Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* "Second proof" of Prime Number Theorem from Newman's book. *) | |
(* ========================================================================= *) | |
needs "Multivariate/cauchy.ml";; | |
needs "Library/pocklington.ml";; | |
needs "Examples/mangoldt.ml";; | |
prioritize_real();; | |
prioritize_complex();; | |
(* ------------------------------------------------------------------------- *) | |
(* A few miscelleneous lemmas. *) | |
(* ------------------------------------------------------------------------- *) | |
let LT_NORM_CPOW_NUM = prove | |
(`!n s. &0 < Re s /\ 2 <= n ==> &1 < norm(Cx(&n) cpow s)`, | |
SIMP_TAC[NORM_CPOW_REAL; REAL_CX; RE_CX; REAL_OF_NUM_LT; | |
ARITH_RULE `2 <= n ==> 0 < n`] THEN | |
REWRITE_TAC[GSYM REAL_EXP_0; REAL_EXP_MONO_LT] THEN | |
SIMP_TAC[REAL_LT_MUL; LOG_POS_LT; REAL_OF_NUM_LT; | |
ARITH_RULE `2 <= n ==> 1 < n`]);; | |
let CPOW_NUM_NE_1 = prove | |
(`!n s. &0 < Re s /\ 2 <= n ==> ~(Cx(&n) cpow s = Cx(&1))`, | |
REPEAT STRIP_TAC THEN | |
FIRST_X_ASSUM(MP_TAC o SYM o AP_TERM `norm:complex->real`) THEN | |
ASM_SIMP_TAC[LT_NORM_CPOW_NUM; COMPLEX_NORM_CX; REAL_ABS_NUM; | |
REAL_LT_IMP_NE]);; | |
let FINITE_ATMOST = prove | |
(`!P n. FINITE {m:num | P m /\ m <= n}`, | |
REPEAT GEN_TAC THEN | |
MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `0..n` THEN | |
SIMP_TAC[LE_0; FINITE_NUMSEG; SUBSET; IN_ELIM_THM; IN_NUMSEG]);; | |
let PRIME_ATMOST_ALT = prove | |
(`{p | prime p /\ p <= n} = {p | p IN 1..n /\ prime p}`, | |
REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_NUMSEG] THEN | |
X_GEN_TAC `p:num` THEN ASM_CASES_TAC `prime p` THEN ASM_REWRITE_TAC[] THEN | |
FIRST_ASSUM(MP_TAC o MATCH_MP PRIME_IMP_NZ) THEN ARITH_TAC);; | |
(* ------------------------------------------------------------------------- *) | |
(* An auxiliary zeta function that's analytic in the right halfplane. *) | |
(* ------------------------------------------------------------------------- *) | |
let nearzeta = new_definition | |
`nearzeta n s = infsum (from n) | |
(\m. (s - Cx(&1)) / Cx(&m) cpow s - | |
(Cx(&1) / Cx(&m) cpow (s - Cx(&1)) - | |
Cx(&1) / Cx(&(m+1)) cpow (s - Cx(&1))))`;; | |
(* ------------------------------------------------------------------------- *) | |
(* The actual zeta function, with analyticity of z_n(s) - 1/(s - 1)^{n-1} *) | |
(* ------------------------------------------------------------------------- *) | |
let genzeta = new_definition | |
`genzeta n s = if s = Cx(&1) then complex_derivative (nearzeta n) (Cx(&1)) | |
else (nearzeta n s + Cx(&1) / Cx(&n) cpow (s - Cx(&1))) / | |
(s - Cx(&1))`;; | |
let zeta = new_definition | |
`zeta s = genzeta 1 s`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Lemmas about convergence and analyticity of the series. *) | |
(* ------------------------------------------------------------------------- *) | |
let NEARZETA_BOUND_LEMMA = prove | |
(`!s n. ~(n = 0) /\ &0 <= Re s + &1 | |
==> norm((s - Cx(&1)) / Cx(&n) cpow s - | |
(Cx(&1) / Cx(&n) cpow (s - Cx(&1)) - | |
Cx(&1) / Cx(&(n + 1)) cpow (s - Cx(&1)))) <= | |
norm(s * (s - Cx(&1)) / Cx(&n) cpow (s + Cx(&1)))`, | |
REPEAT STRIP_TAC THEN MP_TAC(ISPECL | |
[`\n z. if n = 0 then Cx(&1) / z cpow (s - Cx(&1)) | |
else if n = 1 then (Cx(&1) - s) / z cpow s | |
else s * (s - Cx(&1)) / z cpow (s + Cx(&1))`; | |
`1`; `segment[Cx(&n),Cx(&n) + Cx(&1)]`; | |
`norm(s * (s - Cx (&1)) / Cx(&n) cpow (s + Cx(&1)))`] COMPLEX_TAYLOR) THEN | |
REWRITE_TAC[ARITH] THEN ANTS_TAC THENL | |
[REWRITE_TAC[CONVEX_SEGMENT] THEN CONJ_TAC THENL | |
[MAP_EVERY X_GEN_TAC [`i:num`; `z:complex`] THEN STRIP_TAC; | |
X_GEN_TAC `z:complex` THEN DISCH_TAC] THEN | |
(SUBGOAL_THEN `&0 < Re z` ASSUME_TAC THENL | |
[MATCH_MP_TAC RE_POS_SEGMENT THEN | |
MAP_EVERY EXISTS_TAC [`Cx(&n)`; `Cx(&n) + Cx(&1)`] THEN | |
ASM_REWRITE_TAC[RE_ADD; RE_CX; REAL_OF_NUM_ADD; REAL_OF_NUM_LT] THEN | |
ASM_ARITH_TAC; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `~(z = Cx(&0))` ASSUME_TAC THENL | |
[DISCH_THEN SUBST_ALL_TAC THEN ASM_MESON_TAC[RE_CX; REAL_LT_REFL]; | |
ALL_TAC]) | |
THENL | |
[FIRST_X_ASSUM(DISJ_CASES_THEN SUBST_ALL_TAC o MATCH_MP | |
(ARITH_RULE `i <= 1 ==> i = 0 \/ i = 1`)) THEN | |
ASM_REWRITE_TAC[ARITH] THEN COMPLEX_DIFF_TAC THEN | |
ASM_REWRITE_TAC[CPOW_EQ_0] THEN | |
SIMP_TAC[COMPLEX_POW_2; CPOW_ADD; CPOW_SUB; CPOW_N; COMPLEX_POW_1] THEN | |
(SUBGOAL_THEN `~(z cpow s = Cx(&0))` MP_TAC THENL | |
[ASM_REWRITE_TAC[CPOW_EQ_0]; UNDISCH_TAC `~(z = Cx(&0))`]) THEN | |
CONV_TAC COMPLEX_FIELD; | |
ALL_TAC] THEN | |
REWRITE_TAC[COMPLEX_NORM_MUL; COMPLEX_NORM_DIV; COMPLEX_NORM_POW] THEN | |
REWRITE_TAC[real_div; REAL_MUL_ASSOC] THEN | |
MATCH_MP_TAC REAL_LE_LMUL THEN SIMP_TAC[REAL_LE_MUL; NORM_POS_LE] THEN | |
MATCH_MP_TAC REAL_LE_INV2 THEN | |
ASM_REWRITE_TAC[COMPLEX_NORM_NZ; CPOW_EQ_0; CX_INJ; REAL_OF_NUM_EQ] THEN | |
SUBGOAL_THEN `real z` ASSUME_TAC THENL | |
[MATCH_MP_TAC REAL_SEGMENT THEN | |
MAP_EVERY EXISTS_TAC [`Cx(&n)`; `Cx(&n) + Cx(&1)`] THEN | |
ASM_SIMP_TAC[REAL_CX; REAL_ADD]; | |
ALL_TAC] THEN | |
ASM_SIMP_TAC[NORM_CPOW_REAL; REAL_CX; RE_CX; REAL_OF_NUM_LT; LT_NZ] THEN | |
REWRITE_TAC[REAL_EXP_MONO_LE] THEN MATCH_MP_TAC REAL_LE_LMUL THEN | |
ASM_REWRITE_TAC[RE_ADD; RE_CX] THEN | |
ONCE_REWRITE_TAC[GSYM REAL_EXP_MONO_LE] THEN | |
ASM_SIMP_TAC[EXP_LOG; REAL_OF_NUM_LT; LT_NZ] THEN | |
UNDISCH_TAC `z IN segment[Cx (&n),Cx (&n) + Cx (&1)]` THEN | |
REWRITE_TAC[segment; IN_ELIM_THM] THEN | |
STRIP_TAC THEN ASM_REWRITE_TAC[RE_CMUL; RE_ADD; RE_CX] THEN | |
UNDISCH_TAC `&0 <= u` THEN REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
REWRITE_TAC[NUMSEG_CONV `0..1`] THEN | |
SIMP_TAC[VSUM_CLAUSES; FINITE_INSERT; FINITE_RULES] THEN | |
REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY; ARITH] THEN | |
CONV_TAC NUM_REDUCE_CONV THEN | |
REWRITE_TAC[complex_pow; COMPLEX_POW_1; COMPLEX_DIV_1; COMPLEX_MUL_RID] THEN | |
DISCH_THEN(MP_TAC o SPECL [`Cx(&n)`; `Cx(&n) + Cx(&1)`]) THEN | |
REWRITE_TAC[ENDS_IN_SEGMENT; COMPLEX_NORM_CX; COMPLEX_ADD_SUB] THEN | |
REWRITE_TAC[VECTOR_ADD_RID; COMPLEX_MUL_LID] THEN | |
REWRITE_TAC[REAL_ABS_NUM; REAL_POW_ONE; REAL_DIV_1; REAL_MUL_RID] THEN | |
MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN | |
REWRITE_TAC[GSYM REAL_OF_NUM_ADD; CX_ADD; complex_div] THEN | |
CONV_TAC COMPLEX_RING);; | |
let NORM_CPOW_LOWERBOUND = prove | |
(`!m s n. &m <= Re s /\ ~(n = 0) ==> &n pow m <= norm(Cx(&n) cpow s)`, | |
REPEAT STRIP_TAC THEN | |
ASM_SIMP_TAC[NORM_CPOW_REAL; REAL_CX; RE_CX; REAL_OF_NUM_LT; LT_NZ] THEN | |
MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `exp(&m * log(&n))` THEN | |
CONJ_TAC THENL | |
[ASM_SIMP_TAC[REAL_EXP_N; EXP_LOG; REAL_OF_NUM_LT; LT_NZ; REAL_LE_REFL]; | |
REWRITE_TAC[REAL_EXP_MONO_LE] THEN MATCH_MP_TAC REAL_LE_RMUL THEN | |
ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[GSYM REAL_EXP_MONO_LE] THEN | |
ASM_SIMP_TAC[REAL_EXP_0; EXP_LOG; REAL_OF_NUM_LT; LT_NZ] THEN | |
SIMP_TAC[REAL_OF_NUM_LE] THEN ASM_ARITH_TAC]);; | |
let ZETATERM_BOUND = prove | |
(`!s n m. &m <= Re s /\ ~(n = 0) | |
==> norm(Cx(&1) / Cx(&n) cpow s) <= inv(&n pow m)`, | |
REWRITE_TAC[COMPLEX_NORM_DIV; COMPLEX_NORM_CX; REAL_ABS_NUM] THEN | |
REWRITE_TAC[real_div; REAL_MUL_LID] THEN REPEAT STRIP_TAC THEN | |
MATCH_MP_TAC REAL_LE_INV2 THEN | |
ASM_SIMP_TAC[REAL_POW_LT; NORM_CPOW_LOWERBOUND; REAL_OF_NUM_LT; LT_NZ]);; | |
let ZETA_CONVERGES_LEMMA = prove | |
(`!n s. &2 <= Re s ==> summable (from n) (\m. Cx(&1) / Cx(&m) cpow s)`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[summable] THEN | |
MATCH_MP_TAC SERIES_COMPARISON THEN | |
EXISTS_TAC `\n. inv(&n - &1) - inv(&(n + 1) - &1)` THEN CONJ_TAC THENL | |
[EXISTS_TAC `lift(inv(&n - &1))` THEN | |
MP_TAC(ISPECL [`\n. lift(inv(&n - &1))`; `n:num`] SERIES_DIFFS) THEN | |
REWRITE_TAC[o_DEF; LIFT_SUB] THEN DISCH_THEN MATCH_MP_TAC THEN | |
MATCH_MP_TAC SEQ_OFFSET_REV THEN EXISTS_TAC `1` THEN | |
REWRITE_TAC[GSYM REAL_OF_NUM_ADD; REAL_ARITH `(x + &1) - &1 = x`] THEN | |
REWRITE_TAC[SEQ_HARMONIC]; | |
ALL_TAC] THEN | |
EXISTS_TAC `2` THEN REWRITE_TAC[GE; IN_FROM] THEN X_GEN_TAC `m:num` THEN | |
STRIP_TAC THEN ASM_SIMP_TAC[GSYM REAL_OF_NUM_ADD; REAL_OF_NUM_LE; REAL_FIELD | |
`&2 <= x ==> inv(x - &1) - inv((x + &1) - &1) = inv(x * (x - &1))`] THEN | |
REWRITE_TAC[COMPLEX_NORM_DIV; COMPLEX_NORM_CX; REAL_ABS_NUM] THEN | |
REWRITE_TAC[real_div; REAL_MUL_LID] THEN | |
MATCH_MP_TAC REAL_LE_INV2 THEN CONJ_TAC THENL | |
[MATCH_MP_TAC REAL_LT_MUL THEN REPEAT(POP_ASSUM MP_TAC) THEN | |
REWRITE_TAC[GSYM REAL_OF_NUM_LE] THEN REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
MATCH_MP_TAC(REAL_ARITH `&n pow 2 <= x ==> &n * (&n - &1) <= x`) THEN | |
MATCH_MP_TAC NORM_CPOW_LOWERBOUND THEN ASM_REWRITE_TAC[] THEN | |
ASM_ARITH_TAC);; | |
let ZETADIFF_CONVERGES = prove | |
(`!n s. &0 < Re(s) | |
==> ((\m. Cx(&1) / Cx(&m) cpow s - Cx(&1) / Cx(&(m + 1)) cpow s) | |
sums Cx(&1) / Cx(&n) cpow s) (from n)`, | |
REPEAT STRIP_TAC THEN | |
MP_TAC(ISPECL [`\m. Cx(&1) / Cx(&m) cpow s`; `n:num`] SERIES_DIFFS) THEN | |
REWRITE_TAC[CPOW_1; COMPLEX_DIV_1] THEN DISCH_THEN MATCH_MP_TAC THEN | |
ONCE_REWRITE_TAC[LIM_NULL_NORM] THEN | |
REWRITE_TAC[COMPLEX_NORM_DIV; COMPLEX_NORM_CX; REAL_ABS_NUM] THEN | |
MATCH_MP_TAC LIM_TRANSFORM THEN | |
EXISTS_TAC `\n. lift(&1 / exp (Re s * log (&n)))` THEN CONJ_TAC THENL | |
[MATCH_MP_TAC LIM_EVENTUALLY THEN REWRITE_TAC[EVENTUALLY_SEQUENTIALLY] THEN | |
EXISTS_TAC `1` THEN REPEAT STRIP_TAC THEN | |
ASM_SIMP_TAC[NORM_CPOW_REAL; REAL_CX; RE_CX; REAL_OF_NUM_LT; | |
VECTOR_SUB_REFL; LE_1]; | |
ALL_TAC] THEN | |
MATCH_MP_TAC LIM_NULL_COMPARISON THEN | |
EXISTS_TAC `\n. &1 / (Re s * log(&n))` THEN CONJ_TAC THENL | |
[REWRITE_TAC[EVENTUALLY_SEQUENTIALLY] THEN EXISTS_TAC `2` THEN | |
REPEAT STRIP_TAC THEN REWRITE_TAC[NORM_LIFT] THEN | |
REWRITE_TAC[REAL_ABS_INV; REAL_ABS_EXP; real_div; REAL_MUL_LID] THEN | |
MATCH_MP_TAC REAL_LE_INV2 THEN MATCH_MP_TAC(REAL_ARITH | |
`&0 < x /\ (&0 <= x ==> &1 + u <= v) ==> &0 < x /\ u <= v`) THEN | |
REWRITE_TAC[REAL_EXP_LE_X] THEN | |
ASM_SIMP_TAC[LOG_POS_LT; REAL_LT_MUL; REAL_OF_NUM_LT; | |
ARITH_RULE `2 <= n ==> 1 < n`]; | |
ALL_TAC] THEN | |
REWRITE_TAC[LIM_SEQUENTIALLY] THEN X_GEN_TAC `e:real` THEN STRIP_TAC THEN | |
MP_TAC(SPEC `exp(inv(Re s * e))` (MATCH_MP REAL_ARCH REAL_LT_01)) THEN | |
REWRITE_TAC[REAL_MUL_RID] THEN DISCH_THEN(X_CHOOSE_TAC `N:num`) THEN | |
EXISTS_TAC `N + 2` THEN X_GEN_TAC `n:num` THEN STRIP_TAC THEN | |
REWRITE_TAC[dist; VECTOR_SUB_RZERO; NORM_LIFT] THEN | |
SUBGOAL_THEN `&0 < log(&n)` ASSUME_TAC THENL | |
[MATCH_MP_TAC LOG_POS_LT THEN REWRITE_TAC[REAL_OF_NUM_LT] THEN | |
UNDISCH_TAC `N + 2 <= n` THEN ARITH_TAC; | |
ALL_TAC] THEN | |
ASM_SIMP_TAC[REAL_ABS_DIV; REAL_ABS_NUM; REAL_ABS_MUL; | |
REAL_ARITH `&0 < x ==> abs x = x`] THEN | |
REWRITE_TAC[real_div; REAL_INV_MUL] THEN REWRITE_TAC[GSYM real_div] THEN | |
ASM_SIMP_TAC[REAL_LT_LDIV_EQ; REAL_MUL_LID] THEN | |
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN | |
ASM_SIMP_TAC[GSYM REAL_LT_LDIV_EQ] THEN | |
ONCE_REWRITE_TAC[GSYM REAL_EXP_MONO_LT] THEN | |
ASM_REWRITE_TAC[real_div; GSYM REAL_INV_MUL] THEN | |
MATCH_MP_TAC REAL_LTE_TRANS THEN EXISTS_TAC `&N` THEN | |
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LE_TRANS THEN | |
EXISTS_TAC `&n` THEN ASM_SIMP_TAC[REAL_OF_NUM_LE] THEN | |
ASM_SIMP_TAC[ARITH_RULE `N + 2 <= n ==> N <= n`] THEN | |
MATCH_MP_TAC REAL_EQ_IMP_LE THEN CONV_TAC SYM_CONV THEN | |
MATCH_MP_TAC EXP_LOG THEN REWRITE_TAC[REAL_OF_NUM_LT] THEN | |
ASM_ARITH_TAC);; | |
let NEARZETA_CONVERGES_LEMMA = prove | |
(`!n s. &1 <= Re s | |
==> ((\m. (s - Cx(&1)) / Cx(&m) cpow s - | |
(Cx(&1) / Cx(&m) cpow (s - Cx(&1)) - | |
Cx(&1) / Cx(&(m + 1)) cpow (s - Cx(&1)))) | |
sums nearzeta n s) (from n)`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[nearzeta; SUMS_INFSUM] THEN | |
REWRITE_TAC[summable] THEN MATCH_MP_TAC SERIES_COMPARISON THEN | |
EXISTS_TAC `\m. norm(s * (s - Cx(&1)) / Cx(&m) cpow (s + Cx(&1)))` THEN | |
CONJ_TAC THENL | |
[ALL_TAC; | |
EXISTS_TAC `1` THEN | |
ASM_SIMP_TAC[IN_FROM; GE; LE_1; NEARZETA_BOUND_LEMMA; | |
REAL_ARITH `&1 <= s ==> &0 <= s + &1`]] THEN | |
SUBGOAL_THEN | |
`summable (from n) | |
(\m. lift(((Cx (norm s) * Cx (norm (s - Cx (&1)))) * | |
Cx (&1) / Cx (&m) cpow Cx (Re s + &1))$1))` | |
MP_TAC THENL | |
[MATCH_MP_TAC SUMMABLE_COMPONENT THEN REWRITE_TAC[DIMINDEX_2; ARITH] THEN | |
MATCH_MP_TAC SUMMABLE_COMPLEX_LMUL THEN | |
MATCH_MP_TAC ZETA_CONVERGES_LEMMA THEN | |
REWRITE_TAC[RE_CX] THEN POP_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
REWRITE_TAC[GSYM summable] THEN MATCH_MP_TAC EQ_IMP THEN | |
MATCH_MP_TAC SUMMABLE_IFF_EVENTUALLY THEN EXISTS_TAC `1` THEN | |
X_GEN_TAC `m:num` THEN REWRITE_TAC[IN_FROM; o_THM] THEN DISCH_TAC THEN | |
AP_TERM_TAC THEN REWRITE_TAC[GSYM RE_DEF] THEN | |
REWRITE_TAC[GSYM COMPLEX_MUL_ASSOC; RE_MUL_CX; complex_div] THEN | |
REWRITE_TAC[COMPLEX_NORM_MUL; REAL_MUL_LID; COMPLEX_NORM_INV] THEN | |
AP_TERM_TAC THEN AP_TERM_TAC THEN | |
ASM_SIMP_TAC[NORM_CPOW_REAL; CPOW_REAL_REAL; REAL_CX; RE_CX; REAL_OF_NUM_LT; | |
LE_1] THEN | |
REWRITE_TAC[GSYM CX_INV; RE_CX; RE_ADD]);; | |
let GENZETA_CONVERGES = prove | |
(`!n s. &1 < Re s | |
==> ((\m. Cx(&1) / Cx(&m) cpow s) sums genzeta n s) (from n)`, | |
REPEAT STRIP_TAC THEN | |
FIRST_ASSUM(MP_TAC o SPEC `n:num` o MATCH_MP NEARZETA_CONVERGES_LEMMA o | |
MATCH_MP REAL_LT_IMP_LE) THEN | |
MP_TAC(SPECL [`n:num`; `s - Cx(&1)`] ZETADIFF_CONVERGES) THEN ANTS_TAC THENL | |
[REWRITE_TAC[RE_SUB; RE_CX] THEN POP_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
REWRITE_TAC[IMP_IMP] THEN DISCH_THEN(MP_TAC o MATCH_MP SERIES_ADD) THEN | |
REWRITE_TAC[COMPLEX_RING `a + (b - a) = b:complex`; genzeta] THEN | |
COND_CASES_TAC THENL | |
[UNDISCH_TAC `&1 < Re s` THEN ASM_REWRITE_TAC[RE_CX] THEN REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
DISCH_THEN(MP_TAC o SPEC `inv(s - Cx(&1))` o | |
MATCH_MP SERIES_COMPLEX_LMUL) THEN | |
SUBGOAL_THEN `~(s - Cx(&1) = Cx(&0))` ASSUME_TAC THENL | |
[REWRITE_TAC[COMPLEX_SUB_0] THEN DISCH_THEN SUBST_ALL_TAC THEN | |
POP_ASSUM MP_TAC THEN REWRITE_TAC[RE_CX] THEN REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
ASM_SIMP_TAC[complex_div; COMPLEX_MUL_ASSOC; COMPLEX_MUL_LINV] THEN | |
REWRITE_TAC[COMPLEX_MUL_AC; COMPLEX_ADD_AC]);; | |
let ZETA_CONVERGES = prove | |
(`!s. &1 < Re s | |
==> ((\n. Cx(&1) / Cx(&n) cpow s) sums zeta(s)) (from 1)`, | |
REWRITE_TAC[zeta; GENZETA_CONVERGES]);; | |
(* ------------------------------------------------------------------------- *) | |
(* We need the series for the derivative at one stage, so do this now. *) | |
(* ------------------------------------------------------------------------- *) | |
let COMPLEX_DERIVATIVE_ZETA_CONVERGES = prove | |
(`!s. &1 < Re s | |
==> ((\n. --clog(Cx(&n)) / Cx(&n) cpow s) sums | |
complex_derivative zeta s) (from 1)`, | |
REPEAT STRIP_TAC THEN | |
MP_TAC(ISPECL | |
[`\n z. Cx(&1) / Cx(&n) cpow z`; | |
`\n z. --clog(Cx(&n)) / Cx(&n) cpow z`; | |
`{s | Re s > &1}`; | |
`from 1`] | |
SERIES_AND_DERIVATIVE_COMPARISON_COMPLEX) THEN | |
REWRITE_TAC[OPEN_HALFSPACE_RE_GT; IN_ELIM_THM] THEN ANTS_TAC THENL | |
[CONJ_TAC THENL | |
[REWRITE_TAC[IN_FROM] THEN REPEAT STRIP_TAC THEN COMPLEX_DIFF_TAC THEN | |
MATCH_MP_TAC(TAUT `(a ==> b) /\ a ==> a /\ b`) THEN | |
CONJ_TAC THENL [CONV_TAC COMPLEX_FIELD; ALL_TAC] THEN | |
ASM_SIMP_TAC[CPOW_EQ_0; CX_INJ; REAL_OF_NUM_EQ; LE_1]; | |
ALL_TAC] THEN | |
POP_ASSUM(K ALL_TAC) THEN | |
X_GEN_TAC `z:complex` THEN REWRITE_TAC[real_gt] THEN STRIP_TAC THEN | |
MAP_EVERY EXISTS_TAC | |
[`(Re z - &1) / &2`; | |
`\n. Cx(&1) / Cx(&n) cpow (Cx(&1 + (Re z - &1) / &2))`; | |
`42`] THEN | |
ASM_SIMP_TAC[REAL_HALF; REAL_SUB_LT] THEN CONJ_TAC THENL | |
[MP_TAC(SPEC `Cx(&1 + (Re z - &1) / &2)` ZETA_CONVERGES) THEN | |
ANTS_TAC THENL [REWRITE_TAC[RE_CX] THEN ASM_REAL_ARITH_TAC; ALL_TAC] THEN | |
MESON_TAC[summable]; | |
ALL_TAC] THEN | |
ASM_SIMP_TAC[IN_FROM; CPOW_REAL_REAL; REAL_OF_NUM_LT; RE_CX; REAL_CX; | |
LE_1; COMPLEX_NORM_DIV; NORM_CPOW_REAL] THEN | |
REWRITE_TAC[GSYM CX_DIV; COMPLEX_NORM_CX; REAL_ABS_NUM; REAL_CX; RE_CX; | |
real_div; REAL_MUL_LID; REAL_LE_INV_EQ; REAL_EXP_POS_LE] THEN | |
REWRITE_TAC[REAL_ABS_EXP; GSYM REAL_EXP_NEG; REAL_EXP_MONO_LE] THEN | |
REPEAT STRIP_TAC THEN | |
REWRITE_TAC[REAL_ARITH `--(a * x) <= --(b * x) <=> b * x <= a * x`] THEN | |
MATCH_MP_TAC REAL_LE_RMUL THEN ASM_SIMP_TAC[LOG_POS; REAL_OF_NUM_LE] THEN | |
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN_BALL]) THEN | |
MP_TAC(SPEC `z - y:complex` COMPLEX_NORM_GE_RE_IM) THEN | |
REWRITE_TAC[RE_SUB] THEN ASM_NORM_ARITH_TAC; | |
ALL_TAC] THEN | |
REWRITE_TAC[LEFT_IMP_EXISTS_THM; real_gt] THEN | |
MAP_EVERY X_GEN_TAC [`f:complex->complex`; `g:complex->complex`] THEN | |
DISCH_TAC THEN | |
FIRST_ASSUM(MP_TAC o SPEC `s:complex`) THEN SIMP_TAC[ASSUME `&1 < Re s`] THEN | |
DISCH_THEN(MP_TAC o CONJUNCT1 o CONJUNCT2) THEN | |
MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_TERM_TAC THEN | |
CONV_TAC SYM_CONV THEN MATCH_MP_TAC HAS_COMPLEX_DERIVATIVE_DERIVATIVE THEN | |
FIRST_ASSUM(MP_TAC o SPEC `s:complex`) THEN SIMP_TAC[ASSUME `&1 < Re s`] THEN | |
DISCH_THEN(MP_TAC o CONJUNCT2 o CONJUNCT2) THEN | |
MATCH_MP_TAC(REWRITE_RULE[TAUT `b /\ c /\ d ==> e <=> b /\ c ==> d ==> e`] | |
HAS_COMPLEX_DERIVATIVE_TRANSFORM_AT) THEN | |
EXISTS_TAC `Re s - &1` THEN ASM_REWRITE_TAC[REAL_SUB_LT] THEN | |
X_GEN_TAC `z:complex` THEN DISCH_TAC THEN MATCH_MP_TAC SERIES_UNIQUE THEN | |
MAP_EVERY EXISTS_TAC [`\n. Cx(&1) / Cx(&n) cpow z`; `from 1`] THEN | |
SUBGOAL_THEN `&1 < Re z` (fun th -> ASM_SIMP_TAC[th; ZETA_CONVERGES]) THEN | |
MP_TAC(SPEC `z - s:complex` COMPLEX_NORM_GE_RE_IM) THEN | |
REWRITE_TAC[RE_SUB] THEN ASM_NORM_ARITH_TAC);; | |
(* ------------------------------------------------------------------------- *) | |
(* The zeta function is actually analytic on a larger set. *) | |
(* ------------------------------------------------------------------------- *) | |
let HOLOMORPHIC_NEARZETA_LEMMA = prove | |
(`!n. 1 <= n | |
==> ?g g'. !s. s IN {s | Re(s) > &0} | |
==> ((\m. (s - Cx(&1)) / Cx(&m) cpow s - | |
(Cx(&1) / Cx(&m) cpow (s - Cx(&1)) - | |
Cx(&1) / Cx(&(m + 1)) cpow (s - Cx(&1)))) | |
sums g s) (from n) /\ | |
((\m. (Cx(&1) - (s - Cx(&1)) * clog(Cx(&m))) / | |
Cx(&m) cpow s - | |
(clog(Cx(&(m + 1))) / | |
Cx(&(m + 1)) cpow (s - Cx(&1)) - | |
clog(Cx(&m)) / | |
Cx(&m) cpow (s - Cx(&1)))) | |
sums g' s) (from n) /\ | |
(g has_complex_derivative g' s) (at s)`, | |
GEN_TAC THEN DISCH_TAC THEN | |
MATCH_MP_TAC SERIES_AND_DERIVATIVE_COMPARISON_COMPLEX THEN | |
REWRITE_TAC[OPEN_HALFSPACE_RE_GT] THEN CONJ_TAC THENL | |
[MAP_EVERY X_GEN_TAC [`m:num`; `s:complex`] THEN | |
REWRITE_TAC[IN_ELIM_THM; real_gt; from] THEN STRIP_TAC THEN | |
COMPLEX_DIFF_TAC THEN MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN | |
CONJ_TAC THENL [ALL_TAC; CONV_TAC COMPLEX_FIELD] THEN | |
ASM_REWRITE_TAC[CPOW_EQ_0; CX_INJ; REAL_OF_NUM_EQ] THEN ASM_ARITH_TAC; | |
ALL_TAC] THEN | |
X_GEN_TAC `s:complex` THEN REWRITE_TAC[IN_ELIM_THM; real_gt] THEN | |
DISCH_TAC THEN EXISTS_TAC `min (Re s / &2) (&1)` THEN | |
ASM_REWRITE_TAC[REAL_LT_MIN; REAL_LT_01; REAL_HALF] THEN | |
EXISTS_TAC `\n. Cx(norm(s) + &2) pow 2 / | |
Cx(&n) cpow Cx((Re s / &2 + &1))` THEN | |
EXISTS_TAC `1` THEN CONJ_TAC THENL | |
[REWRITE_TAC[complex_div] THEN MATCH_MP_TAC SUMMABLE_COMPLEX_LMUL THEN | |
MP_TAC(SPECL [`n:num`; `Cx(Re s / &2 + &1)`] GENZETA_CONVERGES) THEN | |
REWRITE_TAC[RE_CX] THEN ANTS_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN | |
REWRITE_TAC[complex_div; COMPLEX_MUL_LID] THEN MESON_TAC[summable]; | |
ALL_TAC] THEN | |
CONJ_TAC THEN X_GEN_TAC `m:num` THEN REWRITE_TAC[from; IN_ELIM_THM] THENL | |
[DISCH_TAC THEN | |
SUBGOAL_THEN `1 <= m` ASSUME_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN | |
ASM_SIMP_TAC[CPOW_REAL_REAL; REAL_CX; RE_CX; REAL_OF_NUM_LT; LE_1; | |
GSYM CX_DIV; GSYM CX_POW] THEN | |
MATCH_MP_TAC REAL_LE_DIV THEN REWRITE_TAC[REAL_EXP_POS_LE] THEN | |
MATCH_MP_TAC REAL_POW_LE THEN NORM_ARITH_TAC; | |
ALL_TAC] THEN | |
X_GEN_TAC `z:complex` THEN REWRITE_TAC[IN_BALL; dist] THEN STRIP_TAC THEN | |
W(MP_TAC o PART_MATCH (lhand o rand) NEARZETA_BOUND_LEMMA o lhand o snd) THEN | |
ANTS_TAC THENL | |
[CONJ_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN | |
MP_TAC(SPEC `s - z:complex` COMPLEX_NORM_GE_RE_IM) THEN | |
REWRITE_TAC[RE_SUB] THEN ASM_REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
MATCH_MP_TAC(REAL_ARITH `a <= b ==> x <= a ==> x <= b`) THEN | |
REWRITE_TAC[complex_div; COMPLEX_MUL_ASSOC] THEN | |
ONCE_REWRITE_TAC[COMPLEX_NORM_MUL] THEN | |
MATCH_MP_TAC REAL_LE_MUL2 THEN REWRITE_TAC[NORM_POS_LE] THEN CONJ_TAC THENL | |
[REWRITE_TAC[COMPLEX_NORM_MUL; COMPLEX_POW_2] THEN | |
MATCH_MP_TAC REAL_LE_MUL2 THEN REWRITE_TAC[NORM_POS_LE] THEN | |
REWRITE_TAC[COMPLEX_NORM_CX] THEN | |
MATCH_MP_TAC(NORM_ARITH | |
`norm(w) = &1 /\ norm(z) <= x + &1 | |
==> norm z <= abs(x + &2) /\ norm(z - w) <= abs(x + &2)`) THEN | |
REWRITE_TAC[COMPLEX_NORM_CX; REAL_ABS_NUM] THEN ASM_NORM_ARITH_TAC; | |
ALL_TAC] THEN | |
ASM_SIMP_TAC[COMPLEX_NORM_INV; NORM_CPOW_REAL; REAL_CX; RE_CX; | |
REAL_OF_NUM_LT; LE_1] THEN | |
MATCH_MP_TAC REAL_LE_INV2 THEN REWRITE_TAC[REAL_EXP_POS_LT] THEN | |
REWRITE_TAC[REAL_EXP_MONO_LE] THEN MATCH_MP_TAC REAL_LE_RMUL THEN | |
ASM_SIMP_TAC[LOG_POS; REAL_OF_NUM_LE; RE_ADD; RE_CX] THEN | |
MP_TAC(SPEC `s - z:complex` COMPLEX_NORM_GE_RE_IM) THEN | |
REWRITE_TAC[RE_SUB] THEN ASM_REAL_ARITH_TAC);; | |
let HOLOMORPHIC_NEARZETA_STRONG = prove | |
(`!n s. 1 <= n /\ &0 < Re s | |
==> ((\m. (s - Cx(&1)) / Cx(&m) cpow s - | |
(Cx(&1) / Cx(&m) cpow (s - Cx(&1)) - | |
Cx(&1) / Cx(&(m + 1)) cpow (s - Cx(&1)))) | |
sums (nearzeta n s)) (from n) /\ | |
((\m. (Cx(&1) - (s - Cx(&1)) * clog(Cx(&m))) / | |
Cx(&m) cpow s - | |
(clog(Cx(&(m + 1))) / | |
Cx(&(m + 1)) cpow (s - Cx(&1)) - | |
clog(Cx(&m)) / | |
Cx(&m) cpow (s - Cx(&1)))) | |
sums (complex_derivative(nearzeta n) s)) (from n) /\ | |
((nearzeta n) has_complex_derivative | |
complex_derivative(nearzeta n) s) (at s)`, | |
REPEAT GEN_TAC THEN STRIP_TAC THEN | |
FIRST_ASSUM(MP_TAC o MATCH_MP HOLOMORPHIC_NEARZETA_LEMMA) THEN | |
REWRITE_TAC[IN_ELIM_THM; real_gt; LEFT_IMP_EXISTS_THM] THEN | |
MAP_EVERY X_GEN_TAC [`g:complex->complex`; `g':complex->complex`] THEN | |
GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV) | |
[FORALL_AND_THM; TAUT `a ==> b /\ c <=> (a ==> b) /\ (a ==> c)`] THEN | |
STRIP_TAC THEN | |
SUBGOAL_THEN | |
`!s. &0 < Re s | |
==> ((\m. (s - Cx(&1)) / Cx(&m) cpow s - | |
(Cx(&1) / Cx(&m) cpow (s - Cx(&1)) - | |
Cx(&1) / Cx(&(m + 1)) cpow (s - Cx(&1)))) | |
sums nearzeta n s) (from n)` | |
ASSUME_TAC THENL | |
[REPEAT STRIP_TAC THEN REWRITE_TAC[nearzeta; SUMS_INFSUM] THEN | |
ASM_MESON_TAC[summable]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `!z. &0 < Re z ==> nearzeta n z = g z` ASSUME_TAC THENL | |
[ASM_MESON_TAC[SERIES_UNIQUE]; ALL_TAC] THEN | |
ASM_SIMP_TAC[] THEN | |
SUBGOAL_THEN | |
`!z. &0 < Re z ==> ((nearzeta n) has_complex_derivative g' z) (at z)` | |
ASSUME_TAC THENL | |
[REPEAT STRIP_TAC THEN | |
MATCH_MP_TAC HAS_COMPLEX_DERIVATIVE_TRANSFORM_AT THEN | |
MAP_EVERY EXISTS_TAC [`g:complex->complex`; `Re z`] THEN | |
ASM_SIMP_TAC[dist] THEN | |
X_GEN_TAC `w:complex` THEN DISCH_TAC THEN CONV_TAC SYM_CONV THEN | |
FIRST_X_ASSUM MATCH_MP_TAC THEN | |
MP_TAC(SPEC `w - z:complex` COMPLEX_NORM_GE_RE_IM) THEN | |
REWRITE_TAC[RE_SUB] THEN ASM_REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
ASM_MESON_TAC[HAS_COMPLEX_DERIVATIVE_DERIVATIVE]);; | |
let NEARZETA_CONVERGES = prove | |
(`!n s. &0 < Re s | |
==> ((\m. (s - Cx(&1)) / Cx(&m) cpow s - | |
(Cx(&1) / Cx(&m) cpow (s - Cx(&1)) - | |
Cx(&1) / Cx(&(m + 1)) cpow (s - Cx(&1)))) | |
sums nearzeta n s) (from n)`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[nearzeta; SUMS_INFSUM] THEN | |
MATCH_MP_TAC SUMMABLE_EQ_COFINITE THEN EXISTS_TAC `from(n + 1)` THEN | |
SUBGOAL_THEN | |
`from(n + 1) DIFF from n UNION from n DIFF from(n + 1) = {n}` | |
(fun th -> REWRITE_TAC[th; FINITE_INSERT; FINITE_RULES]) | |
THENL | |
[SIMP_TAC[EXTENSION; IN_DIFF; IN_UNION; IN_FROM; IN_SING] THEN ARITH_TAC; | |
MP_TAC(SPECL [`n + 1`; `s:complex`] HOLOMORPHIC_NEARZETA_STRONG) THEN | |
ASM_REWRITE_TAC[summable] THEN ANTS_TAC THENL [ARITH_TAC; MESON_TAC[]]]);; | |
let SUMS_COMPLEX_DERIVATIVE_NEARZETA = prove | |
(`!n s. 1 <= n /\ &0 < Re s | |
==> ((\m. (Cx(&1) - (s - Cx(&1)) * clog(Cx(&m))) / Cx(&m) cpow s - | |
(clog(Cx(&(m + 1))) / Cx(&(m + 1)) cpow (s - Cx(&1)) - | |
clog(Cx(&m)) / Cx(&m) cpow (s - Cx(&1)))) sums | |
(complex_derivative (nearzeta n) s)) (from n)`, | |
SIMP_TAC[HOLOMORPHIC_NEARZETA_STRONG]);; | |
let HOLOMORPHIC_NEARZETA = prove | |
(`!n. 1 <= n ==> (nearzeta n) holomorphic_on {s | Re(s) > &0}`, | |
SIMP_TAC[HOLOMORPHIC_ON_OPEN; OPEN_HALFSPACE_RE_GT; IN_ELIM_THM] THEN | |
REWRITE_TAC[real_gt] THEN MESON_TAC[HOLOMORPHIC_NEARZETA_STRONG]);; | |
let COMPLEX_DIFFERENTIABLE_NEARZETA = prove | |
(`!n s. 1 <= n /\ &0 < Re s ==> (nearzeta n) complex_differentiable (at s)`, | |
REPEAT GEN_TAC THEN | |
DISCH_THEN(MP_TAC o MATCH_MP HOLOMORPHIC_NEARZETA_STRONG) THEN | |
MESON_TAC[complex_differentiable]);; | |
let NEARZETA_1 = prove | |
(`!n. 1 <= n ==> nearzeta n (Cx(&1)) = Cx(&0)`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[nearzeta; COMPLEX_SUB_REFL] THEN | |
MATCH_MP_TAC INFSUM_UNIQUE THEN | |
MATCH_MP_TAC SUMS_EQ THEN EXISTS_TAC `\n:num. (vec 0:complex)` THEN | |
REWRITE_TAC[SERIES_0; GSYM COMPLEX_VEC_0] THEN | |
REWRITE_TAC[COMPLEX_VEC_0; IN_FROM; complex_div] THEN X_GEN_TAC `m:num` THEN | |
DISCH_TAC THEN | |
SUBGOAL_THEN `~(m = 0)` ASSUME_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN | |
ASM_SIMP_TAC[CPOW_N; CX_INJ; REAL_OF_NUM_EQ; ADD_EQ_0; ARITH_EQ] THEN | |
REWRITE_TAC[complex_pow] THEN | |
CONV_TAC COMPLEX_RING);; | |
let HOLOMORPHIC_ZETA = prove | |
(`zeta holomorphic_on {s | Re(s) > &0 /\ ~(s = Cx(&1))}`, | |
GEN_REWRITE_TAC LAND_CONV [GSYM ETA_AX] THEN REWRITE_TAC[zeta; genzeta] THEN | |
MATCH_MP_TAC HOLOMORPHIC_TRANSFORM THEN | |
EXISTS_TAC `\z. (nearzeta 1 z + Cx(&1) / Cx(&1) cpow (z - Cx(&1))) / | |
(z - Cx(&1))` THEN | |
SIMP_TAC[IN_ELIM_THM] THEN MATCH_MP_TAC HOLOMORPHIC_ON_DIV THEN | |
SIMP_TAC[IN_ELIM_THM; COMPLEX_SUB_0; HOLOMORPHIC_ON_SUB; | |
HOLOMORPHIC_ON_CONST; HOLOMORPHIC_ON_ID] THEN | |
MATCH_MP_TAC HOLOMORPHIC_ON_ADD THEN CONJ_TAC THENL | |
[MATCH_MP_TAC HOLOMORPHIC_ON_SUBSET THEN | |
EXISTS_TAC `{s | Re s > &0}` THEN | |
SIMP_TAC[HOLOMORPHIC_NEARZETA; LE_REFL; ETA_AX] THEN | |
REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN REAL_ARITH_TAC; | |
REWRITE_TAC[holomorphic_on; GSYM complex_differentiable] THEN | |
REPEAT STRIP_TAC THEN COMPLEX_DIFFERENTIABLE_TAC THEN | |
REWRITE_TAC[CPOW_EQ_0; CX_INJ; REAL_OF_NUM_EQ; ARITH_EQ]]);; | |
let COMPLEX_DIFFERENTIABLE_AT_ZETA = prove | |
(`!s. &0 < Re s /\ ~(s = Cx(&1)) | |
==> zeta complex_differentiable at s`, | |
