^2`; `l:(real^2)list`] THEN | |
REPLICATE_TAC 3 (DISCH_THEN(K ALL_TAC)) THEN DISCH_TAC THEN | |
REWRITE_TAC[polygonal_path] THEN | |
REWRITE_TAC[PATHSTART_JOIN; PATHFINISH_JOIN] THEN | |
REWRITE_TAC[PATHSTART_LINEPATH; PATHFINISH_LINEPATH] THEN | |
ONCE_REWRITE_TAC[MEM] THEN | |
ASM_CASES_TAC `a:real^2 = b` THEN ASM_REWRITE_TAC[] THEN | |
ONCE_REWRITE_TAC[MEM] THEN | |
ASM_CASES_TAC `x:real^2 = b` THEN ASM_REWRITE_TAC[] THENL | |
[FIRST_X_ASSUM(K ALL_TAC o check is_forall o concl) THEN STRIP_TAC THEN | |
EXISTS_TAC `[a:real^2;b]` THEN | |
EXISTS_TAC `CONS (b:real^2) (CONS y l)` THEN | |
ASM_REWRITE_TAC[polygonal_path; LENGTH] THEN | |
REWRITE_TAC[PATHSTART_POLYGONAL_PATH; NOT_CONS_NIL; HD] THEN | |
REWRITE_TAC[PATHSTART_LINEPATH; PATHFINISH_LINEPATH] THEN | |
REPEAT(CONJ_TAC THENL [ARITH_TAC; ALL_TAC]) THEN | |
REWRITE_TAC[set_of_list] THEN SET_TAC[]; | |
ALL_TAC] THEN | |
STRIP_TAC THEN | |
FIRST_X_ASSUM(MP_TAC o SPEC `CONS (x:real^2) (CONS y l)`) THEN | |
REWRITE_TAC[LENGTH; ARITH_RULE `n < SUC n`] THEN ANTS_TAC THENL | |
[REWRITE_TAC[ARITH_RULE `2 <= SUC(SUC n)`] THEN | |
ONCE_REWRITE_TAC[MEM] THEN ASM_REWRITE_TAC[] THEN | |
FIRST_ASSUM(MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] | |
SIMPLE_PATH_JOIN_IMP)) THEN | |
ASM_REWRITE_TAC[PATHSTART_POLYGONAL_PATH; NOT_CONS_NIL; HD] THEN | |
SIMP_TAC[PATHFINISH_LINEPATH; ARC_IMP_SIMPLE_PATH]; | |
ALL_TAC] THEN | |
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN | |
MAP_EVERY X_GEN_TAC [`q:(real^2)list`; `r:(real^2)list`] THEN | |
STRIP_TAC THEN MAP_EVERY EXISTS_TAC | |
[`CONS (a:real^2) q`; `r:(real^2)list`] THEN | |
ASM_REWRITE_TAC[LENGTH; NOT_CONS_NIL; HD] THEN | |
REPLICATE_TAC 2 (CONJ_TAC THENL [ASM_ARITH_TAC; ALL_TAC]) THEN | |
CONJ_TAC THENL | |
[ASM_REWRITE_TAC[set_of_list; SET_RULE | |
`(a INSERT s) UNION t = a INSERT (s UNION t)`]; | |
ALL_TAC] THEN | |
CONJ_TAC THENL | |
[REWRITE_TAC[PATHSTART_POLYGONAL_PATH; NOT_CONS_NIL; HD]; | |
ALL_TAC] THEN | |
CONJ_TAC THENL | |
[UNDISCH_TAC `pathfinish(polygonal_path q) = (b:real^2)` THEN | |
REWRITE_TAC[PATHFINISH_POLYGONAL_PATH; LAST; NOT_CONS_NIL] THEN | |
UNDISCH_TAC `2 <= LENGTH(q:(real^2)list)` THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[LENGTH; ARITH]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN | |
`polygonal_path(CONS (a:real^2) q) = | |
linepath(a,x) ++ polygonal_path q` | |
SUBST1_TAC THENL | |
[MAP_EVERY UNDISCH_TAC | |
[`pathstart(polygonal_path q) = | |
pathstart(polygonal_path (CONS (x:real^2) (CONS y l)))`; | |
`2 <= LENGTH(q:(real^2)list)`] THEN | |
SPEC_TAC(`q:(real^2)list`,`q:(real^2)list`) THEN | |
POP_ASSUM_LIST(K ALL_TAC) THEN | |
MATCH_MP_TAC list_INDUCT THEN REWRITE_TAC[LENGTH; ARITH] THEN | |
