Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* A "proof" of Pythagoras's theorem. Of course something similar is *) | |
(* implicit in the definition of "norm", but maybe this is still nontrivial. *) | |
(* ========================================================================= *) | |
needs "Multivariate/misc.ml";; | |
needs "Multivariate/vectors.ml";; | |
(* ------------------------------------------------------------------------- *) | |
(* Direct vector proof (could replace 2 by N and the proof still runs). *) | |
(* ------------------------------------------------------------------------- *) | |
let PYTHAGORAS = prove | |
(`!A B C:real^2. | |
orthogonal (A - B) (C - B) | |
==> norm(C - A) pow 2 = norm(B - A) pow 2 + norm(C - B) pow 2`, | |
REWRITE_TAC[NORM_POW_2; orthogonal; DOT_LSUB; DOT_RSUB; DOT_SYM] THEN | |
CONV_TAC REAL_RING);; | |
(* ------------------------------------------------------------------------- *) | |
(* A more explicit and laborious "componentwise" specifically for 2-vectors. *) | |
(* ------------------------------------------------------------------------- *) | |
let PYTHAGORAS = prove | |
(`!A B C:real^2. | |
orthogonal (A - B) (C - B) | |
==> norm(C - A) pow 2 = norm(B - A) pow 2 + norm(C - B) pow 2`, | |
SIMP_TAC[NORM_POW_2; orthogonal; dot; SUM_2; DIMINDEX_2; | |
VECTOR_SUB_COMPONENT; ARITH] THEN | |
CONV_TAC REAL_RING);; | |