MP_TAC HOLOMORPHIC_ZETA THEN | |
REWRITE_TAC[SET_RULE `{s | P s /\ ~(s = a)} = {s | P s} DELETE a`] THEN | |
SIMP_TAC[HOLOMORPHIC_ON_OPEN; OPEN_DELETE; OPEN_HALFSPACE_RE_GT] THEN | |
REWRITE_TAC[complex_differentiable; IN_ELIM_THM; IN_DELETE; real_gt]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Euler product formula. Nice proof from Ahlfors' book avoiding any *) | |
(* messing round with the geometric series. *) | |
(* ------------------------------------------------------------------------- *) | |
let SERIES_DIVISORS_LEMMA = prove | |
(`!x p l k. | |
((\n. x(p * n)) sums l) k | |
==> ~(p = 0) /\ | |
(!n. (p * n) IN k <=> n IN k) | |
==> (x sums l) {n | n IN k /\ p divides n}`, | |
REPEAT GEN_TAC THEN | |
DISCH_THEN(fun th -> REPEAT STRIP_TAC THEN MP_TAC th) THEN | |
REWRITE_TAC[sums; LIM_SEQUENTIALLY] THEN | |
MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `e:real` THEN | |
ASM_CASES_TAC `&0 < e` THEN ASM_REWRITE_TAC[] THEN | |
DISCH_THEN(X_CHOOSE_TAC `N:num`) THEN EXISTS_TAC `p * N:num` THEN | |
X_GEN_TAC `n:num` THEN DISCH_TAC THEN | |
FIRST_X_ASSUM(MP_TAC o SPEC `n DIV p`) THEN | |
ASM_SIMP_TAC[LE_RDIV_EQ] THEN MATCH_MP_TAC EQ_IMP THEN | |
AP_THM_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN | |
AP_THM_TAC THEN AP_TERM_TAC THEN | |
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [GSYM o_DEF] THEN | |
W(fun (asl,w) -> MP_TAC(PART_MATCH (rand o rand) VSUM_IMAGE (lhand w))) THEN | |
ASM_SIMP_TAC[FINITE_INTER_NUMSEG; EQ_MULT_LCANCEL] THEN | |
DISCH_THEN(SUBST1_TAC o SYM) THEN AP_THM_TAC THEN AP_TERM_TAC THEN | |
REWRITE_TAC[EXTENSION; IN_IMAGE; IN_ELIM_THM; IN_INTER; IN_NUMSEG] THEN | |
ASM_SIMP_TAC[LE_RDIV_EQ; divides; LE_0] THEN ASM_MESON_TAC[]);; | |
let EULER_PRODUCT_LEMMA = prove | |
(`!s ps. &1 < Re s /\ FINITE ps /\ (!p. p IN ps ==> prime p) | |
==> ((\n. Cx(&1) / Cx(&n) cpow s) sums | |
(cproduct ps (\p. Cx(&1) - inv(Cx(&p) cpow s)) * zeta s)) | |
{n | 1 <= n /\ !p. prime p /\ p divides n ==> ~(p IN ps)}`, | |
let lemma = prove | |
(`(x sums (k + l)) (s UNION t) /\ s INTER t = {} | |
==> (x sums k) s ==> (x sums l) t`, | |
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN | |
REWRITE_TAC[IMP_IMP] THEN REWRITE_TAC[sums] THEN | |
DISCH_THEN(MP_TAC o MATCH_MP LIM_SUB) THEN REWRITE_TAC[VECTOR_ADD_SUB] THEN | |
MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN | |
ABS_TAC THEN ASM_SIMP_TAC[SET_RULE | |
`s INTER t = {} | |
==> t INTER u = (((s UNION t) INTER u) DIFF (s INTER u))`] THEN | |
CONV_TAC SYM_CONV THEN MATCH_MP_TAC VSUM_DIFF THEN | |
REWRITE_TAC[FINITE_INTER_NUMSEG] THEN SET_TAC[]) in | |
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN | |
GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN | |
SIMP_TAC[CPRODUCT_CLAUSES] THEN | |
ASM_SIMP_TAC[ZETA_CONVERGES; COMPLEX_MUL_LID; NOT_IN_EMPTY; GSYM from] THEN | |
MAP_EVERY X_GEN_TAC [`p:num`; `ps:num->bool`] THEN | |
REWRITE_TAC[IN_INSERT; TAUT `a \/ b ==> c <=> (a ==> c) /\ (b ==> c)`] THEN | |
SIMP_TAC[FORALL_AND_THM; LEFT_FORALL_IMP_THM; EXISTS_REFL] THEN | |
DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN | |
ASM_REWRITE_TAC[] THEN STRIP_TAC THEN | |
FIRST_ASSUM(MP_TAC o SPEC `inv(Cx(&p) cpow s)` o MATCH_MP | |
SERIES_COMPLEX_LMUL) THEN | |
REWRITE_TAC[complex_div] THEN | |
ONCE_REWRITE_TAC[COMPLEX_RING `x * Cx(&1) * y = Cx(&1) * x * y`] THEN | |
REWRITE_TAC[GSYM COMPLEX_INV_MUL] THEN REWRITE_TAC[GSYM complex_div] THEN | |
ASM_SIMP_TAC[GSYM CPOW_MUL_REAL; REAL_CX; RE_CX; REAL_POS] THEN | |
REWRITE_TAC[GSYM CX_MUL; REAL_OF_NUM_MUL] THEN | |
DISCH_THEN(MP_TAC o MATCH_MP (REWRITE_RULE[] | |
(ISPEC `\n. Cx(&1) / Cx(&n) cpow s` SERIES_DIVISORS_LEMMA))) THEN | |
ANTS_TAC THENL | |
[SUBGOAL_THEN `~(p = 0)` ASSUME_TAC THENL | |
[ASM_MESON_TAC[PRIME_0]; ALL_TAC] THEN | |
ASM_REWRITE_TAC[IN_ELIM_THM] THEN | |
ASM_SIMP_TAC[PRIME_DIVPROD_EQ] THEN | |
ASM_REWRITE_TAC[MULT_EQ_0; ARITH_RULE `1 <= n <=> ~(n = 0)`] THEN | |
X_GEN_TAC `m:num` THEN ASM_CASES_TAC `m = 0` THEN ASM_REWRITE_TAC[] THEN | |
ASM_MESON_TAC[PRIME_PRIME_FACTOR; PRIME_1]; | |
ALL_TAC] THEN | |
MATCH_MP_TAC lemma THEN REWRITE_TAC[GSYM COMPLEX_MUL_ASSOC] THEN | |
REWRITE_TAC[COMPLEX_RING `a * x + (Cx(&1) - a) * x = x`] THEN | |
CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN FIRST_X_ASSUM(fun th -> | |
MP_TAC th THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC) THEN | |
SET_TAC[]);; | |
let SUMMABLE_SUBZETA = prove | |
(`!s t. &1 < Re s /\ ~(0 IN t) | |
==> summable t (\n. Cx (&1) / Cx (&n) cpow s)`, | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC SUMMABLE_SUBSET THEN | |
EXISTS_TAC `from 1` THEN CONJ_TAC THENL | |
[REWRITE_TAC[SUBSET; IN_FROM] THEN ASM_MESON_TAC[LE_1]; ALL_TAC] THEN | |
MATCH_MP_TAC SERIES_COMPARISON_COMPLEX THEN | |
EXISTS_TAC `\n. Cx(&1) / Cx(&n) cpow (Cx(Re s))` THEN REPEAT CONJ_TAC THENL | |
[REWRITE_TAC[summable] THEN EXISTS_TAC `zeta (Cx(Re s))` THEN | |
MATCH_MP_TAC ZETA_CONVERGES THEN ASM_REWRITE_TAC[RE_CX]; | |
SIMP_TAC[IN_FROM; LE_1; CPOW_REAL_REAL; REAL_CX; RE_CX; REAL_OF_NUM_LT; | |
GSYM CX_DIV; REAL_LE_DIV; REAL_POS; REAL_EXP_POS_LE]; | |
EXISTS_TAC `0` THEN REWRITE_TAC[GE; LE_0; IN_FROM] THEN | |
REPEAT STRIP_TAC THEN COND_CASES_TAC THEN | |
ASM_REWRITE_TAC[NORM_0; NORM_POS_LE] THEN | |
ASM_SIMP_TAC[COMPLEX_NORM_DIV; NORM_CPOW_REAL; REAL_CX; RE_CX; | |
REAL_LE_REFL; REAL_OF_NUM_LT; LE_1]]);; | |
let EULER_PRODUCT_MULTIPLY = prove | |
(`!s. &1 < Re s | |
==> ((\n. cproduct {p | prime p /\ p <= n} | |
(\p. Cx(&1) - inv(Cx(&p) cpow s)) * zeta s) | |
--> Cx(&1)) sequentially`, | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC LIM_TRANSFORM_EVENTUALLY THEN | |
EXISTS_TAC | |
`\n. infsum {m | 1 <= m /\ !p. prime p /\ p divides m | |
==> ~(p IN {p | prime p /\ p <= n})} | |
(\n. Cx (&1) / Cx (&n) cpow s)` THEN | |
CONJ_TAC THENL | |
[MATCH_MP_TAC ALWAYS_EVENTUALLY THEN X_GEN_TAC `n:num` THEN | |
REWRITE_TAC[] THEN MATCH_MP_TAC INFSUM_UNIQUE THEN | |
MATCH_MP_TAC EULER_PRODUCT_LEMMA THEN | |
ASM_SIMP_TAC[IN_ELIM_THM] THEN MATCH_MP_TAC FINITE_SUBSET THEN | |
EXISTS_TAC `0..n` THEN REWRITE_TAC[FINITE_NUMSEG] THEN | |
SIMP_TAC[SUBSET; IN_ELIM_THM; LE_0; IN_NUMSEG]; | |
ALL_TAC] THEN | |
REWRITE_TAC[LIM_SEQUENTIALLY] THEN X_GEN_TAC `e:real` THEN STRIP_TAC THEN | |
SUBGOAL_THEN `?l. ((\n. Cx (&1) / Cx (&n) cpow Cx(Re s)) sums l) (from 1)` | |
MP_TAC THENL | |
[MP_TAC(SPEC `Cx(Re s)` ZETA_CONVERGES) THEN | |
ASM_SIMP_TAC[RE_CX] THEN MESON_TAC[]; | |
ALL_TAC] THEN | |
REWRITE_TAC[SERIES_CAUCHY] THEN | |
DISCH_THEN(MP_TAC o SPEC `e / &2`) THEN ASM_REWRITE_TAC[REAL_HALF; GE] THEN | |
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `N:num` THEN | |
MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `n:num` THEN | |
DISCH_THEN(fun th -> DISCH_TAC THEN MP_TAC th) THEN ASM_REWRITE_TAC[] THEN | |
DISCH_TAC THEN | |
MP_TAC(ISPECL [`s:complex`; | |
`{m | 1 <= m /\ (!p. prime p /\ p divides m ==> n < p)}`] | |
SUMMABLE_SUBZETA) THEN | |
ASM_REWRITE_TAC[IN_ELIM_THM; ARITH] THEN | |
REWRITE_TAC[GSYM SUMS_INFSUM] THEN REWRITE_TAC[sums; LIM_SEQUENTIALLY] THEN | |
DISCH_THEN(MP_TAC o SPEC `e / &2`) THEN ASM_REWRITE_TAC[REAL_HALF] THEN | |
DISCH_THEN(X_CHOOSE_THEN `N2:num` (MP_TAC o SPEC `N1 + N2 + 1`)) THEN | |
ANTS_TAC THENL [ARITH_TAC; ALL_TAC] THEN SIMP_TAC[NOT_LE] THEN | |
MATCH_MP_TAC(REAL_ARITH | |
`dist(x,z) < e / &2 /\ dist(y,z) <= dist(x,y) + dist(x,z) | |
==> dist(x,y) < e / &2 ==> dist(y,z) < e`) THEN | |
CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[DIST_TRIANGLE; DIST_SYM]] THEN | |
FIRST_X_ASSUM(MP_TAC o SPEC `N1 + N2 + 1`) THEN | |
MATCH_MP_TAC(REAL_ARITH `x <= y ==> y < e ==> x < e`) THEN | |
REWRITE_TAC[dist] THEN SUBGOAL_THEN | |
`vsum | |
({m | 1 <= m /\ (!p. prime p /\ p divides m ==> n < p)} INTER | |
(0..N1 + N2 + 1)) | |
(\n. Cx (&1) / Cx (&n) cpow s) - Cx(&1) = | |
vsum | |
(({m | 1 <= m /\ (!p. prime p /\ p divides m ==> n < p)} INTER | |
(0..N1 + N2 + 1)) DELETE 1) | |
(\n. Cx (&1) / Cx (&n) cpow s)` | |
SUBST1_TAC THENL | |
[SIMP_TAC[VSUM_DELETE_CASES; FINITE_INTER_NUMSEG] THEN | |
REWRITE_TAC[IN_ELIM_THM; DIVIDES_ONE; IN_INTER] THEN | |
REWRITE_TAC[CPOW_1; COMPLEX_DIV_1] THEN | |
REWRITE_TAC[MESON[] `(!x. P x /\ x = 1 ==> Q x) <=> P 1 ==> Q 1`] THEN | |
REWRITE_TAC[PRIME_1; IN_NUMSEG; ARITH; ARITH_RULE `1 <= a + b + 1`]; | |
ALL_TAC] THEN | |
MATCH_MP_TAC COMPLEX_NORM_VSUM_BOUND_SUBSET THEN | |
REWRITE_TAC[FINITE_INTER_NUMSEG] THEN CONJ_TAC THENL | |
[SIMP_TAC[SUBSET; IN_DELETE; IN_INTER; IN_ELIM_THM; IN_NUMSEG; IN_FROM] THEN | |
ASM_MESON_TAC[PRIME_FACTOR; DIVIDES_LE; NUM_REDUCE_CONV `1 <= 0`; | |
LT_IMP_LE; LE_TRANS]; | |
ALL_TAC] THEN | |
X_GEN_TAC `m:num` THEN REWRITE_TAC[IN_INTER; IN_FROM] THEN STRIP_TAC THEN | |
REWRITE_TAC[complex_div; COMPLEX_MUL_LID; COMPLEX_NORM_INV] THEN | |
ASM_SIMP_TAC[CPOW_REAL_REAL; REAL_CX; RE_CX; REAL_OF_NUM_LT; LE_1; | |
NORM_CPOW_REAL] THEN | |
SIMP_TAC[REAL_INV; REAL_CX; GSYM CX_INV; RE_CX; REAL_LE_REFL]);; | |
let ZETA_NONZERO_LEMMA = prove | |
(`!s. &1 < Re s ==> ~(zeta s = Cx(&0))`, | |
REPEAT STRIP_TAC THEN | |
FIRST_ASSUM(MP_TAC o MATCH_MP EULER_PRODUCT_MULTIPLY) THEN | |
REWRITE_TAC[LIM_SEQUENTIALLY] THEN DISCH_THEN(MP_TAC o SPEC `&1 / &2`) THEN | |
CONV_TAC REAL_RAT_REDUCE_CONV THEN | |
DISCH_THEN(X_CHOOSE_THEN `n:num` (MP_TAC o SPEC `n:num`)) THEN | |
ASM_REWRITE_TAC[COMPLEX_MUL_RZERO; LE_REFL] THEN | |
REWRITE_TAC[dist; COMPLEX_SUB_LZERO; NORM_NEG; COMPLEX_NORM_CX] THEN | |
CONV_TAC REAL_RAT_REDUCE_CONV);; | |
let EULER_PRODUCT = prove | |
(`!s. &1 < Re s | |
==> ((\n. cproduct {p | prime p /\ p <= n} | |
(\p. inv(Cx(&1) - inv(Cx(&p) cpow s)))) | |
--> zeta(s)) sequentially`, | |
REPEAT STRIP_TAC THEN | |
GEN_REWRITE_TAC (PAT_CONV `\x. ((\n. x) --> x) sq`) | |
[GSYM COMPLEX_INV_INV] THEN | |
MATCH_MP_TAC LIM_COMPLEX_INV THEN | |
ASM_SIMP_TAC[COMPLEX_INV_EQ_0; ZETA_NONZERO_LEMMA] THEN | |
FIRST_ASSUM(MP_TAC o MATCH_MP EULER_PRODUCT_MULTIPLY) THEN | |
DISCH_THEN(MP_TAC o SPEC `inv(zeta(s))` o MATCH_MP LIM_COMPLEX_RMUL) THEN | |
REWRITE_TAC[COMPLEX_MUL_LID; GSYM COMPLEX_MUL_ASSOC] THEN | |
ASM_SIMP_TAC[ZETA_NONZERO_LEMMA; COMPLEX_MUL_RINV; COMPLEX_MUL_RID] THEN | |
ASM_SIMP_TAC[GSYM CPRODUCT_INV; FINITE_ATMOST; COMPLEX_INV_INV]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Show that s = 1 is not a zero, just for tidiness. *) | |
(* ------------------------------------------------------------------------- *) | |
let SUMS_GAMMA = prove | |
(`((\n. Cx(sum(1..n) (\i. &1 / &i - (log(&(i + 1)) - log(&i))))) --> | |
complex_derivative (nearzeta 1) (Cx(&1))) sequentially`, | |
MP_TAC(SPECL [`1`; `Cx(&1)`] SUMS_COMPLEX_DERIVATIVE_NEARZETA) THEN | |
SIMP_TAC[GSYM VSUM_CX; FINITE_NUMSEG; RE_CX; REAL_LT_01; LE_REFL] THEN | |
REWRITE_TAC[COMPLEX_SUB_REFL; COMPLEX_MUL_LZERO; CPOW_N; sums] THEN | |
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] LIM_TRANSFORM_EVENTUALLY) THEN | |
MATCH_MP_TAC ALWAYS_EVENTUALLY THEN X_GEN_TAC `n:num` THEN | |
REWRITE_TAC[FROM_INTER_NUMSEG] THEN MATCH_MP_TAC VSUM_EQ THEN | |
SIMP_TAC[IN_NUMSEG; CX_INJ; REAL_OF_NUM_EQ; ADD_EQ_0; ARITH; REAL_OF_NUM_LT; | |
ARITH_RULE `1 <= i ==> 0 < i /\ ~(i = 0)`; GSYM CX_LOG; | |
ARITH_RULE `0 < i + 1`] THEN | |
REWRITE_TAC[complex_pow; COMPLEX_POW_1; COMPLEX_SUB_RZERO] THEN | |
REWRITE_TAC[GSYM CX_DIV; GSYM CX_SUB; REAL_DIV_1]);; | |
let ZETA_1_NZ = prove | |
(`~(zeta(Cx(&1)) = Cx(&0))`, | |
REWRITE_TAC[zeta; genzeta] THEN DISCH_TAC THEN | |
SUBGOAL_THEN `&1 - log(&2) <= Re(complex_derivative (nearzeta 1) (Cx(&1)))` | |
MP_TAC THENL | |
[REWRITE_TAC[RE_DEF] THEN | |
MATCH_MP_TAC(ISPEC `sequentially` LIM_COMPONENT_LBOUND) THEN | |
EXISTS_TAC `\n. Cx(sum(1..n) (\i. &1 / &i - (log(&(i + 1)) - log(&i))))` THEN | |
REWRITE_TAC[SUMS_GAMMA; TRIVIAL_LIMIT_SEQUENTIALLY; DIMINDEX_2; ARITH] THEN | |
REWRITE_TAC[EVENTUALLY_SEQUENTIALLY] THEN | |
EXISTS_TAC `1` THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN | |
REWRITE_TAC[GSYM RE_DEF; RE_CX] THEN | |
ASM_SIMP_TAC[SUM_CLAUSES_LEFT; ARITH; REAL_DIV_1; LOG_1] THEN | |
REWRITE_TAC[REAL_ARITH `a - b <= a - (b - &0) + c <=> &0 <= c`] THEN | |
MATCH_MP_TAC SUM_POS_LE THEN REWRITE_TAC[FINITE_NUMSEG; IN_NUMSEG] THEN | |
SIMP_TAC[REAL_SUB_LE; GSYM LOG_DIV; REAL_OF_NUM_LT; | |
ARITH_RULE `2 <= x ==> 0 < x /\ 0 < x + 1`] THEN | |
REWRITE_TAC[GSYM REAL_OF_NUM_ADD] THEN | |
SIMP_TAC[REAL_FIELD `&0 < x ==> (x + &1) / x = &1 + &1 / x`; | |
REAL_OF_NUM_LT; ARITH_RULE `2 <= x ==> 0 < x`] THEN | |
SIMP_TAC[LOG_LE; REAL_LE_DIV; REAL_POS]; | |
ASM_REWRITE_TAC[RE_CX; REAL_NOT_LE; REAL_SUB_LT] THEN | |
GEN_REWRITE_TAC I [GSYM REAL_EXP_MONO_LT] THEN | |
SIMP_TAC[EXP_LOG; REAL_OF_NUM_LT; ARITH] THEN | |
SUBGOAL_THEN `(&1 + &1 / &2) pow 2 <= exp(&1 / &2) pow 2` MP_TAC THENL | |
[MATCH_MP_TAC REAL_POW_LE2 THEN | |
CONJ_TAC THENL [CONV_TAC REAL_RAT_REDUCE_CONV; ALL_TAC] THEN | |
REWRITE_TAC[REAL_EXP_LE_X]; | |
ALL_TAC] THEN | |
SIMP_TAC[GSYM REAL_EXP_N; REAL_DIV_LMUL; REAL_OF_NUM_EQ; ARITH] THEN | |
REAL_ARITH_TAC]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Lack of zeros on Re(s) >= 1. Nice proof from Bak & Newman. *) | |
(* ------------------------------------------------------------------------- *) | |
let ZETA_MULTIPLE_BOUND = prove | |
(`!x y. real x /\ real y /\ &1 < Re x | |
==> &1 <= norm(zeta(x) pow 3 * | |
zeta(x + ii * y) pow 4 * | |
zeta(x + Cx(&2) * ii * y) pow 2)`, | |
let lemma1 = prove | |
(`&0 <= a /\ &0 <= b /\ &0 <= c /\ | |
c * (&2 * a + b) pow 3 / &27 <= x | |
==> c * a pow 2 * b <= x`, | |
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN | |
MATCH_MP_TAC(REAL_ARITH `a <= b ==> b <= x ==> a <= x`) THEN | |
MATCH_MP_TAC REAL_LE_LMUL THEN ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[REAL_ARITH | |
`a pow 2 * b <= (&2 * a + b) pow 3 / &27 <=> | |
&0 <= (&8 / &27 * a + &1 / &27 * b) * (a - b) pow 2`] THEN | |
MATCH_MP_TAC REAL_LE_MUL THEN REWRITE_TAC[REAL_POW_2; REAL_LE_SQUARE] THEN | |
ASM_REAL_ARITH_TAC) | |
and lemma2 = prove | |
(`-- &1 <= t /\ t <= &1 | |
==> &0 <= &1 + r pow 2 - &2 * r * t`, | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC(REAL_ARITH | |
`&0 <= (&1 - t) * (&1 + t) /\ &0 <= (r - t) pow 2 | |
==> &0 <= &1 + r pow 2 - &2 * r * t`) THEN | |
REWRITE_TAC[REAL_POW_2; REAL_LE_SQUARE] THEN | |
MATCH_MP_TAC REAL_LE_MUL THEN ASM_REAL_ARITH_TAC) in | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC(ISPEC `sequentially` LIM_NORM_LBOUND) THEN | |
EXISTS_TAC | |
`\n. cproduct {p | prime p /\ p <= n} | |
(\p. inv(Cx(&1) - inv(Cx(&p) cpow x))) pow 3 * | |
cproduct {p | prime p /\ p <= n} | |
(\p. inv(Cx(&1) - inv(Cx(&p) cpow (x + ii * y)))) pow 4 * | |
cproduct {p | prime p /\ p <= n} | |
(\p. inv(Cx(&1) - | |
inv(Cx(&p) cpow (x + Cx(&2) * ii * y)))) pow 2` THEN | |
REWRITE_TAC[EVENTUALLY_SEQUENTIALLY; TRIVIAL_LIMIT_SEQUENTIALLY] THEN | |
CONJ_TAC THENL | |
[REPEAT(MATCH_MP_TAC LIM_COMPLEX_MUL THEN CONJ_TAC) THEN | |
MATCH_MP_TAC LIM_COMPLEX_POW THEN | |
MATCH_MP_TAC EULER_PRODUCT THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[real]) THEN | |
ASM_REWRITE_TAC[RE_ADD; RE_MUL_CX; RE_MUL_II; | |
REAL_NEG_0; REAL_ADD_RID; REAL_MUL_RZERO]; | |
ALL_TAC] THEN | |
EXISTS_TAC `0` THEN REWRITE_TAC[LE_0] THEN X_GEN_TAC `n:num` THEN | |
GEN_REWRITE_TAC BINOP_CONV [GSYM REAL_INV_INV] THEN | |
MATCH_MP_TAC REAL_LE_INV2 THEN | |
REWRITE_TAC[GSYM COMPLEX_NORM_INV; COMPLEX_NORM_NZ; COMPLEX_INV_EQ_0] THEN | |
ASM_SIMP_TAC[COMPLEX_ENTIRE; COMPLEX_POW_EQ_0; ARITH; COMPLEX_INV_EQ_0; | |
CPRODUCT_EQ_0; IN_ELIM_THM; FINITE_ATMOST] THEN | |
REWRITE_TAC[COMPLEX_RING `Cx(&1) - x = Cx(&0) <=> x = Cx(&1)`] THEN | |
REWRITE_TAC[DE_MORGAN_THM; NOT_EXISTS_THM] THEN CONJ_TAC THENL | |
[REWRITE_TAC[TAUT `(~p \/ ~q) \/ ~r <=> p /\ q ==> ~r`] THEN | |
REPEAT CONJ_TAC THEN X_GEN_TAC `p:num` THEN STRIP_TAC THEN | |
DISCH_THEN(MP_TAC o AP_TERM `(norm:complex->real) o inv`) THEN | |
REWRITE_TAC[COMPLEX_NORM_INV; o_THM; COMPLEX_NORM_CX; REAL_ABS_NUM; | |
REAL_INV_INV; REAL_INV_1] THEN | |
ASM_SIMP_TAC[NORM_CPOW_REAL; REAL_OF_NUM_LT; PRIME_IMP_NZ; LT_NZ; | |
REAL_EXP_EQ_1; REAL_CX; RE_CX] THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[real]) THEN | |
ASM_REWRITE_TAC[REAL_ENTIRE; RE_ADD; RE_MUL_CX; RE_MUL_II; | |
REAL_NEG_0; REAL_ADD_RID; REAL_MUL_RZERO] THEN | |
MATCH_MP_TAC(REAL_ARITH `&1 < x /\ &0 < y ==> ~(x = &0 \/ y = &0)`) THEN | |
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC LOG_POS_LT THEN | |
FIRST_ASSUM(MP_TAC o MATCH_MP PRIME_GE_2) THEN | |
REWRITE_TAC[REAL_OF_NUM_LT] THEN ARITH_TAC; | |
ALL_TAC] THEN | |
ASM_SIMP_TAC[GSYM CPRODUCT_POW; FINITE_ATMOST; GSYM CPRODUCT_MUL] THEN | |
SIMP_TAC[GSYM CPRODUCT_INV; COMPLEX_INV_INV; FINITE_ATMOST] THEN | |
REWRITE_TAC[COMPLEX_INV_MUL; GSYM COMPLEX_POW_INV; COMPLEX_INV_INV] THEN | |
SIMP_TAC[NORM_CPRODUCT; FINITE_ATMOST; REAL_INV_1] THEN | |
MATCH_MP_TAC PRODUCT_LE_1 THEN SIMP_TAC[NORM_POS_LE; FINITE_ATMOST] THEN | |
X_GEN_TAC `p:num` THEN REWRITE_TAC[IN_ELIM_THM] THEN STRIP_TAC THEN | |
REWRITE_TAC[CPOW_ADD; COMPLEX_MUL_2; GSYM COMPLEX_POW_2] THEN | |
REWRITE_TAC[COMPLEX_INV_MUL] THEN | |
FIRST_ASSUM(ASSUME_TAC o MATCH_MP PRIME_IMP_NZ) THEN | |
ASM_REWRITE_TAC[cpow; CX_INJ; REAL_OF_NUM_EQ] THEN | |
ASM_SIMP_TAC[GSYM CX_LOG; REAL_OF_NUM_LT; LT_NZ] THEN | |
REWRITE_TAC[GSYM CEXP_NEG; GSYM CEXP_N] THEN | |
REPEAT(FIRST_X_ASSUM(SUBST1_TAC o SYM o CONV_RULE(REWR_CONV REAL))) THEN | |
SIMP_TAC[GSYM CX_MUL; GSYM CX_NEG; GSYM CX_EXP; GSYM COMPLEX_MUL_ASSOC] THEN | |
REWRITE_TAC[COMPLEX_RING `--(ii * x) = ii * --x`] THEN | |
REWRITE_TAC[COMPLEX_RING `--(Cx(&2) * ii * x) = ii * Cx(&2) * --x`] THEN | |
REWRITE_TAC[CEXP_EULER] THEN | |
REWRITE_TAC[CCOS_NEG; CSIN_NEG; GSYM CX_SIN; GSYM CX_COS; GSYM CX_NEG; | |
GSYM CX_MUL] THEN | |
REWRITE_TAC[COMPLEX_NORM_MUL; COMPLEX_NORM_POW] THEN | |
SIMP_TAC[REAL_RING `(z:real) pow 4 = (z pow 2) pow 2`; COMPLEX_SQNORM] THEN | |
REWRITE_TAC[COMPLEX_SQNORM] THEN | |
REWRITE_TAC[RE_SUB; RE_CX; RE_MUL_CX; RE_ADD; RE_MUL_II; | |
IM_SUB; IM_CX; IM_MUL_CX; IM_ADD; IM_MUL_II] THEN | |
REWRITE_TAC[REAL_NEG_0; REAL_ADD_RID; REAL_SUB_LZERO; REAL_ADD_LID] THEN | |
REWRITE_TAC[REAL_RING | |
`(&1 - r * c) pow 2 + --(r * s) pow 2 = | |
&1 + r pow 2 * (s pow 2 + c pow 2) - &2 * r * c`] THEN | |
REWRITE_TAC[SIN_CIRCLE; REAL_POW_NEG; ARITH] THEN | |
ABBREV_TAC `r = exp(--(Re x * log(&p)))` THEN | |
REWRITE_TAC[COS_DOUBLE_COS; COS_NEG; GSYM CX_SUB; COMPLEX_NORM_CX] THEN | |
ABBREV_TAC `t = cos(Re y * log(&p))` THEN | |
REWRITE_TAC[REAL_MUL_RID; REAL_ARITH | |
`x - &2 * r * (&2 * y - &1) = x + &2 * r - &4 * r * y`] THEN | |
MP_TAC(SPEC `Re y * log(&p)` COS_BOUNDS) THEN ASM_REWRITE_TAC[] THEN | |
SUBGOAL_THEN `&0 < r /\ r < &1` MP_TAC THENL | |
[EXPAND_TAC "r" THEN REWRITE_TAC[REAL_EXP_POS_LT] THEN | |
SUBST1_TAC(GSYM REAL_EXP_0) THEN REWRITE_TAC[REAL_EXP_MONO_LT] THEN | |
REWRITE_TAC[REAL_LT_LNEG; REAL_ADD_RID] THEN | |
MATCH_MP_TAC REAL_LT_MUL THEN | |
ASM_SIMP_TAC[LOG_POS_LT; REAL_OF_NUM_LT; ARITH_RULE `1 < t <=> 2 <= t`; | |
PRIME_GE_2] THEN | |
ASM_REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
SIMP_TAC[REAL_ARITH `r < &1 ==> abs(&1 - r) = (&1 - r)`] THEN | |
POP_ASSUM_LIST(K ALL_TAC) THEN REPEAT STRIP_TAC THEN | |
REPEAT(FIRST_X_ASSUM(ASSUME_TAC o MATCH_MP REAL_LT_IMP_LE)) THEN | |
MATCH_MP_TAC lemma1 THEN | |
ASM_SIMP_TAC[REAL_POW_LE; REAL_SUB_LE; lemma2] THEN CONJ_TAC THENL | |
[REWRITE_TAC[REAL_ARITH | |
`&1 + s + &2 * r - &4 * r * t = &1 + s - &2 * r * (&2 * t - &1)`] THEN | |
MATCH_MP_TAC lemma2 THEN ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[REAL_ARITH `-- &1 <= &2 * x pow 2 - &1 <=> &0 <= x * x`; | |
REAL_ARITH `&2 * t pow 2 - &1 <= &1 <=> t pow 2 <= &1 pow 2`; | |
REAL_LE_SQUARE] THEN | |
GEN_REWRITE_TAC LAND_CONV [GSYM REAL_POW2_ABS] THEN | |
MATCH_MP_TAC REAL_POW_LE2 THEN ASM_REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
REWRITE_TAC[REAL_ARITH | |
`x pow 3 * y pow 3 / &27 <= &1 <=> (x * y) pow 3 <= &3 pow 3`] THEN | |
MATCH_MP_TAC REAL_POW_LE2_ODD THEN REWRITE_TAC[ARITH] THEN | |
REWRITE_TAC[REAL_ARITH | |
`&2 * (&1 + r pow 2 - &2 * r * t) + &1 + r pow 2 + | |
&2 * r - &4 * r * t pow 2 = | |
(&3 + &3 * r pow 2) - &2 * r * (&2 * t pow 2 + &2 * t - &1)`] THEN | |
MATCH_MP_TAC REAL_LE_TRANS THEN | |
EXISTS_TAC `(&1 - r) * ((&3 + &3 * r pow 2) + &3 * r)` THEN CONJ_TAC THENL | |
[MATCH_MP_TAC REAL_LE_LMUL THEN ASM_REWRITE_TAC[REAL_SUB_LE] THEN | |
REWRITE_TAC[REAL_ARITH | |
`c - &2 * r * y <= c + &3 * r <=> &0 <= r * (&2 * y + &3)`] THEN | |
MATCH_MP_TAC REAL_LE_MUL THEN ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[REAL_ARITH `&0 <= &2 * (&2 * t pow 2 + &2 * t - &1) + &3 <=> | |
&0 <= (t + &1 / &2) pow 2`] THEN | |
REWRITE_TAC[REAL_POW_2; REAL_LE_SQUARE]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `&0 <= r pow 3` MP_TAC THENL | |
[ASM_SIMP_TAC[REAL_POW_LE]; REAL_ARITH_TAC]);; | |
let ZETA_NONZERO = prove | |
(`!s. &1 <= Re s ==> ~(zeta s = Cx(&0))`, | |
REWRITE_TAC[REAL_ARITH `&1 <= x <=> &1 < x \/ x = &1`] THEN | |
REPEAT GEN_TAC THEN STRIP_TAC THEN ASM_SIMP_TAC[ZETA_NONZERO_LEMMA] THEN | |
SUBST1_TAC(SPEC `s:complex` COMPLEX_EXPAND) THEN | |
ASM_REWRITE_TAC[] THEN ABBREV_TAC `y = Im s` THEN ASM_CASES_TAC `y = &0` THEN | |
ASM_REWRITE_TAC[COMPLEX_MUL_RZERO; COMPLEX_ADD_RID; ZETA_1_NZ] THEN | |
DISCH_TAC THEN SUBGOAL_THEN | |
`~(&1 <= norm((Cx(&0) * | |
complex_derivative (\x. zeta(x + ii * Cx y)) (Cx(&1)) pow 4) * | |
zeta (Cx(&1) + Cx (&2) * ii * Cx(y)) pow 2))` | |
MP_TAC THENL | |
[REWRITE_TAC[COMPLEX_NORM_CX; COMPLEX_MUL_LZERO] THEN REAL_ARITH_TAC; | |
SIMP_TAC[]] THEN | |
MATCH_MP_TAC(ISPEC `at (Cx(&1)) within {s | real s /\ &1 < Re s}` | |
LIM_NORM_LBOUND) THEN | |
EXISTS_TAC | |
`\x. zeta (x) pow 3 * zeta (x + ii * Cx(y)) pow 4 * | |
zeta (x + Cx (&2) * ii * Cx(y)) pow 2` THEN | |
REWRITE_TAC[EVENTUALLY_WITHIN; TRIVIAL_LIMIT_WITHIN] THEN | |
SUBGOAL_THEN `Cx(&1) limit_point_of {s | real s /\ &1 < Re s}` | |
ASSUME_TAC THENL | |
[REWRITE_TAC[LIMPT_APPROACHABLE_LE] THEN X_GEN_TAC `e:real` THEN | |
DISCH_TAC THEN EXISTS_TAC `Cx(&1 + e)` THEN | |
REWRITE_TAC[dist; CX_INJ; IN_ELIM_THM; REAL_CX; RE_CX] THEN | |
REWRITE_TAC[GSYM CX_SUB; REAL_ADD_SUB; COMPLEX_NORM_CX] THEN | |
UNDISCH_TAC `&0 < e` THEN REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
ASM_REWRITE_TAC[] THEN CONJ_TAC THENL | |
[ALL_TAC; | |
EXISTS_TAC `&1` THEN REWRITE_TAC[REAL_LT_01; IN_ELIM_THM] THEN | |
SIMP_TAC[ZETA_MULTIPLE_BOUND; REAL_CX]] THEN | |
REWRITE_TAC[COMPLEX_MUL_ASSOC] THEN MATCH_MP_TAC LIM_COMPLEX_MUL THEN | |
CONJ_TAC THENL | |
[ALL_TAC; | |
REWRITE_TAC[GSYM CONTINUOUS_WITHIN] THEN | |
MATCH_MP_TAC CONTINUOUS_AT_WITHIN THEN | |
MATCH_MP_TAC CONTINUOUS_COMPLEX_POW THEN | |
GEN_REWRITE_TAC LAND_CONV [GSYM o_DEF] THEN | |
MATCH_MP_TAC CONTINUOUS_AT_COMPOSE THEN | |
SIMP_TAC[CONTINUOUS_ADD; CONTINUOUS_CONST; CONTINUOUS_AT_ID] THEN | |
MATCH_MP_TAC COMPLEX_DIFFERENTIABLE_IMP_CONTINUOUS_AT THEN | |
MATCH_MP_TAC COMPLEX_DIFFERENTIABLE_AT_ZETA THEN | |
REWRITE_TAC[RE_ADD; RE_MUL_CX; RE_MUL_II; RE_II; RE_CX] THEN | |
REWRITE_TAC[COMPLEX_RING `x + y = x <=> y = Cx(&0)`] THEN | |
ASM_REWRITE_TAC[COMPLEX_ENTIRE; II_NZ; CX_INJ; REAL_OF_NUM_EQ; ARITH] THEN | |
REAL_ARITH_TAC] THEN | |
MATCH_MP_TAC LIM_TRANSFORM THEN | |
EXISTS_TAC `\x. (zeta x pow 3 * (x - Cx(&1)) pow 4) * | |
(zeta(x + ii * Cx y) / (x - Cx(&1))) pow 4` THEN | |
REWRITE_TAC[] THEN CONJ_TAC THENL | |
[SIMP_TAC[LIM_WITHIN; GSYM DIST_NZ; COMPLEX_SUB_0; COMPLEX_FIELD | |
`~(x = Cx(&0)) | |
==> (y * x pow 4) * (z / x) pow 4 - y * z pow 4 = Cx(&0)`] THEN | |
SIMP_TAC[dist; COMPLEX_VEC_0; COMPLEX_SUB_REFL; COMPLEX_NORM_0] THEN | |
MESON_TAC[REAL_LT_01]; | |
ALL_TAC] THEN | |
MATCH_MP_TAC LIM_COMPLEX_MUL THEN CONJ_TAC THENL | |
[ALL_TAC; | |
MATCH_MP_TAC LIM_COMPLEX_POW THEN | |
SUBGOAL_THEN `((\x. zeta (x + ii * Cx y)) has_complex_derivative | |
complex_derivative (\x. zeta (x + ii * Cx y)) (Cx (&1))) | |
(at (Cx (&1)) within {s | real s /\ &1 < Re s})` | |
MP_TAC THENL | |
[ALL_TAC; | |
ASM_REWRITE_TAC[HAS_COMPLEX_DERIVATIVE_WITHIN; COMPLEX_SUB_RZERO]] THEN | |
MATCH_MP_TAC HAS_COMPLEX_DERIVATIVE_AT_WITHIN THEN | |
REWRITE_TAC[HAS_COMPLEX_DERIVATIVE_DIFFERENTIABLE] THEN | |
GEN_REWRITE_TAC LAND_CONV [GSYM o_DEF] THEN | |
MATCH_MP_TAC COMPLEX_DIFFERENTIABLE_COMPOSE_AT THEN | |
SIMP_TAC[COMPLEX_DIFFERENTIABLE_ADD; COMPLEX_DIFFERENTIABLE_CONST; | |
COMPLEX_DIFFERENTIABLE_ID] THEN | |
MATCH_MP_TAC COMPLEX_DIFFERENTIABLE_AT_ZETA THEN | |
ASM_REWRITE_TAC[RE_ADD; RE_MUL_II; COMPLEX_RING `x + y = x <=> y = Cx(&0)`; | |
IM_CX; COMPLEX_ENTIRE; II_NZ; RE_CX; CX_INJ] THEN | |
REAL_ARITH_TAC] THEN | |
MATCH_MP_TAC LIM_TRANSFORM THEN | |
EXISTS_TAC `\x. (nearzeta 1 (x) + Cx(&1)) pow 3 * (x - Cx(&1))` THEN | |
CONJ_TAC THENL | |
[SIMP_TAC[LIM_WITHIN; CPOW_1; GSYM DIST_NZ; zeta; genzeta; COMPLEX_DIV_1; | |
COMPLEX_FIELD | |
`~(x:complex = a) | |
==> b * (x - a) - (c / (x - a)) pow 3 * (x - a) pow 4 = | |
(b - c pow 3) * (x - a)`] THEN | |
REWRITE_TAC[dist; VECTOR_SUB_RZERO; VECTOR_SUB_REFL] THEN | |
SIMP_TAC[COMPLEX_VEC_0; COMPLEX_MUL_LZERO; COMPLEX_NORM_0] THEN | |
MESON_TAC[REAL_LT_01]; | |
ALL_TAC] THEN | |
MATCH_MP_TAC LIM_AT_WITHIN THEN SUBST1_TAC(COMPLEX_RING | |
`Cx(&0) = (nearzeta 1 (Cx(&1)) + Cx(&1)) pow 3 * (Cx(&1) - Cx(&1))`) THEN | |
MATCH_MP_TAC LIM_COMPLEX_MUL THEN | |
SIMP_TAC[LIM_SUB; LIM_CONST; LIM_AT_ID] THEN | |
MATCH_MP_TAC LIM_COMPLEX_POW THEN MATCH_MP_TAC LIM_ADD THEN | |
REWRITE_TAC[LIM_CONST] THEN REWRITE_TAC[GSYM CONTINUOUS_AT] THEN | |
MATCH_MP_TAC COMPLEX_DIFFERENTIABLE_IMP_CONTINUOUS_AT THEN | |
ASM_SIMP_TAC[ETA_AX; COMPLEX_DIFFERENTIABLE_NEARZETA; | |
RE_CX; REAL_OF_NUM_LT; ARITH]);; | |
let NEARZETA_NONZERO = prove | |
(`!s. &1 <= Re s ==> ~(nearzeta 1 s + Cx (&1) = Cx(&0))`, | |
REPEAT GEN_TAC THEN DISCH_TAC THEN | |
FIRST_ASSUM(MP_TAC o MATCH_MP ZETA_NONZERO) THEN | |
REWRITE_TAC[zeta; genzeta] THEN COND_CASES_TAC THEN | |
ASM_SIMP_TAC[NEARZETA_1; ARITH; CPOW_1] THEN | |
REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC COMPLEX_FIELD);; | |
(* ------------------------------------------------------------------------- *) | |
(* The logarithmic derivative of the zeta function. *) | |
(* ------------------------------------------------------------------------- *) | |
let NORM_CLOG_BOUND = prove | |
(`norm(z) <= &1 / &2 ==> norm(clog(Cx(&1) - z)) <= &2 * norm(z)`, | |
REPEAT STRIP_TAC THEN | |
MP_TAC(ISPECL [`\z. clog(Cx(&1) - z)`; `\z. inv(z - Cx(&1))`; | |
`cball(Cx(&0),&1 / &2)`; `&2`] COMPLEX_DIFFERENTIABLE_BOUND) THEN | |
ANTS_TAC THENL | |
[ALL_TAC; | |
DISCH_THEN(MP_TAC o SPECL [`z:complex`; `Cx(&0)`]) THEN | |
REWRITE_TAC[COMPLEX_SUB_RZERO; CLOG_1] THEN DISCH_THEN MATCH_MP_TAC THEN | |
ASM_REWRITE_TAC[CENTRE_IN_CBALL] THEN REWRITE_TAC[IN_CBALL] THEN | |
ASM_REWRITE_TAC[dist; COMPLEX_SUB_LZERO; NORM_NEG] THEN | |
CONV_TAC REAL_RAT_REDUCE_CONV] THEN | |
REWRITE_TAC[CONVEX_CBALL; IN_CBALL; dist; COMPLEX_SUB_LZERO; NORM_NEG] THEN | |
X_GEN_TAC `w:complex` THEN DISCH_TAC THEN CONJ_TAC THENL | |
[COMPLEX_DIFF_TAC THEN | |
REWRITE_TAC[COMPLEX_RING `(Cx(&0) - Cx(&1)) * x = --x`] THEN | |
REWRITE_TAC[COMPLEX_NEG_INV; COMPLEX_NEG_SUB] THEN | |