GEN_TAC THEN MATCH_MP_TAC list_INDUCT THEN | |
REWRITE_TAC[LENGTH; ARITH; polygonal_path] THEN | |
SIMP_TAC[PATHSTART_POLYGONAL_PATH; HD; NOT_CONS_NIL]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN | |
`pathstart(polygonal_path(CONS x (CONS y l))) = (x:real^2)` | |
(fun th -> SUBST_ALL_TAC th THEN ASSUME_TAC th) THENL | |
[REWRITE_TAC[PATHSTART_POLYGONAL_PATH; NOT_CONS_NIL; HD]; ALL_TAC] THEN | |
CONJ_TAC THENL | |
[W(MP_TAC o PART_MATCH (rand o rand) SIMPLE_PATH_ASSOC o snd) THEN | |
ASM_REWRITE_TAC[PATHSTART_LINEPATH; PATHFINISH_LINEPATH] THEN | |
REWRITE_TAC[PATHSTART_POLYGONAL_PATH; NOT_CONS_NIL; HD] THEN | |
DISCH_THEN(SUBST1_TAC o SYM) THEN | |
UNDISCH_TAC `simple_path(linepath(a:real^2,x) ++ | |
polygonal_path (CONS x (CONS y l)))` THEN | |
ASM_CASES_TAC `pathfinish(polygonal_path r) = (a:real^2)` THENL | |
[SUBGOAL_THEN | |
`pathfinish(polygonal_path(CONS (x:real^2) (CONS y l))) = a` | |
ASSUME_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN | |
ASM_SIMP_TAC[SIMPLE_PATH_JOIN_LOOP_EQ; PATHFINISH_LINEPATH; | |
PATHSTART_JOIN; PATHFINISH_JOIN; PATHSTART_LINEPATH] THEN | |
STRIP_TAC THEN MATCH_MP_TAC SIMPLE_PATH_IMP_ARC THEN | |
ASM_REWRITE_TAC[PATHSTART_JOIN; PATHFINISH_JOIN] THEN | |
ASM_MESON_TAC[ARC_LINEPATH_EQ]; | |
SUBGOAL_THEN | |
`~(pathfinish(polygonal_path(CONS (x:real^2) (CONS y l))) = a)` | |
ASSUME_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN | |
ASM_SIMP_TAC[SIMPLE_PATH_EQ_ARC; PATHSTART_JOIN; PATHSTART_LINEPATH; | |
PATHFINISH_JOIN] THEN | |
ASM_SIMP_TAC[ARC_JOIN_EQ; PATHFINISH_LINEPATH; PATHSTART_JOIN] THEN | |
REWRITE_TAC[ARC_LINEPATH_EQ] THEN STRIP_TAC THEN | |
SUBGOAL_THEN | |
`arc(polygonal_path q ++ polygonal_path r:real^1->real^2)` | |
MP_TAC THENL | |
[ALL_TAC; | |
ASM_SIMP_TAC[ARC_JOIN_EQ; PATHFINISH_LINEPATH; PATHSTART_JOIN]] THEN | |
MATCH_MP_TAC SIMPLE_PATH_IMP_ARC THEN | |
ASM_REWRITE_TAC[PATHSTART_JOIN; PATHFINISH_JOIN] THEN | |
FIRST_X_ASSUM(MP_TAC o MATCH_MP ARC_DISTINCT_ENDS) THEN | |
REWRITE_TAC[PATHSTART_POLYGONAL_PATH; HD; NOT_CONS_NIL]]; | |
ASM_SIMP_TAC[PATH_IMAGE_JOIN; PATHFINISH_JOIN; PATHFINISH_LINEPATH] THEN | |
SIMP_TAC[PATH_IMAGE_JOIN; PATHFINISH_LINEPATH; NOT_CONS_NIL; HD; | |
PATHSTART_POLYGONAL_PATH] THEN | |
UNDISCH_THEN | |
`path_image(polygonal_path q ++ polygonal_path r) = | |
path_image(polygonal_path(CONS (x:real^2) (CONS y l)))` | |
(SUBST1_TAC o SYM) THEN | |
ASM_SIMP_TAC[PATH_IMAGE_JOIN; PATHFINISH_JOIN; PATHFINISH_LINEPATH] THEN | |
SET_TAC[]]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `pathstart(polygonal_path p) = (a:real^2)` SUBST_ALL_TAC THENL | |
[UNDISCH_TAC `5 <= LENGTH(p:(real^2)list)` THEN | |
REWRITE_TAC[PATHSTART_POLYGONAL_PATH] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[LENGTH; ARITH]; | |
