Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
I think it's all done!
fc5e983
raw
history blame
14.3 kB
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import algebra.group_ring_action
import group_theory.group_action.defs
/-!
# Equivariant homomorphisms
## Main definitions
* `mul_action_hom M X Y`, the type of equivariant functions from `X` to `Y`, where `M` is a monoid
that acts on the types `X` and `Y`.
* `distrib_mul_action_hom M A B`, the type of equivariant additive monoid homomorphisms
from `A` to `B`, where `M` is a monoid that acts on the additive monoids `A` and `B`.
* `mul_semiring_action_hom M R S`, the type of equivariant ring homomorphisms
from `R` to `S`, where `M` is a monoid that acts on the rings `R` and `S`.
The above types have corresponding classes:
* `smul_hom_class F M X Y` states that `F` is a type of bundled `X β†’ Y` homs
preserving scalar multiplication by `M`
* `distrib_mul_action_hom_class F M A B` states that `F` is a type of bundled `A β†’ B` homs
preserving the additive monoid structure and scalar multiplication by `M`
* `mul_semiring_action_hom_class F M R S` states that `F` is a type of bundled `R β†’ S` homs
preserving the ring structure and scalar multiplication by `M`
## Notations
* `X β†’[M] Y` is `mul_action_hom M X Y`.
* `A β†’+[M] B` is `distrib_mul_action_hom M A B`.
* `R β†’+*[M] S` is `mul_semiring_action_hom M R S`.
-/
variables (M' : Type*)
variables (X : Type*) [has_smul M' X]
variables (Y : Type*) [has_smul M' Y]
variables (Z : Type*) [has_smul M' Z]
variables (M : Type*) [monoid M]
variables (A : Type*) [add_monoid A] [distrib_mul_action M A]
variables (A' : Type*) [add_group A'] [distrib_mul_action M A']
variables (B : Type*) [add_monoid B] [distrib_mul_action M B]
variables (B' : Type*) [add_group B'] [distrib_mul_action M B']
variables (C : Type*) [add_monoid C] [distrib_mul_action M C]
variables (R : Type*) [semiring R] [mul_semiring_action M R]
variables (R' : Type*) [ring R'] [mul_semiring_action M R']
variables (S : Type*) [semiring S] [mul_semiring_action M S]
variables (S' : Type*) [ring S'] [mul_semiring_action M S']
variables (T : Type*) [semiring T] [mul_semiring_action M T]
variables (G : Type*) [group G] (H : subgroup G)
set_option old_structure_cmd true
/-- Equivariant functions. -/
@[nolint has_nonempty_instance]
structure mul_action_hom :=
(to_fun : X β†’ Y)
(map_smul' : βˆ€ (m : M') (x : X), to_fun (m β€’ x) = m β€’ to_fun x)
notation X ` β†’[`:25 M:25 `] `:0 Y:0 := mul_action_hom M X Y
/-- `smul_hom_class F M X Y` states that `F` is a type of morphisms preserving
scalar multiplication by `M`.
You should extend this class when you extend `mul_action_hom`. -/
class smul_hom_class (F : Type*) (M X Y : out_param $ Type*) [has_smul M X] [has_smul M Y]
extends fun_like F X (Ξ» _, Y) :=
(map_smul : βˆ€ (f : F) (c : M) (x : X), f (c β€’ x) = c β€’ f x)
-- `M` becomes a metavariable but it's an `out_param` so it's not a problem.