DISCH_THEN(K ALL_TAC) THEN REWRITE_TAC[RE_SUB; REAL_SUB_LT] THEN | |
MP_TAC(SPEC `w:complex` COMPLEX_NORM_GE_RE_IM) THEN | |
REWRITE_TAC[RE_SUB; RE_CX] THEN | |
ASM_REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
SUBST1_TAC(SYM(REAL_RAT_REDUCE_CONV `inv(&1 / &2)`)) THEN | |
REWRITE_TAC[COMPLEX_NORM_INV] THEN MATCH_MP_TAC REAL_LE_INV2 THEN | |
MP_TAC(SPEC `1` COMPLEX_NORM_NUM) THEN ASM_NORM_ARITH_TAC);; | |
let LOGZETA_EXISTS = prove | |
(`?logzeta logzeta'. | |
!s. s IN {s | Re s > &1} | |
==> ((\p. clog(Cx(&1) - inv(Cx(&p) cpow s))) | |
sums logzeta(s)) | |
{p | prime p} /\ | |
((\p. clog(Cx(&p)) / (Cx(&p) cpow s - Cx(&1))) | |
sums logzeta'(s)) | |
{p | prime p} /\ | |
(logzeta has_complex_derivative logzeta'(s)) (at s)`, | |
MATCH_MP_TAC SERIES_AND_DERIVATIVE_COMPARISON_COMPLEX THEN | |
REWRITE_TAC[OPEN_HALFSPACE_RE_GT] THEN CONJ_TAC THENL | |
[REWRITE_TAC[IN_ELIM_THM; real_gt] THEN | |
REPEAT STRIP_TAC THEN COMPLEX_DIFF_TAC THEN | |
ASM_SIMP_TAC[CPOW_EQ_0; CX_INJ; REAL_OF_NUM_EQ; PRIME_IMP_NZ; | |
COMPLEX_SUB_LZERO; COMPLEX_MUL_LID; COMPLEX_FIELD | |
`~(x = Cx(&0)) ==> --(a * x) / x pow 2 = --(a / x)`] THEN | |
REWRITE_TAC[complex_div; COMPLEX_MUL_LNEG; COMPLEX_NEG_NEG] THEN | |
REWRITE_TAC[GSYM COMPLEX_MUL_ASSOC; GSYM COMPLEX_INV_MUL] THEN | |
ASM_SIMP_TAC[CPOW_EQ_0; CX_INJ; REAL_OF_NUM_EQ; PRIME_IMP_NZ; COMPLEX_FIELD | |
`~(y = Cx(&0)) ==> y * (Cx(&1) - inv(y)) = y - Cx(&1)`] THEN | |
DISCH_THEN(K ALL_TAC) THEN REWRITE_TAC[RE_SUB; REAL_SUB_LT] THEN | |
MATCH_MP_TAC(REAL_ARITH `!y. abs x <= y /\ y < w ==> x < w`) THEN | |
EXISTS_TAC `norm(inv (Cx (&p) cpow s))` THEN | |
REWRITE_TAC[COMPLEX_NORM_GE_RE_IM] THEN REWRITE_TAC[RE_CX] THEN | |
ASM_SIMP_TAC[COMPLEX_NORM_INV; NORM_CPOW_REAL; REAL_CX; RE_CX; | |
REAL_OF_NUM_LT; LT_NZ; PRIME_IMP_NZ] THEN | |
REWRITE_TAC[GSYM REAL_EXP_NEG; GSYM REAL_EXP_0; REAL_EXP_MONO_LT] THEN | |
REWRITE_TAC[REAL_LT_LNEG; REAL_ADD_RID] THEN MATCH_MP_TAC REAL_LT_MUL THEN | |
ASM_SIMP_TAC[LOG_POS_LT; REAL_OF_NUM_LT; ARITH_RULE `1 < p <=> 2 <= p`; | |
PRIME_GE_2] THEN | |
ASM_REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
REWRITE_TAC[IN_ELIM_THM; real_gt] THEN X_GEN_TAC `s:complex` THEN | |
DISCH_TAC THEN EXISTS_TAC `(Re(s) - &1) / &2` THEN | |
EXISTS_TAC `\p. Cx(&2) / Cx(&p) cpow (Cx(&1 + (Re(s) - &1) / &2))` THEN | |
ASM_REWRITE_TAC[REAL_HALF; REAL_SUB_LT; RIGHT_EXISTS_AND_THM] THEN | |
CONJ_TAC THENL | |
[REWRITE_TAC[complex_div] THEN MATCH_MP_TAC SUMMABLE_COMPLEX_LMUL THEN | |
MATCH_MP_TAC SUMMABLE_SUBSET_COMPLEX THEN EXISTS_TAC `from 1` THEN | |
SIMP_TAC[CPOW_REAL_REAL; IN_FROM; REAL_CX; RE_CX; REAL_OF_NUM_LT; | |
ARITH_RULE `0 < n <=> 1 <= n`; GSYM CX_INV; REAL_LE_INV_EQ; | |
REAL_EXP_POS_LE] THEN | |
SIMP_TAC[SUBSET; IN_ELIM_THM; IN_FROM; PRIME_GE_2; | |
ARITH_RULE `2 <= p ==> 1 <= p`] THEN | |
REWRITE_TAC[summable] THEN | |
EXISTS_TAC `zeta(Cx(&1 + (Re s - &1) / &2))` THEN | |
ONCE_REWRITE_TAC[COMPLEX_RING `inv(x) = Cx(&1) * inv x`] THEN | |
REWRITE_TAC[GSYM complex_div] THEN MATCH_MP_TAC ZETA_CONVERGES THEN | |
REWRITE_TAC[RE_CX] THEN POP_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
CONJ_TAC THENL | |
[SIMP_TAC[CPOW_REAL_REAL; IN_FROM; REAL_CX; RE_CX; REAL_OF_NUM_LT; LT_NZ; | |
PRIME_IMP_NZ; GSYM CX_DIV; REAL_CX; REAL_LE_DIV; REAL_POS; | |
REAL_EXP_POS_LE]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN | |
`summable (from 1) (\n. Cx (&1) / Cx (&n) cpow (Cx(&1 + (Re s - &1) / &2)))` | |
MP_TAC THENL | |
[REWRITE_TAC[summable] THEN | |
EXISTS_TAC `zeta(Cx(&1 + (Re s - &1) / &2))` THEN | |
MATCH_MP_TAC ZETA_CONVERGES THEN | |
REWRITE_TAC[RE_CX] THEN POP_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
DISCH_THEN(MP_TAC o SPEC `&1 / &2` o MATCH_MP SERIES_GOESTOZERO) THEN | |
CONV_TAC REAL_RAT_REDUCE_CONV THEN REWRITE_TAC[EVENTUALLY_SEQUENTIALLY] THEN | |
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `N:num` THEN | |
MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `p:num` THEN | |
DISCH_THEN(fun th -> | |
X_GEN_TAC `y:complex` THEN STRIP_TAC THEN MP_TAC th) THEN | |
ASM_SIMP_TAC[IN_FROM; PRIME_IMP_NZ; ARITH_RULE `1 <= n <=> ~(n = 0)`] THEN | |
DISCH_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN | |
EXISTS_TAC `&2 * norm(inv(Cx(&p) cpow y))` THEN CONJ_TAC THENL | |
[MATCH_MP_TAC NORM_CLOG_BOUND THEN | |
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH | |
`x < a ==> y <= x ==> y <= a`)) THEN | |
REWRITE_TAC[complex_div; COMPLEX_MUL_LID]; | |
SIMP_TAC[complex_div; COMPLEX_NORM_MUL; COMPLEX_NORM_CX; REAL_ABS_NUM] THEN | |
MATCH_MP_TAC REAL_LE_LMUL THEN REWRITE_TAC[REAL_POS]] THEN | |
REWRITE_TAC[GSYM CPOW_NEG] THEN | |
ASM_SIMP_TAC[NORM_CPOW_REAL_MONO; REAL_CX; RE_CX; REAL_OF_NUM_LT; PRIME_GE_2; | |
ARITH_RULE `2 <= p ==> 1 < p`] THEN | |
FIRST_ASSUM(MP_TAC o MATCH_MP IN_BALL_RE) THEN | |
REWRITE_TAC[RE_NEG; RE_CX] THEN REAL_ARITH_TAC);; | |
let LOGZETA_PROPERTIES = | |
new_specification ["logzeta"; "logzeta'"] LOGZETA_EXISTS;; | |
let [LOGZETA_CONVERGES; LOGZETA'_CONVERGES; HAS_COMPLEX_DERIVATIVE_LOGZETA] = | |
CONJUNCTS(REWRITE_RULE[IN_ELIM_THM; FORALL_AND_THM; real_gt; TAUT | |
`a ==> b /\ c <=> (a ==> b) /\ (a ==> c)`] | |
LOGZETA_PROPERTIES);; | |
let CEXP_LOGZETA = prove | |
(`!s. &1 < Re s ==> cexp(--(logzeta s)) = zeta s`, | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC(ISPEC `sequentially` LIM_UNIQUE) THEN | |
EXISTS_TAC | |
`\n. cexp(vsum({p | prime p} INTER (0..n)) | |
(\p. --clog(Cx(&1) - inv(Cx(&p) cpow s))))` THEN | |
REWRITE_TAC[TRIVIAL_LIMIT_SEQUENTIALLY] THEN CONJ_TAC THENL | |
[MP_TAC(ISPECL [`cexp`; `--logzeta s`] CONTINUOUS_AT_SEQUENTIALLY) THEN | |
REWRITE_TAC[CONTINUOUS_AT_CEXP; o_DEF] THEN | |
DISCH_THEN MATCH_MP_TAC THEN REWRITE_TAC[GSYM sums] THEN | |
MATCH_MP_TAC SERIES_NEG THEN ASM_SIMP_TAC[LOGZETA_CONVERGES]; | |
SIMP_TAC[CEXP_VSUM; FINITE_INTER_NUMSEG] THEN | |
MATCH_MP_TAC LIM_TRANSFORM THEN | |
EXISTS_TAC `\n. cproduct {p | prime p /\ p <= n} | |
(\p. inv(Cx(&1) - inv(Cx(&p) cpow s)))` THEN | |
ASM_SIMP_TAC[EULER_PRODUCT] THEN | |
MATCH_MP_TAC LIM_EVENTUALLY THEN MATCH_MP_TAC ALWAYS_EVENTUALLY THEN | |
X_GEN_TAC `n:num` THEN REWRITE_TAC[VECTOR_SUB_EQ; numseg; LE_0] THEN | |
REWRITE_TAC[SET_RULE `{x | P x} INTER {x | Q x} = {x | P x /\ Q x}`] THEN | |
MATCH_MP_TAC CPRODUCT_EQ THEN X_GEN_TAC `p:num` THEN | |
REWRITE_TAC[IN_ELIM_THM; CEXP_NEG] THEN STRIP_TAC THEN | |
AP_TERM_TAC THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC CEXP_CLOG THEN | |
REWRITE_TAC[COMPLEX_SUB_0] THEN | |
DISCH_THEN(MP_TAC o AP_TERM `norm:complex->real`) THEN | |
ASM_SIMP_TAC[NORM_CPOW_REAL; REAL_CX; REAL_OF_NUM_LT; RE_CX; REAL_ABS_NUM; | |
COMPLEX_NORM_INV; PRIME_IMP_NZ; LT_NZ; COMPLEX_NORM_CX; REAL_EXP_EQ_1] THEN | |
CONV_TAC(RAND_CONV SYM_CONV) THEN | |
REWRITE_TAC[GSYM REAL_EXP_0; GSYM REAL_EXP_NEG; REAL_EXP_INJ] THEN | |
REWRITE_TAC[REAL_NEG_EQ_0; REAL_ENTIRE] THEN | |
ASM_SIMP_TAC[REAL_ARITH `&1 < s ==> ~(s = &0)`] THEN | |
MATCH_MP_TAC REAL_LT_IMP_NZ THEN MATCH_MP_TAC LOG_POS_LT THEN | |
FIRST_ASSUM(MP_TAC o MATCH_MP PRIME_GE_2) THEN | |
REWRITE_TAC[REAL_OF_NUM_LT] THEN ARITH_TAC]);; | |
let HAS_COMPLEX_DERIVATIVE_ZETA = prove | |
(`!s. &1 < Re s ==> (zeta has_complex_derivative | |
(--(logzeta'(s)) * zeta(s))) (at s)`, | |
REPEAT STRIP_TAC THEN | |
MATCH_MP_TAC HAS_COMPLEX_DERIVATIVE_TRANSFORM_AT THEN | |
EXISTS_TAC `\s. cexp(--(logzeta s))` THEN EXISTS_TAC `Re s - &1` THEN | |
ASM_REWRITE_TAC[REAL_SUB_LT] THEN CONJ_TAC THENL | |
[ONCE_REWRITE_TAC[DIST_SYM] THEN REWRITE_TAC[GSYM IN_BALL] THEN | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC CEXP_LOGZETA THEN | |
FIRST_X_ASSUM(MP_TAC o MATCH_MP IN_BALL_RE) THEN | |
POP_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
GEN_REWRITE_TAC (RATOR_CONV o LAND_CONV) [GSYM o_DEF] THEN | |
ONCE_REWRITE_TAC[COMPLEX_MUL_SYM] THEN | |
MATCH_MP_TAC COMPLEX_DIFF_CHAIN_AT THEN | |
ASM_SIMP_TAC[GSYM CEXP_LOGZETA; HAS_COMPLEX_DERIVATIVE_CEXP] THEN | |
MATCH_MP_TAC HAS_COMPLEX_DERIVATIVE_NEG THEN | |
ASM_SIMP_TAC[HAS_COMPLEX_DERIVATIVE_LOGZETA]);; | |
let COMPLEX_DERIVATIVE_ZETA = prove | |
(`!s. &1 < Re s | |
==> complex_derivative zeta s = --(logzeta'(s)) * zeta(s)`, | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_COMPLEX_DERIVATIVE_DERIVATIVE THEN | |
ASM_SIMP_TAC[HAS_COMPLEX_DERIVATIVE_ZETA]);; | |
let CONVERGES_LOGZETA'' = prove | |
(`!s. &1 < Re s | |
==> ((\p. Cx(log(&p)) / (Cx(&p) cpow s - Cx(&1))) sums | |
(--(complex_derivative zeta s / zeta s))) {p | prime p}`, | |
REPEAT STRIP_TAC THEN | |
SUBGOAL_THEN `--(complex_derivative zeta s / zeta s) = logzeta'(s)` | |
SUBST1_TAC THENL | |
[ASM_SIMP_TAC[ZETA_NONZERO_LEMMA; COMPLEX_DERIVATIVE_ZETA; COMPLEX_FIELD | |
`~(b = Cx(&0)) ==> (--(a / b) = c <=> a = --c * b)`]; | |
MATCH_MP_TAC SUMS_EQ THEN | |
EXISTS_TAC `\p. clog(Cx(&p)) / (Cx(&p) cpow s - Cx(&1))` THEN | |
ASM_SIMP_TAC[LOGZETA'_CONVERGES; IN_ELIM_THM] THEN | |
SIMP_TAC[CX_LOG; REAL_OF_NUM_LT; LT_NZ; PRIME_IMP_NZ]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Some lemmas about negating a path. *) | |
(* ------------------------------------------------------------------------- *) | |
let VALID_PATH_NEGATEPATH = prove | |
(`!g. valid_path g ==> valid_path ((--) o g)`, | |
REWRITE_TAC[valid_path; o_DEF] THEN | |
ASM_SIMP_TAC[PIECEWISE_DIFFERENTIABLE_NEG]);; | |
let PATHSTART_NEGATEPATH = prove | |
(`!g. pathstart((--) o g) = --(pathstart g)`, | |
REWRITE_TAC[pathstart; o_THM]);; | |
let PATHFINISH_NEGATEPATH = prove | |
(`!g. pathfinish((--) o g) = --(pathfinish g)`, | |
REWRITE_TAC[pathfinish; o_THM]);; | |
let PATH_IMAGE_NEGATEPATH = prove | |
(`!g. path_image((--) o g) = IMAGE (--) (path_image g)`, | |
REWRITE_TAC[path_image; IMAGE_o]);; | |
let HAS_PATH_INTEGRAL_NEGATEPATH = prove | |
(`!g z. valid_path g /\ ((\z. f(--z)) has_path_integral (--i)) g | |
==> (f has_path_integral i) ((--) o g)`, | |
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
REWRITE_TAC[has_path_integral] THEN | |
DISCH_THEN(MP_TAC o MATCH_MP HAS_INTEGRAL_NEG) THEN | |
REWRITE_TAC[VECTOR_NEG_NEG] THEN MATCH_MP_TAC EQ_IMP THEN | |
MATCH_MP_TAC HAS_INTEGRAL_SPIKE_EQ THEN FIRST_ASSUM MP_TAC THEN | |
REWRITE_TAC[valid_path; piecewise_differentiable_on] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
MATCH_MP_TAC MONO_EXISTS THEN SIMP_TAC[NEGLIGIBLE_FINITE] THEN | |
GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `t:real^1` THEN | |
REWRITE_TAC[IN_DIFF] THEN | |
DISCH_THEN(fun th -> DISCH_TAC THEN MP_TAC th) THEN ASM_REWRITE_TAC[] THEN | |
DISCH_TAC THEN REWRITE_TAC[o_DEF; GSYM COMPLEX_MUL_RNEG] THEN | |
AP_TERM_TAC THEN MATCH_MP_TAC VECTOR_DERIVATIVE_WITHIN_CLOSED_INTERVAL THEN | |
ASM_REWRITE_TAC[DROP_VEC; REAL_LT_01] THEN | |
MATCH_MP_TAC HAS_VECTOR_DERIVATIVE_NEG THEN | |
ASM_SIMP_TAC[GSYM VECTOR_DERIVATIVE_WORKS; DIFFERENTIABLE_AT_WITHIN]);; | |
let WINDING_NUMBER_NEGATEPATH = prove | |
(`!g z. valid_path g /\ ~(Cx(&0) IN path_image g) | |
==> winding_number((--) o g,Cx(&0)) = winding_number(g,Cx(&0))`, | |
REPEAT STRIP_TAC THEN | |
ASM_SIMP_TAC[WINDING_NUMBER_VALID_PATH; VALID_PATH_NEGATEPATH; | |
PATH_IMAGE_NEGATEPATH; IN_IMAGE; UNWIND_THM2; | |
COMPLEX_RING `Cx(&0) = --x <=> x = Cx(&0)`] THEN | |
AP_TERM_TAC THEN MATCH_MP_TAC PATH_INTEGRAL_UNIQUE THEN | |
MATCH_MP_TAC HAS_PATH_INTEGRAL_NEGATEPATH THEN | |
ASM_REWRITE_TAC[COMPLEX_RING `--z - Cx(&0) = --(z - Cx(&0))`] THEN | |
REWRITE_TAC[complex_div; COMPLEX_INV_NEG; COMPLEX_MUL_RNEG] THEN | |
MATCH_MP_TAC HAS_PATH_INTEGRAL_NEG THEN | |
MATCH_MP_TAC HAS_PATH_INTEGRAL_INTEGRAL THEN | |
ASM_SIMP_TAC[GSYM complex_div; PATH_INTEGRABLE_INVERSEDIFF]);; | |
let PATH_INTEGRABLE_NEGATEPATH = prove | |
(`!g z. valid_path g /\ (\z. f(--z)) path_integrable_on g | |
==> f path_integrable_on ((--) o g)`, | |
REWRITE_TAC[path_integrable_on] THEN | |
MESON_TAC[HAS_PATH_INTEGRAL_NEGATEPATH; COMPLEX_NEG_NEG]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Some bounding lemmas given by Newman. BOUND_LEMMA_2 is my variant since I *) | |
(* use a slightly different contour. *) | |
(* ------------------------------------------------------------------------- *) | |
let BOUND_LEMMA_0 = prove | |
(`!z R. norm(z) = R | |
==> Cx(&1) / z + z / Cx(R) pow 2 = Cx(&2 * Re z / R pow 2)`, | |
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[complex_div; COMPLEX_MUL_LID] THEN | |
REWRITE_TAC[GSYM complex_div] THEN ASM_REWRITE_TAC[COMPLEX_INV_CNJ] THEN | |
ASM_REWRITE_TAC[complex_div; GSYM COMPLEX_ADD_RDISTRIB] THEN | |
REWRITE_TAC[COMPLEX_ADD_CNJ; COMPLEX_NORM_MUL] THEN | |
REWRITE_TAC[COMPLEX_NORM_CX; COMPLEX_NORM_INV; COMPLEX_NORM_POW] THEN | |
REWRITE_TAC[CX_MUL; CX_DIV; CX_POW; complex_div; GSYM COMPLEX_MUL_ASSOC]);; | |
let BOUND_LEMMA_1 = prove | |
(`!z R. norm(z) = R | |
==> norm(Cx(&1) / z + z / Cx(R) pow 2) = &2 * abs(Re z) / R pow 2`, | |
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[BOUND_LEMMA_0; COMPLEX_NORM_CX] THEN | |
ASM_REWRITE_TAC[REAL_ABS_MUL; REAL_ABS_DIV; REAL_ABS_POW; REAL_ABS_NUM] THEN | |
ASM_MESON_TAC[NORM_ARITH `norm z = R ==> abs R = R`]);; | |
let BOUND_LEMMA_2 = prove | |
(`!R x z. Re(z) = --x /\ abs(Im(z)) = R /\ &0 <= x /\ &0 < R | |
==> norm (Cx (&1) / z + z / Cx R pow 2) <= &2 * x / R pow 2`, | |
REPEAT STRIP_TAC THEN | |
REWRITE_TAC[NORM_LE_SQUARE; COMPLEX_SQNORM; DOT_SQUARE_NORM] THEN | |
REWRITE_TAC[REAL_ARITH `&0 <= &2 * x <=> &0 <= x`] THEN | |
ASM_SIMP_TAC[REAL_POS; REAL_LE_DIV; REAL_LT_IMP_LE; REAL_POW_LT] THEN | |
REWRITE_TAC[complex_div] THEN | |
SUBST1_TAC(SPEC `z:complex` COMPLEX_INV_CNJ) THEN | |
ASM_SIMP_TAC[cnj; RE; IM; COMPLEX_MUL_LID; REAL_LE_MUL; REAL_POS] THEN | |
REWRITE_TAC[GSYM CX_POW; COMPLEX_SQNORM; RE; IM] THEN | |
ASM_REWRITE_TAC[REAL_RING `(--x:real) pow 2 = x pow 2`] THEN | |
REWRITE_TAC[GSYM CX_INV; complex_div] THEN | |
REWRITE_TAC[complex_mul; complex_add; RE; IM; RE_CX; IM_CX; | |
REAL_MUL_RZERO; REAL_SUB_RZERO; REAL_ADD_LID] THEN | |
ASM_REWRITE_TAC[REAL_RING `(--x:real) pow 2 = x pow 2`; | |
REAL_RING `(--x * a + --x * b:real) pow 2 = x pow 2 * (a + b) pow 2`; | |
REAL_RING `(--R * a + R * b:real) pow 2 = R pow 2 * (b - a) pow 2`] THEN | |
SUBGOAL_THEN `&0 < x pow 2 + R pow 2` ASSUME_TAC THENL | |
[MATCH_MP_TAC(REAL_ARITH `&0 <= x /\ &0 < y ==> &0 < x + y`) THEN | |
ASM_SIMP_TAC[REAL_POW_LT] THEN REWRITE_TAC[REAL_POW_2; REAL_LE_SQUARE]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `Im z pow 2 = R pow 2` SUBST1_TAC THENL | |
[ASM_MESON_TAC[REAL_POW2_ABS]; ALL_TAC] THEN | |
ASM_SIMP_TAC[REAL_POW_LT; REAL_FIELD | |
`&0 < R pow 2 /\ &0 < x pow 2 + R pow 2 | |
==> x pow 2 * (inv (x pow 2 + R pow 2) + inv (R pow 2)) pow 2 + | |
R pow 2 * (inv (R pow 2) - inv (x pow 2 + R pow 2)) pow 2 = | |
(x pow 4 + &5 * R pow 2 * x pow 2 + &4 * R pow 4) / | |
(x pow 2 + R pow 2) pow 2 * | |
(x pow 2 / R pow 4)`] THEN | |
ASM_SIMP_TAC[REAL_POW_LT; REAL_FIELD | |
`&0 < R pow 2 ==> (&2 * x / R pow 2) pow 2 = &4 * x pow 2 / R pow 4`] THEN | |
MATCH_MP_TAC REAL_LE_RMUL THEN | |
ASM_SIMP_TAC[REAL_LE_DIV; REAL_POW_LE; REAL_LT_IMP_LE] THEN | |
ASM_SIMP_TAC[REAL_LE_LDIV_EQ; REAL_POW_LT] THEN | |
ONCE_REWRITE_TAC[GSYM REAL_SUB_LE] THEN | |
CONV_TAC(RAND_CONV REAL_POLY_CONV) THEN | |
REPEAT(MATCH_MP_TAC REAL_LE_ADD THEN CONJ_TAC) THEN | |
REPEAT(MATCH_MP_TAC REAL_LE_MUL THEN CONJ_TAC) THEN | |
ASM_SIMP_TAC[REAL_POS; REAL_POW_LE; REAL_LT_IMP_LE]);; | |
let BOUND_LEMMA_3 = prove | |
(`!a n. (!m. 1 <= m ==> norm(a(m)) <= &1) /\ | |
1 <= n /\ &1 <= Re w /\ &0 < Re z | |
==> norm(vsum(1..n) (\n. a(n) / Cx(&n) cpow (w - z))) | |
<= exp(Re(z) * log(&n)) * (&1 / &n + &1 / Re(z))`, | |
let lemma1 = prove | |
(`!n x. | |
&1 <= x | |
==> sum(1..n) (\n. exp((x - &1) * log(&n))) <= | |
exp(x * log(&n + &1)) / x`, | |
REPEAT STRIP_TAC THEN DISJ_CASES_TAC(ARITH_RULE `n = 0 \/ 1 <= n`) THENL | |
[ASM_REWRITE_TAC[NUMSEG_CLAUSES; ARITH; SUM_CLAUSES] THEN | |
MATCH_MP_TAC REAL_LE_DIV THEN REWRITE_TAC[REAL_EXP_POS_LE] THEN | |
UNDISCH_TAC `&1 <= x` THEN REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
MP_TAC(ISPECL | |
[`\n. n cpow (Cx(x) - Cx(&1))`; | |
`\n. n cpow (Cx(x)) / (Cx(x))`; | |
`1`; `n:num`] | |
SUM_INTEGRAL_UBOUND_INCREASING) THEN | |
ASM_REWRITE_TAC[] THEN ANTS_TAC THENL | |
[CONJ_TAC THENL | |
[X_GEN_TAC `u:complex` THEN STRIP_TAC THEN COMPLEX_DIFF_TAC THEN | |
CONJ_TAC THENL | |
[SUBGOAL_THEN `?y. u = Cx y` (CHOOSE_THEN SUBST_ALL_TAC) THENL | |
[ASM_MESON_TAC[REAL_SEGMENT; REAL_CX; REAL]; ALL_TAC] THEN | |
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN_SEGMENT_CX]) THEN | |
REWRITE_TAC[RE_CX] THEN REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `~(Cx x = Cx(&0))` MP_TAC THENL | |
[REWRITE_TAC[CX_INJ] THEN UNDISCH_TAC `&1 <= x` THEN REAL_ARITH_TAC; | |
CONV_TAC COMPLEX_FIELD]; | |
ALL_TAC] THEN | |
MAP_EVERY X_GEN_TAC [`a:real`; `b:real`] THEN | |
STRIP_TAC THEN | |
SUBGOAL_THEN `&1 <= b` ASSUME_TAC THENL | |
[ASM_REAL_ARITH_TAC; ALL_TAC] THEN | |
ASM_SIMP_TAC[GSYM CX_SUB; CPOW_REAL_REAL; REAL_CX; RE_CX; | |
REAL_ARITH `&1 <= x ==> &0 < x`] THEN | |
REWRITE_TAC[REAL_EXP_MONO_LE] THEN | |
MATCH_MP_TAC REAL_LE_LMUL THEN | |
CONJ_TAC THENL [ALL_TAC; MATCH_MP_TAC LOG_MONO_LE_IMP] THEN | |
ASM_REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
MATCH_MP_TAC(REAL_ARITH `x = y /\ u <= v ==> x <= u ==> y <= v`) THEN | |
CONJ_TAC THENL | |
[MATCH_MP_TAC SUM_EQ_NUMSEG THEN | |
REWRITE_TAC[GSYM CX_SUB]; | |
ALL_TAC] THEN | |
ASM_SIMP_TAC[CPOW_REAL_REAL; REAL_CX; RE_CX; REAL_OF_NUM_LT; | |
ARITH_RULE `0 < n <=> 1 <= n`; | |
REAL_ARITH `&0 < &n + &1`] THEN | |
REWRITE_TAC[CPOW_1] THEN | |
REWRITE_TAC[GSYM CX_DIV; GSYM CX_SUB; RE_CX] THEN | |
MATCH_MP_TAC(REAL_ARITH `&0 <= y ==> x - y <= x`) THEN | |
REWRITE_TAC[real_div; REAL_MUL_LID; REAL_LE_INV_EQ] THEN | |
UNDISCH_TAC `&1 <= x` THEN REAL_ARITH_TAC) | |
and lemma1' = prove | |
(`!n x. | |
&0 < x /\ x <= &1 | |
==> sum(1..n) (\n. exp((x - &1) * log(&n))) <= | |
exp(x * log(&n)) / x`, | |
REPEAT STRIP_TAC THEN | |
DISJ_CASES_TAC(ARITH_RULE `n = 0 \/ 1 <= n`) THENL | |
[ASM_REWRITE_TAC[NUMSEG_CLAUSES; ARITH; SUM_CLAUSES] THEN | |
ASM_SIMP_TAC[REAL_LE_DIV; REAL_EXP_POS_LE; REAL_LT_IMP_LE]; | |
ALL_TAC] THEN | |
ASM_SIMP_TAC[SUM_CLAUSES_LEFT] THEN | |
REWRITE_TAC[LOG_1; REAL_MUL_RZERO; REAL_EXP_0; ARITH] THEN | |
ASM_CASES_TAC `2 <= n` THENL | |
[ALL_TAC; | |
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NOT_LE]) THEN | |
SIMP_TAC[GSYM NUMSEG_EMPTY; SUM_CLAUSES] THEN DISCH_THEN(K ALL_TAC) THEN | |
SUBGOAL_THEN `n = 1` SUBST1_TAC THENL | |
[ASM_ARITH_TAC; ALL_TAC] THEN | |
ASM_SIMP_TAC[LOG_1; REAL_MUL_RZERO; REAL_EXP_0; real_div; REAL_MUL_LID; | |
REAL_ADD_RID; REAL_INV_1_LE]] THEN | |
MP_TAC(ISPECL | |
[`\n. n cpow (Cx(x) - Cx(&1))`; | |
`\n. n cpow (Cx(x)) / (Cx(x))`; | |
`2`; `n:num`] | |
SUM_INTEGRAL_UBOUND_DECREASING) THEN | |
ASM_REWRITE_TAC[] THEN ANTS_TAC THENL | |
[CONV_TAC REAL_RAT_REDUCE_CONV THEN CONJ_TAC THENL | |
[X_GEN_TAC `u:complex` THEN STRIP_TAC THEN COMPLEX_DIFF_TAC THEN | |
CONJ_TAC THENL | |
[SUBGOAL_THEN `?y. u = Cx y` (CHOOSE_THEN SUBST_ALL_TAC) THENL | |
[ASM_MESON_TAC[REAL_SEGMENT; REAL_CX; REAL]; ALL_TAC] THEN | |
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN_SEGMENT_CX]) THEN | |
REWRITE_TAC[RE_CX] THEN | |
REPEAT(FIRST_X_ASSUM(MP_TAC o | |
GEN_REWRITE_RULE I [GSYM REAL_OF_NUM_LE])) THEN | |
REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `~(Cx x = Cx(&0))` MP_TAC THENL | |
[REWRITE_TAC[CX_INJ] THEN UNDISCH_TAC `&0 < x` THEN REAL_ARITH_TAC; | |
CONV_TAC COMPLEX_FIELD]; | |
ALL_TAC] THEN | |
MAP_EVERY X_GEN_TAC [`a:real`; `b:real`] THEN | |
STRIP_TAC THEN | |
SUBGOAL_THEN `&1 <= b` ASSUME_TAC THENL | |
[ASM_REAL_ARITH_TAC; ALL_TAC] THEN | |
ASM_SIMP_TAC[GSYM CX_SUB; CPOW_REAL_REAL; REAL_CX; RE_CX; | |
REAL_ARITH `&1 <= x ==> &0 < x`] THEN | |
REWRITE_TAC[REAL_EXP_MONO_LE] THEN | |
MATCH_MP_TAC(REAL_ARITH | |
`(&1 - x) * a <= (&1 - x) * b ==> (x - &1) * b <= (x - &1) * a`) THEN | |
MATCH_MP_TAC REAL_LE_LMUL THEN | |
CONJ_TAC THENL [ALL_TAC; MATCH_MP_TAC LOG_MONO_LE_IMP] THEN | |
ASM_REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
MATCH_MP_TAC(REAL_ARITH | |
`x = y /\ &1 + u <= v ==> x <= u ==> &1 + y <= v`) THEN | |
CONV_TAC REAL_RAT_REDUCE_CONV THEN | |
REWRITE_TAC[CPOW_1] THEN CONJ_TAC THENL | |
[MATCH_MP_TAC SUM_EQ_NUMSEG THEN | |
REWRITE_TAC[GSYM CX_SUB]; | |
ALL_TAC] THEN | |
ASM_SIMP_TAC[CPOW_REAL_REAL; REAL_CX; RE_CX; REAL_OF_NUM_LT; | |
ARITH_RULE `2 <= i ==> 0 < i`] THEN | |
REWRITE_TAC[GSYM CX_DIV; GSYM CX_SUB; RE_CX] THEN | |
MATCH_MP_TAC(REAL_ARITH `&1 <= x ==> &1 + a - x <= a`) THEN | |
ASM_SIMP_TAC[REAL_INV_1_LE; real_div; REAL_MUL_LID]) in | |
REPEAT STRIP_TAC THEN | |
MATCH_MP_TAC REAL_LE_TRANS THEN | |
EXISTS_TAC `sum(1..n) (\n. exp((Re(z) - &1) * log(&n)))` THEN | |
CONJ_TAC THENL | |
[MATCH_MP_TAC VSUM_NORM_LE THEN REWRITE_TAC[FINITE_NUMSEG; IN_NUMSEG] THEN | |
X_GEN_TAC `m:num` THEN STRIP_TAC THEN | |
ASM_SIMP_TAC[COMPLEX_NORM_DIV; NORM_CPOW_REAL; REAL_CX; | |
RE_CX; REAL_OF_NUM_LT; ARITH_RULE `0 < k <=> 1 <= k`] THEN | |
REWRITE_TAC[real_div; GSYM REAL_EXP_NEG] THEN | |
GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_LID] THEN | |
MATCH_MP_TAC REAL_LE_MUL2 THEN | |
ASM_SIMP_TAC[NORM_POS_LE; REAL_EXP_POS_LE; REAL_EXP_MONO_LE] THEN | |
REWRITE_TAC[GSYM REAL_MUL_LNEG] THEN MATCH_MP_TAC REAL_LE_RMUL THEN | |
ASM_SIMP_TAC[LOG_POS; REAL_OF_NUM_LE; GSYM RE_NEG; COMPLEX_NEG_SUB] THEN | |
REWRITE_TAC[RE_SUB] THEN UNDISCH_TAC `&1 <= Re w` THEN REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
ABBREV_TAC `x = Re z` THEN | |
DISJ_CASES_TAC(ARITH_RULE `x <= &1 \/ &1 <= x`) THENL | |
[MATCH_MP_TAC REAL_LE_TRANS THEN | |
EXISTS_TAC `exp(x * log(&n)) / x` THEN | |
ASM_SIMP_TAC[lemma1'] THEN | |
REWRITE_TAC[real_div; REAL_MUL_LID; REAL_ADD_LDISTRIB] THEN | |
REWRITE_TAC[REAL_ARITH `x <= a + x <=> &0 <= a`] THEN | |
ASM_SIMP_TAC[REAL_LE_MUL; REAL_EXP_POS_LE; REAL_LE_INV_EQ; REAL_POS]; | |
ASM_SIMP_TAC[SUM_CLAUSES_RIGHT; LE_1] THEN | |
MATCH_MP_TAC(REAL_ARITH | |
`b <= x * a /\ c <= x * d ==> c + b <= x * (a + d)`) THEN | |
CONJ_TAC THENL | |
[REWRITE_TAC[REAL_SUB_RDISTRIB; REAL_EXP_SUB; REAL_MUL_LID] THEN | |
ASM_SIMP_TAC[real_div; REAL_MUL_LID; EXP_LOG; REAL_OF_NUM_LT; | |
ARITH_RULE `0 < n <=> 1 <= n`; REAL_LE_REFL]; | |
ALL_TAC] THEN | |
MATCH_MP_TAC REAL_LE_TRANS THEN | |
EXISTS_TAC `exp(x * log(&(n - 1) + &1)) / x` THEN CONJ_TAC THEN | |
ASM_SIMP_TAC[lemma1] THEN REWRITE_TAC[REAL_OF_NUM_ADD] THEN | |
ASM_SIMP_TAC[ARITH_RULE `1 <= n ==> n - 1 + 1 = n`] THEN | |
REWRITE_TAC[REAL_LE_REFL; real_div; REAL_MUL_LID]]);; | |
let BOUND_LEMMA_4 = prove | |
(`!a n m. (!m. 1 <= m ==> norm(a(m)) <= &1) /\ | |
1 <= n /\ &1 <= Re w /\ &0 < Re z | |
==> norm(vsum(n+1..m) (\n. a(n) / Cx(&n) cpow (w + z))) | |
<= &1 / (Re z * exp(Re z * log(&n)))`, | |
REPEAT STRIP_TAC THEN | |
MATCH_MP_TAC REAL_LE_TRANS THEN | |
EXISTS_TAC `sum(n+1..m) (\n. &1 / exp((Re(z) + &1) * log(&n)))` THEN | |
CONJ_TAC THENL | |
[MATCH_MP_TAC VSUM_NORM_LE THEN REWRITE_TAC[FINITE_NUMSEG; IN_NUMSEG] THEN | |
X_GEN_TAC `r:num` THEN STRIP_TAC THEN | |
SUBGOAL_THEN `0 < r /\ 1 <= r` STRIP_ASSUME_TAC THENL | |
[ASM_ARITH_TAC; ALL_TAC] THEN | |
ASM_SIMP_TAC[COMPLEX_NORM_DIV; NORM_CPOW_REAL; REAL_CX; | |
RE_CX; REAL_OF_NUM_LT] THEN | |
REWRITE_TAC[real_div; GSYM REAL_EXP_NEG] THEN | |
MATCH_MP_TAC REAL_LE_MUL2 THEN | |
ASM_SIMP_TAC[NORM_POS_LE; REAL_EXP_POS_LE; REAL_EXP_MONO_LE] THEN | |
REWRITE_TAC[GSYM REAL_MUL_LNEG] THEN MATCH_MP_TAC REAL_LE_RMUL THEN | |
ASM_SIMP_TAC[LOG_POS; REAL_OF_NUM_LE; RE_NEG; COMPLEX_NEG_SUB] THEN | |
REWRITE_TAC[RE_ADD; REAL_LE_NEG2] THEN | |
UNDISCH_TAC `&1 <= Re w` THEN REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
ABBREV_TAC `x = Re z` THEN | |
ASM_CASES_TAC `n + 1 <= m` THENL | |
[ALL_TAC; | |
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NOT_LE]) THEN | |
SIMP_TAC[GSYM NUMSEG_EMPTY; SUM_CLAUSES] THEN DISCH_THEN(K ALL_TAC) THEN | |
ASM_SIMP_TAC[real_div; REAL_MUL_LID; REAL_LE_INV_EQ; REAL_LE_MUL; | |
REAL_EXP_POS_LE; REAL_LT_IMP_LE]] THEN | |
MP_TAC(ISPECL | |
[`\n. n cpow (--(Cx(x) + Cx(&1)))`; | |
`\n. --(n cpow (--(Cx(x)))) / Cx(x)`; | |
`n + 1`; `m:num`] | |
SUM_INTEGRAL_UBOUND_DECREASING) THEN | |
ASM_REWRITE_TAC[GSYM REAL_OF_NUM_ADD; REAL_ARITH `(x + &1) - &1 = x`] THEN | |
ANTS_TAC THENL | |
[CONV_TAC REAL_RAT_REDUCE_CONV THEN CONJ_TAC THENL | |
[X_GEN_TAC `u:complex` THEN STRIP_TAC THEN COMPLEX_DIFF_TAC THEN | |
CONJ_TAC THENL | |
[SUBGOAL_THEN `?y. u = Cx y` (CHOOSE_THEN SUBST_ALL_TAC) THENL | |
[ASM_MESON_TAC[REAL_SEGMENT; REAL_CX; REAL]; ALL_TAC] THEN | |
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN_SEGMENT_CX]) THEN | |
REWRITE_TAC[RE_CX] THEN | |
REPEAT(FIRST_X_ASSUM(MP_TAC o | |
GEN_REWRITE_RULE I [GSYM REAL_OF_NUM_LE])) THEN | |
REWRITE_TAC[GSYM REAL_OF_NUM_ADD] THEN REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
REWRITE_TAC[COMPLEX_RING `--x - Cx(&1) = --(x + Cx(&1))`] THEN | |
SUBGOAL_THEN `~(Cx x = Cx(&0))` MP_TAC THENL | |
[REWRITE_TAC[CX_INJ] THEN UNDISCH_TAC `&0 < x` THEN REAL_ARITH_TAC; | |
CONV_TAC COMPLEX_FIELD]; | |
ALL_TAC] THEN | |
MAP_EVERY X_GEN_TAC [`a:real`; `b:real`] THEN STRIP_TAC THEN | |
SUBGOAL_THEN `&0 < a /\ &0 < b` STRIP_ASSUME_TAC THENL | |
[REPEAT(FIRST_X_ASSUM(MP_TAC o | |
GEN_REWRITE_RULE I [GSYM REAL_OF_NUM_LE])) THEN | |
ASM_REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
REWRITE_TAC[GSYM CX_ADD; GSYM CX_NEG] THEN | |
ASM_SIMP_TAC[CPOW_REAL_REAL; REAL_CX; RE_CX] THEN | |
REWRITE_TAC[REAL_EXP_MONO_LE] THEN | |
MATCH_MP_TAC(REAL_ARITH `x * a <= x * b ==> --x * b <= --x * a`) THEN | |
MATCH_MP_TAC REAL_LE_LMUL THEN | |
CONJ_TAC THENL [ALL_TAC; MATCH_MP_TAC LOG_MONO_LE_IMP] THEN | |
ASM_REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
MATCH_MP_TAC(REAL_ARITH | |
`x = y /\ u <= v ==> x <= u ==> y <= v`) THEN | |
CONJ_TAC THENL | |
[MATCH_MP_TAC SUM_EQ_NUMSEG THEN X_GEN_TAC `k:num` THEN STRIP_TAC THEN | |
REWRITE_TAC[GSYM CX_ADD; GSYM CX_NEG] THEN | |
SUBGOAL_THEN `&0 < &k` ASSUME_TAC THENL | |
[REWRITE_TAC[REAL_OF_NUM_LT] THEN ASM_ARITH_TAC; | |
ALL_TAC] THEN | |
ASM_SIMP_TAC[CPOW_REAL_REAL; RE_CX; REAL_CX] THEN | |
REWRITE_TAC[real_div; REAL_MUL_LID; GSYM REAL_EXP_NEG] THEN | |
REWRITE_TAC[REAL_MUL_LNEG; REAL_LE_REFL]; | |
ALL_TAC] THEN | |
REWRITE_TAC[CPOW_NEG] THEN | |
FIRST_ASSUM(ASSUME_TAC o MATCH_MP (ARITH_RULE `n + 1 <= m ==> 0 < m`)) THEN | |
FIRST_ASSUM(ASSUME_TAC o MATCH_MP (ARITH_RULE `1 <= n ==> 0 < n`)) THEN | |
ASM_SIMP_TAC[CPOW_REAL_REAL; RE_CX; REAL_CX; REAL_OF_NUM_LT] THEN | |
REWRITE_TAC[GSYM CX_INV; GSYM CX_SUB; RE_CX; GSYM CX_DIV; GSYM CX_NEG] THEN | |
REWRITE_TAC[real_div; REAL_MUL_LNEG; REAL_SUB_NEG2; REAL_MUL_LID] THEN | |
REWRITE_TAC[GSYM REAL_INV_MUL] THEN | |
MATCH_MP_TAC(REAL_ARITH `x = z /\ &0 <= y ==> x - y <= z`) THEN | |
CONJ_TAC THENL [REWRITE_TAC[REAL_MUL_AC]; ALL_TAC] THEN | |
ASM_SIMP_TAC[REAL_LE_INV_EQ; REAL_LE_MUL; REAL_LT_IMP_LE; REAL_EXP_POS_LE]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Our overall bound does go to zero as N increases. *) | |