ALL_TAC] THEN | |
UNDISCH_THEN `pathfinish (polygonal_path p) = (a:real^2)` SUBST_ALL_TAC THEN | |
UNDISCH_THEN `path_image(polygonal_path q ++ polygonal_path r):real^2->bool = | |
path_image(polygonal_path p)` (SUBST_ALL_TAC o SYM) THEN | |
SUBGOAL_THEN | |
`(!x:real^2. MEM x q ==> integral_vector x) /\ | |
(!x:real^2. MEM x r ==> integral_vector x)` | |
STRIP_ASSUME_TAC THENL | |
[REWRITE_TAC[GSYM IN_SET_OF_LIST] THEN REPEAT STRIP_TAC THEN | |
FIRST_X_ASSUM MATCH_MP_TAC THEN | |
ASM_REWRITE_TAC[GSYM IN_SET_OF_LIST; IN_UNION] THEN | |
UNDISCH_THEN | |
`(set_of_list q UNION set_of_list r):real^2->bool = set_of_list p` | |
(SUBST_ALL_TAC o SYM) THEN | |
ASM_REWRITE_TAC[IN_UNION]; | |
ALL_TAC] THEN | |
ABBREV_TAC `n = LENGTH(p:(real^2)list)` THEN | |
SUBGOAL_THEN `integral_vector(a:real^2) /\ integral_vector(b:real^2)` | |
STRIP_ASSUME_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN | |
MAP_EVERY (C UNDISCH_THEN (K ALL_TAC)) | |
[`!x:real^2. MEM x p ==> integral_vector x`; | |
`MEM (a:real^2) p`; | |
`MEM (b:real^2) p`; | |
`HD p = (a:real^2)`; | |
`(set_of_list q UNION set_of_list r):real^2->bool = set_of_list p`; | |
`simple_path(polygonal_path p :real^1->real^2)`] THEN | |
SUBGOAL_THEN `3 <= LENGTH(q:(real^2)list)` ASSUME_TAC THENL | |
[REPEAT(FIRST_X_ASSUM(K ALL_TAC o check is_forall o concl)) THEN | |
REPEAT(POP_ASSUM MP_TAC) THEN | |
SPEC_TAC(`q:(real^2)list`,`q:(real^2)list`) THEN | |
MATCH_MP_TAC list_INDUCT THEN REWRITE_TAC[LENGTH; ARITH] THEN | |
X_GEN_TAC `a0:real^2` THEN | |
MATCH_MP_TAC list_INDUCT THEN REWRITE_TAC[LENGTH; ARITH] THEN | |
X_GEN_TAC `a1:real^2` THEN MATCH_MP_TAC list_INDUCT THEN | |
REWRITE_TAC[LENGTH; ARITH; ARITH_RULE `3 <= SUC(SUC(SUC n))`] THEN | |
REWRITE_TAC[polygonal_path; PATHSTART_LINEPATH; PATHFINISH_LINEPATH] THEN | |
REPEAT STRIP_TAC THEN | |
UNDISCH_THEN `a0:real^2 = a` SUBST_ALL_TAC THEN | |
UNDISCH_THEN `a1:real^2 = b` SUBST_ALL_TAC THEN | |
UNDISCH_TAC `segment(a:real^2,b) SUBSET | |
inside(path_image(linepath(a,b) ++ polygonal_path r))` THEN | |
ASM_SIMP_TAC[PATH_IMAGE_JOIN; PATH_IMAGE_LINEPATH; PATHFINISH_LINEPATH] THEN | |
MATCH_MP_TAC(SET_RULE | |
`inside(s' UNION t) INTER (s' UNION t) = {} /\ ~(s = {}) /\ s SUBSET s' | |
==> ~(s SUBSET inside(s' UNION t))`) THEN | |
REWRITE_TAC[INSIDE_NO_OVERLAP] THEN | |
ASM_REWRITE_TAC[SEGMENT_OPEN_SUBSET_CLOSED; SEGMENT_EQ_EMPTY]; | |
UNDISCH_THEN `2 <= LENGTH(q:(real^2)list)` (K ALL_TAC)] THEN | |
SUBGOAL_THEN `3 <= LENGTH(r:(real^2)list)` ASSUME_TAC THENL | |
[REPEAT(FIRST_X_ASSUM(K ALL_TAC o check is_forall o concl)) THEN | |
REPEAT(POP_ASSUM MP_TAC) THEN | |
SPEC_TAC(`r:(real^2)list`,`r:(real^2)list`) THEN | |