attribute [nolint dangerous_instance] smul_hom_class.to_fun_like
export smul_hom_class (map_smul)
attribute [simp] map_smul
namespace mul_action_hom
instance : has_coe_to_fun (X β†’[M'] Y) (Ξ» _, X β†’ Y) := ⟨mul_action_hom.to_fun⟩
instance : smul_hom_class (X β†’[M'] Y) M' X Y :=
{ coe := mul_action_hom.to_fun,
coe_injective' := Ξ» f g h, by cases f; cases g; congr',
map_smul := mul_action_hom.map_smul' }
variables {M M' X Y}
protected lemma map_smul (f : X β†’[M'] Y) (m : M') (x : X) : f (m β€’ x) = m β€’ f x := map_smul _ _ _
@[ext] theorem ext : βˆ€ {f g : X β†’[M'] Y}, (βˆ€ x, f x = g x) β†’ f = g := fun_like.ext
theorem ext_iff {f g : X β†’[M'] Y} : f = g ↔ βˆ€ x, f x = g x := fun_like.ext_iff
protected lemma congr_fun {f g : X β†’[M'] Y} (h : f = g) (x : X) : f x = g x :=
fun_like.congr_fun h _
variables (M M') {X}
/-- The identity map as an equivariant map. -/
protected def id : X β†’[M'] X :=
⟨id, λ _ _, rfl⟩
@[simp] lemma id_apply (x : X) : mul_action_hom.id M' x = x := rfl
variables {M M' X Y Z}
/-- Composition of two equivariant maps. -/
def comp (g : Y β†’[M'] Z) (f : X β†’[M'] Y) : X β†’[M'] Z :=
⟨g ∘ f, λ m x, calc
g (f (m β€’ x)) = g (m β€’ f x) : by rw f.map_smul
... = m β€’ g (f x) : g.map_smul _ _⟩
@[simp] lemma comp_apply (g : Y β†’[M'] Z) (f : X β†’[M'] Y) (x : X) : g.comp f x = g (f x) := rfl
@[simp] lemma id_comp (f : X β†’[M'] Y) : (mul_action_hom.id M').comp f = f :=
ext $ Ξ» x, by rw [comp_apply, id_apply]
@[simp] lemma comp_id (f : X β†’[M'] Y) : f.comp (mul_action_hom.id M') = f :=
ext $ Ξ» x, by rw [comp_apply, id_apply]
variables {A B}
/-- The inverse of a bijective equivariant map is equivariant. -/
@[simps] def inverse (f : A β†’[M] B) (g : B β†’ A)
(h₁ : function.left_inverse g f) (hβ‚‚ : function.right_inverse g f) :
B β†’[M] A :=
{ to_fun := g,
map_smul' := Ξ» m x,
calc g (m β€’ x) = g (m β€’ (f (g x))) : by rw hβ‚‚
... = g (f (m β€’ (g x))) : by rw f.map_smul
... = m β€’ g x : by rw h₁, }
end mul_action_hom
/-- Equivariant additive monoid homomorphisms. -/
structure distrib_mul_action_hom extends A β†’[M] B, A β†’+ B.
/-- Reinterpret an equivariant additive monoid homomorphism as an additive monoid homomorphism. -/
add_decl_doc distrib_mul_action_hom.to_add_monoid_hom
/-- Reinterpret an equivariant additive monoid homomorphism as an equivariant function. -/
add_decl_doc distrib_mul_action_hom.to_mul_action_hom
notation A ` β†’+[`:25 M:25 `] `:0 B:0 := distrib_mul_action_hom M A B
/-- `distrib_mul_action_hom_class F M A B` states that `F` is a type of morphisms preserving
the additive monoid structure and scalar multiplication by `M`.
You should extend this class when you extend `distrib_mul_action_hom`. -/
class distrib_mul_action_hom_class (F : Type*) (M A B : out_param $ Type*)
[monoid M] [add_monoid A] [add_monoid B] [distrib_mul_action M A] [distrib_mul_action M B]
extends smul_hom_class F M A B, add_monoid_hom_class F A B
-- `M` becomes a metavariable but it's an `out_param` so it's not a problem.
attribute [nolint dangerous_instance] distrib_mul_action_hom_class.to_add_monoid_hom_class
namespace distrib_mul_action_hom
instance has_coe : has_coe (A β†’+[M] B) (A β†’+ B) :=
⟨to_add_monoid_hom⟩
instance has_coe' : has_coe (A β†’+[M] B) (A β†’[M] B) :=
⟨to_mul_action_hom⟩
instance : has_coe_to_fun (A β†’+[M] B) (Ξ» _, A β†’ B) := ⟨to_fun⟩
instance : distrib_mul_action_hom_class (A β†’+[M] B) M A B :=
{ coe := distrib_mul_action_hom.to_fun,
coe_injective' := Ξ» f g h, by cases f; cases g; congr',
map_smul := distrib_mul_action_hom.map_smul',
map_zero := distrib_mul_action_hom.map_zero',
map_add := distrib_mul_action_hom.map_add' }
variables {M A B}
@[simp] lemma to_fun_eq_coe (f : A β†’+[M] B) : f.to_fun = ⇑f := rfl
@[norm_cast] lemma coe_fn_coe (f : A β†’+[M] B) : ((f : A β†’+ B) : A β†’ B) = f := rfl