(* ------------------------------------------------------------------------- *) | |
let OVERALL_BOUND_LEMMA = prove | |
(`!d M R. &0 < d | |
==> !e. &0 < e | |
==> ?N. !n. N <= n | |
==> abs(&2 * pi / &n + | |
&6 * M * R / (d * exp (d * log (&n))) + | |
&4 * M / (R * log (&n)) pow 2) < e`, | |
ONCE_REWRITE_TAC[REAL_ARITH `abs x = abs(x - &0)`] THEN | |
REWRITE_TAC[GSYM REALLIM_SEQUENTIALLY] THEN | |
REPEAT STRIP_TAC THEN REWRITE_TAC[real_div; REAL_INV_MUL] THEN | |
REPEAT(MATCH_MP_TAC REALLIM_NULL_ADD THEN CONJ_TAC) THEN | |
REWRITE_TAC[REAL_MUL_ASSOC; GSYM REAL_POW_INV] THEN | |
MATCH_MP_TAC REALLIM_NULL_LMUL THEN REWRITE_TAC[REALLIM_1_OVER_N] THENL | |
[MP_TAC(SPEC `Cx d` LIM_1_OVER_POWER) THEN ASM_REWRITE_TAC[RE_CX] THEN | |
REWRITE_TAC[REALLIM_COMPLEX; o_DEF] THEN | |
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] LIM_TRANSFORM_EVENTUALLY) THEN | |
REWRITE_TAC[EVENTUALLY_SEQUENTIALLY] THEN EXISTS_TAC `1` THEN | |
SIMP_TAC[CPOW_REAL_REAL; RE_CX; REAL_CX; REAL_OF_NUM_LT; CX_INV; LE_1; | |
complex_div; COMPLEX_MUL_LID]; | |
MATCH_MP_TAC REALLIM_NULL_POW THEN REWRITE_TAC[REAL_INV_MUL; ARITH] THEN | |
MATCH_MP_TAC REALLIM_NULL_LMUL THEN REWRITE_TAC[REALLIM_1_OVER_LOG]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Newman/Ingham analytic lemma (as in Newman's book). *) | |
(* ------------------------------------------------------------------------- *) | |
let NEWMAN_INGHAM_THEOREM = prove | |
(`!f a. (!n. 1 <= n ==> norm(a(n)) <= &1) /\ | |
f analytic_on {z | Re(z) >= &1} /\ | |
(!z. Re(z) > &1 ==> ((\n. a(n) / Cx(&n) cpow z) sums (f z)) (from 1)) | |
==> !z. Re(z) >= &1 | |
==> ((\n. a(n) / Cx(&n) cpow z) sums (f z)) (from 1)`, | |
REWRITE_TAC[real_ge; analytic_on; IN_ELIM_THM] THEN | |
REPEAT GEN_TAC THEN STRIP_TAC THEN | |
X_GEN_TAC `w:complex` THEN DISCH_TAC THEN | |
FIRST_X_ASSUM(DISJ_CASES_TAC o MATCH_MP (REAL_ARITH | |
`&1 <= w ==> w > &1 \/ w = &1`)) THEN ASM_SIMP_TAC[] THEN | |
REWRITE_TAC[sums; LIM_SEQUENTIALLY] THEN | |
X_GEN_TAC `e:real` THEN STRIP_TAC THEN | |
ABBREV_TAC `R = max (&3 / e) (&1)` THEN | |
SUBGOAL_THEN `&0 < R` ASSUME_TAC THENL | |
[EXPAND_TAC "R" THEN REAL_ARITH_TAC; ALL_TAC] THEN | |
SUBGOAL_THEN | |
`?d. &0 < d /\ d <= R /\ | |
(\z. f(w + z)) holomorphic_on {z | Re(z) >= --d /\ abs(Im z) <= R}` | |
(X_CHOOSE_THEN `d:real` (CONJUNCTS_THEN2 ASSUME_TAC | |
(CONJUNCTS_THEN2 ASSUME_TAC (LABEL_TAC "2")))) | |
THENL | |
[SUBGOAL_THEN | |
`?d. &0 < d /\ | |
(\z. f(w + z)) holomorphic_on {z | Re(z) >= --d /\ abs(Im z) <= R}` | |
(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) | |
THENL | |
[ALL_TAC; | |
EXISTS_TAC `min d R` THEN ASM_REWRITE_TAC[REAL_LT_MIN] THEN | |
CONJ_TAC THENL [ARITH_TAC; ALL_TAC] THEN | |
MATCH_MP_TAC HOLOMORPHIC_ON_SUBSET THEN | |
EXISTS_TAC `{z | Re(z) >= --d /\ abs(Im z) <= R}` THEN | |
ASM_REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN REAL_ARITH_TAC] THEN | |
ABBREV_TAC `g = \z. (f:complex->complex) (w + z)` THEN | |
SUBGOAL_THEN | |
`!z. &0 <= Re z ==> ?e. &0 < e /\ g holomorphic_on ball (z,e)` | |
MP_TAC THENL | |
[X_GEN_TAC `z:complex` THEN DISCH_TAC THEN | |
UNDISCH_TAC | |
`!z. &1 <= Re z ==> (?e. &0 < e /\ f holomorphic_on ball (z,e))` THEN | |
DISCH_THEN(MP_TAC o SPEC `w + z:complex`) THEN | |
ASM_SIMP_TAC[RE_ADD;REAL_ARITH `&0 <= z ==> &1 <= &1 + z`] THEN | |
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `d:real` THEN STRIP_TAC THEN | |
ASM_REWRITE_TAC[] THEN EXPAND_TAC "g" THEN | |
ONCE_REWRITE_TAC[GSYM o_DEF] THEN MATCH_MP_TAC HOLOMORPHIC_ON_COMPOSE THEN | |
SIMP_TAC[HOLOMORPHIC_ON_ADD; HOLOMORPHIC_ON_ID; HOLOMORPHIC_ON_CONST] THEN | |
UNDISCH_TAC `f holomorphic_on ball(w + z,d)` THEN MATCH_MP_TAC EQ_IMP THEN | |
AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; IN_BALL; IN_IMAGE] THEN | |
REWRITE_TAC[COMPLEX_RING `x:complex = w + y <=> x - w = y`] THEN | |
REWRITE_TAC[UNWIND_THM1] THEN NORM_ARITH_TAC; | |
ALL_TAC] THEN | |
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [RIGHT_IMP_EXISTS_THM] THEN | |
REWRITE_TAC[SKOLEM_THM] THEN | |
DISCH_THEN(X_CHOOSE_TAC `bs:complex->real`) THEN | |
MP_TAC(ISPECL [`complex(&0,--R)`; `complex(&0,R)`] COMPACT_INTERVAL) THEN | |
REWRITE_TAC[COMPACT_EQ_HEINE_BOREL] THEN | |
DISCH_THEN(MP_TAC o SPEC | |
`IMAGE (\z. {w | abs(Re(z - w)) < bs z / &2 /\ abs(Im(z - w)) < bs z / &2}) | |
(interval[complex(&0,--R),complex(&0,R)])`) THEN | |
ANTS_TAC THENL | |
[CONJ_TAC THENL | |
[REWRITE_TAC[FORALL_IN_IMAGE] THEN REPEAT STRIP_TAC THEN | |
REWRITE_TAC[RE_SUB; IM_SUB; REAL_ARITH | |
`abs(x - a) < e /\ abs(y - b) < e <=> | |
a < x + e /\ a > x - e /\ b < y + e /\ b > y - e`] THEN | |
SIMP_TAC[SET_RULE `{x | P x /\ Q x} = {x | P x} INTER {x | Q x}`] THEN | |
REPEAT(MATCH_MP_TAC OPEN_INTER THEN STRIP_TAC) THEN | |
REWRITE_TAC[OPEN_HALFSPACE_IM_GT; OPEN_HALFSPACE_IM_LT; | |
OPEN_HALFSPACE_RE_GT; OPEN_HALFSPACE_RE_LT]; | |
ALL_TAC] THEN | |
MATCH_MP_TAC(SET_RULE | |
`(!x. x IN s ==> x IN g x) ==> s SUBSET (UNIONS (IMAGE g s))`) THEN | |
REWRITE_TAC[COMPLEX_SUB_REFL; COMPLEX_NORM_0; IN_ELIM_THM] THEN | |
ASM_REWRITE_TAC[RE_CX; IM_CX; REAL_ABS_NUM] THEN | |
REWRITE_TAC[IN_INTERVAL; DIMINDEX_2; FORALL_2] THEN | |
REWRITE_TAC[GSYM RE_DEF; GSYM IM_DEF; RE; IM] THEN | |
ASM_MESON_TAC[REAL_HALF]; | |
ALL_TAC] THEN | |
ONCE_REWRITE_TAC[TAUT `a /\ b /\ c <=> c /\ b /\ a`] THEN | |
REWRITE_TAC[FINITE_SUBSET_IMAGE; RIGHT_AND_EXISTS_THM] THEN | |
ONCE_REWRITE_TAC[TAUT `a /\ b /\ c /\ d <=> d /\ a /\ b /\ c`] THEN | |
ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN REWRITE_TAC[UNWIND_THM2] THEN | |
DISCH_THEN(X_CHOOSE_THEN `t:complex->bool` STRIP_ASSUME_TAC) THEN | |
EXISTS_TAC `inf (IMAGE (bs:complex->real) t) / &2` THEN | |
FIRST_ASSUM(MP_TAC o MATCH_MP (SET_RULE | |
`s SUBSET UNIONS (IMAGE g t) ==> ~(s = {}) ==> ~(t = {})`)) THEN | |
ANTS_TAC THENL | |
[REWRITE_TAC[GSYM MEMBER_NOT_EMPTY] THEN EXISTS_TAC `complex(&0,&0)` THEN | |
REWRITE_TAC[IN_INTERVAL; DIMINDEX_2; FORALL_2] THEN | |
REWRITE_TAC[GSYM RE_DEF; GSYM IM_DEF; RE; IM] THEN | |
UNDISCH_TAC `&0 < R` THEN REAL_ARITH_TAC; | |
DISCH_TAC] THEN | |
REWRITE_TAC[REAL_HALF] THEN | |
ASM_SIMP_TAC[REAL_LT_INF_FINITE; FINITE_IMAGE; IMAGE_EQ_EMPTY] THEN | |
REWRITE_TAC[FORALL_IN_IMAGE] THEN CONJ_TAC THENL | |
[FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE | |
`t SUBSET s ==> (!x. x IN s ==> P x) ==> (!x. x IN t ==> P x)`)) THEN | |
REWRITE_TAC[IN_INTERVAL; FORALL_2; GSYM RE_DEF; DIMINDEX_2] THEN | |
REWRITE_TAC[RE] THEN ASM_MESON_TAC[]; | |
ALL_TAC] THEN | |
REWRITE_TAC[HOLOMORPHIC_ON_DIFFERENTIABLE] THEN X_GEN_TAC `z:complex` THEN | |
REWRITE_TAC[IN_ELIM_THM; real_ge] THEN STRIP_TAC THEN | |
MATCH_MP_TAC COMPLEX_DIFFERENTIABLE_AT_WITHIN THEN | |
ASM_CASES_TAC `&0 <= Re z` THENL | |
[ASM_MESON_TAC[HOLOMORPHIC_ON_OPEN; complex_differentiable; OPEN_BALL; | |
CENTRE_IN_BALL]; | |
ALL_TAC] THEN | |
FIRST_ASSUM(MP_TAC o SPEC `complex(&0,Im z)` o MATCH_MP (SET_RULE | |
`i SUBSET UNIONS s ==> !x. x IN i ==> x IN UNIONS s`)) THEN | |
ANTS_TAC THENL | |
[REWRITE_TAC[IN_INTERVAL; DIMINDEX_2; FORALL_2] THEN | |
REWRITE_TAC[GSYM RE_DEF; GSYM IM_DEF; RE; IM] THEN | |
UNDISCH_TAC `abs(Im z) <= R` THEN REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
REWRITE_TAC[IN_UNIONS; EXISTS_IN_IMAGE] THEN | |
DISCH_THEN(X_CHOOSE_THEN `v:complex` MP_TAC) THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
SUBGOAL_THEN `Re v = &0` ASSUME_TAC THENL | |
[UNDISCH_TAC `(v:complex) IN t` THEN | |
FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE | |
`t SUBSET s ==> (x IN s ==> P x) ==> (x IN t ==> P x)`)) THEN | |
REWRITE_TAC[IN_INTERVAL; FORALL_2; GSYM RE_DEF; DIMINDEX_2] THEN | |
REWRITE_TAC[RE] THEN REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
ASM_REWRITE_TAC[IN_ELIM_THM; RE_SUB; IM_SUB; RE; IM] THEN | |
DISCH_THEN(ASSUME_TAC o CONJUNCT2) THEN | |
UNDISCH_TAC | |
`!z. &0 <= Re z ==> &0 < bs z /\ g holomorphic_on ball (z,bs z)` THEN | |
DISCH_THEN(MP_TAC o SPEC `v:complex`) THEN ASM_SIMP_TAC[REAL_LE_REFL] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
SIMP_TAC[HOLOMORPHIC_ON_OPEN; OPEN_BALL; GSYM complex_differentiable] THEN | |
DISCH_THEN MATCH_MP_TAC THEN REWRITE_TAC[IN_BALL] THEN | |
REWRITE_TAC[dist; complex_norm] THEN | |
MATCH_MP_TAC(REAL_ARITH `&0 < e /\ x < abs e ==> x < e`) THEN | |
ASM_REWRITE_TAC[GSYM POW_2_SQRT_ABS] THEN | |
MATCH_MP_TAC SQRT_MONO_LT THEN | |
MATCH_MP_TAC(REAL_ARITH | |
`&0 < b * b /\ x <= (b / &2) pow 2 /\ y <= (b / &2) pow 2 | |
==> x + y < b pow 2`) THEN | |
ASM_SIMP_TAC[REAL_LT_MUL; GSYM REAL_LE_SQUARE_ABS] THEN | |
ASM_SIMP_TAC[IM_SUB; REAL_ARITH `&0 < b ==> abs(b / &2) = b / &2`] THEN | |
ASM_SIMP_TAC[RE_SUB; REAL_LT_IMP_LE] THEN | |
FIRST_X_ASSUM(MP_TAC o MATCH_MP (REAL_ARITH | |
`--(x / &2) <= z ==> &2 * --z <= x`)) THEN | |
ASM_SIMP_TAC[REAL_LE_INF_FINITE; FINITE_IMAGE; IMAGE_EQ_EMPTY] THEN | |
REWRITE_TAC[FORALL_IN_IMAGE] THEN | |
DISCH_THEN(MP_TAC o SPEC `v:complex`) THEN ASM_REWRITE_TAC[] THEN | |
UNDISCH_TAC `~(&0 <= Re z)` THEN REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
SUBGOAL_THEN | |
`?M. &0 < M /\ | |
!z. Re z >= --d /\ abs (Im z) <= R /\ Re(z) <= R | |
==> norm(f(w + z):complex) <= M` | |
(X_CHOOSE_THEN `M:real` (CONJUNCTS_THEN2 ASSUME_TAC (LABEL_TAC "2a"))) THENL | |
[MP_TAC(ISPEC `IMAGE (\z. f (w + z):complex) | |
{z | Re z >= --d /\ abs (Im z) <= R /\ Re(z) <= R}` | |
COMPACT_IMP_BOUNDED) THEN | |
REWRITE_TAC[BOUNDED_POS; FORALL_IN_IMAGE; IN_ELIM_THM] THEN | |
DISCH_THEN MATCH_MP_TAC THEN MATCH_MP_TAC COMPACT_CONTINUOUS_IMAGE THEN | |
CONJ_TAC THENL | |
[FIRST_ASSUM(MP_TAC o MATCH_MP HOLOMORPHIC_ON_IMP_CONTINUOUS_ON) THEN | |
MATCH_MP_TAC(REWRITE_RULE[TAUT `a /\ b ==> c <=> b ==> a ==> c`] | |
CONTINUOUS_ON_SUBSET) THEN | |
SET_TAC[]; | |
ALL_TAC] THEN | |
REWRITE_TAC[COMPACT_EQ_BOUNDED_CLOSED] THEN CONJ_TAC THENL | |
[MATCH_MP_TAC BOUNDED_SUBSET THEN | |
EXISTS_TAC `cball(Cx(&0),&2 * R + d)` THEN | |
REWRITE_TAC[BOUNDED_CBALL; SUBSET; IN_CBALL; dist] THEN | |
REWRITE_TAC[COMPLEX_SUB_LZERO; NORM_NEG; IN_ELIM_THM] THEN | |
MP_TAC COMPLEX_NORM_LE_RE_IM THEN MATCH_MP_TAC MONO_FORALL THEN | |
UNDISCH_TAC `&0 < d` THEN REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
REWRITE_TAC[GSYM REAL_BOUNDS_LE; REAL_ARITH `x <= Im z <=> Im z >= x`] THEN | |
REWRITE_TAC[SET_RULE `{x | P x /\ Q x} = {x | P x} INTER {x | Q x}`] THEN | |
REPEAT(MATCH_MP_TAC CLOSED_INTER THEN CONJ_TAC) THEN | |
REWRITE_TAC[CLOSED_HALFSPACE_RE_LE; CLOSED_HALFSPACE_IM_LE; | |
CLOSED_HALFSPACE_RE_GE; CLOSED_HALFSPACE_IM_GE]; | |
ALL_TAC] THEN | |
MP_TAC(SPECL [`d:real`; `M:real`; `R:real`] OVERALL_BOUND_LEMMA) THEN | |
ASM_REWRITE_TAC[] THEN | |
DISCH_THEN(MP_TAC o SPEC `&2 / &3 * e * pi`) THEN | |
ASM_SIMP_TAC[REAL_LT_MUL; PI_POS; REAL_ARITH `&0 < &2 / &3`] THEN | |
DISCH_THEN(X_CHOOSE_THEN `N0:num` (LABEL_TAC "X")) THEN | |
EXISTS_TAC `N0 + 2` THEN X_GEN_TAC `N:num` THEN DISCH_TAC THEN | |
REMOVE_THEN "X" (MP_TAC o SPEC `N:num`) THEN | |
ASM_SIMP_TAC[ARITH_RULE `N0 + 2 <= N ==> N0 <= N`] THEN | |
DISCH_TAC THEN | |
SUBGOAL_THEN `~(N = 0) /\ 1 < N` STRIP_ASSUME_TAC THENL | |
[ASM_ARITH_TAC; ALL_TAC] THEN | |
REWRITE_TAC[FROM_INTER_NUMSEG] THEN | |
ABBREV_TAC `S_N(w) = vsum(1..N) (\n. a(n) / Cx(&n) cpow w)` THEN | |
REWRITE_TAC[dist] THEN ONCE_REWRITE_TAC[NORM_SUB] THEN | |
ABBREV_TAC `r_N(w) = (f:complex->complex)(w) - S_N(w)` THEN | |
ABBREV_TAC `A = partcirclepath(Cx(&0),R,--(pi / &2),pi / &2)` THEN | |
SUBGOAL_THEN | |
`valid_path A /\ | |
pathstart A = complex(&0,--R) /\ | |
pathfinish A = complex(&0,R) /\ | |
&0 < Re(winding_number(A,Cx(&0)))` | |
STRIP_ASSUME_TAC THENL | |
[EXPAND_TAC "A" THEN REWRITE_TAC[VALID_PATH_PARTCIRCLEPATH] THEN | |
REWRITE_TAC[PATHSTART_PARTCIRCLEPATH; PATHFINISH_PARTCIRCLEPATH] THEN | |
REWRITE_TAC[CEXP_EULER; SIN_NEG; COS_NEG; SIN_PI2; COS_PI2; | |
GSYM CX_SIN; GSYM CX_COS] THEN | |
REWRITE_TAC[COMPLEX_ADD_LID; COMPLEX_MUL_RID] THEN | |
REWRITE_TAC[COMPLEX_EQ; RE_MUL_CX; RE_II; IM_II; IM_MUL_CX; RE; IM] THEN | |
REPEAT(CONJ_TAC THENL [REAL_ARITH_TAC; ALL_TAC]) THEN | |
MATCH_MP_TAC WINDING_NUMBER_PARTCIRCLEPATH_POS_LT THEN | |
ASM_REWRITE_TAC[COMPLEX_NORM_0; COMPLEX_SUB_REFL] THEN | |
MP_TAC PI_POS THEN REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `path_image A SUBSET {z | Re(z) >= &0 /\ norm(z) = R}` | |
ASSUME_TAC THENL | |
[EXPAND_TAC "A" THEN | |
ASM_SIMP_TAC[PATH_IMAGE_PARTCIRCLEPATH; REAL_LT_IMP_LE; PI_POS; | |
REAL_ARITH `--p < p <=> &0 < p`; REAL_HALF] THEN | |
REWRITE_TAC[SUBSET; COMPLEX_ADD_LID; IN_ELIM_THM] THEN | |
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[RE_MUL_CX; RE_CEXP] THEN | |
REWRITE_TAC[COMPLEX_NORM_MUL; NORM_CEXP; COMPLEX_NORM_CX; RE_MUL_II] THEN | |
REWRITE_TAC[IM_CX; REAL_NEG_0; REAL_EXP_0; REAL_MUL_RID] THEN | |
ASM_SIMP_TAC[REAL_ARITH `&0 < r ==> abs r = r`; real_ge] THEN | |
MATCH_MP_TAC REAL_LE_MUL THEN ASM_SIMP_TAC[REAL_LT_IMP_LE] THEN | |
MATCH_MP_TAC REAL_LE_MUL THEN REWRITE_TAC[REAL_EXP_POS_LE] THEN | |
REWRITE_TAC[IM_MUL_II; RE_CX] THEN ASM_SIMP_TAC[COS_POS_PI_LE]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `~(Cx(&0) IN path_image A)` ASSUME_TAC THENL | |
[FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE | |
`s SUBSET t ==> ~(x IN t) ==> ~(x IN s)`)) THEN | |
REWRITE_TAC[IN_ELIM_THM; COMPLEX_NORM_0] THEN | |
UNDISCH_TAC `&0 < R` THEN REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
ABBREV_TAC `B = linepath(complex(&0,R),complex(--d,R)) ++ | |
linepath(complex(--d,R),complex(--d,--R)) ++ | |
linepath(complex(--d,--R),complex(&0,--R))` THEN | |
SUBGOAL_THEN | |
`valid_path B /\ | |
~(Cx(&0) IN path_image B) /\ | |
&0 < Re(winding_number(B,Cx(&0)))` | |
STRIP_ASSUME_TAC THENL | |
[EXPAND_TAC "B" THEN | |
REPEAT(MATCH_MP_TAC WINDING_NUMBER_JOIN_POS_COMBINED THEN | |
REWRITE_TAC[PATHSTART_JOIN; PATHFINISH_JOIN; | |
PATHSTART_LINEPATH; PATHFINISH_LINEPATH] THEN | |
CONJ_TAC) THEN | |
(REWRITE_TAC[VALID_PATH_LINEPATH] THEN CONJ_TAC THENL | |
[ALL_TAC; | |
MATCH_MP_TAC WINDING_NUMBER_LINEPATH_POS_LT THEN | |
REWRITE_TAC[complex_mul; RE; IM; RE_SUB; RE_CNJ; IM_SUB; IM_CNJ; | |
RE_CX; IM_CX] THEN | |
CONV_TAC(RAND_CONV REAL_POLY_CONV) THEN | |
ASM_SIMP_TAC[REAL_LT_MUL; REAL_OF_NUM_LT; ARITH]]) THEN | |
REWRITE_TAC[PATH_IMAGE_LINEPATH; segment; IN_ELIM_THM] THEN | |
REWRITE_TAC[COMPLEX_EQ; RE_CMUL; RE_ADD; RE_CX; RE; | |
IM_CMUL; IM_ADD; IM_CX; IM] THEN | |
REWRITE_TAC[REAL_ARITH `&0 = (&1 - u) * x + u * x <=> x = &0`] THEN | |
ASM_SIMP_TAC[REAL_NEG_EQ_0; REAL_LT_IMP_NZ]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN | |
`pathstart B = complex(&0,R) /\ | |
pathfinish B = complex(&0,--R)` | |
STRIP_ASSUME_TAC THENL | |
[EXPAND_TAC "B" THEN | |
SIMP_TAC[PATHSTART_JOIN; PATHFINISH_JOIN; | |
PATHSTART_LINEPATH; PATHFINISH_LINEPATH]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN | |
`path_image B SUBSET {z | --d <= Re z /\ Re(z) <= &0 /\ abs(Im z) <= R}` | |
ASSUME_TAC THENL | |
[SUBGOAL_THEN | |
`convex {z | --d <= Re z /\ Re z <= &0 /\ abs (Im z) <= R}` | |
ASSUME_TAC THENL | |
[REWRITE_TAC[GSYM REAL_BOUNDS_LE; | |
SET_RULE `{x | P x /\ Q x} = {x | P x} INTER {x | Q x}`] THEN | |
REPEAT(MATCH_MP_TAC CONVEX_INTER THEN CONJ_TAC) THEN | |
REWRITE_TAC[REWRITE_RULE[real_ge] CONVEX_HALFSPACE_RE_GE; | |
REWRITE_RULE[real_ge] CONVEX_HALFSPACE_IM_GE; | |
CONVEX_HALFSPACE_RE_LE; CONVEX_HALFSPACE_IM_LE]; | |
ALL_TAC] THEN | |
EXPAND_TAC "B" THEN | |
REPEAT(MATCH_MP_TAC(SET_RULE | |
`path_image(p1 ++ p2) SUBSET path_image p1 UNION path_image p2 /\ | |
path_image p1 SUBSET s /\ path_image p2 SUBSET s | |
==> path_image(p1 ++ p2) SUBSET s`) THEN | |
REWRITE_TAC[PATH_IMAGE_JOIN_SUBSET] THEN CONJ_TAC) THEN | |
REWRITE_TAC[PATH_IMAGE_LINEPATH; SEGMENT_CONVEX_HULL] THEN | |
MATCH_MP_TAC HULL_MINIMAL THEN ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[SUBSET; IN_ELIM_THM; IN_INSERT; NOT_IN_EMPTY] THEN | |
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[RE; IM] THEN | |
MAP_EVERY UNDISCH_TAC [`&0 < d`; `&0 < R`] THEN REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
SUBGOAL_THEN | |
`valid_path(A ++ B) /\ | |
pathstart(A ++ B) = complex(&0,--R) /\ | |
pathfinish(A ++ B) = complex(&0,--R) /\ | |
~(Cx(&0) IN path_image(A ++ B))` | |
STRIP_ASSUME_TAC THENL | |
[ASM_SIMP_TAC[VALID_PATH_JOIN; PATHSTART_JOIN; PATHFINISH_JOIN; | |
PATH_IMAGE_JOIN; IN_UNION; VALID_PATH_IMP_PATH]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `winding_number(A++B,Cx(&0)) = Cx(&1)` ASSUME_TAC THENL | |
[MATCH_MP_TAC WINDING_NUMBER_EQ_1 THEN | |
ASM_SIMP_TAC[VALID_PATH_IMP_PATH; PATH_IMAGE_JOIN; IN_UNION; | |
WINDING_NUMBER_JOIN; REAL_LT_ADD; RE_ADD] THEN | |
MATCH_MP_TAC(REAL_ARITH `x < &1 /\ y < &1 ==> x + y < &2`) THEN | |
CONJ_TAC THEN MATCH_MP_TAC WINDING_NUMBER_LT_1 THENL | |
[EXISTS_TAC `--Cx(&1)`; EXISTS_TAC `Cx(&1)`] THEN | |
ASM_SIMP_TAC[] THEN (CONJ_TAC THENL [CONV_TAC COMPLEX_FIELD; ALL_TAC]) THEN | |
X_GEN_TAC `t:real` THEN DISCH_TAC THEN | |
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE | |
`s SUBSET t ==> ~(x IN t) ==> ~(x IN s)`)) THEN | |
REWRITE_TAC[COMPLEX_ADD_LID; COMPLEX_SUB_RZERO; IN_ELIM_THM] THEN | |
REWRITE_TAC[COMPLEX_MUL_RNEG; GSYM CX_MUL; RE_CX; IM_CX; RE_NEG] THEN | |
REWRITE_TAC[NORM_NEG; COMPLEX_NORM_CX; REAL_ABS_NUM] THEN | |
UNDISCH_TAC `&0 < t` THEN REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
SUBGOAL_THEN | |
`((\z. f(w + z) * Cx(&N) cpow z * (Cx(&1) / z + z / Cx(R) pow 2)) | |
has_path_integral (Cx(&2) * Cx pi * ii * f(w))) (A ++ B)` | |
ASSUME_TAC THENL | |
[MP_TAC(ISPECL | |
[`\z. f(w + z) * Cx(&N) cpow z * (Cx(&1) + z pow 2 / Cx(R) pow 2)`; | |
`{z | Re(z) >= --d /\ abs(Im z) <= R}`; | |
`A ++ B:real^1->complex`; | |
`Cx(&0)`] | |
CAUCHY_INTEGRAL_FORMULA_CONVEX_SIMPLE) THEN | |
ASM_REWRITE_TAC[COMPLEX_SUB_RZERO; COMPLEX_MUL_LID; CPOW_N] THEN | |
ASM_REWRITE_TAC[CX_INJ; REAL_OF_NUM_EQ; complex_div] THEN | |
REWRITE_TAC[COMPLEX_MUL_LZERO; COMPLEX_ADD_RID; complex_pow] THEN | |
REWRITE_TAC[COMPLEX_RING `Cx(&1) + Cx(&0) pow 2 * z = Cx(&1)`] THEN | |
REWRITE_TAC[COMPLEX_MUL_RID] THEN ANTS_TAC THENL | |
[ALL_TAC; | |
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] HAS_PATH_INTEGRAL_EQ) THEN | |
X_GEN_TAC `z:complex` THEN DISCH_TAC THEN | |
ASM_CASES_TAC `z = Cx(&0)` THENL [ASM_MESON_TAC[]; ALL_TAC] THEN | |
UNDISCH_TAC `~(z = Cx(&0))` THEN REWRITE_TAC[] THEN | |
ABBREV_TAC `wever = inv(Cx R pow 2)` THEN CONV_TAC COMPLEX_FIELD] THEN | |
CONJ_TAC THENL | |
[REWRITE_TAC[REAL_ARITH `abs(x) <= a <=> x >= --a /\ x <= a`] THEN | |
REWRITE_TAC[SET_RULE `{x | P x /\ Q x} = {x | P x} INTER {x | Q x}`] THEN | |
MATCH_MP_TAC CONVEX_INTER THEN REWRITE_TAC[CONVEX_HALFSPACE_RE_GE] THEN | |
MATCH_MP_TAC CONVEX_INTER THEN | |
REWRITE_TAC[CONVEX_HALFSPACE_IM_GE; CONVEX_HALFSPACE_IM_LE]; | |
ALL_TAC] THEN | |
CONJ_TAC THENL | |
[MATCH_MP_TAC HOLOMORPHIC_ON_MUL THEN ASM_REWRITE_TAC[] THEN | |
ONCE_REWRITE_TAC[COMPLEX_ADD_SYM] THEN ASM_REWRITE_TAC[] THEN | |
MATCH_MP_TAC HOLOMORPHIC_ON_MUL THEN | |
SIMP_TAC[HOLOMORPHIC_ON_MUL; HOLOMORPHIC_ON_POW; HOLOMORPHIC_ON_ID; | |
HOLOMORPHIC_ON_CONST; HOLOMORPHIC_ON_ADD] THEN | |
REWRITE_TAC[holomorphic_on] THEN X_GEN_TAC `z:complex` THEN DISCH_TAC THEN | |
EXISTS_TAC `clog(Cx(&N)) * Cx(&N) cpow z` THEN | |
MATCH_MP_TAC HAS_COMPLEX_DERIVATIVE_AT_WITHIN THEN | |
MATCH_MP_TAC HAS_COMPLEX_DERIVATIVE_CPOW_RIGHT THEN | |
ASM_REWRITE_TAC[CX_INJ; REAL_OF_NUM_EQ]; | |
ALL_TAC] THEN | |
CONJ_TAC THENL | |
[REWRITE_TAC[IN_INTERIOR] THEN EXISTS_TAC `min d R:real` THEN | |
ASM_REWRITE_TAC[REAL_HALF; REAL_LT_MIN] THEN | |
REWRITE_TAC[SUBSET; IN_BALL; dist; COMPLEX_SUB_LZERO; NORM_NEG] THEN | |
REWRITE_TAC[IN_ELIM_THM] THEN GEN_TAC THEN | |
MATCH_MP_TAC(REAL_ARITH | |
`abs(n1) <= n /\ abs(n2) <= n | |
==> n < min d R ==> n1 >= --d /\ abs n2 <= R`) THEN | |
REWRITE_TAC[COMPLEX_NORM_GE_RE_IM]; | |
ALL_TAC] THEN | |
ASM_SIMP_TAC[PATH_IMAGE_JOIN; VALID_PATH_IMP_PATH; UNION_SUBSET] THEN | |
CONJ_TAC THEN MATCH_MP_TAC(SET_RULE | |
`~(x IN s) /\ s SUBSET t ==> s SUBSET (t DELETE x)`) THEN | |
ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP | |
(REWRITE_RULE[IMP_CONJ] SUBSET_TRANS)) THEN | |
REWRITE_TAC[SUBSET; IN_ELIM_THM] THENL [ALL_TAC; REAL_ARITH_TAC] THEN | |
MP_TAC COMPLEX_NORM_GE_RE_IM THEN MATCH_MP_TAC MONO_FORALL THEN | |
UNDISCH_TAC `&0 < d` THEN REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
FIRST_ASSUM(MP_TAC o MATCH_MP HAS_PATH_INTEGRAL_INTEGRABLE) THEN | |
ASM_SIMP_TAC[PATH_INTEGRABLE_JOIN; IMP_CONJ] THEN | |
REWRITE_TAC[path_integrable_on] THEN | |
DISCH_THEN(X_CHOOSE_THEN `integral_fA:complex` (LABEL_TAC "fA")) THEN | |
DISCH_THEN(X_CHOOSE_THEN `integral_fB:complex` (LABEL_TAC "fB")) THEN | |
SUBGOAL_THEN `integral_fA + integral_fB = Cx(&2) * Cx pi * ii * f(w:complex)` | |
ASSUME_TAC THENL | |
[MATCH_MP_TAC HAS_PATH_INTEGRAL_UNIQUE THEN MAP_EVERY EXISTS_TAC | |
[`\z. f(w + z) * Cx(&N) cpow z * (Cx(&1) / z + z / Cx R pow 2)`; | |
`A ++ B:real^1->complex`] THEN | |
ASM_SIMP_TAC[HAS_PATH_INTEGRAL_JOIN]; | |
ALL_TAC] THEN | |
ABBREV_TAC `A' = (--) o (A:real^1->complex)` THEN | |
SUBGOAL_THEN | |
`valid_path A' /\ | |
pathstart A' = complex(&0,R) /\ | |
pathfinish A' = complex(&0,--R) /\ | |
~(Cx(&0) IN path_image A') /\ | |
&0 < Re(winding_number(A',Cx(&0)))` | |
STRIP_ASSUME_TAC THENL | |
[EXPAND_TAC "A'" THEN | |
ASM_SIMP_TAC[VALID_PATH_NEGATEPATH; PATHSTART_NEGATEPATH; | |
PATHFINISH_NEGATEPATH; WINDING_NUMBER_NEGATEPATH; | |
PATH_IMAGE_NEGATEPATH] THEN | |
REWRITE_TAC[IN_IMAGE; COMPLEX_RING `Cx(&0) = --x <=> x = Cx(&0)`] THEN | |
ASM_REWRITE_TAC[UNWIND_THM2] THEN | |
SIMP_TAC[COMPLEX_EQ; RE_NEG; IM_NEG; RE; IM; REAL_NEG_0; REAL_NEG_NEG]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN | |
`valid_path(A ++ A') /\ | |
pathstart(A ++ A') = complex(&0,--R) /\ | |
pathfinish(A ++ A') = complex(&0,--R) /\ | |
~(Cx(&0) IN path_image(A ++ A')) /\ | |
path_image(A ++ A') = path_image A UNION path_image A'` | |
STRIP_ASSUME_TAC THENL | |
[ASM_SIMP_TAC[VALID_PATH_JOIN; PATHSTART_JOIN; PATHFINISH_JOIN; IN_UNION; | |
PATH_IMAGE_JOIN; VALID_PATH_IMP_PATH]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `path_image A' SUBSET {z | Re z <= &0 /\ norm z = R}` | |
ASSUME_TAC THENL | |
[EXPAND_TAC "A'" THEN REWRITE_TAC[path_image; IMAGE_o; SUBSET] THEN | |
ONCE_REWRITE_TAC[FORALL_IN_IMAGE] THEN REWRITE_TAC[GSYM path_image] THEN | |
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE | |
`s SUBSET t ==> (!x. x IN t ==> P x) ==> (!x. x IN s ==> P x)`)) THEN | |
REWRITE_TAC[IN_ELIM_THM; RE_NEG; NORM_NEG] THEN REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `winding_number(A++A',Cx(&0)) = Cx(&1)` ASSUME_TAC THENL | |
[MATCH_MP_TAC WINDING_NUMBER_EQ_1 THEN | |
ASM_SIMP_TAC[VALID_PATH_IMP_PATH; IN_UNION; | |
VALID_PATH_JOIN; PATHSTART_JOIN; PATHFINISH_JOIN; | |
WINDING_NUMBER_JOIN; REAL_LT_ADD; RE_ADD] THEN | |
MATCH_MP_TAC(REAL_ARITH `x < &1 /\ y < &1 ==> x + y < &2`) THEN | |
CONJ_TAC THEN MATCH_MP_TAC WINDING_NUMBER_LT_1 THENL | |
[EXISTS_TAC `--Cx(&1)`; EXISTS_TAC `Cx(&1)`] THEN | |
ASM_SIMP_TAC[] THEN (CONJ_TAC THENL [CONV_TAC COMPLEX_FIELD; ALL_TAC]) THEN | |
X_GEN_TAC `t:real` THEN DISCH_TAC THEN | |
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE | |
`s SUBSET t ==> ~(x IN t) ==> ~(x IN s)`)) THEN | |
REWRITE_TAC[COMPLEX_ADD_LID; COMPLEX_SUB_RZERO; IN_ELIM_THM] THEN | |
REWRITE_TAC[COMPLEX_MUL_RNEG; GSYM CX_MUL; RE_CX; IM_CX; RE_NEG] THEN | |
REWRITE_TAC[NORM_NEG; COMPLEX_NORM_CX; REAL_ABS_NUM] THEN | |
UNDISCH_TAC `&0 < t` THEN REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
SUBGOAL_THEN | |
`(\z. S_N (w + z) * Cx (&N) cpow z * (Cx (&1) + z pow 2 * inv (Cx R pow 2))) | |
holomorphic_on (:complex)` | |
ASSUME_TAC THENL | |
[MATCH_MP_TAC HOLOMORPHIC_ON_MUL THEN CONJ_TAC THENL | |
[REWRITE_TAC[GSYM(ASSUME | |
`!w. vsum (1..N) (\n. a n / Cx (&n) cpow w) = S_N w`)] THEN | |
MATCH_MP_TAC HOLOMORPHIC_ON_VSUM THEN | |
REWRITE_TAC[IN_NUMSEG; FINITE_NUMSEG] THEN | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC HOLOMORPHIC_ON_DIV; | |
MATCH_MP_TAC HOLOMORPHIC_ON_MUL] THEN | |
ASM_SIMP_TAC[HOLOMORPHIC_ON_CPOW_RIGHT; HOLOMORPHIC_ON_ID; CPOW_EQ_0; | |
HOLOMORPHIC_ON_CONST; REAL_OF_NUM_EQ; HOLOMORPHIC_ON_MUL; | |
ARITH_RULE `~(n = 0) <=> 1 <= n`; | |
HOLOMORPHIC_ON_ADD; HOLOMORPHIC_ON_POW; CX_INJ]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN | |
`((\z. S_N(w + z) * Cx(&N) cpow z * (Cx(&1) / z + z / Cx(R) pow 2)) | |
has_path_integral (Cx(&2) * Cx pi * ii * S_N(w))) (A ++ A')` | |
MP_TAC THENL | |
[MP_TAC(ISPECL | |
[`\z. S_N(w + z) * Cx(&N) cpow z * (Cx(&1) + z pow 2 / Cx(R) pow 2)`; | |
`cball(Cx(&0),R)`; | |
`A ++ A':real^1->complex`; | |
`Cx(&0)`] | |
CAUCHY_INTEGRAL_FORMULA_CONVEX_SIMPLE) THEN | |
ASM_REWRITE_TAC[CONVEX_CBALL; INTERIOR_CBALL; CENTRE_IN_BALL] THEN | |
ASM_REWRITE_TAC[COMPLEX_SUB_RZERO; COMPLEX_MUL_LID; CPOW_N] THEN | |
ASM_REWRITE_TAC[CX_INJ; REAL_OF_NUM_EQ; complex_div] THEN | |
REWRITE_TAC[COMPLEX_MUL_LZERO; COMPLEX_ADD_RID; complex_pow] THEN | |
REWRITE_TAC[COMPLEX_RING `Cx(&1) + Cx(&0) pow 2 * z = Cx(&1)`] THEN | |
REWRITE_TAC[COMPLEX_MUL_RID] THEN ANTS_TAC THENL | |
[ALL_TAC; | |
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] HAS_PATH_INTEGRAL_EQ) THEN | |
X_GEN_TAC `z:complex` THEN DISCH_TAC THEN | |
ASM_CASES_TAC `z = Cx(&0)` THENL [ASM_MESON_TAC[]; ALL_TAC] THEN | |
UNDISCH_TAC `~(z = Cx(&0))` THEN REWRITE_TAC[] THEN | |
ABBREV_TAC `wever = inv(Cx R pow 2)` THEN CONV_TAC COMPLEX_FIELD] THEN | |
CONJ_TAC THENL | |
[ASM_MESON_TAC[HOLOMORPHIC_ON_SUBSET; SUBSET_UNIV]; ALL_TAC] THEN | |
ASM_REWRITE_TAC[UNION_SUBSET] THEN CONJ_TAC THEN MATCH_MP_TAC(SET_RULE | |
`~(x IN s) /\ s SUBSET t ==> s SUBSET (t DELETE x)`) THEN | |
ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP | |
(REWRITE_RULE[IMP_CONJ] SUBSET_TRANS)) THEN | |
SIMP_TAC[SUBSET; IN_ELIM_THM; IN_CBALL; dist; COMPLEX_SUB_LZERO; | |
NORM_NEG] THEN | |
REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
DISCH_THEN(fun th -> ASSUME_TAC th THEN MP_TAC th) THEN | |
DISCH_THEN(MP_TAC o MATCH_MP HAS_PATH_INTEGRAL_INTEGRABLE) THEN | |
ASM_SIMP_TAC[PATH_INTEGRABLE_JOIN; IMP_CONJ] THEN | |
REWRITE_TAC[path_integrable_on] THEN | |
DISCH_THEN(X_CHOOSE_THEN `integral_sA:complex` (LABEL_TAC "sA")) THEN | |
DISCH_THEN(X_CHOOSE_THEN `integral_sA':complex` (LABEL_TAC "sA'")) THEN | |
SUBGOAL_THEN | |
`integral_sA + integral_sA' = Cx(&2) * Cx pi * ii * S_N(w:complex)` | |
ASSUME_TAC THENL | |
[MATCH_MP_TAC HAS_PATH_INTEGRAL_UNIQUE THEN MAP_EVERY EXISTS_TAC | |
[`\z. S_N(w + z) * Cx(&N) cpow z * (Cx(&1) / z + z / Cx R pow 2)`; | |
`A ++ A':real^1->complex`] THEN | |
ASM_SIMP_TAC[HAS_PATH_INTEGRAL_JOIN]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN | |
`((\z. S_N(w - z) * Cx (&N) cpow (--z) * (Cx (&1) / z + z / Cx R pow 2)) | |
has_path_integral integral_sA') A` | |
(LABEL_TAC "s'A") THENL | |
[SUBGOAL_THEN `(A:real^1->complex) = (--) o (--) o A` SUBST1_TAC THENL | |
[REWRITE_TAC[FUN_EQ_THM; o_DEF; COMPLEX_NEG_NEG]; ALL_TAC] THEN | |
MATCH_MP_TAC HAS_PATH_INTEGRAL_NEGATEPATH THEN ASM_REWRITE_TAC[] THEN | |