MATCH_MP_TAC list_INDUCT THEN REWRITE_TAC[LENGTH; ARITH] THEN | |
X_GEN_TAC `a0:real^2` THEN | |
MATCH_MP_TAC list_INDUCT THEN REWRITE_TAC[LENGTH; ARITH] THEN | |
X_GEN_TAC `a1:real^2` THEN MATCH_MP_TAC list_INDUCT THEN | |
REWRITE_TAC[LENGTH; ARITH; ARITH_RULE `3 <= SUC(SUC(SUC n))`] THEN | |
REWRITE_TAC[polygonal_path; PATHSTART_LINEPATH; PATHFINISH_LINEPATH] THEN | |
REPEAT STRIP_TAC THEN | |
UNDISCH_THEN `a0:real^2 = b` SUBST_ALL_TAC THEN | |
UNDISCH_THEN `a1:real^2 = a` SUBST_ALL_TAC THEN | |
UNDISCH_TAC `segment(a:real^2,b) SUBSET | |
inside(path_image(polygonal_path q ++ linepath(b,a)))` THEN | |
ASM_SIMP_TAC[PATH_IMAGE_JOIN; PATH_IMAGE_LINEPATH; PATHSTART_LINEPATH] THEN | |
ONCE_REWRITE_TAC[CONJUNCT1 SEGMENT_SYM] THEN | |
MATCH_MP_TAC(SET_RULE | |
`inside(t UNION s') INTER (t UNION s') = {} /\ ~(s = {}) /\ s SUBSET s' | |
==> ~(s SUBSET inside(t UNION s'))`) THEN | |
REWRITE_TAC[INSIDE_NO_OVERLAP] THEN | |
ASM_REWRITE_TAC[SEGMENT_OPEN_SUBSET_CLOSED; SEGMENT_EQ_EMPTY]; | |
UNDISCH_THEN `2 <= LENGTH(r:(real^2)list)` (K ALL_TAC)] THEN | |
FIRST_X_ASSUM(fun th -> | |
MP_TAC(ISPEC `CONS (a:real^2) r` th) THEN | |
MP_TAC(ISPEC `CONS (b:real^2) q` th)) THEN | |
REWRITE_TAC[LENGTH] THEN ANTS_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN | |
SUBGOAL_THEN | |
`polygonal_path(CONS (b:real^2) q) = linepath(b,a) ++ polygonal_path q` | |
SUBST_ALL_TAC THENL | |
[POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN | |
SPEC_TAC(`q:(real^2)list`,`q:(real^2)list`) THEN | |
MATCH_MP_TAC list_INDUCT THEN REWRITE_TAC[LENGTH; ARITH] THEN | |
GEN_TAC THEN MATCH_MP_TAC list_INDUCT THEN | |
REWRITE_TAC[LENGTH; ARITH; polygonal_path] THEN | |
SIMP_TAC[PATHSTART_POLYGONAL_PATH; HD; NOT_CONS_NIL]; | |
ALL_TAC] THEN | |
ANTS_TAC THENL | |
[ASM_REWRITE_TAC[MEM; PATHSTART_JOIN; PATHFINISH_JOIN] THEN | |
CONJ_TAC THENL [ASM_MESON_TAC[]; REWRITE_TAC[PATHSTART_LINEPATH]] THEN | |
UNDISCH_TAC | |
`simple_path(polygonal_path q ++ polygonal_path r :real^1->real^2)` THEN | |
ASM_SIMP_TAC[SIMPLE_PATH_JOIN_LOOP_EQ; PATHSTART_LINEPATH; | |
PATHFINISH_LINEPATH; ARC_LINEPATH_EQ] THEN | |
STRIP_TAC THEN REWRITE_TAC[PATH_IMAGE_LINEPATH] THEN | |
ONCE_REWRITE_TAC[SEGMENT_SYM] THEN | |
REWRITE_TAC[SEGMENT_CLOSED_OPEN] THEN | |
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE | |
`s SUBSET i | |
==> c INTER i = {} | |
==> (s UNION {a,b}) INTER c SUBSET {b,a}`)) THEN | |
ASM_SIMP_TAC[PATH_IMAGE_JOIN] THEN | |
MATCH_MP_TAC(SET_RULE | |
`inside(s UNION t) INTER (s UNION t) = {} | |
==> s INTER inside(s UNION t) = {}`) THEN | |
REWRITE_TAC[INSIDE_NO_OVERLAP]; | |
STRIP_TAC] THEN | |
REWRITE_TAC[LENGTH] THEN ANTS_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN | |
SUBGOAL_THEN | |
