Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2022 Oliver Nash. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Oliver Nash | |
-/ | |
import ring_theory.tensor_product | |
/-! | |
# Bimodules | |
One frequently encounters situations in which several sets of scalars act on a single space, subject | |
to compatibility condition(s). A distinguished instance of this is the theory of bimodules: one has | |
two rings `R`, `S` acting on an additive group `M`, with `R` acting covariantly ("on the left") | |
and `S` acting contravariantly ("on the right"). The compatibility condition is just: | |
`(r β’ m) β’ s = r β’ (m β’ s)` for all `r : R`, `s : S`, `m : M`. | |
This situation can be set up in Mathlib as: | |
```lean | |
variables (R S M : Type*) [ring R] [ring S] | |
variables [add_comm_group M] [module R M] [module Sα΅α΅α΅ M] [smul_comm_class R Sα΅α΅α΅ M] | |
``` | |
The key fact is: | |
```lean | |
example : module (R β[β] Sα΅α΅α΅) M := tensor_product.algebra.module | |
``` | |
Note that the corresponding result holds for the canonically isomorphic ring `R β[β€] Sα΅α΅α΅` but it is | |
preferable to use the `R β[β] Sα΅α΅α΅` instance since it works without additive inverses. | |
Bimodules are thus just a special case of `module`s and most of their properties follow from the | |
theory of `module`s`. In particular a two-sided submodule of a bimodule is simply a term of type | |
`submodule (R β[β] Sα΅α΅α΅) M`. | |
This file is a place to collect results which are specific to bimodules. | |
## Main definitions | |
* `subbimodule.mk` | |
* `subbimodule.smul_mem` | |
* `subbimodule.smul_mem'` | |
* `subbimodule.to_submodule` | |
* `subbimodule.to_submodule'` | |
## Implementation details | |
For many definitions and lemmas it is preferable to set things up without opposites, i.e., as: | |
`[module S M] [smul_comm_class R S M]` rather than `[module Sα΅α΅α΅ M] [smul_comm_class R Sα΅α΅α΅ M]`. | |
The corresponding results for opposites then follow automatically and do not require taking | |
advantage of the fact that `(Sα΅α΅α΅)α΅α΅α΅` is defeq to `S`. | |
## TODO | |
Develop the theory of two-sided ideals, which have type `submodule (R β[β] Rα΅α΅α΅) R`. | |
-/ | |
open_locale tensor_product | |
local attribute [instance] tensor_product.algebra.module | |
namespace subbimodule | |
section algebra | |
variables {R A B M : Type*} | |
variables [comm_semiring R] [add_comm_monoid M] [module R M] | |
variables [semiring A] [semiring B] [module A M] [module B M] | |
variables [algebra R A] [algebra R B] | |
variables [is_scalar_tower R A M] [is_scalar_tower R B M] | |
variables [smul_comm_class A B M] | |
/-- A constructor for a subbimodule which demands closure under the two sets of scalars | |
individually, rather than jointly via their tensor product. | |
Note that `R` plays no role but it is convenient to make this generalisation to support the cases | |
`R = β` and `R = β€` which both show up naturally. See also `base_change`. -/ | |
@[simps] def mk (p : add_submonoid M) | |
(hA : β (a : A) {m : M}, m β p β a β’ m β p) | |
(hB : β (b : B) {m : M}, m β p β b β’ m β p) : submodule (A β[R] B) M := | |
{ carrier := p, | |
smul_mem' := Ξ» ab m, tensor_product.induction_on ab | |
(Ξ» hm, by simpa only [zero_smul] using p.zero_mem) | |
(Ξ» a b hm, by simpa only [tensor_product.algebra.smul_def] using hA a (hB b hm)) | |
(Ξ» z w hz hw hm, by simpa only [add_smul] using p.add_mem (hz hm) (hw hm)), | |
.. p } | |
lemma smul_mem (p : submodule (A β[R] B) M) (a : A) {m : M} (hm : m β p) : a β’ m β p := | |
begin | |
suffices : a β’ m = a ββ[R] (1 : B) β’ m, { exact this.symm βΈ p.smul_mem _ hm, }, | |
simp [tensor_product.algebra.smul_def], | |
end | |
lemma smul_mem' (p : submodule (A β[R] B) M) (b : B) {m : M} (hm : m β p) : b β’ m β p := | |
begin | |
suffices : b β’ m = (1 : A) ββ[R] b β’ m, { exact this.symm βΈ p.smul_mem _ hm, }, | |
simp [tensor_product.algebra.smul_def], | |
end | |
/-- If `A` and `B` are also `algebra`s over yet another set of scalars `S` then we may "base change" | |
from `R` to `S`. -/ | |
@[simps] def base_change (S : Type*) [comm_semiring S] [module S M] [algebra S A] [algebra S B] | |
[is_scalar_tower S A M] [is_scalar_tower S B M] (p : submodule (A β[R] B) M) : | |
submodule (A β[S] B) M := | |
mk p.to_add_submonoid (smul_mem p) (smul_mem' p) | |
/-- Forgetting the `B` action, a `submodule` over `A β[R] B` is just a `submodule` over `A`. -/ | |
@[simps] def to_submodule (p : submodule (A β[R] B) M) : submodule A M := | |
{ carrier := p, | |
smul_mem' := smul_mem p, | |
.. p } | |
/-- Forgetting the `A` action, a `submodule` over `A β[R] B` is just a `submodule` over `B`. -/ | |
@[simps] def to_submodule' (p : submodule (A β[R] B) M) : submodule B M := | |
{ carrier := p, | |
smul_mem' := smul_mem' p, | |
.. p } | |
end algebra | |
section ring | |
variables (R S M : Type*) [ring R] [ring S] | |
variables [add_comm_group M] [module R M] [module S M] [smul_comm_class R S M] | |
/-- A `submodule` over `R β[β] S` is naturally also a `submodule` over the canonically-isomorphic | |
ring `R β[β€] S`. -/ | |
@[simps] def to_subbimodule_int (p : submodule (R β[β] S) M) : submodule (R β[β€] S) M := | |
base_change β€ p | |
/-- A `submodule` over `R β[β€] S` is naturally also a `submodule` over the canonically-isomorphic | |
ring `R β[β] S`. -/ | |
@[simps] def to_subbimodule_nat (p : submodule (R β[β€] S) M) : submodule (R β[β] S) M := | |
base_change β p | |
end ring | |
end subbimodule | |