GEN_REWRITE_TAC (RATOR_CONV o LAND_CONV o ABS_CONV) | |
[GSYM COMPLEX_NEG_NEG] THEN | |
MATCH_MP_TAC HAS_PATH_INTEGRAL_NEG THEN | |
REMOVE_THEN "sA'" MP_TAC THEN MATCH_MP_TAC EQ_IMP THEN | |
AP_THM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN | |
REWRITE_TAC[FUN_EQ_THM; COMPLEX_SUB_RNEG; COMPLEX_NEG_NEG] THEN | |
REWRITE_TAC[complex_div; COMPLEX_INV_NEG; COMPLEX_MUL_LID] THEN | |
REWRITE_TAC[GSYM COMPLEX_NEG_ADD; COMPLEX_MUL_LNEG; COMPLEX_MUL_RNEG] THEN | |
REWRITE_TAC[COMPLEX_NEG_NEG]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN | |
`(\z. r_N(w + z) * Cx(&N) cpow z * (Cx(&1) / z + z / Cx(R) pow 2)) | |
path_integrable_on A` | |
MP_TAC THENL | |
[REWRITE_TAC[GSYM(ASSUME `!w. (f:complex->complex) w - S_N w = r_N w`)] THEN | |
REWRITE_TAC[COMPLEX_SUB_RDISTRIB] THEN | |
MATCH_MP_TAC PATH_INTEGRABLE_SUB THEN | |
REWRITE_TAC[path_integrable_on] THEN ASM_MESON_TAC[]; | |
ALL_TAC] THEN | |
REWRITE_TAC[path_integrable_on; LEFT_IMP_EXISTS_THM] THEN | |
X_GEN_TAC `integral_rA:complex` THEN DISCH_THEN(LABEL_TAC "rA") THEN | |
SUBGOAL_THEN `integral_fA - integral_sA:complex = integral_rA` | |
ASSUME_TAC THENL | |
[MATCH_MP_TAC HAS_PATH_INTEGRAL_UNIQUE THEN MAP_EVERY EXISTS_TAC | |
[`\z. r_N(w + z) * Cx(&N) cpow z * (Cx(&1) / z + z / Cx R pow 2)`; | |
`A:real^1->complex`] THEN | |
ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[GSYM(ASSUME `!w. (f:complex->complex) w - S_N w = r_N w`)] THEN | |
REWRITE_TAC[COMPLEX_SUB_RDISTRIB] THEN | |
MATCH_MP_TAC HAS_PATH_INTEGRAL_SUB THEN ASM_REWRITE_TAC[]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN | |
`r_N(w:complex) = ((integral_rA - integral_sA') + integral_fB) / | |
(Cx(&2) * Cx(pi) * ii)` | |
SUBST1_TAC THENL | |
[SIMP_TAC[COMPLEX_FIELD `~(z = Cx(&0)) ==> (x = y / z <=> z * x = y)`; | |
CX_2PII_NZ] THEN | |
REWRITE_TAC[GSYM(ASSUME `!w. (f:complex->complex) w - S_N w = r_N w`)] THEN | |
REWRITE_TAC[COMPLEX_SUB_LDISTRIB; GSYM COMPLEX_MUL_ASSOC] THEN | |
REPEAT(FIRST_X_ASSUM(MP_TAC o check (is_eq o concl))) THEN | |
SIMPLE_COMPLEX_ARITH_TAC; | |
ALL_TAC] THEN | |
REWRITE_TAC[COMPLEX_NORM_DIV; COMPLEX_NORM_MUL; COMPLEX_NORM_CX; | |
COMPLEX_NORM_II; REAL_MUL_RID; REAL_ABS_PI; REAL_ABS_NUM] THEN | |
SIMP_TAC[REAL_LT_LDIV_EQ; PI_POS; REAL_ARITH `&0 < &2 * p <=> &0 < p`] THEN | |
MATCH_MP_TAC REAL_LET_TRANS THEN | |
EXISTS_TAC `&4 * pi / R + &2 * pi / &N + | |
&6 * M * R / (d * exp(d * log(&N))) + | |
&4 * M / (R * log(&N)) pow 2` THEN | |
CONJ_TAC THENL | |
[ALL_TAC; | |
MATCH_MP_TAC(REAL_ARITH | |
`&4 * pi / R <= &4 * pi * (e / &3) /\ | |
y < &2 / &3 * e * pi | |
==> &4 * pi / R + y < e * &2 * pi`) THEN | |
ASM_SIMP_TAC[REAL_ARITH `abs x < e ==> x < e`] THEN | |
SIMP_TAC[real_div; REAL_LE_LMUL_EQ; REAL_OF_NUM_LT; ARITH; PI_POS] THEN | |
REWRITE_TAC[GSYM real_div] THEN | |
ONCE_REWRITE_TAC[GSYM REAL_INV_DIV] THEN | |
MATCH_MP_TAC REAL_LE_INV2 THEN | |
ASM_SIMP_TAC[REAL_LT_DIV; REAL_OF_NUM_LT; ARITH] THEN | |
EXPAND_TAC "R" THEN REAL_ARITH_TAC] THEN | |
MATCH_MP_TAC(NORM_ARITH | |
`norm(x) <= &2 * a /\ norm(y) <= &2 * a + b /\ norm(z) <= c | |
==> norm(x - y + z) <= &4 * a + b + c`) THEN | |
REPEAT CONJ_TAC THENL | |
[MP_TAC(ISPECL | |
[`\z. r_N(w + z) * Cx(&N) cpow z * (Cx(&1) / z + z / Cx R pow 2)`; | |
`integral_rA:complex`; `Cx(&0)`; `R:real`; `--(pi / &2)`; `pi / &2`; | |
`&2 / R pow 2`; | |
`{complex(&0,R),complex(&0,--R)}`] | |
HAS_PATH_INTEGRAL_BOUND_PARTCIRCLEPATH_STRONG) THEN | |
ASM_REWRITE_TAC[FINITE_INSERT; FINITE_RULES] THEN | |
ASM_SIMP_TAC[REAL_POW_LT; REAL_LE_DIV; REAL_POS; REAL_LT_IMP_LE] THEN | |
REWRITE_TAC[REAL_ARITH `p / &2 - --(p / &2) = p`; PI_POS_LE; | |
REAL_ARITH `--(p / &2) <= (p / &2) <=> &0 <= p`] THEN | |
ASM_SIMP_TAC[REAL_FIELD `~(r = &0) ==> &2 / r pow 2 * r * x = &2 * x / r`; | |
REAL_LT_IMP_NZ] THEN | |
DISCH_THEN MATCH_MP_TAC THEN X_GEN_TAC `z:complex` THEN | |
REWRITE_TAC[IN_DIFF; IN_INSERT; NOT_IN_EMPTY; DE_MORGAN_THM] THEN | |
STRIP_TAC THEN | |
SUBGOAL_THEN `norm(z) = R /\ &0 < Re z` STRIP_ASSUME_TAC THENL | |
[UNDISCH_TAC `path_image A SUBSET {z | Re z >= &0 /\ norm z = R}` THEN | |
REWRITE_TAC[SUBSET; IN_ELIM_THM; real_ge] THEN | |
DISCH_THEN(MP_TAC o SPEC `z:complex`) THEN ASM_SIMP_TAC[REAL_LT_LE] THEN | |
REWRITE_TAC[NORM_EQ_SQUARE; DOT_SQUARE_NORM; COMPLEX_SQNORM] THEN | |
ASM_CASES_TAC `Re z = &0` THEN ASM_REWRITE_TAC[] THEN | |
DISCH_THEN(MP_TAC o last o CONJUNCTS) THEN | |
REWRITE_TAC[REAL_RING | |
`&0 pow 2 + x pow 2 = y pow 2 <=> x = y \/ x = --y`] THEN | |
REWRITE_TAC[DE_MORGAN_THM] THEN STRIP_TAC THEN | |
UNDISCH_TAC `~(z = complex(&0,--R))` THEN | |
UNDISCH_TAC `~(z = complex(&0,R))` THEN | |
ASM_REWRITE_TAC[COMPLEX_EQ; RE; IM] THEN REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
MATCH_MP_TAC REAL_LE_TRANS THEN | |
EXISTS_TAC `&1 / (Re z * exp(Re z * log(&N))) * | |
exp(Re z * log(&N)) * (&2 * abs(Re z) / R pow 2)` THEN | |
CONJ_TAC THENL | |
[ALL_TAC; | |
ASM_SIMP_TAC[REAL_ARITH `&0 < z ==> abs z = z`] THEN | |
ASM_SIMP_TAC[REAL_EXP_NZ; REAL_LE_REFL; REAL_FIELD | |
`&0 < z /\ ~(e = &0) | |
==> &1 / (z * e) * e * &2 * z / R pow 2 = &2 / R pow 2`]] THEN | |
ONCE_REWRITE_TAC[COMPLEX_NORM_MUL] THEN MATCH_MP_TAC REAL_LE_MUL2 THEN | |
REWRITE_TAC[NORM_POS_LE] THEN CONJ_TAC THENL | |
[ALL_TAC; | |
REWRITE_TAC[COMPLEX_NORM_MUL] THEN MATCH_MP_TAC REAL_LE_MUL2 THEN | |
ASM_SIMP_TAC[NORM_POS_LE; REAL_LE_REFL; NORM_CPOW_REAL; BOUND_LEMMA_1; | |
REAL_CX; RE_CX; REAL_OF_NUM_LT; LT_NZ]] THEN | |
MATCH_MP_TAC(ISPEC `sequentially` LIM_NORM_UBOUND) THEN | |
EXISTS_TAC | |
`\n. vsum(1..n) (\n. a n / Cx (&n) cpow (w + z)) - S_N(w + z)` THEN | |
REWRITE_TAC[EVENTUALLY_SEQUENTIALLY; TRIVIAL_LIMIT_SEQUENTIALLY] THEN | |
CONJ_TAC THENL | |
[REWRITE_TAC[GSYM(ASSUME | |
`!w. (f:complex->complex) w - S_N w = r_N w`)] THEN | |
MATCH_MP_TAC LIM_SUB THEN REWRITE_TAC[LIM_CONST] THEN | |
MP_TAC(SPEC `w + z:complex` (ASSUME | |
`!z. Re z > &1 ==> ((\n. a n / Cx(&n) cpow z) sums f z) (from 1)`)) THEN | |
SIMP_TAC[RE_ADD; REAL_ARITH `&0 < z ==> &1 + z > &1`; | |
ASSUME `Re w = &1`; ASSUME `&0 < Re z`] THEN | |
REWRITE_TAC[sums; FROM_INTER_NUMSEG]; | |
ALL_TAC] THEN | |
EXISTS_TAC `N + 1` THEN X_GEN_TAC `n:num` THEN STRIP_TAC THEN | |
REWRITE_TAC[GSYM(ASSUME | |
`!w. vsum (1..N) (\n. a n / Cx (&n) cpow w) = S_N w`)] THEN | |
MATCH_MP_TAC REAL_LE_TRANS THEN | |
EXISTS_TAC `norm(vsum(N+1..n) (\n. a n / Cx(&n) cpow (w + z)))` THEN | |
CONJ_TAC THENL | |
[ALL_TAC; | |
MATCH_MP_TAC BOUND_LEMMA_4 THEN ASM_SIMP_TAC[REAL_LE_REFL] THEN | |
ASM_REWRITE_TAC[ARITH_RULE `1 <= N <=> ~(N = 0)`]] THEN | |
MATCH_MP_TAC(NORM_ARITH `y + z = x ==> norm(x - y) <= norm(z)`) THEN | |
MP_TAC(SPECL [`1`; `N:num`; `n:num`] NUMSEG_COMBINE_R) THEN | |
ANTS_TAC THENL | |
[MAP_EVERY UNDISCH_TAC [`~(N = 0)`; `N + 1 <= n`] THEN ARITH_TAC; | |
ALL_TAC] THEN | |
DISCH_THEN(SUBST1_TAC o SYM) THEN CONV_TAC SYM_CONV THEN | |
MATCH_MP_TAC VSUM_UNION THEN | |
REWRITE_TAC[FINITE_NUMSEG; DISJOINT_NUMSEG] THEN ARITH_TAC; | |
MP_TAC(ISPECL | |
[`\z. S_N(w - z) * Cx(&N) cpow (--z) * (Cx(&1) / z + z / Cx R pow 2)`; | |
`integral_sA':complex`; `Cx(&0)`; `R:real`; `--(pi / &2)`; `pi / &2`; | |
`&2 / R pow 2 + &2 / (&N * R)`; | |
`{complex(&0,R),complex(&0,--R)}`] | |
HAS_PATH_INTEGRAL_BOUND_PARTCIRCLEPATH_STRONG) THEN | |
ASM_SIMP_TAC[REAL_OF_NUM_EQ; REAL_FIELD | |
`&0 < R /\ ~(N = &0) | |
==> (&2 / R pow 2 + &2 / (N * R)) * R * (p / &2 - --(p / &2)) = | |
&2 * p / R + &2 * p / N`] THEN | |
DISCH_THEN MATCH_MP_TAC THEN | |
REWRITE_TAC[FINITE_INSERT; FINITE_RULES] THEN CONJ_TAC THENL | |
[MATCH_MP_TAC REAL_LE_ADD THEN | |
ASM_SIMP_TAC[REAL_POW_LE; REAL_LE_DIV; REAL_LE_MUL; REAL_POS; | |
REAL_LT_IMP_LE]; | |
ALL_TAC] THEN | |
ASM_SIMP_TAC[PI_POS; REAL_ARITH `&0 < x ==> --(x / &2) <= x / &2`] THEN | |
X_GEN_TAC `z:complex` THEN | |
REWRITE_TAC[IN_DIFF; IN_INSERT; NOT_IN_EMPTY; DE_MORGAN_THM] THEN | |
STRIP_TAC THEN | |
SUBGOAL_THEN `norm(z) = R /\ &0 < Re z` STRIP_ASSUME_TAC THENL | |
[UNDISCH_TAC `path_image A SUBSET {z | Re z >= &0 /\ norm z = R}` THEN | |
REWRITE_TAC[SUBSET; IN_ELIM_THM; real_ge] THEN | |
DISCH_THEN(MP_TAC o SPEC `z:complex`) THEN ASM_SIMP_TAC[REAL_LT_LE] THEN | |
REWRITE_TAC[NORM_EQ_SQUARE; DOT_SQUARE_NORM; COMPLEX_SQNORM] THEN | |
ASM_CASES_TAC `Re z = &0` THEN ASM_REWRITE_TAC[] THEN | |
DISCH_THEN(MP_TAC o last o CONJUNCTS) THEN | |
REWRITE_TAC[REAL_RING | |
`&0 pow 2 + x pow 2 = y pow 2 <=> x = y \/ x = --y`] THEN | |
REWRITE_TAC[DE_MORGAN_THM] THEN STRIP_TAC THEN | |
UNDISCH_TAC `~(z = complex(&0,--R))` THEN | |
UNDISCH_TAC `~(z = complex(&0,R))` THEN | |
ASM_REWRITE_TAC[COMPLEX_EQ; RE; IM] THEN REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
MATCH_MP_TAC REAL_LE_TRANS THEN | |
EXISTS_TAC `(exp (Re z * log (&N)) * (&1 / &N + &1 / Re z)) * | |
inv(exp(Re z * log(&N))) * (&2 * abs(Re z) / R pow 2)` THEN | |
CONJ_TAC THENL | |
[ALL_TAC; | |
ASM_SIMP_TAC[REAL_ARITH `&0 < z ==> abs z = z`] THEN | |
ASM_SIMP_TAC[REAL_EXP_NZ; REAL_FIELD | |
`~(e = &0) ==> (e * x) * inv(e) * y = x * y`] THEN | |
ASM_SIMP_TAC[REAL_FIELD | |
`&0 < x ==> (n + &1 / x) * &2 * x / y = &2 / y + &2 * x * n / y`] THEN | |
REWRITE_TAC[REAL_LE_LADD] THEN | |
ASM_SIMP_TAC[REAL_LE_RDIV_EQ; REAL_LT_MUL; REAL_OF_NUM_LT; LT_NZ; | |
REAL_FIELD `&0 < n /\ &0 < r | |
==> (&2 * z * &1 / n / r pow 2) * n * r = &2 * z / r`] THEN | |
MATCH_MP_TAC(REAL_ARITH `x <= &1 ==> &2 * x <= &2`) THEN | |
ASM_SIMP_TAC[REAL_LE_LDIV_EQ] THEN | |
MP_TAC(SPEC `z:complex` COMPLEX_NORM_GE_RE_IM) THEN | |
ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC] THEN | |
ONCE_REWRITE_TAC[COMPLEX_NORM_MUL] THEN MATCH_MP_TAC REAL_LE_MUL2 THEN | |
REWRITE_TAC[NORM_POS_LE] THEN CONJ_TAC THENL | |
[REWRITE_TAC[GSYM(ASSUME | |
`!w. vsum (1..N) (\n. a n / Cx (&n) cpow w) = S_N w`)] THEN | |
MATCH_MP_TAC BOUND_LEMMA_3 THEN | |
ASM_REWRITE_TAC[REAL_LE_REFL; ARITH_RULE `1 <= N <=> ~(N = 0)`]; | |
ALL_TAC] THEN | |
REWRITE_TAC[COMPLEX_NORM_MUL] THEN MATCH_MP_TAC REAL_LE_MUL2 THEN | |
ASM_SIMP_TAC[NORM_POS_LE; REAL_LE_REFL; NORM_CPOW_REAL; BOUND_LEMMA_1; | |
REAL_CX; RE_CX; REAL_OF_NUM_LT; LT_NZ] THEN | |
REWRITE_TAC[RE_NEG; REAL_MUL_LNEG; REAL_EXP_NEG; REAL_LE_REFL]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN | |
`(\z. f(w + z) * Cx(&N) cpow z * (Cx(&1) / z + z / Cx R pow 2)) | |
path_integrable_on B` | |
MP_TAC THENL | |
[ASM_MESON_TAC[path_integrable_on]; ALL_TAC] THEN | |
EXPAND_TAC "B" THEN | |
SIMP_TAC[PATH_INTEGRABLE_JOIN; VALID_PATH_JOIN; PATHSTART_JOIN; | |
PATHFINISH_JOIN; VALID_PATH_LINEPATH; PATHSTART_LINEPATH; | |
PATHFINISH_LINEPATH] THEN | |
REWRITE_TAC[path_integrable_on; IMP_CONJ; LEFT_IMP_EXISTS_THM] THEN | |
X_GEN_TAC `integral_fC:complex` THEN DISCH_TAC THEN | |
X_GEN_TAC `integral_fD:complex` THEN DISCH_TAC THEN | |
X_GEN_TAC `integral_fC':complex` THEN DISCH_TAC THEN | |
SUBGOAL_THEN | |
`integral_fB:complex = integral_fC + integral_fD + integral_fC'` | |
SUBST1_TAC THENL | |
[MATCH_MP_TAC HAS_PATH_INTEGRAL_UNIQUE THEN | |
MAP_EVERY EXISTS_TAC | |
[`\z. f(w + z) * Cx(&N) cpow z * (Cx(&1) / z + z / Cx R pow 2)`; | |
`B:real^1->complex`] THEN | |
ASM_SIMP_TAC[] THEN EXPAND_TAC "B" THEN | |
REPEAT(MATCH_MP_TAC HAS_PATH_INTEGRAL_JOIN THEN | |
ASM_SIMP_TAC[VALID_PATH_JOIN; PATHSTART_JOIN; PATHFINISH_LINEPATH; | |
PATHFINISH_JOIN; VALID_PATH_LINEPATH; PATHSTART_LINEPATH]); | |
ALL_TAC] THEN | |
MATCH_MP_TAC(NORM_ARITH | |
`norm(y) <= a /\ norm(x) <= &2 * b /\ norm(z) <= &2 * b | |
==> norm(x + y + z) <= a + &4 * b`) THEN | |
CONJ_TAC THENL | |
[MP_TAC(SPECL | |
[`\z. f(w + z) * Cx(&N) cpow z * (Cx(&1) / z + z / Cx R pow 2)`; | |
`integral_fD:complex`; | |
`complex (--d,R)`; `complex (--d,--R)`; | |
`M * inv(exp(d * log(&N))) * &3 / d`] | |
HAS_PATH_INTEGRAL_BOUND_LINEPATH) THEN | |
ASM_REWRITE_TAC[] THEN ANTS_TAC THENL | |
[ALL_TAC; | |
SUBGOAL_THEN `complex (--d,--R) - complex (--d,R) = | |
Cx(&2) * ii * Cx(--R)` | |
SUBST1_TAC THENL | |
[REWRITE_TAC[COMPLEX_EQ; RE_SUB; IM_SUB; RE_MUL_CX; IM_MUL_CX; | |
RE_CX; IM_CX; RE_MUL_II; IM_MUL_II; RE; IM] THEN | |
REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
MATCH_MP_TAC(REAL_ARITH `a = b ==> x <= a ==> x <= b`) THEN | |
REWRITE_TAC[COMPLEX_NORM_MUL; COMPLEX_NORM_CX; COMPLEX_NORM_II] THEN | |
ASM_SIMP_TAC[REAL_ARITH `&0 < R ==> abs(--R) = R`; REAL_ABS_NUM] THEN | |
CONV_TAC REAL_FIELD] THEN | |
CONJ_TAC THENL | |
[REPEAT(MATCH_MP_TAC REAL_LE_MUL THEN CONJ_TAC) THEN | |
ASM_SIMP_TAC[REAL_LT_IMP_LE; REAL_LE_INV_EQ; REAL_EXP_POS_LE; | |
REAL_LE_DIV; REAL_POS]; | |
ALL_TAC] THEN | |
X_GEN_TAC `z:complex` THEN DISCH_TAC THEN | |
SUBGOAL_THEN `Re z = --d` ASSUME_TAC THENL | |
[UNDISCH_TAC `z IN segment[complex(--d,R),complex(--d,--R)]` THEN | |
REWRITE_TAC[segment; IN_ELIM_THM] THEN | |
STRIP_TAC THEN ASM_REWRITE_TAC[RE_CMUL; RE_ADD; RE] THEN | |
REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `segment[complex(--d,R),complex(--d,--R)] SUBSET | |
{z | abs(Im z) <= R}` | |
MP_TAC THENL | |
[REWRITE_TAC[SEGMENT_CONVEX_HULL] THEN MATCH_MP_TAC HULL_MINIMAL THEN | |
REWRITE_TAC[REAL_ARITH `abs(x) <= r <=> x >= --r /\ x <= r`] THEN | |
SIMP_TAC[SET_RULE `{x | P x /\ Q x} = {x | P x} INTER {x | Q x}`; | |
CONVEX_INTER; CONVEX_HALFSPACE_IM_LE; CONVEX_HALFSPACE_IM_GE] THEN | |
REWRITE_TAC[SET_RULE `{a,b} SUBSET s <=> a IN s /\ b IN s`] THEN | |
REWRITE_TAC[IN_ELIM_THM; IN_INTER; IM] THEN | |
UNDISCH_TAC `&0 < R` THEN REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
REWRITE_TAC[SUBSET] THEN DISCH_THEN(MP_TAC o SPEC `z:complex`) THEN | |
ASM_REWRITE_TAC[IN_ELIM_THM] THEN DISCH_TAC THEN | |
ONCE_REWRITE_TAC[COMPLEX_NORM_MUL] THEN MATCH_MP_TAC REAL_LE_MUL2 THEN | |
REWRITE_TAC[NORM_POS_LE] THEN CONJ_TAC THENL | |
[FIRST_X_ASSUM MATCH_MP_TAC THEN | |
ASM_REWRITE_TAC[real_ge; REAL_LE_REFL] THEN | |
MAP_EVERY UNDISCH_TAC [`&0 < R`; `&0 < d`] THEN REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
ONCE_REWRITE_TAC[COMPLEX_NORM_MUL] THEN MATCH_MP_TAC REAL_LE_MUL2 THEN | |
REWRITE_TAC[NORM_POS_LE] THEN CONJ_TAC THENL | |
[ASM_SIMP_TAC[CPOW_REAL_REAL; NORM_CPOW_REAL; REAL_CX; RE_CX; | |
REAL_OF_NUM_LT; LT_NZ] THEN | |
REWRITE_TAC[REAL_MUL_LNEG; REAL_EXP_NEG; REAL_LE_REFL]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `~(z = Cx(&0))` ASSUME_TAC THENL | |
[DISCH_TAC THEN UNDISCH_TAC `Re z = --d` THEN | |
ASM_REWRITE_TAC[RE_CX] THEN UNDISCH_TAC `&0 < d` THEN REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
ASM_SIMP_TAC[CX_INJ; REAL_LT_IMP_NZ; COMPLEX_FIELD | |
`~(z = Cx(&0)) /\ ~(R = Cx(&0)) | |
==> Cx(&1) / z + z / R pow 2 = | |
(Cx(&1) + (z / R) pow 2) * inv(z)`] THEN | |
ONCE_REWRITE_TAC[COMPLEX_NORM_MUL] THEN REWRITE_TAC[real_div] THEN | |
MATCH_MP_TAC REAL_LE_MUL2 THEN REWRITE_TAC[NORM_POS_LE] THEN | |
CONJ_TAC THENL | |
[MATCH_MP_TAC(NORM_ARITH | |
`norm(i) = &1 /\ norm(z) <= &2 ==> norm(i + z) <= &3`) THEN | |
REWRITE_TAC[COMPLEX_NORM_CX; COMPLEX_NORM_POW; REAL_ABS_NUM] THEN | |
REWRITE_TAC[COMPLEX_NORM_DIV; REAL_POW_DIV] THEN | |
ASM_SIMP_TAC[REAL_LE_LDIV_EQ; COMPLEX_NORM_NZ; REAL_POW_LT; | |
CX_INJ; REAL_LT_IMP_NZ] THEN | |
REWRITE_TAC[COMPLEX_NORM_CX; REAL_POW2_ABS] THEN | |
ASM_REWRITE_TAC[COMPLEX_SQNORM] THEN | |
MATCH_MP_TAC(REAL_ARITH | |
`d pow 2 <= R pow 2 /\ i pow 2 <= R pow 2 | |
==> --d pow 2 + i pow 2 <= &2 * R pow 2`) THEN | |
ONCE_REWRITE_TAC[GSYM REAL_LE_SQUARE_ABS] THEN | |
MAP_EVERY UNDISCH_TAC | |
[`&0 < d`; `&0 < R`; `d <= R`; `abs(Im z) <= R`] THEN | |
REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
REWRITE_TAC[COMPLEX_NORM_INV] THEN MATCH_MP_TAC REAL_LE_INV2 THEN | |
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LE_TRANS THEN | |
EXISTS_TAC `abs(Re z)` THEN REWRITE_TAC[COMPLEX_NORM_GE_RE_IM] THEN | |
ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
MP_TAC(ISPECL | |
[`\z. --(inv(clog(Cx(&N)) pow 2)) * (Cx(&1) + z * clog(Cx(&N))) * | |
Cx(&N) cpow (--z)`; | |
`\z. z * Cx(&N) cpow (--z)`; | |
`linepath(Cx(&0),Cx(d))`; | |
`(:complex)`] PATH_INTEGRAL_PRIMITIVE) THEN | |
REWRITE_TAC[VALID_PATH_LINEPATH; SUBSET_UNIV; IN_UNIV] THEN ANTS_TAC THENL | |
[X_GEN_TAC `z:complex` THEN COMPLEX_DIFF_TAC THEN | |
REWRITE_TAC[COMPLEX_MUL_LID; COMPLEX_ADD_LID; COMPLEX_MUL_LNEG] THEN | |
ASM_REWRITE_TAC[CX_INJ; REAL_OF_NUM_EQ] THEN | |
SUBGOAL_THEN `~(clog(Cx(&N)) = Cx(&0))` MP_TAC THENL | |
[ALL_TAC; CONV_TAC COMPLEX_FIELD] THEN | |
ASM_SIMP_TAC[GSYM CX_LOG; REAL_OF_NUM_LT; LT_NZ; CX_INJ] THEN | |
MATCH_MP_TAC REAL_LT_IMP_NZ THEN MATCH_MP_TAC LOG_POS_LT THEN | |
ASM_REWRITE_TAC[REAL_OF_NUM_LT]; | |
ALL_TAC] THEN | |
REWRITE_TAC[PATHSTART_LINEPATH; PATHFINISH_LINEPATH] THEN | |
REWRITE_TAC[COMPLEX_NEG_0; COMPLEX_MUL_LID; COMPLEX_MUL_LZERO; | |
COMPLEX_ADD_RID] THEN | |
REWRITE_TAC[COMPLEX_RING | |
`--x * y - --x * z:complex = x * (z - y)`] THEN | |
ASM_REWRITE_TAC[CPOW_N; CX_INJ; REAL_OF_NUM_EQ; complex_pow] THEN | |
ASM_SIMP_TAC[CPOW_NEG; CPOW_REAL_REAL; REAL_CX; RE_CX; REAL_OF_NUM_LT; | |
LT_NZ; GSYM CX_LOG; GSYM CX_MUL; GSYM CX_INV; | |
GSYM CX_ADD; GSYM CX_SUB; GSYM CX_POW] THEN | |
REWRITE_TAC[REAL_ARITH `&1 - (&1 + d) = --d`] THEN | |
ABBREV_TAC | |
`integral_bound = | |
inv(log(&N) pow 2) * | |
(&1 - (&1 + d * log(&N)) * inv(exp(d * log (&N))))` THEN | |
SUBGOAL_THEN | |
`&0 <= integral_bound /\ integral_bound <= inv(log(&N) pow 2)` | |
STRIP_ASSUME_TAC THENL | |
[EXPAND_TAC "integral_bound" THEN | |
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN | |
GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [GSYM REAL_MUL_LID] THEN | |
ASM_SIMP_TAC[GSYM real_div; REAL_LE_DIV2_EQ; REAL_LE_RDIV_EQ; | |
REAL_POW_LT; LOG_POS_LT; REAL_OF_NUM_LT] THEN | |
REWRITE_TAC[REAL_ARITH `&0 * x <= &1 - y /\ &1 - y <= &1 <=> | |
&0 <= y /\ y <= &1`] THEN | |
SIMP_TAC[REAL_LE_RDIV_EQ; REAL_LE_LDIV_EQ; REAL_EXP_POS_LT] THEN | |
REWRITE_TAC[REAL_MUL_LID; REAL_MUL_LZERO] THEN | |
CONJ_TAC THENL | |
[MATCH_MP_TAC REAL_LE_ADD THEN REWRITE_TAC[REAL_POS]; | |
REWRITE_TAC[REAL_EXP_LE_X]] THEN | |
ASM_SIMP_TAC[REAL_LE_MUL; REAL_LT_IMP_LE; LOG_POS_LT; REAL_OF_NUM_LT]; | |
ALL_TAC] THEN | |
DISCH_THEN(MP_TAC o MATCH_MP HAS_PATH_INTEGRAL_COMPLEX_LMUL) THEN | |
DISCH_THEN(MP_TAC o SPEC `Cx(&2) * Cx(M) / Cx(R) pow 2`) THEN | |
DISCH_THEN(fun th -> CONJ_TAC THEN MP_TAC th) THENL | |
[UNDISCH_TAC | |
`((\z. f(w + z) * Cx(&N) cpow z * (Cx(&1) / z + z / Cx R pow 2)) | |
has_path_integral integral_fC) | |
(linepath (complex (&0,R),complex (--d,R)))`; | |
UNDISCH_TAC | |
`((\z. f(w + z) * Cx(&N) cpow z * (Cx(&1) / z + z / Cx R pow 2)) | |
has_path_integral integral_fC') | |
(linepath (complex(--d,--R),complex(&0,--R)))`] THEN | |
REWRITE_TAC[HAS_PATH_INTEGRAL; VECTOR_DERIVATIVE_LINEPATH_AT] THENL | |
[ALL_TAC; | |
DISCH_THEN(MP_TAC o C CONJ (ARITH_RULE `~(-- &1 = &0)`)) THEN | |
DISCH_THEN(MP_TAC o SPEC `vec 1:real^1` o | |
MATCH_MP HAS_INTEGRAL_AFFINITY) THEN | |
REWRITE_TAC[IMAGE_AFFINITY_INTERVAL] THEN | |
REWRITE_TAC[INTERVAL_EQ_EMPTY_1; DROP_VEC] THEN | |
CONV_TAC REAL_RAT_REDUCE_CONV THEN | |
REWRITE_TAC[VECTOR_MUL_LID; VECTOR_MUL_LNEG; VECTOR_NEG_0; | |
VECTOR_ADD_LID; VECTOR_NEG_NEG; REAL_POW_ONE; REAL_INV_1] THEN | |
REWRITE_TAC[VECTOR_ARITH `--x + y:real^1 = y - x`; VECTOR_SUB_REFL]] THEN | |
(SUBGOAL_THEN | |
`(!x. linepath(complex (&0,R),complex (--d,R)) x = | |
ii * Cx(R) - Cx(d * drop x)) /\ | |
(!x. linepath(Cx (&0),Cx d) x = Cx(d * drop x)) /\ | |
(complex(--d,R) - complex(&0,R) = --Cx(d)) /\ | |
(!x. linepath(complex (--d,--R),complex(&0,--R)) (vec 1 - x) = | |
--ii * Cx(R) - Cx(d * drop x)) /\ | |
(complex(&0,--R) - complex(--d,--R) = Cx(d))` | |
(fun th -> REWRITE_TAC[th]) | |
THENL | |
[REWRITE_TAC[linepath; COMPLEX_EQ; IM_CMUL; RE_CMUL; IM; RE; RE_SUB; | |
IM_SUB; IM_ADD; RE_ADD; RE_MUL_II; IM_MUL_II; RE_MUL_CX; | |
RE_II; IM_II; IM_MUL_CX; IM_CX; RE_CX; RE_NEG; IM_NEG; | |
DROP_SUB; DROP_VEC] THEN | |
REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
REWRITE_TAC[IMP_IMP] THEN DISCH_THEN(MP_TAC o MATCH_MP | |
(ONCE_REWRITE_RULE[TAUT `a /\ b /\ c /\ d /\ e ==> f <=> | |
c /\ d ==> a /\ b /\ e ==> f`] | |
HAS_INTEGRAL_NORM_BOUND_INTEGRAL_COMPONENT)) THEN | |
DISCH_THEN(MP_TAC o SPEC `1`) THEN REWRITE_TAC[GSYM RE_DEF] THEN | |
ANTS_TAC THENL | |
[ALL_TAC; | |
MATCH_MP_TAC(REAL_ARITH `a <= b ==> x <= a ==> x <= b`) THEN | |
REWRITE_TAC[GSYM CX_POW; GSYM CX_MUL; GSYM CX_DIV; RE_CX] THEN | |
REWRITE_TAC[real_div; GSYM REAL_POW_INV; REAL_POW_MUL; REAL_INV_MUL] THEN | |
MATCH_MP_TAC(REAL_ARITH | |
`&0 <= (M * R) * (b - i) ==> (&2 * M * R) * i <= &2 * M * R * b`) THEN | |
MATCH_MP_TAC REAL_LE_MUL THEN | |
ASM_SIMP_TAC[REAL_SUB_LE; REAL_LE_MUL; REAL_POW_LE; REAL_LE_INV_EQ; | |
REAL_LT_IMP_LE] THEN | |
ASM_REWRITE_TAC[REAL_POW_INV]] THEN | |
REWRITE_TAC[DIMINDEX_2; ARITH] THEN | |
REWRITE_TAC[IN_INTERVAL_1; GSYM FORALL_DROP; DROP_VEC] THEN | |
X_GEN_TAC `x:real` THEN STRIP_TAC THEN | |
REWRITE_TAC[COMPLEX_NORM_MUL] THEN | |
ASM_SIMP_TAC[NORM_CPOW_REAL; REAL_CX; RE_CX; REAL_OF_NUM_LT; | |
CPOW_REAL_REAL; LT_NZ] THEN | |
REWRITE_TAC[RE_MUL_II; RE_NEG; RE_II; RE_MUL_CX; RE_SUB; RE_CX; IM_CX] THEN | |
REWRITE_TAC[REAL_MUL_LZERO; REAL_NEG_0; COMPLEX_SUB_RZERO; | |
REAL_ARITH `&0 - d * x = --(d * x)`] THEN | |
GEN_REWRITE_TAC (RAND_CONV o TOP_DEPTH_CONV) | |
[GSYM CX_MUL; GSYM CX_INV; GSYM CX_POW; GSYM CX_DIV; RE_CX] THEN | |
REWRITE_TAC[NORM_NEG; COMPLEX_NORM_CX] THEN | |
ASM_SIMP_TAC[REAL_ARITH `&0 < d ==> abs d = d`; REAL_LE_RMUL_EQ; | |
REAL_MUL_ASSOC] THEN | |
GEN_REWRITE_TAC LAND_CONV | |
[REAL_ARITH `(a * b) * c:real = (a * c) * b`] THEN | |
REWRITE_TAC[GSYM REAL_EXP_NEG; REAL_MUL_LNEG] THEN | |
ASM_SIMP_TAC[REAL_LE_RMUL_EQ; REAL_EXP_POS_LT] THEN | |
REWRITE_TAC[real_div; GSYM REAL_MUL_ASSOC] THEN | |
ONCE_REWRITE_TAC[REAL_ARITH | |
`&2 * M * r * d * x = M * (&2 * (d * x) * r)`] THEN | |
MATCH_MP_TAC REAL_LE_MUL2 THEN REWRITE_TAC[NORM_POS_LE; GSYM real_div] THEN | |
CONJ_TAC THENL | |
[FIRST_X_ASSUM MATCH_MP_TAC THEN | |
REWRITE_TAC[RE_MUL_II; IM_MUL_II; RE_SUB; IM_SUB; RE_CX; IM_CX; | |
COMPLEX_MUL_LNEG; RE_NEG; IM_NEG] THEN | |
SUBGOAL_THEN `&0 <= d * x /\ d * x <= d * &1` MP_TAC THENL | |
[ALL_TAC; | |
MAP_EVERY UNDISCH_TAC [`&0 < d`; `d <= R`] THEN REAL_ARITH_TAC] THEN | |
ASM_SIMP_TAC[REAL_LE_MUL; REAL_LT_IMP_LE; REAL_LE_LMUL_EQ]; | |
ALL_TAC] THEN | |
MATCH_MP_TAC BOUND_LEMMA_2 THEN | |
ASM_SIMP_TAC[REAL_LT_IMP_LE; REAL_LE_MUL] THEN | |
REWRITE_TAC[RE_MUL_II; IM_MUL_II; RE_SUB; IM_SUB; RE_CX; IM_CX; | |
COMPLEX_MUL_LNEG; RE_NEG; IM_NEG] THEN | |
UNDISCH_TAC `&0 < R` THEN REAL_ARITH_TAC));; | |
(* ------------------------------------------------------------------------- *) | |
(* The application is to any bounded a_n, not |a_n| <= 1, so... *) | |
(* ------------------------------------------------------------------------- *) | |
let NEWMAN_INGHAM_THEOREM_BOUND = prove | |
(`!f a b. &0 < b /\ | |
(!n. 1 <= n ==> norm(a(n)) <= b) /\ | |
f analytic_on {z | Re(z) >= &1} /\ | |
(!z. Re(z) > &1 ==> ((\n. a(n) / Cx(&n) cpow z) sums (f z)) (from 1)) | |
==> !z. Re(z) >= &1 | |
==> ((\n. a(n) / Cx(&n) cpow z) sums (f z)) (from 1)`, | |
REPEAT GEN_TAC THEN STRIP_TAC THEN | |
MP_TAC(ISPECL [`\z:complex. inv(Cx(b)) * f z`; | |
`\n:num. inv(Cx(b)) * a n`] | |
NEWMAN_INGHAM_THEOREM) THEN | |
ASM_SIMP_TAC[ANALYTIC_ON_MUL; ANALYTIC_ON_CONST] THEN | |
REWRITE_TAC[complex_div; GSYM COMPLEX_MUL_ASSOC] THEN | |
REWRITE_TAC[GSYM complex_div] THEN ASM_SIMP_TAC[SERIES_COMPLEX_LMUL] THEN | |
REWRITE_TAC[COMPLEX_NORM_MUL; COMPLEX_NORM_INV] THEN | |
REWRITE_TAC[GSYM(ONCE_REWRITE_RULE[REAL_MUL_SYM] real_div)] THEN | |
ASM_SIMP_TAC[COMPLEX_NORM_CX; REAL_ARITH `&0 < b ==> abs b = b`; | |
REAL_LE_LDIV_EQ; REAL_MUL_LID] THEN | |
MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `z:complex` THEN | |
DISCH_THEN(fun th -> DISCH_TAC THEN MP_TAC th) THEN ASM_REWRITE_TAC[] THEN | |
DISCH_THEN(MP_TAC o SPEC `Cx b` o MATCH_MP SERIES_COMPLEX_LMUL) THEN | |
ASM_SIMP_TAC[complex_div; COMPLEX_MUL_ASSOC; COMPLEX_MUL_RINV; | |
CX_INJ; REAL_LT_IMP_NZ; COMPLEX_MUL_LID]);; | |
let NEWMAN_INGHAM_THEOREM_STRONG = prove | |
(`!f a b. (!n. 1 <= n ==> norm(a(n)) <= b) /\ | |
f analytic_on {z | Re(z) >= &1} /\ | |
(!z. Re(z) > &1 ==> ((\n. a(n) / Cx(&n) cpow z) sums (f z)) (from 1)) | |
==> !z. Re(z) >= &1 | |
==> ((\n. a(n) / Cx(&n) cpow z) sums (f z)) (from 1)`, | |
REPEAT GEN_TAC THEN STRIP_TAC THEN | |
MATCH_MP_TAC NEWMAN_INGHAM_THEOREM_BOUND THEN | |
EXISTS_TAC `abs b + &1` THEN ASM_REWRITE_TAC[] THEN | |
CONJ_TAC THENL [REAL_ARITH_TAC; ALL_TAC] THEN | |
ASM_MESON_TAC[REAL_ARITH `x <= b ==> x <= abs b + &1`]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Newman's analytic function "f", re-using our "nearzeta" stuff. *) | |
(* ------------------------------------------------------------------------- *) | |
let GENZETA_BOUND_LEMMA = prove | |
(`!n s m. ~(n = 0) /\ &1 < Re s /\ n + 1 <= m | |
==> sum(n..m) (\x. norm(Cx(&1) / Cx(&x) cpow s)) | |
<= (&1 / &n + &1 / (Re s - &1)) * exp((&1 - Re s) * log(&n))`, | |
REPEAT STRIP_TAC THEN | |
SIMP_TAC[SUM_CLAUSES_LEFT; MATCH_MP (ARITH_RULE `n + 1 <= m ==> n <= m`) | |
(ASSUME `n + 1 <= m`)] THEN | |
MATCH_MP_TAC(REAL_ARITH `y <= a - x ==> x + y <= a`) THEN | |
MP_TAC(SPECL | |
[`\z. Cx(&1) / z cpow (Cx(Re s))`; | |
`\z. Cx(&1) / ((Cx(&1) - (Cx(Re s))) * z cpow (Cx(Re s) - Cx(&1)))`; | |
`n + 1`; `m:num`] SUM_INTEGRAL_UBOUND_DECREASING) THEN | |
ASM_REWRITE_TAC[GSYM REAL_OF_NUM_ADD; REAL_ARITH `(n + &1) - &1 = n`] THEN | |
ANTS_TAC THENL | |
[CONJ_TAC THENL | |
[X_GEN_TAC `z:complex` THEN DISCH_TAC THEN COMPLEX_DIFF_TAC THEN | |
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN_SEGMENT_CX_GEN]) THEN | |
STRIP_TAC THENL | |
[ALL_TAC; | |
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM REAL_OF_NUM_LE]) THEN | |
REWRITE_TAC[GSYM REAL_OF_NUM_ADD] THEN ASM_REAL_ARITH_TAC] THEN | |
SUBGOAL_THEN `&0 < Re z` ASSUME_TAC THENL | |
[FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM LT_NZ]) THEN | |
REWRITE_TAC[GSYM REAL_OF_NUM_LT] THEN ASM_REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `~(z = Cx(&0))` ASSUME_TAC THENL | |
[ASM_MESON_TAC[RE_CX; REAL_LT_REFL]; ALL_TAC] THEN | |
ASM_REWRITE_TAC[CPOW_N; CPOW_SUB; COMPLEX_POW_1] THEN | |
REWRITE_TAC[COMPLEX_ENTIRE; complex_div] THEN | |
MATCH_MP_TAC(TAUT `(a ==> b) /\ a ==> a /\ b`) THEN | |
CONJ_TAC THENL | |
[UNDISCH_TAC `~(z = Cx(&0))` THEN CONV_TAC COMPLEX_FIELD; | |
ASM_REWRITE_TAC[COMPLEX_INV_EQ_0; CPOW_EQ_0; COMPLEX_SUB_0] THEN | |
REWRITE_TAC[CX_INJ] THEN ASM_REAL_ARITH_TAC]; | |
ALL_TAC] THEN | |
MAP_EVERY X_GEN_TAC [`x:real`; `y:real`] THEN STRIP_TAC THEN | |
SUBGOAL_THEN `&0 < x /\ &0 < y` STRIP_ASSUME_TAC THENL | |
[RULE_ASSUM_TAC(REWRITE_RULE[GSYM REAL_OF_NUM_LT; GSYM LT_NZ]) THEN | |
ASM_REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
ASM_SIMP_TAC[CPOW_REAL_REAL; RE_CX; REAL_CX; GSYM CX_DIV] THEN | |
SIMP_TAC[real_div; REAL_MUL_LID; GSYM REAL_EXP_NEG; REAL_EXP_MONO_LE] THEN | |
MATCH_MP_TAC(REAL_ARITH | |
`&0 <= s * (y - x) ==> --(s * y) <= --(s * x)`) THEN | |
MATCH_MP_TAC REAL_LE_MUL THEN | |
CONJ_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN | |
REWRITE_TAC[REAL_SUB_LE] THEN MATCH_MP_TAC LOG_MONO_LE_IMP THEN | |