`polygonal_path(CONS (a:real^2) r) = linepath(a,b) ++ polygonal_path r` | |
SUBST_ALL_TAC THENL | |
[POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN | |
SPEC_TAC(`r:(real^2)list`,`r:(real^2)list`) THEN | |
MATCH_MP_TAC list_INDUCT THEN REWRITE_TAC[LENGTH; ARITH] THEN | |
GEN_TAC THEN MATCH_MP_TAC list_INDUCT THEN | |
REWRITE_TAC[LENGTH; ARITH; polygonal_path] THEN | |
SIMP_TAC[PATHSTART_POLYGONAL_PATH; HD; NOT_CONS_NIL]; | |
ALL_TAC] THEN | |
ANTS_TAC THENL | |
[ASM_REWRITE_TAC[MEM; PATHSTART_JOIN; PATHFINISH_JOIN] THEN | |
CONJ_TAC THENL [ASM_MESON_TAC[]; REWRITE_TAC[PATHSTART_LINEPATH]] THEN | |
UNDISCH_TAC | |
`simple_path(polygonal_path q ++ polygonal_path r :real^1->real^2)` THEN | |
ASM_SIMP_TAC[SIMPLE_PATH_JOIN_LOOP_EQ; PATHSTART_LINEPATH; | |
PATHFINISH_LINEPATH; ARC_LINEPATH_EQ] THEN | |
STRIP_TAC THEN REWRITE_TAC[PATH_IMAGE_LINEPATH] THEN | |
REWRITE_TAC[SEGMENT_CLOSED_OPEN] THEN | |
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE | |
`s SUBSET i | |
==> c INTER i = {} | |
==> (s UNION {a,b}) INTER c SUBSET {a,b}`)) THEN | |
ASM_SIMP_TAC[PATH_IMAGE_JOIN] THEN | |
MATCH_MP_TAC(SET_RULE | |
`inside(s UNION t) INTER (s UNION t) = {} | |
==> t INTER inside(s UNION t) = {}`) THEN | |
REWRITE_TAC[INSIDE_NO_OVERLAP]; | |
STRIP_TAC] THEN | |
MP_TAC(ISPECL [`polygonal_path q:real^1->real^2`; | |
`reversepath(polygonal_path r):real^1->real^2`; | |
`linepath(a:real^2,b)`; `a:real^2`; `b:real^2`] | |
SPLIT_INSIDE_SIMPLE_CLOSED_CURVE) THEN | |
REWRITE_TAC[] THEN ANTS_TAC THENL | |
[ASM_REWRITE_TAC[PATHSTART_LINEPATH; PATHFINISH_LINEPATH; | |
PATHSTART_REVERSEPATH; PATHFINISH_REVERSEPATH; | |
SIMPLE_PATH_LINEPATH_EQ] THEN | |
UNDISCH_TAC | |
`simple_path(polygonal_path q ++ polygonal_path r :real^1->real^2)` THEN | |
ASM_SIMP_TAC[SIMPLE_PATH_JOIN_LOOP_EQ; PATH_IMAGE_LINEPATH] THEN | |
ASM_SIMP_TAC[PATH_IMAGE_REVERSEPATH; ARC_IMP_SIMPLE_PATH; | |
SIMPLE_PATH_REVERSEPATH] THEN | |
STRIP_TAC THEN REPEAT CONJ_TAC THENL | |
[MATCH_MP_TAC(SET_RULE | |
`s INTER t SUBSET {a,b} /\ | |
a IN s /\ b IN s /\ a IN t /\ b IN t | |
==> s INTER t = {a,b}`) THEN | |
ASM_MESON_TAC[PATHSTART_IN_PATH_IMAGE; PATHFINISH_IN_PATH_IMAGE]; | |
REWRITE_TAC[SEGMENT_CLOSED_OPEN] THEN | |
UNDISCH_TAC | |
`segment(a:real^2,b) SUBSET | |
inside(path_image(polygonal_path q ++ polygonal_path r))` THEN | |
ASM_SIMP_TAC[PATH_IMAGE_JOIN] THEN MATCH_MP_TAC(SET_RULE | |
`a IN t /\ b IN t /\ inside(t UNION u) INTER (t UNION u) = {} | |
==> s SUBSET inside(t UNION u) | |
==> t INTER (s UNION {a,b}) = {a,b}`) THEN | |
REWRITE_TAC[INSIDE_NO_OVERLAP] THEN | |
ASM_MESON_TAC[PATHSTART_IN_PATH_IMAGE; PATHFINISH_IN_PATH_IMAGE]; | |
REWRITE_TAC[SEGMENT_CLOSED_OPEN] THEN | |
UNDISCH_TAC | |
`segment(a:real^2,b) SUBSET | |