@[norm_cast] lemma coe_fn_coe' (f : A β†’+[M] B) : ((f : A β†’[M] B) : A β†’ B) = f := rfl
@[ext] theorem ext : βˆ€ {f g : A β†’+[M] B}, (βˆ€ x, f x = g x) β†’ f = g := fun_like.ext
theorem ext_iff {f g : A β†’+[M] B} : f = g ↔ βˆ€ x, f x = g x := fun_like.ext_iff
protected lemma congr_fun {f g : A β†’+[M] B} (h : f = g) (x : A) : f x = g x :=
fun_like.congr_fun h _
lemma to_mul_action_hom_injective {f g : A β†’+[M] B}
(h : (f : A β†’[M] B) = (g : A β†’[M] B)) : f = g :=
by { ext a, exact mul_action_hom.congr_fun h a, }
lemma to_add_monoid_hom_injective {f g : A β†’+[M] B}
(h : (f : A β†’+ B) = (g : A β†’+ B)) : f = g :=
by { ext a, exact add_monoid_hom.congr_fun h a, }
protected lemma map_zero (f : A β†’+[M] B) : f 0 = 0 := map_zero _
protected lemma map_add (f : A β†’+[M] B) (x y : A) : f (x + y) = f x + f y := map_add _ _ _
protected lemma map_neg (f : A' β†’+[M] B') (x : A') : f (-x) = -f x := map_neg _ _
protected lemma map_sub (f : A' β†’+[M] B') (x y : A') : f (x - y) = f x - f y := map_sub _ _ _
protected lemma map_smul (f : A β†’+[M] B) (m : M) (x : A) : f (m β€’ x) = m β€’ f x := map_smul _ _ _
variables (M) {A}
/-- The identity map as an equivariant additive monoid homomorphism. -/
protected def id : A β†’+[M] A :=
⟨id, λ _ _, rfl, rfl, λ _ _, rfl⟩
@[simp] lemma id_apply (x : A) : distrib_mul_action_hom.id M x = x := rfl
variables {M A B C}
instance : has_zero (A β†’+[M] B) :=
⟨{ map_smul' := by simp,
.. (0 : A β†’+ B) }⟩
instance : has_one (A β†’+[M] A) := ⟨distrib_mul_action_hom.id M⟩
@[simp] lemma coe_zero : ((0 : A β†’+[M] B) : A β†’ B) = 0 := rfl
@[simp] lemma coe_one : ((1 : A β†’+[M] A) : A β†’ A) = id := rfl
lemma zero_apply (a : A) : (0 : A β†’+[M] B) a = 0 := rfl
lemma one_apply (a : A) : (1 : A β†’+[M] A) a = a := rfl
instance : inhabited (A β†’+[M] B) := ⟨0⟩
/-- Composition of two equivariant additive monoid homomorphisms. -/
def comp (g : B β†’+[M] C) (f : A β†’+[M] B) : A β†’+[M] C :=
{ .. mul_action_hom.comp (g : B β†’[M] C) (f : A β†’[M] B),
.. add_monoid_hom.comp (g : B β†’+ C) (f : A β†’+ B), }
@[simp] lemma comp_apply (g : B β†’+[M] C) (f : A β†’+[M] B) (x : A) : g.comp f x = g (f x) := rfl
@[simp] lemma id_comp (f : A β†’+[M] B) : (distrib_mul_action_hom.id M).comp f = f :=
ext $ Ξ» x, by rw [comp_apply, id_apply]
@[simp] lemma comp_id (f : A β†’+[M] B) : f.comp (distrib_mul_action_hom.id M) = f :=
ext $ Ξ» x, by rw [comp_apply, id_apply]
/-- The inverse of a bijective `distrib_mul_action_hom` is a `distrib_mul_action_hom`. -/
@[simps] def inverse (f : A β†’+[M] B) (g : B β†’ A)
(h₁ : function.left_inverse g f) (hβ‚‚ : function.right_inverse g f) :
B β†’+[M] A :=
{ to_fun := g,
.. (f : A β†’+ B).inverse g h₁ hβ‚‚,
.. (f : A β†’[M] B).inverse g h₁ hβ‚‚ }
section semiring
variables {R M'} [add_monoid M'] [distrib_mul_action R M']
@[ext] lemma ext_ring
{f g : R β†’+[R] M'} (h : f 1 = g 1) : f = g :=
by { ext x, rw [← mul_one x, ← smul_eq_mul R, f.map_smul, g.map_smul, h], }
lemma ext_ring_iff {f g : R β†’+[R] M'} : f = g ↔ f 1 = g 1 :=
⟨λ h, h β–Έ rfl, ext_ring⟩
end semiring
end distrib_mul_action_hom
/-- Equivariant ring homomorphisms. -/
@[nolint has_nonempty_instance]
structure mul_semiring_action_hom extends R β†’+[M] S, R β†’+* S.
/-- Reinterpret an equivariant ring homomorphism as a ring homomorphism. -/
add_decl_doc mul_semiring_action_hom.to_ring_hom
/-- Reinterpret an equivariant ring homomorphism as an equivariant additive monoid homomorphism. -/
add_decl_doc mul_semiring_action_hom.to_distrib_mul_action_hom
notation R ` β†’+*[`:25 M:25 `] `:0 S:0 := mul_semiring_action_hom M R S
/-- `mul_semiring_action_hom_class F M R S` states that `F` is a type of morphisms preserving
the ring structure and scalar multiplication by `M`.