ASM_REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
MATCH_MP_TAC(REAL_ARITH `x = y /\ a <= b ==> x <= a ==> y <= b`) THEN | |
CONJ_TAC THENL | |
[MATCH_MP_TAC SUM_EQ_NUMSEG THEN X_GEN_TAC `r:num` THEN STRIP_TAC THEN | |
SUBGOAL_THEN `0 < r` ASSUME_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN | |
ASM_SIMP_TAC[CPOW_REAL_REAL; REAL_CX; RE_CX; REAL_OF_NUM_LT; | |
COMPLEX_NORM_DIV; NORM_CPOW_REAL] THEN | |
REWRITE_TAC[COMPLEX_NORM_CX; GSYM CX_DIV; RE_CX; REAL_ABS_NUM]; | |
ALL_TAC] THEN | |
REWRITE_TAC[RE_SUB] THEN | |
MATCH_MP_TAC(REAL_ARITH `&0 <= --x /\ --y <= e ==> x - y <= e`) THEN | |
FIRST_ASSUM(ASSUME_TAC o MATCH_MP (ARITH_RULE `n + 1 <= m ==> 0 < m`)) THEN | |
ASM_SIMP_TAC[GSYM CX_SUB; CPOW_REAL_REAL; REAL_CX; RE_CX; COMPLEX_NORM_DIV; | |
REAL_OF_NUM_LT; NORM_CPOW_REAL; LT_NZ] THEN | |
REWRITE_TAC[GSYM CX_MUL; GSYM CX_DIV; RE_CX] THEN | |
REWRITE_TAC[COMPLEX_NORM_DIV; COMPLEX_NORM_CX; REAL_ABS_NUM] THEN | |
REWRITE_TAC[real_div; REAL_MUL_LID; GSYM REAL_INV_NEG] THEN | |
REWRITE_TAC[GSYM REAL_MUL_LNEG; REAL_NEG_SUB] THEN | |
ASM_SIMP_TAC[REAL_LE_INV_EQ; REAL_LE_MUL; REAL_EXP_POS_LE; REAL_SUB_LE; | |
REAL_LT_IMP_LE] THEN | |
REWRITE_TAC[REAL_INV_MUL; GSYM REAL_EXP_NEG] THEN | |
REWRITE_TAC[GSYM REAL_MUL_LNEG; REAL_NEG_SUB] THEN | |
MATCH_MP_TAC(REAL_ARITH `x <= n * e ==> i * e <= (n + i) * e - x`) THEN | |
REWRITE_TAC[REAL_SUB_RDISTRIB; REAL_EXP_SUB; REAL_MUL_LID] THEN | |
ASM_SIMP_TAC[EXP_LOG; REAL_OF_NUM_LT; LT_NZ; REAL_EXP_POS_LT; | |
REAL_FIELD `&0 < x /\ &0 < z ==> inv(x) * x / z = inv(z)`] THEN | |
REWRITE_TAC[REAL_MUL_LNEG; REAL_EXP_NEG; REAL_LE_REFL]);; | |
let GENZETA_BOUND = prove | |
(`!n s. ~(n = 0) /\ &1 < Re s | |
==> norm(genzeta n s) <= | |
(&1 / &n + &1 / (Re s - &1)) * exp((&1 - Re s) * log(&n))`, | |
REPEAT STRIP_TAC THEN | |
MATCH_MP_TAC(ISPEC `sequentially` LIM_NORM_UBOUND) THEN | |
EXISTS_TAC `\m. vsum(n..m) (\r. Cx(&1) / Cx(&r) cpow s)` THEN | |
FIRST_ASSUM(MP_TAC o SPEC `n:num` o MATCH_MP GENZETA_CONVERGES) THEN | |
SIMP_TAC[sums; FROM_INTER_NUMSEG; TRIVIAL_LIMIT_SEQUENTIALLY] THEN | |
DISCH_TAC THEN REWRITE_TAC[EVENTUALLY_SEQUENTIALLY] THEN | |
EXISTS_TAC `n + 1` THEN X_GEN_TAC `m:num` THEN DISCH_TAC THEN | |
W(MP_TAC o PART_MATCH (lhand o rand) VSUM_NORM o lhand o snd) THEN | |
REWRITE_TAC[FINITE_NUMSEG] THEN | |
MATCH_MP_TAC(REAL_ARITH `a <= b ==> x <= a ==> x <= b`) THEN | |
ASM_SIMP_TAC[GENZETA_BOUND_LEMMA]);; | |
let NEARZETA_BOUND_SHARP = prove | |
(`!n s. ~(n = 0) /\ &0 < Re s | |
==> norm(nearzeta n s) <= | |
norm(s * (s - Cx(&1))) * | |
(&1 / &n + &1 / Re s) / exp(Re s * log(&n))`, | |
REPEAT STRIP_TAC THEN | |
MATCH_MP_TAC(ISPEC `sequentially` LIM_NORM_UBOUND) THEN | |
EXISTS_TAC | |
`\m. vsum(n..m) | |
(\r. (s - Cx(&1)) / Cx(&r) cpow s - | |
(Cx(&1) / Cx(&r) cpow (s - Cx(&1)) - | |
Cx(&1) / Cx(&(r + 1)) cpow (s - Cx(&1))))` THEN | |
FIRST_ASSUM(MP_TAC o SPEC `n:num` o MATCH_MP NEARZETA_CONVERGES) THEN | |
SIMP_TAC[sums; FROM_INTER_NUMSEG; TRIVIAL_LIMIT_SEQUENTIALLY] THEN | |
DISCH_TAC THEN REWRITE_TAC[EVENTUALLY_SEQUENTIALLY] THEN | |
EXISTS_TAC `n + 1` THEN X_GEN_TAC `m:num` THEN DISCH_TAC THEN | |
W(MP_TAC o PART_MATCH (lhand o rand) VSUM_NORM o lhand o snd) THEN | |
REWRITE_TAC[FINITE_NUMSEG] THEN | |
MATCH_MP_TAC(REAL_ARITH `a <= b ==> x <= a ==> x <= b`) THEN | |
MATCH_MP_TAC REAL_LE_TRANS THEN | |
EXISTS_TAC `sum (n..m) | |
(\r. norm(s * (s - Cx (&1)) / Cx(&r) cpow (s + Cx(&1))))` THEN | |
CONJ_TAC THENL | |
[MATCH_MP_TAC SUM_LE_NUMSEG THEN REPEAT STRIP_TAC THEN REWRITE_TAC[] THEN | |
MATCH_MP_TAC NEARZETA_BOUND_LEMMA THEN CONJ_TAC THENL | |
[ASM_ARITH_TAC; ASM_REAL_ARITH_TAC]; | |
ALL_TAC] THEN | |
ONCE_REWRITE_TAC[SIMPLE_COMPLEX_ARITH `a / b = a * Cx(&1) / b`] THEN | |
REWRITE_TAC[SUM_LMUL; COMPLEX_NORM_MUL; GSYM REAL_MUL_ASSOC] THEN | |
REPEAT(MATCH_MP_TAC REAL_LE_LMUL THEN REWRITE_TAC[NORM_POS_LE]) THEN | |
W(MP_TAC o PART_MATCH (lhand o rand) GENZETA_BOUND_LEMMA o lhand o snd) THEN | |
ASM_REWRITE_TAC[RE_ADD; REAL_LT_ADDL; RE_CX] THEN | |
MATCH_MP_TAC(REAL_ARITH `a <= b ==> x <= a ==> x <= b`) THEN | |
REWRITE_TAC[REAL_ARITH `(x + &1) - &1 = x`; | |
REAL_ARITH `(&1 - (s + &1)) * x = --(s * x)`] THEN | |
REWRITE_TAC[real_div; REAL_EXP_NEG; REAL_LE_REFL]);; | |
let NEARZETA_BOUND = prove | |
(`!n s. ~(n = 0) /\ &0 < Re s | |
==> norm(nearzeta n s) | |
<= ((norm(s) + &1) pow 3 / Re s) / exp (Re s * log (&n))`, | |
REPEAT GEN_TAC THEN DISCH_TAC THEN | |
FIRST_ASSUM(MP_TAC o MATCH_MP NEARZETA_BOUND_SHARP) THEN | |
MATCH_MP_TAC(REAL_ARITH `a <= b ==> x <= a ==> x <= b`) THEN | |
REWRITE_TAC[real_div; REAL_MUL_ASSOC] THEN MATCH_MP_TAC REAL_LE_RMUL THEN | |
REWRITE_TAC[REAL_LE_INV_EQ; REAL_EXP_POS_LE; REAL_MUL_LID] THEN | |
REWRITE_TAC[REAL_RING `(x pow 3):real = x * x * x`] THEN | |
REWRITE_TAC[COMPLEX_NORM_MUL; GSYM REAL_MUL_ASSOC] THEN | |
MATCH_MP_TAC REAL_LE_MUL2 THEN | |
ASM_SIMP_TAC[REAL_LE_MUL; NORM_POS_LE; REAL_LE_ADD; REAL_LE_INV_EQ; | |
REAL_POS; REAL_LT_IMP_LE] THEN | |
CONJ_TAC THENL [REAL_ARITH_TAC; ALL_TAC] THEN | |
MATCH_MP_TAC REAL_LE_MUL2 THEN | |
ASM_SIMP_TAC[REAL_LE_MUL; NORM_POS_LE; REAL_LE_ADD; REAL_LE_INV_EQ; | |
REAL_POS; REAL_LT_IMP_LE] THEN | |
CONJ_TAC THENL | |
[MATCH_MP_TAC(NORM_ARITH `norm(y) = b ==> norm(x - y) <= norm(x) + b`) THEN | |
REWRITE_TAC[COMPLEX_NORM_CX; REAL_ABS_NUM]; | |
ALL_TAC] THEN | |
REWRITE_TAC[REAL_ARITH `a + y <= (x + &1) * y <=> a <= x * y`] THEN | |
MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `inv(&1)` THEN | |
ASM_SIMP_TAC[REAL_LE_INV2; REAL_OF_NUM_LE; REAL_OF_NUM_LT; ARITH; | |
ARITH_RULE `1 <= n <=> ~(n = 0)`] THEN | |
ASM_SIMP_TAC[REAL_INV_1; GSYM real_div; REAL_LE_RDIV_EQ] THEN | |
MP_TAC(SPEC `s:complex` COMPLEX_NORM_GE_RE_IM) THEN REAL_ARITH_TAC);; | |
let NEARNEWMAN_EXISTS = prove | |
(`?f. !s. s IN {s | Re(s) > &1 / &2} | |
==> ((\p. clog(Cx(&p)) / Cx(&p) * nearzeta p s - | |
clog(Cx(&p)) / (Cx(&p) cpow s * (Cx(&p) cpow s - Cx(&1)))) | |
sums (f s)) {p | prime p} /\ | |
f complex_differentiable (at s)`, | |
MATCH_MP_TAC SERIES_DIFFERENTIABLE_COMPARISON_COMPLEX THEN | |
REWRITE_TAC[OPEN_HALFSPACE_RE_GT] THEN | |
REWRITE_TAC[IN_ELIM_THM; real_gt] THEN CONJ_TAC THENL | |
[REPEAT STRIP_TAC THEN MATCH_MP_TAC COMPLEX_DIFFERENTIABLE_SUB THEN | |
CONJ_TAC THENL | |
[MATCH_MP_TAC COMPLEX_DIFFERENTIABLE_MUL_AT THEN CONJ_TAC THENL | |
[ALL_TAC; | |
REWRITE_TAC[ETA_AX] THEN | |
MATCH_MP_TAC COMPLEX_DIFFERENTIABLE_NEARZETA THEN | |
CONJ_TAC THENL [ALL_TAC; ASM_REAL_ARITH_TAC] THEN | |
FIRST_ASSUM(MP_TAC o MATCH_MP PRIME_IMP_NZ) THEN ARITH_TAC]; | |
ALL_TAC] THEN | |
COMPLEX_DIFFERENTIABLE_TAC THEN | |
ASM_SIMP_TAC[COMPLEX_ENTIRE; CPOW_EQ_0; CX_INJ; REAL_OF_NUM_EQ; | |
COMPLEX_SUB_0; PRIME_IMP_NZ; PRIME_GE_2; CPOW_NUM_NE_1; | |
REAL_ARITH `&1 / &2 < x ==> &0 < x`]; | |
ALL_TAC] THEN | |
X_GEN_TAC `s:complex` THEN STRIP_TAC THEN | |
EXISTS_TAC `min (&1 / &2) ((Re s - &1 / &2) / &2)` THEN | |
EXISTS_TAC `\p. Cx(&2 * (norm(s:complex) + &2) pow 3 + &2) * | |
clog(Cx(&p)) / | |
Cx(&p) cpow (Cx(&1 + (Re s - &1 / &2) / &4))` THEN | |
EXISTS_TAC `5` THEN CONJ_TAC THENL | |
[ASM_REAL_ARITH_TAC; ALL_TAC] THEN | |
CONJ_TAC THENL | |
[MATCH_MP_TAC SUMMABLE_COMPLEX_LMUL THEN | |
MATCH_MP_TAC SUMMABLE_SUBSET_COMPLEX THEN EXISTS_TAC `from 1` THEN | |
SIMP_TAC[IN_FROM; SUBSET; IN_ELIM_THM; GSYM CX_LOG; CPOW_REAL_REAL; | |
RE_CX; REAL_CX; REAL_OF_NUM_LT; LE_1; PRIME_IMP_NZ] THEN | |
SIMP_TAC[GSYM CX_DIV; REAL_CX; RE_CX; LOG_POS; REAL_OF_NUM_LE; | |
REAL_LE_DIV; REAL_EXP_POS_LE] THEN | |
REWRITE_TAC[summable] THEN | |
EXISTS_TAC | |
`--(complex_derivative zeta (Cx(&1 + (Re s - &1 / &2) / &4)))` THEN | |
GEN_REWRITE_TAC (RATOR_CONV o LAND_CONV o ABS_CONV) | |
[GSYM COMPLEX_NEG_NEG] THEN | |
MATCH_MP_TAC SERIES_NEG THEN | |
REWRITE_TAC[complex_div; GSYM COMPLEX_MUL_LNEG] THEN | |
REWRITE_TAC[GSYM complex_div] THEN | |
MATCH_MP_TAC COMPLEX_DERIVATIVE_ZETA_CONVERGES THEN | |
REWRITE_TAC[RE_CX] THEN ASM_REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
CONJ_TAC THEN X_GEN_TAC `p:num` THENL | |
[SIMP_TAC[CPOW_REAL_REAL; REAL_CX; RE_CX; GSYM CX_LOG; REAL_OF_NUM_LT; | |
LT_NZ; PRIME_IMP_NZ; GSYM CX_DIV; GSYM CX_MUL] THEN | |
DISCH_TAC THEN MATCH_MP_TAC REAL_LE_MUL THEN CONJ_TAC THENL | |
[MATCH_MP_TAC(REAL_ARITH `&0 <= x ==> &0 <= &2 * x + &2`) THEN | |
MATCH_MP_TAC REAL_POW_LE THEN NORM_ARITH_TAC; | |
MATCH_MP_TAC REAL_LE_DIV THEN REWRITE_TAC[REAL_EXP_POS_LE] THEN | |
ASM_SIMP_TAC[LOG_POS; REAL_OF_NUM_LE; ARITH_RULE `2 <= p ==> 1 <= p`; | |
PRIME_GE_2]]; | |
ALL_TAC] THEN | |
X_GEN_TAC `z:complex` THEN | |
REWRITE_TAC[IN_BALL; REAL_LT_MIN; dist] THEN STRIP_TAC THEN | |
REWRITE_TAC[COMPLEX_NORM_MUL; COMPLEX_NORM_CX] THEN | |
MATCH_MP_TAC(REAL_ARITH | |
`x <= a * b /\ a * b <= abs a * b ==> x <= abs a * b`) THEN | |
SIMP_TAC[REAL_LE_RMUL; NORM_POS_LE; REAL_ABS_LE] THEN | |
GEN_REWRITE_TAC RAND_CONV [REAL_ADD_RDISTRIB] THEN | |
MATCH_MP_TAC(NORM_ARITH | |
`norm(x) <= a /\ norm(y) <= b ==> norm(x - y) <= a + b`) THEN | |
CONJ_TAC THENL | |
[REWRITE_TAC[CPOW_ADD; CX_ADD; CPOW_N; CX_INJ; REAL_OF_NUM_EQ] THEN | |
ASM_SIMP_TAC[complex_div; COMPLEX_INV_MUL; COMPLEX_MUL_ASSOC] THEN | |
ASM_SIMP_TAC[PRIME_IMP_NZ; GSYM complex_div] THEN | |
ONCE_REWRITE_TAC[COMPLEX_NORM_MUL; COMPLEX_NORM_DIV] THEN | |
REWRITE_TAC[COMPLEX_POW_1; real_div] THEN | |
ONCE_REWRITE_TAC[AC REAL_MUL_AC `x * a * b:real = a * x * b`] THEN | |
MATCH_MP_TAC REAL_LE_LMUL THEN REWRITE_TAC[NORM_POS_LE] THEN | |
W(MP_TAC o PART_MATCH (lhand o rand) NEARZETA_BOUND o lhand o snd) THEN | |
ASM_SIMP_TAC[PRIME_IMP_NZ] THEN | |
MATCH_MP_TAC(TAUT `a /\ (a ==> b ==> c) ==> (a ==> b) ==> c`) THEN | |
CONJ_TAC THENL | |
[ASM_SIMP_TAC[PRIME_IMP_NZ] THEN | |
MP_TAC(SPEC `s - z:complex` COMPLEX_NORM_GE_RE_IM) THEN | |
REWRITE_TAC[RE_SUB] THEN ASM_REAL_ARITH_TAC; | |
DISCH_TAC] THEN | |
MATCH_MP_TAC(REAL_ARITH `a <= b ==> x <= a ==> x <= b`) THEN | |
ONCE_REWRITE_TAC[REAL_ARITH `(&2 * x) * y = x * &2 * y`] THEN | |
REWRITE_TAC[real_div; GSYM REAL_MUL_ASSOC] THEN | |
MATCH_MP_TAC REAL_LE_MUL2 THEN | |
ASM_SIMP_TAC[NORM_POS_LE; REAL_POW_LE; REAL_LE_INV_EQ; REAL_LE_MUL; | |
REAL_LT_IMP_LE; REAL_POS; REAL_LE_ADD; GSYM REAL_INV_MUL; | |
REAL_EXP_POS_LE] THEN | |
CONJ_TAC THENL | |
[MATCH_MP_TAC REAL_POW_LE2 THEN ASM_NORM_ARITH_TAC; ALL_TAC] THEN | |
REWRITE_TAC[REAL_INV_MUL] THEN MATCH_MP_TAC REAL_LE_MUL2 THEN | |
ASM_SIMP_TAC[REAL_LE_INV_EQ; REAL_LT_IMP_LE; REAL_EXP_POS_LE] THEN | |
CONJ_TAC THENL | |
[GEN_REWRITE_TAC RAND_CONV [GSYM REAL_INV_INV] THEN | |
MATCH_MP_TAC REAL_LE_INV2 THEN | |
MP_TAC(SPEC `s - z:complex` COMPLEX_NORM_GE_RE_IM) THEN | |
REWRITE_TAC[RE_SUB] THEN ASM_REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
ASM_SIMP_TAC[NORM_CPOW_REAL; REAL_CX; RE_CX; REAL_OF_NUM_LT; PRIME_IMP_NZ; | |
LT_NZ] THEN | |
REWRITE_TAC[GSYM REAL_EXP_NEG; REAL_EXP_MONO_LE] THEN | |
REWRITE_TAC[REAL_ARITH `--(a * p) <= --(b * p) <=> b * p <= a * p`] THEN | |
MATCH_MP_TAC REAL_LE_RMUL THEN | |
ASM_SIMP_TAC[LOG_POS; REAL_OF_NUM_LE; ARITH_RULE `2 <= p ==> 1 <= p`; | |
PRIME_GE_2] THEN | |
MP_TAC(SPEC `s - z:complex` COMPLEX_NORM_GE_RE_IM) THEN | |
REWRITE_TAC[RE_SUB] THEN ASM_REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
MATCH_MP_TAC(REAL_ARITH | |
`!y:complex. norm(x) <= &2 * norm(y) /\ norm(y) <= a | |
==> norm(x) <= &2 * a`) THEN | |
EXISTS_TAC `clog(Cx(&p)) / Cx(&p) cpow (z + z)` THEN CONJ_TAC THENL | |
[REWRITE_TAC[CPOW_ADD; complex_div; COMPLEX_MUL_ASSOC; COMPLEX_INV_MUL] THEN | |
REWRITE_TAC[GSYM complex_div] THEN | |
ONCE_REWRITE_TAC[COMPLEX_NORM_DIV] THEN | |
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN | |
REWRITE_TAC[real_div; GSYM REAL_MUL_ASSOC] THEN | |
MATCH_MP_TAC REAL_LE_LMUL THEN REWRITE_TAC[NORM_POS_LE] THEN | |
GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [GSYM REAL_INV_INV] THEN | |
REWRITE_TAC[GSYM REAL_INV_MUL] THEN MATCH_MP_TAC REAL_LE_INV2 THEN | |
REWRITE_TAC[REAL_ARITH `&0 < x * inv(&2) <=> &0 < x`; COMPLEX_NORM_NZ] THEN | |
ASM_SIMP_TAC[CPOW_EQ_0; CX_INJ; REAL_OF_NUM_EQ; PRIME_IMP_NZ; | |
COMPLEX_VEC_0] THEN | |
MATCH_MP_TAC(NORM_ARITH | |
`&2 <= norm(a) /\ norm(b) = &1 ==> norm(a) * inv(&2) <= norm(a - b)`) THEN | |
REWRITE_TAC[COMPLEX_NORM_CX; REAL_ABS_NUM] THEN | |
ASM_SIMP_TAC[NORM_CPOW_REAL; REAL_CX; RE_CX; REAL_OF_NUM_LT; | |
ARITH_RULE `5 <= p ==> 0 < p`] THEN | |
SUBST1_TAC(SYM(MATCH_MP EXP_LOG (REAL_ARITH `&0 < &2`))) THEN | |
REWRITE_TAC[REAL_EXP_MONO_LE] THEN MATCH_MP_TAC REAL_LE_TRANS THEN | |
EXISTS_TAC `&1 / &2 * log(&4)` THEN | |
SIMP_TAC[REAL_ARITH `l <= &1 / &2 * x <=> &2 * l <= x`; | |
GSYM LOG_POW; REAL_OF_NUM_LT; ARITH] THEN | |
CONV_TAC REAL_RAT_REDUCE_CONV THEN REWRITE_TAC[REAL_LE_REFL] THEN | |
MATCH_MP_TAC REAL_LE_MUL2 THEN | |
ASM_SIMP_TAC[REAL_LE_DIV; REAL_POS; LOG_POS; REAL_OF_NUM_LE; ARITH; | |
LOG_MONO_LE_IMP; REAL_OF_NUM_LT; | |
ARITH_RULE `5 <= p ==> 4 <= p`] THEN | |
MP_TAC(SPEC `s - z:complex` COMPLEX_NORM_GE_RE_IM) THEN | |
REWRITE_TAC[RE_SUB] THEN ASM_REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
REWRITE_TAC[COMPLEX_NORM_DIV; real_div] THEN | |
MATCH_MP_TAC REAL_LE_LMUL THEN REWRITE_TAC[NORM_POS_LE] THEN | |
ASM_SIMP_TAC[NORM_CPOW_REAL; REAL_CX; RE_CX; REAL_OF_NUM_LT; | |
ARITH_RULE `5 <= p ==> 0 < p`] THEN | |
REWRITE_TAC[GSYM REAL_EXP_NEG; REAL_EXP_MONO_LE] THEN | |
REWRITE_TAC[REAL_ARITH `--(a * p) <= --(b * p) <=> b * p <= a * p`] THEN | |
MATCH_MP_TAC REAL_LE_RMUL THEN | |
ASM_SIMP_TAC[LOG_POS; REAL_OF_NUM_LE; ARITH_RULE `2 <= p ==> 1 <= p`; | |
PRIME_GE_2] THEN | |
MP_TAC(SPEC `s - z:complex` COMPLEX_NORM_GE_RE_IM) THEN | |
REWRITE_TAC[RE_SUB; RE_ADD] THEN ASM_REAL_ARITH_TAC);; | |
let nearnewman = new_specification ["nearnewman"] NEARNEWMAN_EXISTS;; | |
let [CONVERGES_NEARNEWMAN; COMPLEX_DIFFERENTIABLE_NEARNEWMAN] = | |
CONJUNCTS(REWRITE_RULE[FORALL_AND_THM; IN_ELIM_THM; real_gt; | |
TAUT `a ==> b /\ c <=> (a ==> b) /\ (a ==> c)`] | |
nearnewman);; | |
let newman = new_definition | |
`newman(s) = (nearnewman(s) - (complex_derivative zeta s / zeta s)) / | |
(s - Cx(&1))`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Careful correlation of singularities of the various functions. *) | |
(* ------------------------------------------------------------------------- *) | |
let COMPLEX_DERIVATIVE_ZETA = prove | |
(`!s. &0 < Re s /\ ~(s = Cx(&1)) | |
==> complex_derivative zeta s = | |
complex_derivative (nearzeta 1) s / (s - Cx(&1)) - | |
(nearzeta 1 s + Cx(&1)) / (s - Cx(&1)) pow 2`, | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_COMPLEX_DERIVATIVE_DERIVATIVE THEN | |
REWRITE_TAC[REWRITE_RULE[GSYM FUN_EQ_THM; ETA_AX] (GEN_ALL zeta); | |
REWRITE_RULE[GSYM FUN_EQ_THM; ETA_AX] (GEN_ALL genzeta)] THEN | |
REWRITE_TAC[CPOW_1; complex_div; COMPLEX_MUL_LID; COMPLEX_INV_1] THEN | |
MATCH_MP_TAC HAS_COMPLEX_DERIVATIVE_TRANSFORM_AT THEN | |
EXISTS_TAC `\s. (nearzeta 1 s + Cx(&1)) * inv(s - Cx(&1))` THEN | |
EXISTS_TAC `dist(Cx(&1),s)` THEN ASM_SIMP_TAC[DIST_POS_LT] THEN | |
CONJ_TAC THENL | |
[X_GEN_TAC `w:complex` THEN COND_CASES_TAC THEN | |
ASM_REWRITE_TAC[REAL_LT_REFL]; | |
ALL_TAC] THEN | |
MP_TAC(SPECL | |
[`\z. nearzeta 1 z + Cx(&1)`; `complex_derivative(nearzeta 1) s`; | |
`\z. inv(z - Cx(&1))`; | |
`--Cx(&1) / (s - Cx(&1)) pow 2`; | |
`s:complex`] | |
HAS_COMPLEX_DERIVATIVE_MUL_AT) THEN | |
REWRITE_TAC[] THEN ANTS_TAC THENL | |
[ALL_TAC; | |
MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_TERM_TAC THEN | |
SIMPLE_COMPLEX_ARITH_TAC] THEN | |
CONJ_TAC THENL | |
[ALL_TAC; | |
COMPLEX_DIFF_TAC THEN REPEAT(POP_ASSUM MP_TAC) THEN | |
CONV_TAC COMPLEX_FIELD] THEN | |
GEN_REWRITE_TAC LAND_CONV [GSYM COMPLEX_ADD_RID] THEN | |
MATCH_MP_TAC HAS_COMPLEX_DERIVATIVE_ADD THEN | |
REWRITE_TAC[HAS_COMPLEX_DERIVATIVE_CONST] THEN | |
REWRITE_TAC[HAS_COMPLEX_DERIVATIVE_DIFFERENTIABLE; ETA_AX] THEN | |
MP_TAC(SPEC `1` HOLOMORPHIC_NEARZETA) THEN | |
SIMP_TAC[ARITH; HOLOMORPHIC_ON_OPEN; OPEN_HALFSPACE_RE_GT] THEN | |
ASM_SIMP_TAC[IN_ELIM_THM; GSYM complex_differentiable; real_gt]);; | |
let ANALYTIC_ZETA_DERIVDIFF = prove | |
(`?a. (\z. if z = Cx(&1) then a | |
else (z - Cx(&1)) * complex_derivative zeta z - | |
complex_derivative zeta z / zeta z) | |
analytic_on {s | Re(s) >= &1}`, | |
EXISTS_TAC | |
`complex_derivative | |
(\z. (Cx(&1) - inv(nearzeta 1 z + Cx(&1))) * | |
((z - Cx(&1)) * complex_derivative (nearzeta 1) z - | |
(nearzeta 1 z + Cx(&1)))) (Cx(&1))` THEN | |
MATCH_MP_TAC POLE_THEOREM_ANALYTIC_0 THEN | |
MAP_EVERY EXISTS_TAC | |
[`\z. (Cx(&1) - inv(nearzeta 1 z + Cx(&1))) * | |
((z - Cx(&1)) * complex_derivative (nearzeta 1) z - | |
(nearzeta 1 z + Cx(&1)))`; | |
`Cx(&1)`] THEN | |
SIMP_TAC[NEARZETA_1; ARITH] THEN | |
REWRITE_TAC[COMPLEX_ADD_LID; COMPLEX_INV_1; COMPLEX_SUB_REFL; | |
COMPLEX_MUL_LZERO] THEN | |
CONJ_TAC THENL | |
[MATCH_MP_TAC ANALYTIC_ON_MUL THEN CONJ_TAC THENL | |
[MATCH_MP_TAC ANALYTIC_ON_SUB THEN REWRITE_TAC[ANALYTIC_ON_CONST] THEN | |
MATCH_MP_TAC ANALYTIC_ON_INV THEN | |
ASM_SIMP_TAC[IN_ELIM_THM; real_ge; NEARZETA_NONZERO] THEN | |
MATCH_MP_TAC ANALYTIC_ON_ADD THEN REWRITE_TAC[ANALYTIC_ON_CONST; ETA_AX]; | |
MATCH_MP_TAC ANALYTIC_ON_SUB THEN CONJ_TAC THENL | |
[MATCH_MP_TAC ANALYTIC_ON_MUL THEN | |
SIMP_TAC[ETA_AX; ANALYTIC_ON_SUB; ANALYTIC_ON_CONST; | |
ANALYTIC_ON_ID] THEN MATCH_MP_TAC ANALYTIC_COMPLEX_DERIVATIVE; | |
MATCH_MP_TAC ANALYTIC_ON_ADD THEN | |
REWRITE_TAC[ANALYTIC_ON_CONST; ETA_AX]]] THEN | |
MATCH_MP_TAC ANALYTIC_ON_SUBSET THEN EXISTS_TAC `{s | Re(s) > &0}` THEN | |
REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN | |
SIMP_TAC[ETA_AX; ANALYTIC_ON_OPEN; OPEN_HALFSPACE_RE_GT; | |
HOLOMORPHIC_NEARZETA; LE_REFL] THEN REAL_ARITH_TAC; | |
X_GEN_TAC `z:complex` THEN REWRITE_TAC[IN_ELIM_THM; real_ge] THEN | |
DISCH_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP NEARZETA_NONZERO) THEN | |
MP_TAC(ISPECL [`\z. nearzeta 1 z + Cx(&1)`; `z:complex`; `Cx(&0)`] | |
CONTINUOUS_AT_AVOID) THEN | |
ANTS_TAC THENL | |
[ASM_REWRITE_TAC[] THEN | |
MATCH_MP_TAC COMPLEX_DIFFERENTIABLE_IMP_CONTINUOUS_AT THEN | |
MATCH_MP_TAC COMPLEX_DIFFERENTIABLE_ADD THEN | |
REWRITE_TAC[COMPLEX_DIFFERENTIABLE_CONST; ETA_AX] THEN | |
MP_TAC(SPEC `1` HOLOMORPHIC_NEARZETA) THEN | |
SIMP_TAC[ARITH; HOLOMORPHIC_ON_OPEN; OPEN_HALFSPACE_RE_GT] THEN | |
REWRITE_TAC[complex_differentiable; IN_ELIM_THM] THEN | |
DISCH_THEN MATCH_MP_TAC THEN ASM_REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `e:real` STRIP_ASSUME_TAC) THEN | |
EXISTS_TAC `min e (&1)` THEN ASM_REWRITE_TAC[REAL_LT_MIN; REAL_LT_01] THEN | |
REWRITE_TAC[BALL_MIN_INTER; IN_INTER; IN_BALL; REAL_LT_MIN] THEN | |
X_GEN_TAC `w:complex` THEN STRIP_TAC THEN | |
SUBGOAL_THEN `&0 < Re w` ASSUME_TAC THENL | |
[MP_TAC(SPEC `z - w:complex` COMPLEX_NORM_GE_RE_IM) THEN | |
REWRITE_TAC[RE_SUB] THEN ASM_NORM_ARITH_TAC; | |
ALL_TAC] THEN | |
ASM_SIMP_TAC[COMPLEX_DERIVATIVE_ZETA] THEN | |
ASM_REWRITE_TAC[REWRITE_RULE[GSYM FUN_EQ_THM] zeta; genzeta] THEN | |
REWRITE_TAC[CPOW_1; COMPLEX_DIV_1] THEN | |
FIRST_X_ASSUM(MP_TAC o SPEC `w:complex`) THEN ASM_REWRITE_TAC[] THEN | |
UNDISCH_TAC `~(w = Cx(&1))` THEN CONV_TAC COMPLEX_FIELD]);; | |
let ANALYTIC_NEWMAN_VARIANT = prove | |
(`?c a. (\z. if z = Cx(&1) then a | |
else newman z + complex_derivative zeta z + c * zeta z) | |
analytic_on {s | Re(s) >= &1}`, | |
X_CHOOSE_TAC `c:complex` ANALYTIC_ZETA_DERIVDIFF THEN | |
EXISTS_TAC `--(c + nearnewman(Cx(&1)))` THEN | |
EXISTS_TAC | |
`complex_derivative | |
(\z. nearnewman z + | |
(if z = Cx(&1) | |
then c | |
else (z - Cx(&1)) * complex_derivative zeta z - | |
complex_derivative zeta z / zeta z) + | |
--(c + nearnewman (Cx(&1))) * (nearzeta 1 z + Cx(&1))) | |
(Cx(&1))` THEN | |
MATCH_MP_TAC POLE_THEOREM_ANALYTIC_0 THEN | |
MAP_EVERY EXISTS_TAC | |
[`\z. nearnewman z + | |
(if z = Cx(&1) then c | |
else (z - Cx(&1)) * complex_derivative zeta z - | |
complex_derivative zeta z / zeta z) + | |
--(c + nearnewman(Cx(&1))) * (nearzeta 1 z + Cx(&1))`; | |
`Cx(&1)`] THEN | |
SIMP_TAC[NEARZETA_1; LE_REFL] THEN REPEAT CONJ_TAC THENL | |
[MATCH_MP_TAC ANALYTIC_ON_ADD THEN CONJ_TAC THENL | |
[MATCH_MP_TAC ANALYTIC_ON_SUBSET THEN | |
EXISTS_TAC `{s | Re(s) > &1 / &2}` THEN | |
SIMP_TAC[SUBSET; IN_ELIM_THM; ANALYTIC_ON_OPEN; OPEN_HALFSPACE_RE_GT; | |
HOLOMORPHIC_ON_OPEN; real_gt; GSYM complex_differentiable; | |
COMPLEX_DIFFERENTIABLE_NEARNEWMAN] THEN | |
REAL_ARITH_TAC; | |
MATCH_MP_TAC ANALYTIC_ON_ADD THEN ASM_REWRITE_TAC[] THEN | |
MATCH_MP_TAC ANALYTIC_ON_MUL THEN REWRITE_TAC[ANALYTIC_ON_CONST] THEN | |
MATCH_MP_TAC ANALYTIC_ON_ADD THEN REWRITE_TAC[ANALYTIC_ON_CONST] THEN | |
MATCH_MP_TAC ANALYTIC_ON_SUBSET THEN EXISTS_TAC `{s | Re(s) > &0}` THEN | |
REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN | |
SIMP_TAC[ETA_AX; ANALYTIC_ON_OPEN; OPEN_HALFSPACE_RE_GT; | |
HOLOMORPHIC_NEARZETA; LE_REFL] THEN REAL_ARITH_TAC]; | |
REPEAT STRIP_TAC THEN EXISTS_TAC `&1` THEN REWRITE_TAC[REAL_LT_01] THEN | |
X_GEN_TAC `w:complex` THEN STRIP_TAC THEN REWRITE_TAC[newman] THEN | |
GEN_REWRITE_TAC (funpow 4 RAND_CONV o ONCE_DEPTH_CONV) [zeta] THEN | |
ASM_REWRITE_TAC[genzeta; CPOW_1; COMPLEX_DIV_1] THEN | |
UNDISCH_TAC `~(w = Cx(&1))` THEN CONV_TAC COMPLEX_FIELD; | |
SIMPLE_COMPLEX_ARITH_TAC]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Hence apply the analytic lemma. *) | |
(* ------------------------------------------------------------------------- *) | |
let CONVERGES_NEWMAN_PRIME = prove | |
(`!s. &1 < Re s | |
==> ((\p. clog(Cx(&p)) / Cx(&p) * genzeta p s) sums newman(s)) | |
{p | prime p}`, | |
X_GEN_TAC `s:complex` THEN ASM_CASES_TAC `s = Cx(&1)` THEN | |
ASM_REWRITE_TAC[RE_CX; REAL_LT_REFL; genzeta; newman] THEN | |
DISCH_TAC THEN REWRITE_TAC[complex_div; COMPLEX_MUL_ASSOC] THEN | |
MATCH_MP_TAC SERIES_COMPLEX_RMUL THEN REWRITE_TAC[GSYM complex_div] THEN | |
FIRST_ASSUM(MP_TAC o MATCH_MP CONVERGES_LOGZETA'') THEN | |
FIRST_ASSUM(MP_TAC o MATCH_MP CONVERGES_NEARNEWMAN o MATCH_MP | |
(REAL_ARITH `&1 < x ==> &1 / &2 < x`)) THEN | |
REWRITE_TAC[IMP_IMP] THEN DISCH_THEN(MP_TAC o MATCH_MP SERIES_ADD) THEN | |
REWRITE_TAC[GSYM complex_sub] THEN MATCH_MP_TAC EQ_IMP THEN | |
MATCH_MP_TAC SUMS_IFF THEN X_GEN_TAC `p:num` THEN | |
REWRITE_TAC[IN_ELIM_THM] THEN DISCH_TAC THEN | |
MATCH_MP_TAC(COMPLEX_RING | |
`c - b = a * m ==> (a:complex) * n - b + c = a * (n + m)`) THEN | |
ASM_SIMP_TAC[CX_LOG; REAL_OF_NUM_LT; LT_NZ; PRIME_IMP_NZ; complex_div] THEN | |
REWRITE_TAC[GSYM COMPLEX_MUL_ASSOC; GSYM COMPLEX_SUB_LDISTRIB] THEN | |
AP_TERM_TAC THEN REWRITE_TAC[COMPLEX_MUL_LID; GSYM COMPLEX_INV_MUL] THEN | |
ASM_SIMP_TAC[CPOW_SUB; CPOW_N; CX_INJ; REAL_OF_NUM_EQ; PRIME_IMP_NZ] THEN | |
REWRITE_TAC[COMPLEX_POW_1] THEN | |
MATCH_MP_TAC(COMPLEX_FIELD | |
`~(ps = Cx(&1)) /\ ~(ps = Cx(&0)) /\ ~(p = Cx(&0)) | |
==> inv(ps - Cx(&1)) - inv(ps * (ps - Cx(&1))) = | |
inv(p * ps / p)`) THEN | |
ASM_SIMP_TAC[CPOW_NUM_NE_1; PRIME_GE_2; REAL_ARITH `&1 < x ==> &0 < x`] THEN | |
ASM_SIMP_TAC[CPOW_EQ_0; CX_INJ; REAL_OF_NUM_EQ; PRIME_IMP_NZ]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Now swap the order of summation in the series. *) | |
(* ------------------------------------------------------------------------- *) | |
let GENZETA_OFFSET = prove | |
(`!m n s. &1 < Re s /\ m <= n | |
==> genzeta m s - vsum(m..n) (\k. Cx(&1) / Cx(&k) cpow s) = | |
genzeta (n + 1) s`, | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC SERIES_UNIQUE THEN | |
MAP_EVERY EXISTS_TAC [`\k. Cx(&1) / Cx(&k) cpow s`; `from(n + 1)`] THEN | |
ASM_SIMP_TAC[GENZETA_CONVERGES] THEN | |
GEN_REWRITE_TAC (PAT_CONV `\n. (f sums (a - vsum(m..n) s)) k`) | |
[ARITH_RULE `n = (n + 1) - 1`] THEN | |
MATCH_MP_TAC SUMS_OFFSET THEN ASM_SIMP_TAC[GENZETA_CONVERGES] THEN | |
ASM_ARITH_TAC);; | |
let NEWMAN_CONVERGES = prove | |
(`!s. &1 < Re s | |
==> ((\n. vsum {p | prime p /\ p <= n} (\p. clog(Cx(&p)) / Cx(&p)) / | |
Cx(&n) cpow s) | |
sums (newman s)) (from 1)`, | |
let lemma = prove | |
(`vsum (1..n) (\m. vsum {p | prime p /\ p <= m} (\p. f p m)) = | |
vsum {p | prime p /\ p <= n} (\p. vsum (p..n) (\m. f p m))`, | |
SIMP_TAC[VSUM_VSUM_PRODUCT; FINITE_NUMSEG; FINITE_ATMOST] THEN | |
REWRITE_TAC[IN_ELIM_THM; IN_NUMSEG; GSYM CONJ_ASSOC] THEN | |
MATCH_MP_TAC VSUM_EQ_GENERAL_INVERSES THEN | |
REPEAT(EXISTS_TAC `\(x:num,y:num). (y,x)`) THEN | |
REWRITE_TAC[FORALL_PAIR_THM; IN_ELIM_PAIR_THM] THEN | |
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN | |
FIRST_ASSUM(MP_TAC o MATCH_MP PRIME_IMP_NZ) THEN ASM_ARITH_TAC) in | |
REPEAT STRIP_TAC THEN | |
REWRITE_TAC[sums; FROM_INTER_NUMSEG; LIM_SEQUENTIALLY] THEN | |
X_GEN_TAC `e:real` THEN DISCH_TAC THEN | |
FIRST_ASSUM(MP_TAC o MATCH_MP CONVERGES_NEWMAN_PRIME) THEN | |
GEN_REWRITE_TAC LAND_CONV [sums] THEN | |
SUBGOAL_THEN `!n. {p | prime p} INTER (0..n) = {p | prime p /\ p <= n}` | |
(fun th -> REWRITE_TAC[th]) | |
THENL [REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INTER; IN_NUMSEG; LE_0]; | |
ALL_TAC] THEN | |
REWRITE_TAC[LIM_SEQUENTIALLY] THEN | |
DISCH_THEN(MP_TAC o SPEC `e / &2`) THEN ASM_REWRITE_TAC[REAL_HALF] THEN | |
REWRITE_TAC[dist] THEN | |
DISCH_THEN(X_CHOOSE_THEN `N0:num` (LABEL_TAC "0")) THEN | |
SUBGOAL_THEN | |
`((\n. Cx(&1 + &1 / (Re s - &1)) * | |
(clog(Cx(&n)) + Cx(&24)) / Cx(&n) cpow (s - Cx(&1))) | |
--> Cx(&0)) sequentially` | |
MP_TAC THENL | |
[MATCH_MP_TAC LIM_NULL_COMPLEX_LMUL THEN | |
REWRITE_TAC[complex_div; COMPLEX_ADD_RDISTRIB] THEN | |
MATCH_MP_TAC LIM_NULL_COMPLEX_ADD THEN CONJ_TAC THENL | |
[REWRITE_TAC[GSYM complex_div] THEN MATCH_MP_TAC LIM_LOG_OVER_POWER_N; | |
MATCH_MP_TAC LIM_NULL_COMPLEX_LMUL THEN | |
ONCE_REWRITE_TAC[SIMPLE_COMPLEX_ARITH `inv x = Cx(&1) / x`] THEN | |
MATCH_MP_TAC LIM_1_OVER_POWER] THEN | |
REWRITE_TAC[RE_SUB; RE_CX] THEN ASM_REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
REWRITE_TAC[LIM_SEQUENTIALLY; dist; COMPLEX_SUB_RZERO] THEN | |
DISCH_THEN(MP_TAC o SPEC `e / &2`) THEN ASM_REWRITE_TAC[REAL_HALF] THEN | |
DISCH_THEN(X_CHOOSE_THEN `N1:num` (LABEL_TAC "1")) THEN | |
EXISTS_TAC `N0 + N1 + 1` THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN | |
REMOVE_THEN "0" (MP_TAC o SPEC `n:num`) THEN | |
ANTS_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN | |
MATCH_MP_TAC(NORM_ARITH | |
`norm(x - y) <= e / &2 ==> norm(x - a) < e / &2 ==> norm(y - a) < e`) THEN | |
SIMP_TAC[complex_div; GSYM VSUM_COMPLEX_RMUL; FINITE_ATMOST] THEN | |
REWRITE_TAC[GSYM complex_div] THEN REWRITE_TAC[lemma] THEN | |
SIMP_TAC[FINITE_ATMOST; GSYM VSUM_SUB] THEN SIMP_TAC[complex_div] THEN | |
SIMP_TAC[COMPLEX_MUL_ASSOC; VSUM_COMPLEX_LMUL; FINITE_NUMSEG] THEN | |
REWRITE_TAC[GSYM COMPLEX_SUB_LDISTRIB] THEN SIMP_TAC[GSYM complex_div] THEN | |
ONCE_REWRITE_TAC[SIMPLE_COMPLEX_ARITH `inv x = Cx(&1) / x`] THEN | |
MATCH_MP_TAC REAL_LE_TRANS THEN | |
EXISTS_TAC | |
`norm(vsum {p | prime p /\ p <= n} | |
(\p. clog(Cx(&p)) / Cx(&p) * genzeta (n + 1) s))` THEN | |
CONJ_TAC THENL | |
[MATCH_MP_TAC REAL_EQ_IMP_LE THEN AP_TERM_TAC THEN | |
MATCH_MP_TAC VSUM_EQ THEN ASM_SIMP_TAC[IN_ELIM_THM; GENZETA_OFFSET]; | |
ALL_TAC] THEN | |
SIMP_TAC[VSUM_COMPLEX_RMUL; FINITE_ATMOST] THEN | |