inside(path_image(polygonal_path q ++ polygonal_path r))` THEN | |
ASM_SIMP_TAC[PATH_IMAGE_JOIN] THEN MATCH_MP_TAC(SET_RULE | |
`a IN u /\ b IN u /\ inside(t UNION u) INTER (t UNION u) = {} | |
==> s SUBSET inside(t UNION u) | |
==> u INTER (s UNION {a,b}) = {a,b}`) THEN | |
REWRITE_TAC[INSIDE_NO_OVERLAP] THEN | |
ASM_MESON_TAC[PATHSTART_IN_PATH_IMAGE; PATHFINISH_IN_PATH_IMAGE]; | |
REWRITE_TAC[SEGMENT_CLOSED_OPEN] THEN | |
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE | |
`s SUBSET i | |
==> inside(q UNION r) INTER (q UNION r) = {} /\ | |
inside(q UNION r) = i /\ | |
~(s = {}) | |
==> ~((s UNION {a,b}) INTER inside(q UNION r) = {})`)) THEN | |
ASM_REWRITE_TAC[INSIDE_NO_OVERLAP; SEGMENT_EQ_EMPTY] THEN | |
ASM_SIMP_TAC[PATH_IMAGE_JOIN]]; | |
ALL_TAC] THEN | |
REPEAT(FIRST_X_ASSUM(MP_TAC o | |
check (free_in `measure:(real^2->bool)->real` o concl))) THEN | |
UNDISCH_TAC | |
`segment(a:real^2,b) SUBSET | |
inside(path_image (polygonal_path q ++ polygonal_path r))` THEN | |
ASM_SIMP_TAC[PATH_IMAGE_JOIN; PATHSTART_LINEPATH; PATHFINISH_LINEPATH] THEN | |
REWRITE_TAC[PATH_IMAGE_REVERSEPATH; PATH_IMAGE_LINEPATH] THEN | |
SUBST1_TAC(ISPECL [`b:real^2`; `a:real^2`] (CONJUNCT1 SEGMENT_SYM)) THEN | |
REPEAT STRIP_TAC THEN SUBST1_TAC(SYM(ASSUME | |
`inside(path_image(polygonal_path q) UNION segment [a,b]) UNION | |
inside(path_image(polygonal_path r) UNION segment [a,b]) UNION | |
(segment [a:real^2,b] DIFF {a, b}) = | |
inside | |
(path_image(polygonal_path q) UNION path_image(polygonal_path r))`)) THEN | |
REWRITE_TAC[SET_RULE | |
`{x | x IN (s UNION t) /\ P x} = | |
{x | x IN s /\ P x} UNION {x | x IN t /\ P x}`] THEN | |
MATCH_MP_TAC EQ_TRANS THEN | |
EXISTS_TAC | |
`measure(inside(path_image(polygonal_path q) UNION segment[a:real^2,b])) + | |
measure(inside(path_image (polygonal_path r) UNION segment [a,b]) UNION | |
segment [a,b] DIFF {a, b})` THEN | |
CONJ_TAC THENL | |
[MATCH_MP_TAC MEASURE_NEGLIGIBLE_UNION THEN REPEAT CONJ_TAC THENL | |
[MATCH_MP_TAC MEASURABLE_INSIDE THEN | |
MATCH_MP_TAC COMPACT_UNION THEN | |
SIMP_TAC[COMPACT_PATH_IMAGE; COMPACT_SEGMENT; PATH_POLYGONAL_PATH]; | |
MATCH_MP_TAC MEASURABLE_UNION THEN CONJ_TAC THENL | |
[MATCH_MP_TAC MEASURABLE_INSIDE THEN | |
MATCH_MP_TAC COMPACT_UNION THEN | |
SIMP_TAC[COMPACT_PATH_IMAGE; COMPACT_SEGMENT; PATH_POLYGONAL_PATH]; | |
MATCH_MP_TAC MEASURABLE_DIFF THEN CONJ_TAC THEN | |
MATCH_MP_TAC MEASURABLE_COMPACT THEN REWRITE_TAC[COMPACT_SEGMENT] THEN | |
MATCH_MP_TAC FINITE_IMP_COMPACT THEN | |
REWRITE_TAC[FINITE_INSERT; FINITE_EMPTY]]; | |
ASM_REWRITE_TAC[UNION_OVER_INTER; UNION_EMPTY] THEN | |
MATCH_MP_TAC NEGLIGIBLE_SUBSET THEN EXISTS_TAC `segment[a:real^2,b]` THEN | |
REWRITE_TAC[NEGLIGIBLE_SEGMENT_2] THEN SET_TAC[]]; | |