You should extend this class when you extend `mul_semiring_action_hom`. -/
class mul_semiring_action_hom_class (F : Type*) (M R S : out_param $ Type*)
[monoid M] [semiring R] [semiring S] [distrib_mul_action M R] [distrib_mul_action M S]
extends distrib_mul_action_hom_class F M R S, ring_hom_class F R S
-- `M` becomes a metavariable but it's an `out_param` so it's not a problem.
attribute [nolint dangerous_instance] mul_semiring_action_hom_class.to_ring_hom_class
namespace mul_semiring_action_hom
instance has_coe : has_coe (R β†’+*[M] S) (R β†’+* S) :=
⟨to_ring_hom⟩
instance has_coe' : has_coe (R β†’+*[M] S) (R β†’+[M] S) :=
⟨to_distrib_mul_action_hom⟩
instance : has_coe_to_fun (R β†’+*[M] S) (Ξ» _, R β†’ S) := ⟨λ c, c.to_fun⟩
instance : mul_semiring_action_hom_class (R β†’+*[M] S) M R S :=
{ coe := mul_semiring_action_hom.to_fun,
coe_injective' := Ξ» f g h, by cases f; cases g; congr',
map_smul := mul_semiring_action_hom.map_smul',
map_zero := mul_semiring_action_hom.map_zero',
map_add := mul_semiring_action_hom.map_add',
map_one := mul_semiring_action_hom.map_one',
map_mul := mul_semiring_action_hom.map_mul' }
variables {M R S}
@[norm_cast] lemma coe_fn_coe (f : R β†’+*[M] S) : ((f : R β†’+* S) : R β†’ S) = f := rfl
@[norm_cast] lemma coe_fn_coe' (f : R β†’+*[M] S) : ((f : R β†’+[M] S) : R β†’ S) = f := rfl
@[ext] theorem ext : βˆ€ {f g : R β†’+*[M] S}, (βˆ€ x, f x = g x) β†’ f = g := fun_like.ext
theorem ext_iff {f g : R β†’+*[M] S} : f = g ↔ βˆ€ x, f x = g x := fun_like.ext_iff
protected lemma map_zero (f : R β†’+*[M] S) : f 0 = 0 := map_zero _
protected lemma map_add (f : R β†’+*[M] S) (x y : R) : f (x + y) = f x + f y := map_add _ _ _
protected lemma map_neg (f : R' β†’+*[M] S') (x : R') : f (-x) = -f x := map_neg _ _
protected lemma map_sub (f : R' β†’+*[M] S') (x y : R') : f (x - y) = f x - f y := map_sub _ _ _
protected lemma map_one (f : R β†’+*[M] S) : f 1 = 1 := map_one _
protected lemma map_mul (f : R β†’+*[M] S) (x y : R) : f (x * y) = f x * f y := map_mul _ _ _
protected lemma map_smul (f : R β†’+*[M] S) (m : M) (x : R) : f (m β€’ x) = m β€’ f x := map_smul _ _ _
variables (M) {R}
/-- The identity map as an equivariant ring homomorphism. -/
protected def id : R β†’+*[M] R :=
⟨id, λ _ _, rfl, rfl, λ _ _, rfl, rfl, λ _ _, rfl⟩
@[simp] lemma id_apply (x : R) : mul_semiring_action_hom.id M x = x := rfl
variables {M R S T}
/-- Composition of two equivariant additive monoid homomorphisms. -/
def comp (g : S β†’+*[M] T) (f : R β†’+*[M] S) : R β†’+*[M] T :=
{ .. distrib_mul_action_hom.comp (g : S β†’+[M] T) (f : R β†’+[M] S),
.. ring_hom.comp (g : S β†’+* T) (f : R β†’+* S), }
@[simp] lemma comp_apply (g : S β†’+*[M] T) (f : R β†’+*[M] S) (x : R) : g.comp f x = g (f x) := rfl
@[simp] lemma id_comp (f : R β†’+*[M] S) : (mul_semiring_action_hom.id M).comp f = f :=
ext $ Ξ» x, by rw [comp_apply, id_apply]
@[simp] lemma comp_id (f : R β†’+*[M] S) : f.comp (mul_semiring_action_hom.id M) = f :=
ext $ Ξ» x, by rw [comp_apply, id_apply]
end mul_semiring_action_hom
section
variables (M) {R'} (U : subring R') [is_invariant_subring M U]
/-- The canonical inclusion from an invariant subring. -/
def is_invariant_subring.subtype_hom : U β†’+*[M] R' :=
{ map_smul' := Ξ» m s, rfl, ..U.subtype }
@[simp] theorem is_invariant_subring.coe_subtype_hom :
(is_invariant_subring.subtype_hom M U : U β†’ R') = coe := rfl
@[simp] theorem is_invariant_subring.coe_subtype_hom' :
(is_invariant_subring.subtype_hom M U : U β†’+* R') = U.subtype := rfl
end