FIRST_X_ASSUM(MP_TAC o SPEC `n:num`) THEN | |
ANTS_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN | |
MATCH_MP_TAC(REAL_ARITH `y <= x ==> x < e ==> y <= e`) THEN | |
REWRITE_TAC[complex_div] THEN | |
ONCE_REWRITE_TAC[COMPLEX_RING `a * b * c:complex = b * a * c`] THEN | |
REWRITE_TAC[GSYM complex_div] THEN REWRITE_TAC[COMPLEX_NORM_MUL] THEN | |
SUBGOAL_THEN `~(n = 0) /\ 1 <= n` STRIP_ASSUME_TAC THENL | |
[ASM_ARITH_TAC; ALL_TAC] THEN | |
MATCH_MP_TAC REAL_LE_MUL2 THEN REWRITE_TAC[NORM_POS_LE] THEN CONJ_TAC THENL | |
[FIRST_ASSUM(MP_TAC o MATCH_MP MERTENS) THEN | |
DISCH_THEN(MP_TAC o MATCH_MP (REAL_ARITH | |
`abs(x - y) <= e ==> &0 <= y ==> abs(x) <= y + e`)) THEN | |
ASM_SIMP_TAC[LOG_POS; REAL_OF_NUM_LE] THEN | |
MATCH_MP_TAC(REAL_ARITH | |
`x' <= x /\ y' = y ==> abs x <= y ==> x' <= y'`) THEN | |
CONJ_TAC THENL | |
[MATCH_MP_TAC VSUM_NORM_LE THEN SIMP_TAC[FINITE_ATMOST; IN_ELIM_THM] THEN | |
X_GEN_TAC `p:num` THEN STRIP_TAC THEN | |
FIRST_ASSUM(ASSUME_TAC o MATCH_MP PRIME_IMP_NZ) THEN | |
ASM_SIMP_TAC[GSYM CX_LOG; REAL_OF_NUM_LT; LT_NZ] THEN | |
REWRITE_TAC[GSYM CX_DIV; COMPLEX_NORM_CX] THEN | |
MATCH_MP_TAC(REAL_ARITH `&0 <= x ==> abs x <= x`) THEN | |
ASM_SIMP_TAC[REAL_LE_DIV; REAL_POS; LOG_POS; REAL_OF_NUM_LE; LE_1]; | |
ASM_SIMP_TAC[GSYM CX_LOG; REAL_OF_NUM_LT; LT_NZ] THEN | |
REWRITE_TAC[GSYM CX_ADD; COMPLEX_NORM_CX] THEN | |
MATCH_MP_TAC(REAL_ARITH `&0 <= x ==> abs x = x`) THEN | |
ASM_SIMP_TAC[REAL_LE_ADD; REAL_POS; LOG_POS; REAL_OF_NUM_LE; LE_1]]; | |
MP_TAC(SPECL [`n + 1`; `s:complex`] GENZETA_BOUND) THEN | |
ASM_REWRITE_TAC[ADD_EQ_0; ARITH] THEN | |
MATCH_MP_TAC(REAL_ARITH `a <= b ==> x <= a ==> x <= b`) THEN | |
REWRITE_TAC[complex_div; COMPLEX_NORM_MUL] THEN | |
MATCH_MP_TAC REAL_LE_MUL2 THEN | |
ASM_SIMP_TAC[REAL_LE_ADD; REAL_LE_DIV; REAL_POS; REAL_SUB_LE; | |
REAL_LT_IMP_LE; REAL_EXP_POS_LE] THEN | |
CONJ_TAC THENL | |
[REWRITE_TAC[COMPLEX_NORM_CX] THEN | |
MATCH_MP_TAC(REAL_ARITH `a <= &1 ==> a + b <= abs(&1 + b)`) THEN | |
REWRITE_TAC[real_div; REAL_MUL_LID] THEN MATCH_MP_TAC REAL_INV_LE_1 THEN | |
REWRITE_TAC[GSYM REAL_OF_NUM_ADD] THEN REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
ASM_SIMP_TAC[COMPLEX_NORM_INV; NORM_CPOW_REAL; REAL_CX; | |
RE_CX; REAL_OF_NUM_LT; LT_NZ] THEN | |
REWRITE_TAC[GSYM REAL_EXP_NEG; REAL_EXP_MONO_LE; RE_SUB; RE_CX] THEN | |
REWRITE_TAC[REAL_ARITH `(&1 - s) * l <= --((s - &1) * m) <=> | |
(s - &1) * m <= (s - &1) * l`] THEN | |
ASM_SIMP_TAC[REAL_LE_LMUL_EQ; REAL_SUB_LT] THEN | |
MATCH_MP_TAC LOG_MONO_LE_IMP THEN | |
ASM_REWRITE_TAC[GSYM REAL_OF_NUM_ADD; REAL_OF_NUM_LT; LT_NZ] THEN | |
REAL_ARITH_TAC]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Hence the main result of the analytic part. *) | |
(* ------------------------------------------------------------------------- *) | |
let MAIN_RESULT = prove | |
(`?c. summable (from 1) | |
(\n. (vsum {p | prime p /\ p <= n} (\p. clog(Cx(&p)) / Cx(&p)) - | |
clog(Cx(&n)) + c) / Cx(&n))`, | |
MP_TAC ANALYTIC_NEWMAN_VARIANT THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN | |
MAP_EVERY X_GEN_TAC [`c:complex`; `singval:complex`] THEN DISCH_TAC THEN | |
EXISTS_TAC `c:complex` THEN MP_TAC(SPECL | |
[`\z. if z = Cx(&1) then singval | |
else newman z + complex_derivative zeta z + c * zeta z`; | |
`\n. vsum {p | prime p /\ p <= n} (\p. clog(Cx(&p)) / Cx(&p)) - | |
clog(Cx(&n)) + c`; | |
`&24 + norm(c:complex)`] | |
NEWMAN_INGHAM_THEOREM_STRONG) THEN | |
ASM_REWRITE_TAC[] THEN ANTS_TAC THENL | |
[ALL_TAC; | |
DISCH_THEN(MP_TAC o SPEC `Cx(&1)`) THEN | |
REWRITE_TAC[RE_CX; real_ge; REAL_LE_REFL] THEN | |
DISCH_THEN(MP_TAC o MATCH_MP SUMS_SUMMABLE) THEN | |
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] SUMMABLE_EQ) THEN | |
SIMP_TAC[IN_FROM; CPOW_N; CX_INJ; REAL_OF_NUM_EQ] THEN | |
SIMP_TAC[LE_1; COMPLEX_POW_1]] THEN | |
CONJ_TAC THENL | |
[X_GEN_TAC `n:num` THEN DISCH_TAC THEN | |
MATCH_MP_TAC(NORM_ARITH | |
`norm(x - y) <= &24 ==> norm(x - y + c) <= &24 + norm c`) THEN | |
MP_TAC(SPEC `n:num` MERTENS) THEN ASM_SIMP_TAC[LE_1] THEN | |
MATCH_MP_TAC(REAL_ARITH `x = y ==> x <= a ==> y <= a`) THEN | |
REWRITE_TAC[GSYM COMPLEX_NORM_CX] THEN AP_TERM_TAC THEN | |
SIMP_TAC[GSYM VSUM_CX; CX_SUB; FINITE_ATMOST] THEN | |
ASM_SIMP_TAC[GSYM CX_LOG; REAL_OF_NUM_LT; LE_1] THEN | |
AP_THM_TAC THEN AP_TERM_TAC THEN MATCH_MP_TAC VSUM_EQ THEN | |
REWRITE_TAC[IN_ELIM_THM] THEN REPEAT STRIP_TAC THEN | |
ASM_SIMP_TAC[GSYM CX_LOG; CX_DIV; REAL_OF_NUM_LT; LT_NZ; PRIME_IMP_NZ]; | |
ALL_TAC] THEN | |
X_GEN_TAC `z:complex` THEN REWRITE_TAC[real_gt] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[RE_CX; REAL_LT_REFL] THEN | |
DISCH_TAC THEN | |
REWRITE_TAC[complex_div; COMPLEX_ADD_RDISTRIB; COMPLEX_SUB_RDISTRIB] THEN | |
REWRITE_TAC[COMPLEX_ADD_ASSOC] THEN MATCH_MP_TAC SERIES_ADD THEN | |
CONJ_TAC THENL | |
[ALL_TAC; | |
MATCH_MP_TAC SERIES_COMPLEX_LMUL THEN | |
FIRST_ASSUM(MP_TAC o MATCH_MP ZETA_CONVERGES) THEN | |
REWRITE_TAC[complex_div; COMPLEX_MUL_LID]] THEN | |
REWRITE_TAC[complex_sub] THEN MATCH_MP_TAC SERIES_ADD THEN | |
REWRITE_TAC[GSYM complex_div] THEN CONJ_TAC THENL | |
[ALL_TAC; | |
REWRITE_TAC[complex_div; GSYM COMPLEX_MUL_LNEG] THEN | |
REWRITE_TAC[GSYM complex_div] THEN | |
ASM_SIMP_TAC[COMPLEX_DERIVATIVE_ZETA_CONVERGES]] THEN | |
ASM_SIMP_TAC[NEWMAN_CONVERGES]);; | |
(* ------------------------------------------------------------------------- *) | |
(* The theorem relating summability and convergence. *) | |
(* ------------------------------------------------------------------------- *) | |
let SUM_GOESTOZERO_LEMMA = prove | |
(`!a M N. | |
abs(sum(M..N) (\i. a(i) / &i)) <= d | |
==> 0 < M /\ M < N /\ (!n. a(n) + log(&n) <= a(n + 1) + log(&n + &1)) | |
==> a(M) <= d * &N / (&N - &M) + (&N - &M) / &M /\ | |
--a(N) <= d * &N / (&N - &M) + (&N - &M) / &M`, | |
REPEAT GEN_TAC THEN STRIP_TAC THEN STRIP_TAC THEN | |
SUBGOAL_THEN `&0 <= d` ASSUME_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN | |
SUBGOAL_THEN `0 < N` ASSUME_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[GSYM REAL_OF_NUM_LT]) THEN | |
MATCH_MP_TAC(REAL_ARITH | |
`!a. a <= b /\ x <= a /\ y <= a ==> x <= b /\ y <= b`) THEN | |
EXISTS_TAC `d * &N / (&N - &M) + log(&N / &M)` THEN CONJ_TAC THENL | |
[REWRITE_TAC[REAL_LE_LADD] THEN | |
ASM_SIMP_TAC[REAL_FIELD `&0 < m /\ &0 < n | |
==> n / m = &1 + (n - m) / m`] THEN | |
MATCH_MP_TAC LOG_LE THEN MATCH_MP_TAC REAL_LE_DIV THEN ASM_REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
REWRITE_TAC[GSYM REAL_LE_SUB_RADD] THEN | |
SUBGOAL_THEN `!m n. &m <= &n ==> a m + log(&m) <= a n + log(&n)` | |
ASSUME_TAC THENL | |
[REWRITE_TAC[REAL_OF_NUM_LE] THEN MATCH_MP_TAC TRANSITIVE_STEPWISE_LE THEN | |
ASM_REWRITE_TAC[ADD1; GSYM REAL_OF_NUM_ADD] THEN REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
REWRITE_TAC[real_div; REAL_MUL_ASSOC] THEN REWRITE_TAC[GSYM real_div] THEN | |
CONJ_TAC THEN | |
(MATCH_MP_TAC REAL_LE_TRANS THEN | |
EXISTS_TAC `(d * &N) / (&N - &M + &1)` THEN CONJ_TAC THENL | |
[ALL_TAC; | |
REWRITE_TAC[real_div] THEN MATCH_MP_TAC REAL_LE_LMUL THEN | |
ASM_SIMP_TAC[REAL_POS; REAL_LE_MUL] THEN MATCH_MP_TAC REAL_LE_INV2 THEN | |
ASM_REAL_ARITH_TAC]) THEN | |
MATCH_MP_TAC(REAL_ARITH | |
`&0 <= y /\ (&0 <= x ==> x <= y) ==> x <= y`) THEN | |
ASM_SIMP_TAC[REAL_LE_RDIV_EQ; REAL_ARITH `m < n ==> &0 < n - m + &1`; | |
REAL_LE_DIV; REAL_LE_MUL; REAL_MUL_LZERO; REAL_POS] THEN | |
DISCH_TAC THEN ASM_SIMP_TAC[GSYM REAL_LE_LDIV_EQ] THEN | |
REWRITE_TAC[real_div] THEN | |
ONCE_REWRITE_TAC[REAL_ARITH `(x * y) * z:real = y * (x * z)`] THEN | |
MATCH_MP_TAC REAL_LE_TRANS THEN | |
EXISTS_TAC `abs(sum(M..N) (\i. a(i) / &i))` THEN ASM_REWRITE_TAC[] THENL | |
[MATCH_MP_TAC(REAL_ARITH `x <= a ==> x <= abs a`); | |
MATCH_MP_TAC(REAL_ARITH `a <= --x ==> x <= abs a`)] THEN | |
(SUBGOAL_THEN `&N - &M + &1 = &((N + 1) - M)` SUBST1_TAC THENL | |
[ASM_SIMP_TAC[GSYM REAL_OF_NUM_SUB; GSYM REAL_OF_NUM_ADD; GSYM | |
REAL_OF_NUM_LE; REAL_ARITH `m < n ==> m <= n + &1`] THEN | |
REAL_ARITH_TAC; | |
ALL_TAC]) THEN | |
REWRITE_TAC[GSYM SUM_CONST_NUMSEG; GSYM SUM_NEG] THEN | |
MATCH_MP_TAC SUM_LE_NUMSEG THEN X_GEN_TAC `n:num` THEN STRIP_TAC THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[GSYM REAL_OF_NUM_LE]) THEN | |
(SUBGOAL_THEN `&0 < &n` ASSUME_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC]) THEN | |
REWRITE_TAC[GSYM REAL_MUL_LNEG; REAL_NEG_SUB; REAL_SUB_RNEG] THEN | |
REWRITE_TAC[real_div] THEN MATCH_MP_TAC REAL_LE_TRANS THENL | |
[EXISTS_TAC `(a M - log(&N * inv(&M))) * inv(&n)` THEN CONJ_TAC THENL | |
[MATCH_MP_TAC REAL_LE_LMUL THEN ASM_REWRITE_TAC[GSYM real_div] THEN | |
MATCH_MP_TAC REAL_LE_INV2 THEN ASM_REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
MATCH_MP_TAC REAL_LE_RMUL THEN REWRITE_TAC[REAL_LE_INV_EQ; REAL_POS] THEN | |
ASM_SIMP_TAC[GSYM real_div; LOG_DIV] THEN | |
MATCH_MP_TAC(REAL_ARITH | |
`!x'. x' <= x /\ a - (x' - m) <= b ==> a - (x - m) <= b`) THEN | |
EXISTS_TAC `log(&n)` THEN CONJ_TAC THENL | |
[MATCH_MP_TAC LOG_MONO_LE_IMP THEN ASM_REAL_ARITH_TAC; ALL_TAC] THEN | |
ASM_SIMP_TAC[REAL_ARITH `a - (x - y) <= b <=> a + y <= b + x`]; | |
EXISTS_TAC `(log(&N * inv(&M)) + a N) * inv(&n)` THEN CONJ_TAC THENL | |
[ALL_TAC; | |
ONCE_REWRITE_TAC[REAL_ARITH `a * x <= a * y <=> --a * y <= --a * x`] THEN | |
MATCH_MP_TAC REAL_LE_LMUL THEN | |
ASM_SIMP_TAC[GSYM real_div; REAL_ARITH `--(x + y:real) = --y - x`] THEN | |
MATCH_MP_TAC REAL_LE_INV2 THEN ASM_REAL_ARITH_TAC] THEN | |
MATCH_MP_TAC REAL_LE_RMUL THEN REWRITE_TAC[REAL_LE_INV_EQ; REAL_POS] THEN | |
ASM_SIMP_TAC[GSYM real_div; LOG_DIV] THEN | |
MATCH_MP_TAC(REAL_ARITH | |
`!x'. x <= x' /\ a <= y - x' + b ==> a <= y - x + b`) THEN | |
EXISTS_TAC `log(&n)` THEN CONJ_TAC THENL | |
[MATCH_MP_TAC LOG_MONO_LE_IMP THEN ASM_REAL_ARITH_TAC; ALL_TAC] THEN | |
ASM_SIMP_TAC[REAL_ARITH `a <= x - y + b <=> a + y <= b + x`]]);; | |
let SUM_GOESTOZERO_THEOREM = prove | |
(`!a c. ((\i. a(i) / &i) real_sums c) (from 1) /\ | |
(!n. a(n) + log(&n) <= a(n + 1) + log(&n + &1)) | |
==> (a ---> &0) sequentially`, | |
let lemma = prove | |
(`(!e. &0 < e /\ e < &1 / &4 ==> ?N:num. !n. N <= n ==> f(n) < e) | |
==> (!e. &0 < e ==> ?N. !n. N <= n ==> f(n) < e)`, | |
REPEAT STRIP_TAC THEN | |
FIRST_X_ASSUM(MP_TAC o SPEC `min e (&1 / &5)`) THEN | |
ANTS_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN | |
MESON_TAC[REAL_LT_MIN]) in | |
REWRITE_TAC[LEFT_FORALL_IMP_THM; LEFT_EXISTS_AND_THM] THEN | |
REWRITE_TAC[REAL_SERIES_CAUCHY] THEN REPEAT STRIP_TAC THEN | |
REWRITE_TAC[REALLIM_SEQUENTIALLY] THEN | |
MATCH_MP_TAC lemma THEN X_GEN_TAC `e:real` THEN | |
STRIP_TAC THEN REWRITE_TAC[REAL_SUB_RZERO] THEN | |
FIRST_X_ASSUM(MP_TAC o SPEC `(e / &8) pow 2`) THEN | |
ASM_SIMP_TAC[REAL_POW_LT; REAL_LT_DIV; REAL_OF_NUM_LT; ARITH] THEN | |
DISCH_THEN(X_CHOOSE_THEN `N0:num` STRIP_ASSUME_TAC) THEN | |
MP_TAC(SPEC `e / &4` REAL_ARCH_INV) THEN | |
ASM_SIMP_TAC[REAL_LT_DIV; REAL_OF_NUM_LT; ARITH] THEN | |
DISCH_THEN(X_CHOOSE_THEN `N1:num` STRIP_ASSUME_TAC) THEN | |
EXISTS_TAC `2 * N0 + N1 + 7` THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN | |
MP_TAC(SPEC `&n * e / &4` FLOOR) THEN | |
MP_TAC(SPEC `&n * e / &4` FLOOR_POS) THEN | |
ASM_SIMP_TAC[REAL_LE_MUL; REAL_LE_DIV; REAL_POS; REAL_LT_IMP_LE] THEN | |
DISCH_THEN(X_CHOOSE_THEN `k:num` SUBST_ALL_TAC) THEN STRIP_TAC THEN | |
SUBGOAL_THEN `0 < k /\ 4 * k <= n` STRIP_ASSUME_TAC THENL | |
[CONJ_TAC THENL | |
[REWRITE_TAC[LT_NZ] THEN DISCH_THEN SUBST_ALL_TAC THEN | |
UNDISCH_TAC `&n * e / &4 < &0 + &1` THEN | |
REWRITE_TAC[REAL_NOT_LT; REAL_ADD_LID] THEN | |
MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `&N1 * e / &4` THEN | |
CONJ_TAC THENL | |
[ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN | |
ASM_SIMP_TAC[GSYM REAL_LE_LDIV_EQ; REAL_OF_NUM_LT; LT_NZ] THEN | |
ASM_REAL_ARITH_TAC; | |
MATCH_MP_TAC REAL_LE_RMUL THEN | |
ASM_SIMP_TAC[REAL_LT_IMP_LE; REAL_OF_NUM_LE] THEN ASM_ARITH_TAC]; | |
REWRITE_TAC[GSYM REAL_OF_NUM_LE; GSYM REAL_OF_NUM_MUL] THEN | |
REWRITE_TAC[REAL_ARITH `&4 * x <= y <=> x <= y * inv(&4)`] THEN | |
MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `&n * e / &4` THEN | |
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LE_LMUL THEN | |
ASM_REAL_ARITH_TAC]; | |
ALL_TAC] THEN | |
REWRITE_TAC[GSYM REAL_BOUNDS_LT] THEN CONJ_TAC THENL | |
[FIRST_X_ASSUM(MP_TAC o SPECL [`n - k:num`; `n:num`]); | |
FIRST_ASSUM(MP_TAC o SPECL [`n:num`; `n + k:num`])] THEN | |
(ANTS_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN | |
REWRITE_TAC[FROM_INTER_NUMSEG_GEN] THEN | |
COND_CASES_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN | |
DISCH_THEN(MP_TAC o MATCH_MP REAL_LT_IMP_LE) THEN | |
DISCH_THEN(MP_TAC o MATCH_MP SUM_GOESTOZERO_LEMMA) THEN | |
ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [ASM_ARITH_TAC; ALL_TAC]) | |
THENL | |
[DISCH_THEN(MP_TAC o CONJUNCT2) THEN | |
MATCH_MP_TAC(REAL_ARITH `a < b ==> --x <= a ==> --b < x`); | |
DISCH_THEN(MP_TAC o CONJUNCT1) THEN | |
MATCH_MP_TAC(REAL_ARITH `a < b ==> x <= a ==> x < b`)] THEN | |
ASM_SIMP_TAC[GSYM REAL_OF_NUM_SUB; ARITH_RULE `4 * k <= n ==> k <= n`; | |
GSYM REAL_OF_NUM_ADD] THEN | |
REWRITE_TAC[REAL_ARITH `n - (n - k):real = k`; | |
REAL_ARITH `(n + k) - n:real = k`] THEN | |
MATCH_MP_TAC(REAL_ARITH | |
`x < e / &2 /\ y < e / &2 ==> x + y < e`) THEN | |
ASM_SIMP_TAC[REAL_LT_LMUL_EQ; REAL_ARITH | |
`(e / &8) pow 2 * x < e / &2 <=> e * e / &16 * x < e * &2`] THEN | |
REWRITE_TAC[real_div; REAL_MUL_ASSOC] THEN REWRITE_TAC[GSYM real_div] THEN | |
ASM_SIMP_TAC[REAL_LT_LDIV_EQ; REAL_SUB_LT; REAL_OF_NUM_LT; | |
ARITH_RULE `0 < k /\ 4 * k <= n ==> k < n`; | |
ARITH_RULE `~(n < 1) ==> 0 < n`] THEN | |
CONJ_TAC THENL | |
[MATCH_MP_TAC(REAL_ARITH | |
`n * e / &4 < k + &1 /\ &1 <= k ==> e / &16 * n < &2 * k`) THEN | |
ASM_REWRITE_TAC[REAL_OF_NUM_LE] THEN ASM_ARITH_TAC; | |
MATCH_MP_TAC REAL_LET_TRANS THEN | |
EXISTS_TAC `&n * e / &4` THEN ASM_REWRITE_TAC[] THEN | |
ASM_SIMP_TAC[REAL_LT_LMUL_EQ; REAL_ARITH | |
`n * e / &4 < e / &2 * m <=> e * n < e * &2 * m`] THEN | |
REWRITE_TAC[REAL_ARITH `n < &2 * (n - k) <=> &2 * k < n`] THEN | |
REWRITE_TAC[REAL_OF_NUM_MUL; REAL_OF_NUM_LT] THEN ASM_ARITH_TAC; | |
MATCH_MP_TAC(REAL_ARITH | |
`n * e / &4 < k + &1 /\ &1 <= k /\ (&1 / &4 + e / &16) * k < &1 * k | |
==> e / &16 * (n + k) < &2 * k`) THEN | |
ASM_SIMP_TAC[REAL_LT_RMUL_EQ; REAL_OF_NUM_LE; REAL_OF_NUM_LT; | |
ARITH_RULE `1 <= n <=> 0 < n`] THEN | |
ASM_REAL_ARITH_TAC; | |
MATCH_MP_TAC(REAL_ARITH | |
`k <= n * e / &4 /\ &0 < n * e ==> k < e / &2 * n`) THEN | |
ASM_SIMP_TAC[REAL_LT_MUL; REAL_OF_NUM_LT; | |
ARITH_RULE `~(n < 1) ==> 0 < n`]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Hence transform into the desired limit. *) | |
(* ------------------------------------------------------------------------- *) | |
let MERTENS_LIMIT = prove | |
(`?c. ((\n. sum {p | prime p /\ p <= n} (\p. log(&p) / &p) - log(&n)) | |
---> c) sequentially`, | |
X_CHOOSE_THEN `c:complex` MP_TAC MAIN_RESULT THEN | |
REWRITE_TAC[summable] THEN | |
DISCH_THEN(X_CHOOSE_THEN `l:complex` STRIP_ASSUME_TAC) THEN | |
EXISTS_TAC `--Re(c)` THEN ONCE_REWRITE_TAC[REALLIM_NULL] THEN | |
MATCH_MP_TAC SUM_GOESTOZERO_THEOREM THEN EXISTS_TAC `Re l` THEN | |
REWRITE_TAC[] THEN CONJ_TAC THENL | |
[FIRST_ASSUM(MP_TAC o MATCH_MP REAL_SUMS_RE) THEN | |
REWRITE_TAC[o_DEF] THEN | |
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] REAL_SUMS_EQ) THEN | |
X_GEN_TAC `n:num` THEN REWRITE_TAC[IN_FROM] THEN DISCH_TAC THEN | |
ASM_SIMP_TAC[RE_ADD; RE_DIV_CX; RE_SUB; REAL_SUB_RNEG] THEN | |
AP_THM_TAC THEN AP_TERM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN | |
ASM_SIMP_TAC[GSYM CX_LOG; REAL_OF_NUM_LT; LE_1; RE_CX] THEN | |
SIMP_TAC[RE_VSUM; FINITE_ATMOST] THEN AP_THM_TAC THEN AP_TERM_TAC THEN | |
MATCH_MP_TAC SUM_EQ THEN | |
SIMP_TAC[IN_ELIM_THM; GSYM CX_LOG; REAL_OF_NUM_LT; PRIME_IMP_NZ; LT_NZ; | |
GSYM CX_DIV; RE_CX]; | |
GEN_TAC THEN REWRITE_TAC[REAL_OF_NUM_ADD] THEN MATCH_MP_TAC(REAL_ARITH | |
`s <= s' ==> (s - l - c) + l <= (s' - l' - c) + l'`) THEN | |
MATCH_MP_TAC SUM_SUBSET THEN REWRITE_TAC[FINITE_ATMOST] THEN | |
REWRITE_TAC[IN_DIFF; IN_ELIM_THM] THEN CONJ_TAC THEN | |
X_GEN_TAC `p:num` THEN ASM_CASES_TAC `prime p` THEN ASM_REWRITE_TAC[] THENL | |
[ARITH_TAC; ALL_TAC] THEN | |
STRIP_TAC THEN MATCH_MP_TAC REAL_LE_DIV THEN REWRITE_TAC[REAL_POS] THEN | |
MATCH_MP_TAC LOG_POS THEN FIRST_ASSUM(MP_TAC o MATCH_MP PRIME_GE_2) THEN | |
REWRITE_TAC[REAL_OF_NUM_LE] THEN ARITH_TAC]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Reformulate the PNT using partial summation. *) | |
(* ------------------------------------------------------------------------- *) | |
let PNT_PARTIAL_SUMMATION = prove | |
(`&(CARD {p | prime p /\ p <= n}) = | |
sum(1..n) | |
(\k. &k / log (&k) * | |
(sum {p | prime p /\ p <= k} (\p. log (&p) / &p) - | |
sum {p | prime p /\ p <= k - 1} (\p. log (&p) / &p)))`, | |
REWRITE_TAC[PRIME_ATMOST_ALT] THEN | |
GEN_REWRITE_TAC LAND_CONV [GSYM REAL_MUL_RID] THEN | |
SIMP_TAC[GSYM SUM_CONST; FINITE_NUMSEG; FINITE_RESTRICT] THEN | |
SIMP_TAC[FINITE_NUMSEG; SUM_RESTRICT_SET] THEN | |
MATCH_MP_TAC SUM_EQ THEN X_GEN_TAC `p:num` THEN | |
REWRITE_TAC[IN_NUMSEG] THEN STRIP_TAC THEN | |
FIRST_ASSUM(fun th -> | |
GEN_REWRITE_TAC (PAT_CONV `\x. l = a * (sum(1..x) f - s)`) | |
[MATCH_MP (ARITH_RULE `1 <= p ==> p = SUC(p - 1)`) th]) THEN | |
SIMP_TAC[SUM_CLAUSES_NUMSEG; ARITH_RULE `1 <= SUC n`] THEN | |
REWRITE_TAC[REAL_ADD_SUB] THEN | |
ASM_SIMP_TAC[ARITH_RULE `1 <= p ==> SUC(p - 1) = p`] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[REAL_MUL_RZERO] THEN | |
MATCH_MP_TAC(REAL_FIELD `&0 < x /\ &0 < y ==> &1 = x / y * y / x`) THEN | |
ASM_SIMP_TAC[LOG_POS_LT; REAL_OF_NUM_LT; LE_1; PRIME_GE_2; | |
ARITH_RULE `2 <= p ==> 1 < p`]);; | |
let SUM_PARTIAL_LIMIT = prove | |
(`!f e c M. | |
(!k. M <= k ==> &0 < f k) /\ | |
(!k. M <= k ==> f(k) <= f(k + 1)) /\ | |
((\k. inv(f k)) ---> &0) sequentially /\ | |
(e ---> c) sequentially | |
==> ((\n. (sum(1..n) (\k. e(k) * (f(k + 1) - f(k))) - e(n) * f(n + 1)) / | |
f(n + 1)) ---> &0) sequentially`, | |
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
DISCH_THEN(CONJUNCTS_THEN2 (LABEL_TAC "g") (LABEL_TAC "e")) THEN | |
SUBGOAL_THEN `!k:num. M <= k ==> &0 <= f k` ASSUME_TAC THENL | |
[ASM_SIMP_TAC[REAL_LT_IMP_LE]; ALL_TAC] THEN | |
SIMP_TAC[tendsto_real] THEN X_GEN_TAC `d:real` THEN DISCH_TAC THEN | |
SUBGOAL_THEN `?N. (!k. N <= k ==> &0 < f k) /\ | |
(!k. N <= k ==> f(k) <= f(k + 1)) /\ | |
(!k. N <= k ==> abs(e k - c) < d / &4)` | |
(X_CHOOSE_THEN `N:num` STRIP_ASSUME_TAC) | |
THENL | |
[USE_THEN "e" (MP_TAC o GEN_REWRITE_RULE I [REALLIM_SEQUENTIALLY]) THEN | |
DISCH_THEN(MP_TAC o SPEC `d / &4`) THEN | |
ASM_SIMP_TAC[REAL_LT_DIV; REAL_OF_NUM_LT; ARITH] THEN | |
DISCH_THEN(X_CHOOSE_THEN `N:num` STRIP_ASSUME_TAC) THEN | |
ASM_MESON_TAC[ARITH_RULE `M + N <= (n:num) ==> M <= n /\ N <= n`]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN | |
`!n. N + 1 <= n | |
==> abs((sum((N+1)..n) (\k. e k * (f (k + 1) - f k)) - | |
e(n) * f(n + 1)) + | |
c * f(N + 1)) | |
<= d / &2 * f(n + 1)` | |
MP_TAC THENL | |
[REPEAT STRIP_TAC THEN | |
MP_TAC(ISPECL [`\k. (e k - c:real) * (f (k + 1) - f k)`; | |
`\k. d / &4 * (f (k + 1) - f k)`; | |
`(N+1)..n`] SUM_ABS_LE) THEN | |
REWRITE_TAC[IN_NUMSEG; FINITE_NUMSEG] THEN ANTS_TAC THENL | |
[REPEAT STRIP_TAC THEN | |
ASM_SIMP_TAC[REAL_ABS_MUL; ARITH_RULE `N + 1 <= n ==> N <= n`; | |
REAL_ARITH `a <= b ==> abs(b - a) = b - a`] THEN | |
MATCH_MP_TAC REAL_LE_RMUL THEN ASM_REWRITE_TAC[REAL_SUB_LE] THEN | |
ASM_SIMP_TAC[REAL_LT_IMP_LE; ARITH_RULE `N + 1 <= n ==> N <= n`]; | |
ALL_TAC] THEN | |
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [REAL_SUB_RDISTRIB] THEN | |
REWRITE_TAC[SUM_SUB_NUMSEG] THEN | |
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [SUM_PARTIAL_SUC] THEN | |
GEN_REWRITE_TAC (LAND_CONV o LAND_CONV o RAND_CONV o RAND_CONV) | |
[SUM_PARTIAL_SUC] THEN | |
ASM_REWRITE_TAC[REAL_SUB_RZERO; REAL_SUB_REFL; REAL_MUL_RZERO; SUM_0] THEN | |
MATCH_MP_TAC(REAL_ARITH | |
`&0 <= d * f1 /\ &0 <= dd /\ abs(en - cn) <= d / &4 * f1 | |
==> abs(s - (cn - cN)) <= d / &4 * f1 - dd | |
==> abs(s - en + cN) <= d / &2 * f1`) THEN | |
REWRITE_TAC[REAL_ABS_MUL; GSYM REAL_SUB_RDISTRIB] THEN | |
REPEAT CONJ_TAC THEN TRY(MATCH_MP_TAC REAL_LE_MUL) THEN | |
ASM_SIMP_TAC[REAL_LE_MUL; REAL_LT_DIV; REAL_LT_IMP_LE; REAL_OF_NUM_LT; | |
ARITH; LE_ADD; ARITH_RULE `N + 1 <= n ==> N <= n + 1`] THEN | |
MATCH_MP_TAC REAL_LE_MUL2 THEN REWRITE_TAC[REAL_ABS_POS] THEN | |
REWRITE_TAC[REAL_ARITH `abs x <= x <=> &0 <= x`] THEN | |
ASM_SIMP_TAC[REAL_LT_IMP_LE; ARITH_RULE `N + 1 <= n ==> N <= n`; | |
ARITH_RULE `N + 1 <= n ==> N <= n + 1`]; | |
ALL_TAC] THEN | |
DISCH_TAC THEN REWRITE_TAC[REAL_SUB_RZERO] THEN | |
USE_THEN "g" (MP_TAC o MATCH_MP REALLIM_LMUL) THEN | |
DISCH_THEN(MP_TAC o SPEC | |
`sum(1..N) (\k. e k * (f (k + 1) - f k)) - c * f(N + 1)`) THEN | |
DISCH_THEN(MP_TAC o SPEC `1` o MATCH_MP REAL_SEQ_OFFSET) THEN | |
REWRITE_TAC[REAL_MUL_RZERO; tendsto_real; REAL_SUB_RZERO] THEN | |
DISCH_THEN(MP_TAC o SPEC `d / &2`) THEN ASM_REWRITE_TAC[REAL_HALF] THEN | |
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] EVENTUALLY_MP) THEN | |
REWRITE_TAC[EVENTUALLY_SEQUENTIALLY] THEN EXISTS_TAC `N + 1` THEN | |
X_GEN_TAC `n:num` THEN DISCH_TAC THEN | |
FIRST_X_ASSUM(MP_TAC o C MATCH_MP (ASSUME `N + 1 <= n`)) THEN | |
REWRITE_TAC[REAL_ABS_MUL; REAL_ABS_DIV; REAL_ABS_INV] THEN | |
ASM_SIMP_TAC[GSYM real_div; REAL_ARITH `&0 < x ==> abs x = x`; | |
ARITH_RULE `N + 1 <= n ==> N <= n + 1`; REAL_LT_LDIV_EQ] THEN | |
SUBGOAL_THEN `1 <= N + 1 /\ N <= n` MP_TAC THENL | |
[ASM_ARITH_TAC; ALL_TAC] THEN | |
DISCH_THEN(fun th -> REWRITE_TAC[GSYM(MATCH_MP SUM_COMBINE_R th)]) THEN | |
REAL_ARITH_TAC);; | |
let SUM_PARTIAL_LIMIT_ALT = prove | |
(`!f e b c M. | |
(!k. M <= k ==> &0 < f k) /\ | |
(!k. M <= k ==> f(k) <= f(k + 1)) /\ | |
((\k. inv(f k)) ---> &0) sequentially /\ | |
((\n. f(n + 1) / f n) ---> b) sequentially /\ | |
(e ---> c) sequentially | |
==> ((\n. (sum(1..n) (\k. e(k) * (f(k + 1) - f(k))) - e(n) * f(n + 1)) / | |
f(n)) ---> &0) sequentially`, | |
REPEAT STRIP_TAC THEN | |
MATCH_MP_TAC REALLIM_TRANSFORM_EVENTUALLY THEN | |
EXISTS_TAC | |
`\n. ((sum(1..n) (\k. e(k) * (f(k + 1) - f(k))) - e(n) * f(n + 1)) / | |
f(n + 1)) * (f(n + 1) / f(n))` THEN | |
REWRITE_TAC[] THEN CONJ_TAC THENL | |
[REWRITE_TAC[EVENTUALLY_SEQUENTIALLY] THEN EXISTS_TAC `M:num` THEN | |
REPEAT STRIP_TAC THEN | |
ASM_SIMP_TAC[REAL_FIELD `&0 < a /\ &0 < b ==> x / b * b / a = x / a`; | |
ARITH_RULE `M <= n ==> M <= n + 1`]; | |
ALL_TAC] THEN | |
SUBST1_TAC(REAL_ARITH `&0 = &0 * b`) THEN | |
MATCH_MP_TAC REALLIM_MUL THEN ASM_REWRITE_TAC[] THEN | |
MATCH_MP_TAC SUM_PARTIAL_LIMIT THEN ASM_MESON_TAC[]);; | |
let REALLIM_NA_OVER_N = prove | |
(`!a. ((\n. (&n + a) / &n) ---> &1) sequentially`, | |
GEN_TAC THEN REWRITE_TAC[real_div; REAL_ADD_RDISTRIB] THEN | |
GEN_REWRITE_TAC LAND_CONV [GSYM REAL_ADD_RID] THEN | |
MATCH_MP_TAC REALLIM_ADD THEN CONJ_TAC THENL | |
[MATCH_MP_TAC REALLIM_TRANSFORM_EVENTUALLY THEN | |
EXISTS_TAC `\n:num. &1` THEN REWRITE_TAC[REALLIM_CONST] THEN | |
REWRITE_TAC[EVENTUALLY_SEQUENTIALLY] THEN EXISTS_TAC `1` THEN | |
REWRITE_TAC[GSYM REAL_OF_NUM_LE] THEN CONV_TAC REAL_FIELD; | |
MATCH_MP_TAC REALLIM_NULL_LMUL THEN REWRITE_TAC[REALLIM_1_OVER_N]]);; | |
let REALLIM_N_OVER_NA = prove | |
(`!a. ((\n. &n / (&n + &1)) ---> &1) sequentially`, | |
GEN_TAC THEN ONCE_REWRITE_TAC[GSYM REAL_INV_DIV] THEN | |
GEN_REWRITE_TAC LAND_CONV [GSYM REAL_INV_1] THEN | |
MATCH_MP_TAC REALLIM_INV THEN | |
REWRITE_TAC[REALLIM_NA_OVER_N] THEN CONV_TAC REAL_RAT_REDUCE_CONV);; | |
let REALLIM_LOG1_OVER_LOG = prove | |
(`((\n. log(&n + &1) / log(&n)) ---> &1) sequentially`, | |
MATCH_MP_TAC REALLIM_TRANSFORM_EVENTUALLY THEN | |
EXISTS_TAC `\n. &1 + log(&1 + &1 / &n) / log(&n)` THEN CONJ_TAC THENL | |
[REWRITE_TAC[EVENTUALLY_SEQUENTIALLY] THEN EXISTS_TAC `2` THEN | |
REWRITE_TAC[GSYM REAL_OF_NUM_LE] THEN REPEAT STRIP_TAC THEN | |
ASM_SIMP_TAC[LOG_POS_LT; REAL_ARITH `&2 <= x ==> &1 < x`; | |
REAL_FIELD `&0 < x ==> (&1 + a / x = b / x <=> x + a = b)`] THEN | |
ASM_SIMP_TAC[GSYM LOG_MUL; REAL_ARITH `&0 <= x ==> &0 < &1 + x`; | |
REAL_LE_DIV; REAL_POS; REAL_ARITH `&2 <= x ==> &0 < x`] THEN | |
AP_TERM_TAC THEN POP_ASSUM MP_TAC THEN CONV_TAC REAL_FIELD; | |
ALL_TAC] THEN | |
GEN_REWRITE_TAC LAND_CONV [GSYM REAL_ADD_RID] THEN | |
MATCH_MP_TAC REALLIM_ADD THEN REWRITE_TAC[REALLIM_CONST] THEN | |
MATCH_MP_TAC REALLIM_NULL_COMPARISON THEN | |
EXISTS_TAC `\n. inv(&n)` THEN REWRITE_TAC[REALLIM_1_OVER_N] THEN | |
REWRITE_TAC[EVENTUALLY_SEQUENTIALLY] THEN EXISTS_TAC `16` THEN | |
X_GEN_TAC `n:num` THEN DISCH_TAC THEN | |
REWRITE_TAC[real_div; REAL_ABS_MUL] THEN | |
GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_RID] THEN | |
MATCH_MP_TAC REAL_LE_MUL2 THEN REWRITE_TAC[REAL_ABS_POS] THEN | |
CONJ_TAC THENL | |
[REWRITE_TAC[REAL_MUL_LID] THEN | |
MATCH_MP_TAC(REAL_ARITH `&0 <= x /\ x <= y ==> abs x <= y`) THEN | |
ASM_SIMP_TAC[LOG_POS; REAL_LE_INV_EQ; REAL_POS; | |
REAL_ARITH `&0 <= x ==> &1 <= &1 + x`] THEN | |
MATCH_MP_TAC LOG_LE THEN REWRITE_TAC[REAL_LE_INV_EQ; REAL_POS]; | |
ALL_TAC] THEN | |
REWRITE_TAC[REAL_ABS_INV] THEN MATCH_MP_TAC REAL_INV_LE_1 THEN | |
MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `&2 * log(&2)` THEN | |
CONJ_TAC THENL [MP_TAC LOG_2_BOUNDS THEN REAL_ARITH_TAC; ALL_TAC] THEN | |
SIMP_TAC[GSYM LOG_POW; REAL_OF_NUM_LT; ARITH] THEN | |
MATCH_MP_TAC(REAL_ARITH `a <= b ==> a <= abs b`) THEN | |
MATCH_MP_TAC LOG_MONO_LE_IMP THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN | |
REWRITE_TAC[REAL_OF_NUM_LE] THEN ASM_ARITH_TAC);; | |
let REALLIM_LOG_OVER_LOG1 = prove | |
(`((\n. log(&n) / log(&n + &1)) ---> &1) sequentially`, | |
ONCE_REWRITE_TAC[GSYM REAL_INV_DIV] THEN | |
GEN_REWRITE_TAC LAND_CONV [GSYM REAL_INV_1] THEN | |
MATCH_MP_TAC REALLIM_INV THEN | |
REWRITE_TAC[REALLIM_LOG1_OVER_LOG] THEN CONV_TAC REAL_RAT_REDUCE_CONV);; | |
let ADHOC_BOUND_LEMMA = prove | |
(`!k. 1 <= k ==> abs((&k + &1) * (log(&k + &1) - log(&k)) - &1) | |
<= &2 / &k`, | |
REWRITE_TAC[GSYM REAL_OF_NUM_LE] THEN | |
GEN_TAC THEN DISCH_TAC THEN MP_TAC(ISPECL | |
[`\n z. if n = 0 then clog z | |
else if n = 1 then inv z | |
else --inv(z pow 2)`; | |
`Cx(&k + &1)`; `Cx(&k)`; `1`] | |
COMPLEX_TAYLOR_MVT) THEN | |
REWRITE_TAC[ARITH; ADD_EQ_0] THEN | |
CONV_TAC(ONCE_DEPTH_CONV NUMSEG_CONV) THEN | |
SIMP_TAC[VSUM_CLAUSES; FINITE_INSERT; FINITE_RULES] THEN | |
REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY; ARITH] THEN | |
CONV_TAC NUM_REDUCE_CONV THEN | |
REWRITE_TAC[COMPLEX_DIV_1; complex_pow; COMPLEX_POW_1; COMPLEX_VEC_0] THEN | |
REWRITE_TAC[GSYM CX_SUB; COMPLEX_ADD_RID; | |
REAL_ARITH `k - (k + &1) = -- &1`] THEN | |
REWRITE_TAC[CX_SUB; CX_NEG; COMPLEX_MUL_LNEG; COMPLEX_MUL_RNEG; | |
COMPLEX_NEG_NEG; COMPLEX_MUL_RID] THEN | |
ANTS_TAC THENL | |
[MAP_EVERY X_GEN_TAC [`n:num`; `z:complex`] THEN | |
REWRITE_TAC[ARITH_RULE `n <= 1 <=> n = 0 \/ n = 1`] THEN | |