ALL_TAC] THEN | |
MATCH_MP_TAC EQ_TRANS THEN | |
EXISTS_TAC | |
`measure(inside(path_image(polygonal_path q) UNION segment[a:real^2,b])) + | |
measure(inside(path_image(polygonal_path r) UNION segment[a,b]))` THEN | |
CONJ_TAC THENL | |
[AP_TERM_TAC THEN MATCH_MP_TAC MEASURE_NEGLIGIBLE_SYMDIFF THEN | |
MATCH_MP_TAC NEGLIGIBLE_SUBSET THEN | |
EXISTS_TAC `segment[a:real^2,b]` THEN | |
REWRITE_TAC[NEGLIGIBLE_SEGMENT_2] THEN SET_TAC[]; | |
ALL_TAC] THEN | |
REWRITE_TAC[GSYM REAL_OF_NUM_ADD] THEN | |
ONCE_REWRITE_TAC[SET_RULE `s UNION segment[a,b] = segment[a,b] UNION s`] THEN | |
ASM_REWRITE_TAC[] THEN | |
SUBGOAL_THEN | |
`CARD({x | x IN inside(segment[a,b] UNION path_image(polygonal_path q)) /\ | |
integral_vector x} UNION | |
{x | x IN inside(segment[a,b] UNION path_image(polygonal_path r)) /\ | |
integral_vector x} UNION | |
{x | x IN segment[a,b] DIFF {a, b} /\ integral_vector x}) = | |
CARD {x | x IN inside(segment[a,b] UNION path_image(polygonal_path q)) /\ | |
integral_vector x} + | |
CARD {x | x IN inside(segment[a,b] UNION path_image(polygonal_path r)) /\ | |
integral_vector x} + | |
CARD {x:real^2 | x IN segment[a,b] DIFF {a, b} /\ integral_vector x}` | |
SUBST1_TAC THENL | |
[(CONV_TAC o GEN_SIMPLIFY_CONV TOP_DEPTH_SQCONV (basic_ss []) 5) | |
[CARD_UNION_GEN; FINITE_BOUNDED_INTEGER_POINTS; FINITE_UNION; | |
BOUNDED_INSIDE; BOUNDED_UNION; BOUNDED_SEGMENT; | |
BOUNDED_PATH_IMAGE; BOUNDED_DIFF; PATH_POLYGONAL_PATH] THEN | |
MATCH_MP_TAC(ARITH_RULE | |
`pr = 0 /\ qrp = 0 ==> (q + (r + p) - pr) - qrp = q + r + p`) THEN | |
REWRITE_TAC[UNION_OVER_INTER] THEN | |
REWRITE_TAC[SET_RULE | |
`{x | x IN s /\ P x} INTER {x | x IN t /\ P x} = | |
{x | x IN (s INTER t) /\ P x}`] THEN | |
RULE_ASSUM_TAC(ONCE_REWRITE_RULE | |
[SET_RULE `s UNION segment[a,b] = segment[a,b] UNION s`]) THEN | |
ASM_REWRITE_TAC[NOT_IN_EMPTY; EMPTY_GSPEC; UNION_EMPTY] THEN CONJ_TAC THEN | |
MATCH_MP_TAC(MESON[CARD_CLAUSES] `s = {} ==> CARD s = 0`) THEN | |
MATCH_MP_TAC(SET_RULE | |
`inside(s UNION t) INTER (s UNION t) = {} | |
==> {x | x IN inside(s UNION t) INTER (s DIFF ab) /\ P x} = {}`) THEN | |
REWRITE_TAC[INSIDE_NO_OVERLAP]; | |
ALL_TAC] THEN | |
REWRITE_TAC[GSYM REAL_OF_NUM_ADD] THEN MATCH_MP_TAC(REAL_ARITH | |
`q + r = &2 * x + y + &2 | |
==> (iq + q / &2 - &1) + (ir + r / &2 - &1) = | |
((iq + ir + x) + y / &2 - &1)`) THEN | |
REWRITE_TAC[SET_RULE | |
`{x | x IN (s UNION t) /\ P x} = | |
{x | x IN s /\ P x} UNION {x | x IN t /\ P x}`] THEN | |
(CONV_TAC o GEN_SIMPLIFY_CONV TOP_DEPTH_SQCONV (basic_ss []) 5) | |
[CARD_UNION_GEN; FINITE_BOUNDED_INTEGER_POINTS; BOUNDED_SEGMENT; | |
BOUNDED_PATH_IMAGE; PATH_POLYGONAL_PATH; GSYM REAL_OF_NUM_SUB; | |
INTER_SUBSET; CARD_SUBSET; ARITH_RULE `x:num <= y ==> x <= y + z`] THEN | |
REWRITE_TAC[GSYM REAL_OF_NUM_ADD] THEN MATCH_MP_TAC(REAL_ARITH | |
`&2 * ab + qr = &2 * x + qab + rab + &2 | |
==> ((ab + q) - qab) + ((ab + r) - rab) = | |
&2 * x + ((q + r) - qr) + &2`) THEN | |
SUBGOAL_THEN | |
`{x | x IN segment[a,b] /\ integral_vector x} INTER | |
{x | x IN path_image(polygonal_path q) /\ integral_vector x} = {a,b} /\ | |
{x:real^2 | x IN segment[a,b] /\ integral_vector x} INTER | |
{x | x IN path_image(polygonal_path r) /\ integral_vector x} = {a,b}` | |
(CONJUNCTS_THEN SUBST1_TAC) | |
THENL | |
[FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE | |
`s SUBSET inside(q UNION r) | |
==> s = c DIFF {a,b} /\ a IN q /\ b IN q /\ a IN r /\ b IN r /\ | |
inside(q UNION r) INTER (q UNION r) = {} /\ | |
P a /\ P b /\ a IN c /\ b IN c | |
==> {x | x IN c /\ P x} INTER {x | x IN q /\ P x} = {a,b} /\ | |
{x | x IN c /\ P x} INTER {x | x IN r /\ P x} = {a,b}`)) THEN | |
ASM_REWRITE_TAC[open_segment; INSIDE_NO_OVERLAP; ENDS_IN_SEGMENT] THEN | |
ASM_MESON_TAC[PATHSTART_IN_PATH_IMAGE; PATHFINISH_IN_PATH_IMAGE]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN | |
`{x:real^2 | x IN path_image(polygonal_path q) /\ integral_vector x} INTER | |
{x | x IN path_image(polygonal_path r) /\ integral_vector x} = {a,b}` | |
SUBST1_TAC THENL | |
[FIRST_X_ASSUM(MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] | |
SIMPLE_PATH_JOIN_IMP)) THEN | |
ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o last o CONJUNCTS) THEN | |
MATCH_MP_TAC(SET_RULE | |
`P a /\ P b /\ a IN q /\ b IN q /\ a IN r /\ b IN r | |
==> (q INTER r) SUBSET {a,b} | |
==> {x | x IN q /\ P x} INTER {x | x IN r /\ P x} = {a,b}`) THEN | |
ASM_MESON_TAC[PATHSTART_IN_PATH_IMAGE; PATHFINISH_IN_PATH_IMAGE]; | |
ALL_TAC] THEN | |
SIMP_TAC[CARD_CLAUSES; FINITE_INSERT; FINITE_EMPTY] THEN | |
ASM_REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN CONV_TAC NUM_REDUCE_CONV THEN | |
MATCH_MP_TAC(REAL_ARITH | |
`x = y + &2 ==> &2 * x + &2 = &2 * y + &2 + &2 + &2`) THEN | |
REWRITE_TAC[SEGMENT_CLOSED_OPEN] THEN | |
SUBGOAL_THEN `(segment(a,b) UNION {a, b}) DIFF {a, b} = segment(a:real^2,b)` | |
SUBST1_TAC THENL | |
[MATCH_MP_TAC(SET_RULE | |
`~(a IN s) /\ ~(b IN s) ==> (s UNION {a,b}) DIFF {a,b} = s`) THEN | |
REWRITE_TAC[open_segment; IN_DIFF] THEN SET_TAC[]; | |
ALL_TAC] THEN | |
ASM_SIMP_TAC[SET_RULE | |
`P a /\ P b | |
==> {x | x IN s UNION {a,b} /\ P x} = | |
a INSERT b INSERT {x | x IN s /\ P x}`] THEN | |
SIMP_TAC[CARD_CLAUSES; FINITE_BOUNDED_INTEGER_POINTS; | |
BOUNDED_SEGMENT; FINITE_INSERT] THEN | |
ASM_REWRITE_TAC[IN_INSERT; IN_ELIM_THM; ENDS_NOT_IN_SEGMENT] THEN | |
REWRITE_TAC[REAL_OF_NUM_ADD; ARITH_RULE `SUC(SUC n) = n + 2`]);; | |