STRIP_TAC THEN FIRST_X_ASSUM SUBST_ALL_TAC THEN REWRITE_TAC[ARITH] THEN | |
COMPLEX_DIFF_TAC THEN | |
REWRITE_TAC[COMPLEX_MUL_LID; complex_div; COMPLEX_MUL_LNEG] THEN | |
REWRITE_TAC[COMPLEX_EQ; RE_CX; IM_CX] THEN | |
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN_SEGMENT_CX_GEN]) THEN | |
POP_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
DISCH_THEN(X_CHOOSE_THEN `z:complex` | |
(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN | |
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN_SEGMENT_CX_GEN]) THEN | |
STRIP_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN | |
SUBGOAL_THEN `&0 < &k /\ &0 < &k + &1` STRIP_ASSUME_TAC THENL | |
[ASM_REAL_ARITH_TAC; ALL_TAC] THEN REWRITE_TAC[RE_ADD] THEN | |
ONCE_REWRITE_TAC[REAL_RING `w:real = z + u <=> w - z = u`] THEN | |
ASM_SIMP_TAC[GSYM CX_LOG; GSYM CX_INV; GSYM CX_ADD; GSYM CX_SUB; | |
GSYM CX_NEG; RE_CX] THEN | |
DISCH_THEN(MP_TAC o AP_TERM `(*) (&k + &1)`) THEN | |
ASM_SIMP_TAC[REAL_FIELD | |
`&0 < x ==> x * (y - (z + --inv x)) = &1 - x * (z - y)`] THEN | |
ONCE_REWRITE_TAC[REAL_ABS_SUB] THEN DISCH_THEN SUBST1_TAC THEN | |
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM real]) THEN | |
REWRITE_TAC[REAL] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN | |
REWRITE_TAC[GSYM CX_SUB; GSYM CX_MUL; GSYM CX_POW; GSYM CX_INV; RE_CX] THEN | |
REWRITE_TAC[REAL_POW_2; GSYM REAL_POW_INV; GSYM REAL_MUL_ASSOC] THEN | |
ONCE_REWRITE_TAC[REAL_ARITH `a * b * c * d = (a * b:real) * (c * d)`] THEN | |
REWRITE_TAC[real_div] THEN ONCE_REWRITE_TAC[REAL_ABS_MUL] THEN | |
MATCH_MP_TAC REAL_LE_MUL2 THEN REWRITE_TAC[REAL_ABS_POS] THEN | |
SUBGOAL_THEN `&0 < Re z` ASSUME_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN | |
CONJ_TAC THENL | |
[ASM_SIMP_TAC[GSYM real_div; REAL_ABS_DIV; REAL_LE_LDIV_EQ; | |
REAL_ARITH `&0 < x ==> abs x = x`] THEN | |
ASM_REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
REWRITE_TAC[REAL_ABS_MUL] THEN | |
GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_RID] THEN | |
MATCH_MP_TAC REAL_LE_MUL2 THEN REWRITE_TAC[REAL_ABS_POS] THEN | |
CONJ_TAC THENL [ALL_TAC; ASM_REAL_ARITH_TAC] THEN | |
REWRITE_TAC[REAL_ABS_INV] THEN MATCH_MP_TAC REAL_LE_INV2 THEN | |
ASM_REAL_ARITH_TAC);; | |
let REALLIM_MUL_SERIES = prove | |
(`!x y z B. | |
eventually (\n. &0 < x n) sequentially /\ | |
eventually (\n. &0 < y n) sequentially /\ | |
eventually (\n. &0 < z n) sequentially /\ | |
((\n. inv(z n)) ---> &0) sequentially /\ | |
eventually (\n. abs(sum (1..n) x / z(n)) <= B) sequentially /\ | |
((\n. y(n) / x(n)) ---> &0) sequentially | |
==> ((\n. sum (1..n) y / z(n)) ---> &0) sequentially`, | |
REWRITE_TAC[CONJ_ASSOC; GSYM EVENTUALLY_AND] THEN | |
REWRITE_TAC[GSYM CONJ_ASSOC] THEN REPEAT STRIP_TAC THEN | |
REWRITE_TAC[tendsto_real] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN | |
MP_TAC(ASSUME | |
`eventually (\n. &0 < x n /\ &0 < y n /\ &0 < z n) sequentially`) THEN | |
MP_TAC(ASSUME `((\n. y n / x n) ---> &0) sequentially`) THEN | |
REWRITE_TAC[tendsto_real] THEN | |
DISCH_THEN(MP_TAC o SPEC `e / (&2 * (&1 + abs B))`) THEN ANTS_TAC THENL | |
[MATCH_MP_TAC REAL_LT_DIV THEN ASM_REAL_ARITH_TAC; ALL_TAC] THEN | |
REWRITE_TAC[REAL_HALF; IMP_IMP; GSYM EVENTUALLY_AND] THEN | |
GEN_REWRITE_TAC LAND_CONV [EVENTUALLY_SEQUENTIALLY] THEN | |
REWRITE_TAC[REAL_SUB_RZERO] THEN | |
DISCH_THEN(X_CHOOSE_THEN `N:num` STRIP_ASSUME_TAC) THEN | |
MP_TAC(ASSUME `((\n. inv (z n)) ---> &0) sequentially`) THEN | |
DISCH_THEN(MP_TAC o MATCH_MP REALLIM_LMUL) THEN | |
DISCH_THEN(MP_TAC o SPEC | |
`e / (&2 * (&1 + abs B)) * abs(sum(1..N) x) + abs(sum(1..N) y)`) THEN | |
REWRITE_TAC[REAL_MUL_RZERO; tendsto_real; REAL_SUB_RZERO] THEN | |
DISCH_THEN(MP_TAC o SPEC `e / &2`) THEN ASM_REWRITE_TAC[REAL_HALF] THEN | |
MP_TAC(ASSUME | |
`eventually (\n. abs (sum (1..n) x / z n) <= B) sequentially`) THEN | |
REWRITE_TAC[IMP_IMP; GSYM EVENTUALLY_AND] THEN | |
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] EVENTUALLY_MP) THEN | |
REWRITE_TAC[EVENTUALLY_SEQUENTIALLY] THEN | |
EXISTS_TAC `N + 1` THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN | |
SUBGOAL_THEN `1 <= N + 1 /\ N <= n` MP_TAC THENL | |
[ASM_ARITH_TAC; ALL_TAC] THEN | |
DISCH_THEN(fun th -> REWRITE_TAC[GSYM(MATCH_MP SUM_COMBINE_R th)]) THEN | |
REWRITE_TAC[real_div; REAL_ADD_RDISTRIB; REAL_SUB_RDISTRIB] THEN | |
REWRITE_TAC[GSYM REAL_MUL_ASSOC] THEN REWRITE_TAC[GSYM real_div] THEN | |
SUBGOAL_THEN `!x. abs(x) / z(n:num) = abs(x / z n)` | |
(fun th -> REWRITE_TAC[th]) | |
THENL | |
[ASM_SIMP_TAC[REAL_ABS_DIV; REAL_ARITH `&0 < n ==> abs n = n`; | |
ARITH_RULE `N + 1 <= n ==> N <= n`]; | |
ALL_TAC] THEN | |
REWRITE_TAC[REAL_MUL_ASSOC; GSYM real_div] THEN STRIP_TAC THEN | |
MATCH_MP_TAC(REAL_ARITH | |
`!y'. abs(y) <= y' /\ abs(x) + y' < e ==> abs(x + y) < e`) THEN | |
EXISTS_TAC `e / (&2 * (&1 + abs B)) * sum(N+1..n) x / z n` THEN | |
CONJ_TAC THENL | |
[REWRITE_TAC[real_div; GSYM SUM_LMUL; GSYM SUM_RMUL] THEN | |
MATCH_MP_TAC SUM_ABS_LE THEN | |
ASM_SIMP_TAC[FINITE_NUMSEG; IN_NUMSEG; REAL_ABS_MUL; REAL_ABS_INV; | |
REAL_ARITH `&0 < n ==> abs n = n`; | |
ARITH_RULE `N + 1 <= n ==> N <= n`; | |
REAL_LE_RMUL_EQ; REAL_LT_INV_EQ; REAL_MUL_ASSOC; | |
GSYM REAL_LE_LDIV_EQ] THEN | |
REPEAT STRIP_TAC THEN | |
MATCH_MP_TAC(REAL_ARITH `&0 < x /\ abs x < y ==> x <= y`) THEN | |
ASM_SIMP_TAC[GSYM real_div; REAL_LT_DIV; | |
ARITH_RULE `N + 1 <= n ==> N <= n`]; | |
ALL_TAC] THEN | |
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH | |
`abs(d * abs xN + abs yN) < e / &2 | |
==> d * abs xN = abs(d * xN) /\ abs(d * xN + xn) <= e / &2 | |
==> abs(yN) + xn < e`)) THEN | |
REWRITE_TAC[REAL_ABS_MUL; REAL_ABS_DIV; REAL_ABS_NUM; | |
GSYM REAL_ADD_LDISTRIB; REAL_ABS_MUL] THEN | |
ASM_SIMP_TAC[REAL_ARITH `&0 < n ==> abs n = n`; | |
REAL_ARITH `abs(&1 + abs B) = &1 + abs B`] THEN | |
REWRITE_TAC[real_div; REAL_INV_MUL] THEN | |
ONCE_REWRITE_TAC[REAL_ARITH | |
`(e * inv(&2) * i) * x = (e * inv(&2)) * x * i`] THEN | |
GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_RID] THEN | |
MATCH_MP_TAC REAL_LE_LMUL THEN | |
SIMP_TAC[GSYM real_div; REAL_LE_LDIV_EQ; REAL_ARITH `&0 < &1 + abs B`] THEN | |
ASM_REAL_ARITH_TAC);; | |
let REALLIM_MUL_SERIES_LIM = prove | |
(`!x y z l. | |
eventually (\n. &0 < x n) sequentially /\ | |
eventually (\n. &0 < y n) sequentially /\ | |
eventually (\n. &0 < z n) sequentially /\ | |
((\n. inv(z n)) ---> &0) sequentially /\ | |
((\n. sum (1..n) x / z(n)) ---> l) sequentially /\ | |
((\n. y(n) / x(n)) ---> &0) sequentially | |
==> ((\n. sum (1..n) y / z(n)) ---> &0) sequentially`, | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC REALLIM_MUL_SERIES THEN | |
EXISTS_TAC `x:num->real` THEN | |
MP_TAC(MATCH_MP REAL_CONVERGENT_IMP_BOUNDED | |
(ASSUME `((\n. sum (1..n) x / z n) ---> l) sequentially`)) THEN | |
REWRITE_TAC[real_bounded] THEN MATCH_MP_TAC MONO_EXISTS THEN | |
ASM_SIMP_TAC[ALWAYS_EVENTUALLY; FORALL_IN_IMAGE; IN_UNIV]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Finally, the Prime Number Theorem! *) | |
(* ------------------------------------------------------------------------- *) | |
let PNT = prove | |
(`((\n. &(CARD {p | prime p /\ p <= n}) / (&n / log(&n))) | |
---> &1) sequentially`, | |
REWRITE_TAC[PNT_PARTIAL_SUMMATION] THEN | |
REWRITE_TAC[SUM_PARTIAL_PRE] THEN | |
REWRITE_TAC[GSYM REAL_OF_NUM_ADD; SUB_REFL; CONJUNCT1 LE] THEN | |
SUBGOAL_THEN `{p | prime p /\ p = 0} = {}` SUBST1_TAC THENL | |
[REWRITE_TAC[EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY] THEN | |
MESON_TAC[PRIME_IMP_NZ]; | |
ALL_TAC] THEN | |
REWRITE_TAC[SUM_CLAUSES; REAL_MUL_RZERO; REAL_SUB_RZERO] THEN | |
MATCH_MP_TAC REALLIM_TRANSFORM_EVENTUALLY THEN | |
EXISTS_TAC | |
`\n. ((&n + &1) / log(&n + &1) * | |
sum {p | prime p /\ p <= n} (\p. log(&p) / &p) - | |
sum (1..n) | |
(\k. sum {p | prime p /\ p <= k} (\p. log(&p) / &p) * | |
((&k + &1) / log(&k + &1) - &k / log(&k)))) / (&n / log(&n))` THEN | |
CONJ_TAC THENL | |
[REWRITE_TAC[EVENTUALLY_SEQUENTIALLY] THEN EXISTS_TAC `1` THEN SIMP_TAC[]; | |
ALL_TAC] THEN | |
MATCH_MP_TAC REALLIM_TRANSFORM THEN | |
EXISTS_TAC | |
`\n. ((&n + &1) / log(&n + &1) * log(&n) - | |
sum (1..n) | |
(\k. log(&k) * ((&k + &1) / log(&k + &1) - &k / log(&k)))) / | |
(&n / log(&n))` THEN | |
REWRITE_TAC[] THEN CONJ_TAC THENL | |
[REWRITE_TAC[REAL_ARITH | |
`(a * x - s) / b - (a * x' - s') / b:real = | |
((s' - s) - (x' - x) * a) / b`] THEN | |
REWRITE_TAC[GSYM SUM_SUB_NUMSEG; GSYM REAL_SUB_RDISTRIB] THEN | |
REWRITE_TAC[REAL_OF_NUM_ADD] THEN | |
MATCH_MP_TAC SUM_PARTIAL_LIMIT_ALT THEN | |
EXISTS_TAC `&1` THEN ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN | |
EXISTS_TAC `16` THEN REWRITE_TAC[RIGHT_EXISTS_AND_THM] THEN | |
REWRITE_TAC[MERTENS_LIMIT] THEN REWRITE_TAC[REAL_INV_DIV] THEN | |
SIMP_TAC[REAL_LT_DIV; LOG_POS_LT; REAL_OF_NUM_LT; | |
ARITH_RULE `16 <= n ==> 0 < n /\ 1 < n`] THEN | |
REWRITE_TAC[REALLIM_LOG_OVER_N] THEN CONJ_TAC THENL | |
[ALL_TAC; | |
MP_TAC(CONJ REALLIM_LOG_OVER_LOG1 (SPEC `&1` REALLIM_NA_OVER_N)) THEN | |
DISCH_THEN(MP_TAC o MATCH_MP REALLIM_MUL) THEN | |
REWRITE_TAC[REAL_MUL_LID] THEN | |
REWRITE_TAC[GSYM REAL_OF_NUM_ADD; GSYM REAL_ADD_ASSOC] THEN | |
CONV_TAC REAL_RAT_REDUCE_CONV THEN MATCH_MP_TAC EQ_IMP THEN | |
AP_THM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN | |
REWRITE_TAC[FUN_EQ_THM; real_div; REAL_INV_MUL; REAL_INV_INV] THEN | |
REWRITE_TAC[REAL_MUL_AC]] THEN | |
X_GEN_TAC `n:num` THEN DISCH_TAC THEN | |
MP_TAC(SPECL [`\z. z / clog z`; `\z. inv(clog z) - inv(clog z) pow 2`; | |
`Cx(&n)`; `Cx(&n + &1)`] | |
COMPLEX_MVT_LINE) THEN | |
REWRITE_TAC[IN_SEGMENT_CX_GEN] THEN | |
REWRITE_TAC[REAL_ARITH `~(n + &1 <= x /\ x <= n)`] THEN ANTS_TAC THENL | |
[X_GEN_TAC `z:complex` THEN STRIP_TAC THEN COMPLEX_DIFF_TAC THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[GSYM REAL_OF_NUM_LE]) THEN | |
REWRITE_TAC[GSYM CONJ_ASSOC] THEN | |
CONJ_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN | |
MATCH_MP_TAC(TAUT `(a ==> b) /\ a ==> a /\ b`) THEN CONJ_TAC THENL | |
[SUBGOAL_THEN `~(z = Cx(&0))` MP_TAC THENL | |
[ALL_TAC; CONV_TAC COMPLEX_FIELD] THEN | |
REWRITE_TAC[COMPLEX_EQ; RE_CX; IM_CX] THEN ASM_REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `&0 < Re z` ASSUME_TAC THENL | |
[ASM_REAL_ARITH_TAC; ALL_TAC] THEN | |
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM real]) THEN | |
REWRITE_TAC[REAL] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN | |
ASM_SIMP_TAC[GSYM CX_LOG; REAL_ARITH `&16 <= x ==> &0 < x`] THEN | |
REWRITE_TAC[CX_INJ] THEN MATCH_MP_TAC REAL_LT_IMP_NZ THEN | |
MATCH_MP_TAC LOG_POS_LT THEN ASM_REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
DISCH_THEN(X_CHOOSE_THEN `z:complex` | |
(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC)) THEN | |
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM real]) THEN | |
REWRITE_TAC[REAL] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN | |
SUBGOAL_THEN `&0 < Re z /\ &0 < &n /\ &0 < &n + &1` STRIP_ASSUME_TAC THENL | |
[RULE_ASSUM_TAC(REWRITE_RULE[GSYM REAL_OF_NUM_LE]) THEN | |
ASM_REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
ASM_SIMP_TAC[GSYM CX_LOG; GSYM CX_POW; GSYM CX_INV; GSYM CX_SUB; | |
GSYM CX_DIV; RE_CX; GSYM CX_MUL] THEN | |
GEN_REWRITE_TAC RAND_CONV [GSYM REAL_SUB_LE] THEN | |
REWRITE_TAC[GSYM REAL_OF_NUM_ADD; REAL_ADD_SUB; REAL_MUL_RID] THEN | |
DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[REAL_SUB_LE] THEN | |
REWRITE_TAC[REAL_ARITH `x pow 2 <= x <=> x * x <= x * &1`] THEN | |
MATCH_MP_TAC REAL_LE_LMUL THEN CONJ_TAC THENL | |
[REWRITE_TAC[REAL_LE_INV_EQ] THEN MATCH_MP_TAC LOG_POS THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[GSYM REAL_OF_NUM_LE]) THEN | |
ASM_REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
MATCH_MP_TAC REAL_INV_LE_1 THEN | |
MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `&4 * log(&2)` THEN | |
CONJ_TAC THENL [MP_TAC LOG_2_BOUNDS THEN REAL_ARITH_TAC; ALL_TAC] THEN | |
SIMP_TAC[GSYM LOG_POW; REAL_OF_NUM_LT; ARITH] THEN | |
MATCH_MP_TAC LOG_MONO_LE_IMP THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[GSYM REAL_OF_NUM_LE]) THEN ASM_REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
REWRITE_TAC[REAL_OF_NUM_ADD] THEN ONCE_REWRITE_TAC[SUM_PARTIAL_SUC] THEN | |
MATCH_MP_TAC REALLIM_TRANSFORM_EVENTUALLY THEN | |
EXISTS_TAC | |
`\n. ((&n + &1) / log(&n + &1) * (log(&n) - log(&n + &1)) + | |
sum(1..n) (\k. (&k + &1) / log(&k + &1) * | |
(log(&k + &1) - log(&k)))) / (&n / log(&n))` THEN | |
CONJ_TAC THENL | |
[REWRITE_TAC[EVENTUALLY_SEQUENTIALLY] THEN EXISTS_TAC `1` THEN | |
SIMP_TAC[REAL_OF_NUM_ADD; LOG_1; REAL_MUL_LZERO; REAL_SUB_RZERO] THEN | |
REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
MATCH_MP_TAC REAL_SEQ_OFFSET_REV THEN EXISTS_TAC `1` THEN | |
REWRITE_TAC[GSYM ADD1; SUM_CLAUSES_NUMSEG; ARITH_RULE `1 <= SUC i`] THEN | |
REWRITE_TAC[GSYM REAL_OF_NUM_SUC; GSYM REAL_OF_NUM_ADD] THEN | |
REWRITE_TAC[REAL_ARITH `a * (x - y) + s + a * (y - x):real = s`] THEN | |
MATCH_MP_TAC REALLIM_TRANSFORM THEN | |
EXISTS_TAC | |
`\n. sum(1..n) (\k. &1 / log(&k + &1) - &1 / log(&k + &1) pow 2) / | |
((&n + &1) / log(&n + &1))` THEN | |
REWRITE_TAC[] THEN | |
MATCH_MP_TAC(TAUT `b /\ (b ==> a) ==> a /\ b`) THEN CONJ_TAC THENL | |
[MATCH_MP_TAC REALLIM_TRANSFORM_STRADDLE THEN | |
EXISTS_TAC `\n. ((&n + &2) / log (&n + &2) + | |
(sum(1..15) (\k. &1 / log(&k + &1) - &1 / log(&k + &1) pow 2) - | |
&17 / log (&17))) / ((&n + &1) / log (&n + &1))` THEN | |
EXISTS_TAC `\n. ((&n + &1) / log(&n + &1) + | |
(sum(1..15) (\k. &1 / log(&k + &1) - &1 / log(&k + &1) pow 2) - | |
&16 / log (&16))) / ((&n + &1) / log (&n + &1))` THEN | |
MP_TAC(GEN `n:num` (ISPECL | |
[`\z. Cx(&1) / clog(z + Cx(&1)) - Cx(&1) / (clog(z + Cx(&1))) pow 2`; | |
`\z. (z + Cx(&1)) / clog(z + Cx(&1))`; | |
`16`; `n:num`] | |
SUM_INTEGRAL_BOUNDS_DECREASING)) THEN | |
MATCH_MP_TAC(MESON[] | |
`(!n. P n ==> Q n) /\ ((!n. P n ==> R n) ==> s) | |
==> (!n. P n /\ Q n ==> R n) ==> s`) THEN | |
ASM_REWRITE_TAC[] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN CONJ_TAC THENL | |
[X_GEN_TAC `n:num` THEN DISCH_TAC THEN CONJ_TAC THENL | |
[X_GEN_TAC `z:complex` THEN REWRITE_TAC[IN_SEGMENT_CX_GEN] THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[GSYM REAL_OF_NUM_LE]) THEN | |
STRIP_TAC THENL [ALL_TAC; ASM_REAL_ARITH_TAC] THEN | |
COMPLEX_DIFF_TAC THEN | |
REWRITE_TAC[RE_ADD; RE_CX; GSYM CONJ_ASSOC] THEN | |
CONJ_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN | |
MATCH_MP_TAC(TAUT `(a ==> b) /\ a ==> a /\ b`) THEN CONJ_TAC THENL | |
[SUBGOAL_THEN `~(z + Cx(&1) = Cx(&0))` MP_TAC THENL | |
[ALL_TAC; CONV_TAC COMPLEX_FIELD] THEN | |
DISCH_THEN(MP_TAC o AP_TERM `Re`) THEN SIMP_TAC[RE_ADD; RE_CX] THEN | |
ASM_REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM real]) THEN | |
REWRITE_TAC[REAL] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN | |
ASM_SIMP_TAC[GSYM CX_ADD; GSYM CX_LOG; RE_CX; REAL_CX; | |
REAL_ARITH `&15 <= z ==> &0 < z + &1`; CX_INJ] THEN | |
MATCH_MP_TAC REAL_LT_IMP_NZ THEN MATCH_MP_TAC LOG_POS_LT THEN | |
ASM_REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
MAP_EVERY X_GEN_TAC [`x:real`; `y:real`] THEN STRIP_TAC THEN | |
SUBGOAL_THEN `&15 <= y` ASSUME_TAC THENL | |
[ASM_REAL_ARITH_TAC; ALL_TAC] THEN | |
ASM_SIMP_TAC[GSYM CX_ADD; GSYM CX_LOG; RE_CX; | |
REAL_ARITH `&15 <= x ==> &0 < x + &1`] THEN | |
REWRITE_TAC[GSYM CX_DIV; GSYM CX_SUB; RE_CX; GSYM CX_POW] THEN | |
REWRITE_TAC[real_div; REAL_MUL_LID; GSYM REAL_POW_INV] THEN | |
REWRITE_TAC[REAL_ARITH | |
`x - x pow 2 <= y - y pow 2 <=> | |
(x + y) * (y - x) <= &1 * (y - x)`] THEN | |
MATCH_MP_TAC REAL_LE_RMUL THEN | |
MATCH_MP_TAC(REAL_ARITH | |
`x <= inv(&2) /\ y <= x | |
==> y + x <= &1 /\ &0 <= x - y`) THEN | |
CONJ_TAC THEN MATCH_MP_TAC REAL_LE_INV2 THEN | |
CONV_TAC REAL_RAT_REDUCE_CONV THENL | |
[MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `&4 * log(&2)` THEN | |
CONJ_TAC THENL [MP_TAC LOG_2_BOUNDS THEN REAL_ARITH_TAC; ALL_TAC] THEN | |
SIMP_TAC[GSYM LOG_POW; REAL_OF_NUM_LT; ARITH] THEN | |
MATCH_MP_TAC LOG_MONO_LE_IMP THEN ASM_REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
CONJ_TAC THENL | |
[MATCH_MP_TAC LOG_POS_LT THEN ASM_REAL_ARITH_TAC; | |
MATCH_MP_TAC LOG_MONO_LE_IMP THEN ASM_REAL_ARITH_TAC]; | |
ALL_TAC] THEN | |
REPEAT STRIP_TAC THENL | |
[REWRITE_TAC[EVENTUALLY_SEQUENTIALLY] THEN EXISTS_TAC `16` THEN | |
X_GEN_TAC `n:num` THEN STRIP_TAC THEN REWRITE_TAC[real_div] THEN | |
MATCH_MP_TAC REAL_LE_RMUL THEN CONJ_TAC THENL | |
[REWRITE_TAC[GSYM real_div]; | |
REWRITE_TAC[REAL_LE_INV_EQ] THEN MATCH_MP_TAC REAL_LE_MUL THEN | |
REWRITE_TAC[REAL_LE_INV_EQ] THEN | |
CONJ_TAC THENL [REAL_ARITH_TAC; ALL_TAC] THEN | |
MATCH_MP_TAC LOG_POS THEN REAL_ARITH_TAC] THEN | |
SUBGOAL_THEN `1 <= 15 + 1 /\ 15 <= n` MP_TAC THENL | |
[ASM_ARITH_TAC; ALL_TAC] THEN | |
DISCH_THEN(fun th -> | |
REWRITE_TAC[GSYM(MATCH_MP SUM_COMBINE_R th)]) THEN | |
FIRST_ASSUM(MP_TAC o CONJUNCT1 o C MATCH_MP (ASSUME `16 <= n`)) THEN | |
REWRITE_TAC[GSYM CX_ADD; REAL_ARITH `(n + &1) + &1 = n + &2`] THEN | |
CONV_TAC REAL_RAT_REDUCE_CONV THEN | |
ASM_SIMP_TAC[GSYM CX_LOG; REAL_OF_NUM_LT; ARITH; | |
REAL_ARITH `&0 < &n + &1 /\ &0 < &n + &2`] THEN | |
REWRITE_TAC[GSYM CX_POW; GSYM CX_DIV; GSYM CX_SUB; RE_CX] THEN | |
REAL_ARITH_TAC; | |
REWRITE_TAC[real_div] THEN ONCE_REWRITE_TAC[REAL_ADD_RDISTRIB] THEN | |
GEN_REWRITE_TAC LAND_CONV [GSYM REAL_ADD_RID] THEN | |
MATCH_MP_TAC REALLIM_ADD THEN CONJ_TAC THENL | |
[MP_TAC(CONJ REALLIM_LOG_OVER_LOG1 (SPEC `&1` REALLIM_NA_OVER_N)) THEN | |
DISCH_THEN(MP_TAC o MATCH_MP REALLIM_MUL) THEN | |
REWRITE_TAC[REAL_MUL_LID] THEN | |
DISCH_THEN(MP_TAC o SPEC `1` o MATCH_MP REAL_SEQ_OFFSET) THEN | |
REWRITE_TAC[GSYM REAL_OF_NUM_ADD; GSYM REAL_ADD_ASSOC] THEN | |
CONV_TAC REAL_RAT_REDUCE_CONV THEN MATCH_MP_TAC EQ_IMP THEN | |
AP_THM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN | |
REWRITE_TAC[FUN_EQ_THM; real_div; REAL_INV_MUL; REAL_INV_INV] THEN | |
REWRITE_TAC[REAL_MUL_AC]; | |
ALL_TAC] THEN | |
MATCH_MP_TAC REALLIM_NULL_LMUL THEN | |
REWRITE_TAC[GSYM real_div; REAL_INV_DIV] THEN | |
MP_TAC(SPEC `1` (MATCH_MP REAL_SEQ_OFFSET REALLIM_LOG_OVER_N)) THEN | |
REWRITE_TAC[GSYM REAL_OF_NUM_ADD]; | |
REWRITE_TAC[EVENTUALLY_SEQUENTIALLY] THEN EXISTS_TAC `16` THEN | |
X_GEN_TAC `n:num` THEN STRIP_TAC THEN REWRITE_TAC[real_div] THEN | |
MATCH_MP_TAC REAL_LE_RMUL THEN CONJ_TAC THENL | |
[REWRITE_TAC[GSYM real_div]; | |
REWRITE_TAC[REAL_LE_INV_EQ] THEN MATCH_MP_TAC REAL_LE_MUL THEN | |
REWRITE_TAC[REAL_LE_INV_EQ] THEN | |
CONJ_TAC THENL [REAL_ARITH_TAC; ALL_TAC] THEN | |
MATCH_MP_TAC LOG_POS THEN REAL_ARITH_TAC] THEN | |
SUBGOAL_THEN `1 <= 15 + 1 /\ 15 <= n` MP_TAC THENL | |
[ASM_ARITH_TAC; ALL_TAC] THEN | |
DISCH_THEN(fun th -> | |
REWRITE_TAC[GSYM(MATCH_MP SUM_COMBINE_R th)]) THEN | |
FIRST_ASSUM(MP_TAC o CONJUNCT2 o C MATCH_MP (ASSUME `16 <= n`)) THEN | |
REWRITE_TAC[GSYM CX_ADD; REAL_ARITH `(n + &1) + &1 = n + &2`] THEN | |
CONV_TAC REAL_RAT_REDUCE_CONV THEN | |
ASM_SIMP_TAC[GSYM CX_LOG; REAL_OF_NUM_LT; ARITH; | |
REAL_ARITH `&0 < &n + &1 /\ &0 < &n + &2`] THEN | |
REWRITE_TAC[GSYM CX_POW; GSYM CX_DIV; GSYM CX_SUB; RE_CX] THEN | |
REAL_ARITH_TAC; | |
REWRITE_TAC[real_div] THEN ONCE_REWRITE_TAC[REAL_ADD_RDISTRIB] THEN | |
GEN_REWRITE_TAC LAND_CONV [GSYM REAL_ADD_RID] THEN | |
MATCH_MP_TAC REALLIM_ADD THEN CONJ_TAC THENL | |
[MATCH_MP_TAC REALLIM_TRANSFORM_EVENTUALLY THEN | |
EXISTS_TAC `\n:num. &1` THEN REWRITE_TAC[REALLIM_CONST] THEN | |
REWRITE_TAC[EVENTUALLY_SEQUENTIALLY] THEN EXISTS_TAC `1` THEN | |
REWRITE_TAC[GSYM REAL_OF_NUM_LE] THEN X_GEN_TAC `n:num` THEN | |
REPEAT STRIP_TAC THEN | |
SUBGOAL_THEN `&0 < log(&n + &1)` ASSUME_TAC THENL | |
[ALL_TAC; POP_ASSUM MP_TAC THEN CONV_TAC REAL_FIELD] THEN | |
MATCH_MP_TAC LOG_POS_LT THEN POP_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
MATCH_MP_TAC REALLIM_NULL_LMUL THEN | |
REWRITE_TAC[GSYM real_div; REAL_INV_DIV] THEN | |
MP_TAC(SPEC `1` (MATCH_MP REAL_SEQ_OFFSET REALLIM_LOG_OVER_N)) THEN | |
REWRITE_TAC[GSYM REAL_OF_NUM_ADD]]; | |
ALL_TAC] THEN | |
DISCH_TAC THEN | |
REWRITE_TAC[real_div] THEN ONCE_REWRITE_TAC[GSYM REAL_SUB_RDISTRIB] THEN | |
REWRITE_TAC[GSYM real_div] THEN REWRITE_TAC[GSYM SUM_SUB_NUMSEG] THEN | |
MATCH_MP_TAC REALLIM_NULL_COMPARISON THEN | |
EXISTS_TAC `\n. sum(1..n) (\k. &1 / log(&k + &1) pow 2 + | |
&2 / (&k * log(&k + &1))) / | |
((&n + &1) / log(&n + &1))` THEN | |
REWRITE_TAC[EVENTUALLY_SEQUENTIALLY] THEN CONJ_TAC THENL | |
[EXISTS_TAC `1` THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN | |
REWRITE_TAC[real_div] THEN ONCE_REWRITE_TAC[REAL_ABS_MUL] THEN | |
MATCH_MP_TAC REAL_LE_MUL2 THEN REWRITE_TAC[REAL_ABS_POS] THEN | |
REWRITE_TAC[GSYM real_div] THEN CONJ_TAC THENL | |
[ALL_TAC; | |
REWRITE_TAC[REAL_INV_DIV; REAL_ARITH `abs x <= x <=> &0 <= x`] THEN | |
MATCH_MP_TAC REAL_LE_DIV THEN CONJ_TAC THENL | |
[MATCH_MP_TAC LOG_POS; ALL_TAC] THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[GSYM REAL_OF_NUM_LE]) THEN | |
ASM_REAL_ARITH_TAC] THEN | |
MATCH_MP_TAC SUM_ABS_LE THEN REWRITE_TAC[FINITE_NUMSEG; IN_NUMSEG] THEN | |
X_GEN_TAC `m:num` THEN STRIP_TAC THEN | |
MATCH_MP_TAC(REAL_ARITH | |
`&0 <= x /\ abs(a - b) <= y ==> abs(a - x - b) <= x + y`) THEN | |
CONJ_TAC THENL | |
[REWRITE_TAC[real_div; REAL_MUL_LID; REAL_LE_INV_EQ] THEN | |
MATCH_MP_TAC REAL_POW_LE THEN MATCH_MP_TAC LOG_POS THEN | |
REWRITE_TAC[REAL_OF_NUM_ADD; REAL_OF_NUM_LE] THEN ASM_ARITH_TAC; | |
ALL_TAC] THEN | |
REWRITE_TAC[REAL_ARITH | |
`&1 / l - m1 / l * x:real = --((m1 * x - &1) / l)`] THEN | |
REWRITE_TAC[REAL_ABS_NEG; REAL_ABS_MUL; real_div; REAL_INV_MUL] THEN | |
REWRITE_TAC[REAL_MUL_ASSOC] THEN MATCH_MP_TAC REAL_LE_MUL2 THEN | |
REWRITE_TAC[REAL_ABS_POS] THEN | |
ASM_SIMP_TAC[GSYM real_div; ADHOC_BOUND_LEMMA] THEN | |
REWRITE_TAC[REAL_ARITH `abs x <= x <=> &0 <= x`; REAL_LE_INV_EQ] THEN | |
MATCH_MP_TAC LOG_POS THEN | |
REWRITE_TAC[REAL_OF_NUM_ADD; REAL_OF_NUM_LE] THEN ASM_ARITH_TAC; | |
ALL_TAC] THEN | |
MATCH_MP_TAC REALLIM_NULL_COMPARISON THEN | |
EXISTS_TAC `\n. sum(1..n) (\k. &3 / log(&k + &1) pow 2) / | |
((&n + &1) / log(&n + &1))` THEN | |
REWRITE_TAC[EVENTUALLY_SEQUENTIALLY] THEN CONJ_TAC THENL | |
[EXISTS_TAC `1` THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN | |
REWRITE_TAC[real_div] THEN ONCE_REWRITE_TAC[REAL_ABS_MUL] THEN | |
MATCH_MP_TAC REAL_LE_MUL2 THEN REWRITE_TAC[REAL_ABS_POS] THEN | |
REWRITE_TAC[GSYM real_div] THEN CONJ_TAC THENL | |
[ALL_TAC; | |
REWRITE_TAC[REAL_INV_DIV; REAL_ARITH `abs x <= x <=> &0 <= x`] THEN | |
MATCH_MP_TAC REAL_LE_DIV THEN CONJ_TAC THENL | |
[MATCH_MP_TAC LOG_POS; ALL_TAC] THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[GSYM REAL_OF_NUM_LE]) THEN | |
ASM_REAL_ARITH_TAC] THEN | |
MATCH_MP_TAC SUM_ABS_LE THEN REWRITE_TAC[FINITE_NUMSEG; IN_NUMSEG] THEN | |
X_GEN_TAC `m:num` THEN STRIP_TAC THEN REWRITE_TAC[real_div] THEN | |
MATCH_MP_TAC(REAL_ARITH | |
`&0 <= y /\ y <= x | |
==> abs(&1 * x + &2 * y) <= &3 * x`) THEN | |
SUBGOAL_THEN `&0 < log(&m + &1)` ASSUME_TAC THENL | |
[MATCH_MP_TAC LOG_POS_LT THEN | |
REWRITE_TAC[REAL_OF_NUM_ADD; REAL_OF_NUM_LT] THEN ASM_ARITH_TAC; | |
ALL_TAC] THEN | |
ASM_SIMP_TAC[REAL_LE_INV_EQ; REAL_LE_MUL; REAL_POS; REAL_LT_IMP_LE] THEN | |
REWRITE_TAC[REAL_POW_2; REAL_INV_MUL] THEN | |
MATCH_MP_TAC REAL_LE_RMUL THEN | |
ASM_SIMP_TAC[REAL_LE_INV_EQ; REAL_LT_IMP_LE] THEN | |
MATCH_MP_TAC REAL_LE_INV2 THEN ASM_REWRITE_TAC[] THEN | |
ONCE_REWRITE_TAC[REAL_ADD_SYM] THEN MATCH_MP_TAC LOG_LE THEN | |
REWRITE_TAC[REAL_POS]; | |
ALL_TAC] THEN | |
REWRITE_TAC[real_div; SUM_LMUL; GSYM REAL_MUL_ASSOC] THEN | |
MATCH_MP_TAC REALLIM_NULL_LMUL THEN REWRITE_TAC[GSYM real_div] THEN | |
MATCH_MP_TAC REALLIM_MUL_SERIES_LIM THEN | |
MAP_EVERY EXISTS_TAC | |
[`\n. &1 / log(&n + &1) - &1 / log(&n + &1) pow 2`; `&1`] THEN | |
ASM_REWRITE_TAC[] THEN REPEAT CONJ_TAC THENL | |
[REWRITE_TAC[EVENTUALLY_SEQUENTIALLY] THEN EXISTS_TAC `16` THEN | |
REPEAT STRIP_TAC THEN REWRITE_TAC[real_div; REAL_MUL_LID; REAL_SUB_LT] THEN | |
MATCH_MP_TAC REAL_LT_INV2 THEN | |
SUBGOAL_THEN `&1 < log(&n + &1)` | |
(fun th -> SIMP_TAC[th; REAL_ARITH `&1 < x ==> &0 < x`; REAL_SUB_LT; | |
REAL_LT_MUL; REAL_ARITH `x < x pow 2 <=> &0 < x * (x - &1)`]) THEN | |
MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `&4 * log(&2)` THEN | |
CONJ_TAC THENL [MP_TAC LOG_2_BOUNDS THEN REAL_ARITH_TAC; ALL_TAC] THEN | |
SIMP_TAC[GSYM LOG_POW; REAL_OF_NUM_LT; ARITH] THEN | |
MATCH_MP_TAC LOG_MONO_LT_IMP THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[GSYM REAL_OF_NUM_LE]) THEN | |
ASM_REAL_ARITH_TAC; | |
REWRITE_TAC[EVENTUALLY_SEQUENTIALLY] THEN EXISTS_TAC `1` THEN | |
SIMP_TAC[REAL_LT_INV_EQ; LOG_POS_LT; REAL_POW_LT; | |
REAL_ARITH `&1 <= x ==> &1 < x + &1`; REAL_OF_NUM_LE]; | |
REWRITE_TAC[EVENTUALLY_SEQUENTIALLY] THEN EXISTS_TAC `1` THEN | |
SIMP_TAC[REAL_LT_INV_EQ; LOG_POS_LT; REAL_POW_LT; | |
REAL_ARITH `&1 <= x ==> &1 < x + &1`; REAL_OF_NUM_LE; | |
REAL_LT_DIV; REAL_ARITH `&0 < &n + &1`]; | |
MP_TAC(SPEC `1` (MATCH_MP REAL_SEQ_OFFSET REALLIM_LOG_OVER_N)) THEN | |
REWRITE_TAC[REAL_INV_DIV; GSYM REAL_OF_NUM_ADD]; | |
ALL_TAC] THEN | |
MATCH_MP_TAC REALLIM_NULL_COMPARISON THEN | |
EXISTS_TAC `\n. &2 / log(&n + &1)` THEN CONJ_TAC THENL | |
[ALL_TAC; | |
REWRITE_TAC[real_div] THEN MATCH_MP_TAC REALLIM_NULL_LMUL THEN | |
MP_TAC(SPEC `1` (MATCH_MP REAL_SEQ_OFFSET REALLIM_1_OVER_LOG)) THEN | |
REWRITE_TAC[GSYM REAL_OF_NUM_ADD]] THEN | |
REWRITE_TAC[EVENTUALLY_SEQUENTIALLY] THEN EXISTS_TAC `42` THEN | |
X_GEN_TAC `n:num` THEN DISCH_TAC THEN | |
SUBGOAL_THEN `&2 < log(&n + &1)` ASSUME_TAC THENL | |
[MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `&4 * log(&2)` THEN | |
CONJ_TAC THENL [MP_TAC LOG_2_BOUNDS THEN REAL_ARITH_TAC; ALL_TAC] THEN | |
SIMP_TAC[GSYM LOG_POW; REAL_OF_NUM_LT; ARITH] THEN | |
MATCH_MP_TAC LOG_MONO_LT_IMP THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[GSYM REAL_OF_NUM_LE]) THEN | |
ASM_REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
ASM_SIMP_TAC[REAL_ABS_DIV; REAL_ABS_INV; REAL_ABS_POW; | |
REAL_ARITH `&2 < x ==> abs x = x`] THEN | |
REWRITE_TAC[real_div] THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN | |
ASM_SIMP_TAC[GSYM real_div; REAL_LE_LDIV_EQ; REAL_POW_LT; | |
REAL_ARITH `&2 < x ==> &0 < x`] THEN | |
ASM_SIMP_TAC[REAL_FIELD | |
`&2 < l ==> (inv(l) * &2) * l pow 2 = inv(inv(&2 * l))`] THEN | |
MATCH_MP_TAC REAL_LE_INV2 THEN REWRITE_TAC[REAL_LT_INV_EQ] THEN | |
CONJ_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN | |
REWRITE_TAC[REAL_INV_MUL; real_div; GSYM REAL_POW_INV; REAL_MUL_LID] THEN | |
MATCH_MP_TAC(REAL_ARITH | |
`l pow 2 <= l / &2 | |
==> inv(&2) * l <= abs(l - l pow 2)`) THEN | |
REWRITE_TAC[REAL_ARITH `l pow 2 <= l / &2 <=> &0 <= (&1 / &2 - l) * l`] THEN | |
MATCH_MP_TAC REAL_LE_MUL THEN REWRITE_TAC[REAL_LE_INV_EQ] THEN | |
ASM_SIMP_TAC[real_div; REAL_MUL_LID; REAL_SUB_LE; | |
ARITH_RULE `&2 < x ==> &0 <= x`] THEN | |
MATCH_MP_TAC REAL_LE_INV2 THEN ASM_REAL_ARITH_TAC);; | |